1 //===-- BranchRelaxation.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/CodeGen/Passes.h" 11 #include "llvm/ADT/SmallVector.h" 12 #include "llvm/ADT/Statistic.h" 13 #include "llvm/CodeGen/MachineFunctionPass.h" 14 #include "llvm/CodeGen/RegisterScavenging.h" 15 #include "llvm/Target/TargetInstrInfo.h" 16 #include "llvm/Target/TargetSubtargetInfo.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Support/Format.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 using namespace llvm; 22 23 #define DEBUG_TYPE "branch-relaxation" 24 25 STATISTIC(NumSplit, "Number of basic blocks split"); 26 STATISTIC(NumConditionalRelaxed, "Number of conditional branches relaxed"); 27 STATISTIC(NumUnconditionalRelaxed, "Number of unconditional branches relaxed"); 28 29 #define BRANCH_RELAX_NAME "Branch relaxation pass" 30 31 namespace { 32 class BranchRelaxation : public MachineFunctionPass { 33 /// BasicBlockInfo - Information about the offset and size of a single 34 /// basic block. 35 struct BasicBlockInfo { 36 /// Offset - Distance from the beginning of the function to the beginning 37 /// of this basic block. 38 /// 39 /// The offset is always aligned as required by the basic block. 40 unsigned Offset; 41 42 /// Size - Size of the basic block in bytes. If the block contains 43 /// inline assembly, this is a worst case estimate. 44 /// 45 /// The size does not include any alignment padding whether from the 46 /// beginning of the block, or from an aligned jump table at the end. 47 unsigned Size; 48 49 BasicBlockInfo() : Offset(0), Size(0) {} 50 51 /// Compute the offset immediately following this block. \p MBB is the next 52 /// block. 53 unsigned postOffset(const MachineBasicBlock &MBB) const { 54 unsigned PO = Offset + Size; 55 unsigned Align = MBB.getAlignment(); 56 if (Align == 0) 57 return PO; 58 59 unsigned AlignAmt = 1 << Align; 60 unsigned ParentAlign = MBB.getParent()->getAlignment(); 61 if (Align <= ParentAlign) 62 return PO + OffsetToAlignment(PO, AlignAmt); 63 64 // The alignment of this MBB is larger than the function's alignment, so we 65 // can't tell whether or not it will insert nops. Assume that it will. 66 return PO + AlignAmt + OffsetToAlignment(PO, AlignAmt); 67 } 68 }; 69 70 SmallVector<BasicBlockInfo, 16> BlockInfo; 71 std::unique_ptr<RegScavenger> RS; 72 73 MachineFunction *MF; 74 const TargetInstrInfo *TII; 75 76 bool relaxBranchInstructions(); 77 void scanFunction(); 78 79 MachineBasicBlock *createNewBlockAfter(MachineBasicBlock &BB); 80 81 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI); 82 void adjustBlockOffsets(MachineBasicBlock &MBB); 83 bool isBlockInRange(const MachineInstr &MI, const MachineBasicBlock &BB) const; 84 85 bool fixupConditionalBranch(MachineInstr &MI); 86 bool fixupUnconditionalBranch(MachineInstr &MI); 87 uint64_t computeBlockSize(const MachineBasicBlock &MBB) const; 88 unsigned getInstrOffset(const MachineInstr &MI) const; 89 void dumpBBs(); 90 void verify(); 91 92 public: 93 static char ID; 94 BranchRelaxation() : MachineFunctionPass(ID) { } 95 96 bool runOnMachineFunction(MachineFunction &MF) override; 97 98 StringRef getPassName() const override { 99 return BRANCH_RELAX_NAME; 100 } 101 }; 102 103 } 104 105 char BranchRelaxation::ID = 0; 106 char &llvm::BranchRelaxationPassID = BranchRelaxation::ID; 107 108 INITIALIZE_PASS(BranchRelaxation, DEBUG_TYPE, BRANCH_RELAX_NAME, false, false) 109 110 /// verify - check BBOffsets, BBSizes, alignment of islands 111 void BranchRelaxation::verify() { 112 #ifndef NDEBUG 113 unsigned PrevNum = MF->begin()->getNumber(); 114 for (MachineBasicBlock &MBB : *MF) { 115 unsigned Align = MBB.getAlignment(); 116 unsigned Num = MBB.getNumber(); 117 assert(BlockInfo[Num].Offset % (1u << Align) == 0); 118 assert(!Num || BlockInfo[PrevNum].postOffset(MBB) <= BlockInfo[Num].Offset); 119 PrevNum = Num; 120 } 121 #endif 122 } 123 124 /// print block size and offset information - debugging 125 void BranchRelaxation::dumpBBs() { 126 for (auto &MBB : *MF) { 127 const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()]; 128 dbgs() << format("BB#%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset) 129 << format("size=%#x\n", BBI.Size); 130 } 131 } 132 133 /// scanFunction - Do the initial scan of the function, building up 134 /// information about each block. 135 void BranchRelaxation::scanFunction() { 136 BlockInfo.clear(); 137 BlockInfo.resize(MF->getNumBlockIDs()); 138 139 // First thing, compute the size of all basic blocks, and see if the function 140 // has any inline assembly in it. If so, we have to be conservative about 141 // alignment assumptions, as we don't know for sure the size of any 142 // instructions in the inline assembly. 143 for (MachineBasicBlock &MBB : *MF) 144 BlockInfo[MBB.getNumber()].Size = computeBlockSize(MBB); 145 146 // Compute block offsets and known bits. 147 adjustBlockOffsets(*MF->begin()); 148 } 149 150 /// computeBlockSize - Compute the size for MBB. 151 uint64_t BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) const { 152 uint64_t Size = 0; 153 for (const MachineInstr &MI : MBB) 154 Size += TII->getInstSizeInBytes(MI); 155 return Size; 156 } 157 158 /// getInstrOffset - Return the current offset of the specified machine 159 /// instruction from the start of the function. This offset changes as stuff is 160 /// moved around inside the function. 161 unsigned BranchRelaxation::getInstrOffset(const MachineInstr &MI) const { 162 const MachineBasicBlock *MBB = MI.getParent(); 163 164 // The offset is composed of two things: the sum of the sizes of all MBB's 165 // before this instruction's block, and the offset from the start of the block 166 // it is in. 167 unsigned Offset = BlockInfo[MBB->getNumber()].Offset; 168 169 // Sum instructions before MI in MBB. 170 for (MachineBasicBlock::const_iterator I = MBB->begin(); &*I != &MI; ++I) { 171 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 172 Offset += TII->getInstSizeInBytes(*I); 173 } 174 175 return Offset; 176 } 177 178 void BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) { 179 unsigned PrevNum = Start.getNumber(); 180 for (auto &MBB : make_range(MachineFunction::iterator(Start), MF->end())) { 181 unsigned Num = MBB.getNumber(); 182 if (!Num) // block zero is never changed from offset zero. 183 continue; 184 // Get the offset and known bits at the end of the layout predecessor. 185 // Include the alignment of the current block. 186 BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(MBB); 187 188 PrevNum = Num; 189 } 190 } 191 192 /// Insert a new empty basic block and insert it after \BB 193 MachineBasicBlock *BranchRelaxation::createNewBlockAfter(MachineBasicBlock &BB) { 194 // Create a new MBB for the code after the OrigBB. 195 MachineBasicBlock *NewBB = 196 MF->CreateMachineBasicBlock(BB.getBasicBlock()); 197 MF->insert(++BB.getIterator(), NewBB); 198 199 // Insert an entry into BlockInfo to align it properly with the block numbers. 200 BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 201 202 return NewBB; 203 } 204 205 /// Split the basic block containing MI into two blocks, which are joined by 206 /// an unconditional branch. Update data structures and renumber blocks to 207 /// account for this change and returns the newly created block. 208 /// NOTE: Successor list of the original BB is out of date after this function, 209 /// and must be updated by the caller! Other transforms follow using this 210 /// utility function, so no point updating now rather than waiting. 211 MachineBasicBlock *BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI) { 212 MachineBasicBlock *OrigBB = MI.getParent(); 213 214 // Create a new MBB for the code after the OrigBB. 215 MachineBasicBlock *NewBB = 216 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 217 MF->insert(++OrigBB->getIterator(), NewBB); 218 219 // Splice the instructions starting with MI over to NewBB. 220 NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end()); 221 222 // Add an unconditional branch from OrigBB to NewBB. 223 // Note the new unconditional branch is not being recorded. 224 // There doesn't seem to be meaningful DebugInfo available; this doesn't 225 // correspond to anything in the source. 226 TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc()); 227 228 // Insert an entry into BlockInfo to align it properly with the block numbers. 229 BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 230 231 // Figure out how large the OrigBB is. As the first half of the original 232 // block, it cannot contain a tablejump. The size includes 233 // the new jump we added. (It should be possible to do this without 234 // recounting everything, but it's very confusing, and this is rarely 235 // executed.) 236 BlockInfo[OrigBB->getNumber()].Size = computeBlockSize(*OrigBB); 237 238 // Figure out how large the NewMBB is. As the second half of the original 239 // block, it may contain a tablejump. 240 BlockInfo[NewBB->getNumber()].Size = computeBlockSize(*NewBB); 241 242 // All BBOffsets following these blocks must be modified. 243 adjustBlockOffsets(*OrigBB); 244 245 ++NumSplit; 246 247 return NewBB; 248 } 249 250 /// isBlockInRange - Returns true if the distance between specific MI and 251 /// specific BB can fit in MI's displacement field. 252 bool BranchRelaxation::isBlockInRange( 253 const MachineInstr &MI, const MachineBasicBlock &DestBB) const { 254 int64_t BrOffset = getInstrOffset(MI); 255 int64_t DestOffset = BlockInfo[DestBB.getNumber()].Offset; 256 257 if (TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - BrOffset)) 258 return true; 259 260 DEBUG( 261 dbgs() << "Out of range branch to destination BB#" << DestBB.getNumber() 262 << " from BB#" << MI.getParent()->getNumber() 263 << " to " << DestOffset 264 << " offset " << DestOffset - BrOffset 265 << '\t' << MI 266 ); 267 268 return false; 269 } 270 271 /// fixupConditionalBranch - Fix up a conditional branch whose destination is 272 /// too far away to fit in its displacement field. It is converted to an inverse 273 /// conditional branch + an unconditional branch to the destination. 274 bool BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) { 275 DebugLoc DL = MI.getDebugLoc(); 276 MachineBasicBlock *MBB = MI.getParent(); 277 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 278 SmallVector<MachineOperand, 4> Cond; 279 280 bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 281 assert(!Fail && "branches to be relaxed must be analyzable"); 282 (void)Fail; 283 284 // Add an unconditional branch to the destination and invert the branch 285 // condition to jump over it: 286 // tbz L1 287 // => 288 // tbnz L2 289 // b L1 290 // L2: 291 292 if (FBB && isBlockInRange(MI, *FBB)) { 293 // Last MI in the BB is an unconditional branch. We can simply invert the 294 // condition and swap destinations: 295 // beq L1 296 // b L2 297 // => 298 // bne L2 299 // b L1 300 DEBUG(dbgs() << " Invert condition and swap " 301 "its destination with " << MBB->back()); 302 303 TII->reverseBranchCondition(Cond); 304 int OldSize = 0, NewSize = 0; 305 TII->removeBranch(*MBB, &OldSize); 306 TII->insertBranch(*MBB, FBB, TBB, Cond, DL, &NewSize); 307 308 BlockInfo[MBB->getNumber()].Size += (NewSize - OldSize); 309 return true; 310 } else if (FBB) { 311 // We need to split the basic block here to obtain two long-range 312 // unconditional branches. 313 auto &NewBB = *MF->CreateMachineBasicBlock(MBB->getBasicBlock()); 314 MF->insert(++MBB->getIterator(), &NewBB); 315 316 // Insert an entry into BlockInfo to align it properly with the block 317 // numbers. 318 BlockInfo.insert(BlockInfo.begin() + NewBB.getNumber(), BasicBlockInfo()); 319 320 unsigned &NewBBSize = BlockInfo[NewBB.getNumber()].Size; 321 int NewBrSize; 322 TII->insertUnconditionalBranch(NewBB, FBB, DL, &NewBrSize); 323 NewBBSize += NewBrSize; 324 325 // Update the successor lists according to the transformation to follow. 326 // Do it here since if there's no split, no update is needed. 327 MBB->replaceSuccessor(FBB, &NewBB); 328 NewBB.addSuccessor(FBB); 329 } 330 331 // We now have an appropriate fall-through block in place (either naturally or 332 // just created), so we can invert the condition. 333 MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB)); 334 335 DEBUG(dbgs() << " Insert B to BB#" << TBB->getNumber() 336 << ", invert condition and change dest. to BB#" 337 << NextBB.getNumber() << '\n'); 338 339 unsigned &MBBSize = BlockInfo[MBB->getNumber()].Size; 340 341 // Insert a new conditional branch and a new unconditional branch. 342 int RemovedSize = 0; 343 TII->reverseBranchCondition(Cond); 344 TII->removeBranch(*MBB, &RemovedSize); 345 MBBSize -= RemovedSize; 346 347 int AddedSize = 0; 348 TII->insertBranch(*MBB, &NextBB, TBB, Cond, DL, &AddedSize); 349 MBBSize += AddedSize; 350 351 // Finally, keep the block offsets up to date. 352 adjustBlockOffsets(*MBB); 353 return true; 354 } 355 356 bool BranchRelaxation::fixupUnconditionalBranch(MachineInstr &MI) { 357 MachineBasicBlock *MBB = MI.getParent(); 358 359 unsigned OldBrSize = TII->getInstSizeInBytes(MI); 360 MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI); 361 362 int64_t DestOffset = BlockInfo[DestBB->getNumber()].Offset; 363 int64_t SrcOffset = getInstrOffset(MI); 364 365 assert(!TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - SrcOffset)); 366 367 BlockInfo[MBB->getNumber()].Size -= OldBrSize; 368 369 MachineBasicBlock *BranchBB = MBB; 370 371 // If this was an expanded conditional branch, there is already a single 372 // unconditional branch in a block. 373 if (!MBB->empty()) { 374 BranchBB = createNewBlockAfter(*MBB); 375 376 // Add live outs. 377 for (const MachineBasicBlock *Succ : MBB->successors()) { 378 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : Succ->liveins()) 379 BranchBB->addLiveIn(LiveIn); 380 } 381 382 BranchBB->sortUniqueLiveIns(); 383 BranchBB->addSuccessor(DestBB); 384 MBB->replaceSuccessor(DestBB, BranchBB); 385 } 386 387 DebugLoc DL = MI.getDebugLoc(); 388 MI.eraseFromParent(); 389 390 // insertUnconditonalBranch may have inserted a new block. 391 BlockInfo[MBB->getNumber()].Size += TII->insertIndirectBranch( 392 *BranchBB, *DestBB, DL, DestOffset - SrcOffset, RS.get()); 393 394 computeBlockSize(*BranchBB); 395 adjustBlockOffsets(*MBB); 396 return true; 397 } 398 399 bool BranchRelaxation::relaxBranchInstructions() { 400 bool Changed = false; 401 402 // Relaxing branches involves creating new basic blocks, so re-eval 403 // end() for termination. 404 for (MachineFunction::iterator I = MF->begin(); I != MF->end(); ++I) { 405 MachineBasicBlock &MBB = *I; 406 407 MachineBasicBlock::iterator Next; 408 for (MachineBasicBlock::iterator J = MBB.getFirstTerminator(); 409 J != MBB.end(); J = Next) { 410 Next = std::next(J); 411 MachineInstr &MI = *J; 412 413 if (MI.isConditionalBranch()) { 414 MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI); 415 if (!isBlockInRange(MI, *DestBB)) { 416 if (Next != MBB.end() && Next->isConditionalBranch()) { 417 // If there are multiple conditional branches, this isn't an 418 // analyzable block. Split later terminators into a new block so 419 // each one will be analyzable. 420 421 MachineBasicBlock *NewBB = splitBlockBeforeInstr(*Next); 422 NewBB->transferSuccessors(&MBB); 423 MBB.addSuccessor(NewBB); 424 MBB.addSuccessor(DestBB); 425 426 // Cleanup potential unconditional branch to successor block. 427 NewBB->updateTerminator(); 428 MBB.updateTerminator(); 429 } else { 430 fixupConditionalBranch(MI); 431 ++NumConditionalRelaxed; 432 } 433 434 Changed = true; 435 436 // This may have modified all of the terminators, so start over. 437 Next = MBB.getFirstTerminator(); 438 } 439 } 440 441 if (MI.isUnconditionalBranch()) { 442 // Unconditional branch destination might be unanalyzable, assume these 443 // are OK. 444 if (MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI)) { 445 if (!isBlockInRange(MI, *DestBB)) { 446 fixupUnconditionalBranch(MI); 447 ++NumUnconditionalRelaxed; 448 Changed = true; 449 } 450 } 451 452 // Unconditional branch is the last terminator. 453 break; 454 } 455 } 456 } 457 458 return Changed; 459 } 460 461 bool BranchRelaxation::runOnMachineFunction(MachineFunction &mf) { 462 MF = &mf; 463 464 DEBUG(dbgs() << "***** BranchRelaxation *****\n"); 465 466 const TargetSubtargetInfo &ST = MF->getSubtarget(); 467 TII = ST.getInstrInfo(); 468 469 const TargetRegisterInfo *TRI = ST.getRegisterInfo(); 470 if (TRI->trackLivenessAfterRegAlloc(*MF)) 471 RS.reset(new RegScavenger()); 472 473 // Renumber all of the machine basic blocks in the function, guaranteeing that 474 // the numbers agree with the position of the block in the function. 475 MF->RenumberBlocks(); 476 477 // Do the initial scan of the function, building up information about the 478 // sizes of each block. 479 scanFunction(); 480 481 DEBUG(dbgs() << " Basic blocks before relaxation\n"; dumpBBs();); 482 483 bool MadeChange = false; 484 while (relaxBranchInstructions()) 485 MadeChange = true; 486 487 // After a while, this might be made debug-only, but it is not expensive. 488 verify(); 489 490 DEBUG(dbgs() << " Basic blocks after relaxation\n\n"; dumpBBs()); 491 492 BlockInfo.clear(); 493 494 return MadeChange; 495 } 496