1 //===-- BranchFolding.cpp - Fold machine code branch instructions ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass forwards branches to unconditional branches to make them branch 11 // directly to the target block. This pass often results in dead MBB's, which 12 // it then removes. 13 // 14 // Note that this pass must be run after register allocation, it cannot handle 15 // SSA form. It also must handle virtual registers for targets that emit virtual 16 // ISA (e.g. NVPTX). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "BranchFolding.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Target/TargetSubtargetInfo.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 #define DEBUG_TYPE "branchfolding" 47 48 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 49 STATISTIC(NumBranchOpts, "Number of branches optimized"); 50 STATISTIC(NumTailMerge , "Number of block tails merged"); 51 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 52 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 53 54 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 55 cl::init(cl::BOU_UNSET), cl::Hidden); 56 57 // Throttle for huge numbers of predecessors (compile speed problems) 58 static cl::opt<unsigned> 59 TailMergeThreshold("tail-merge-threshold", 60 cl::desc("Max number of predecessors to consider tail merging"), 61 cl::init(150), cl::Hidden); 62 63 // Heuristic for tail merging (and, inversely, tail duplication). 64 // TODO: This should be replaced with a target query. 65 static cl::opt<unsigned> 66 TailMergeSize("tail-merge-size", 67 cl::desc("Min number of instructions to consider tail merging"), 68 cl::init(3), cl::Hidden); 69 70 namespace { 71 /// BranchFolderPass - Wrap branch folder in a machine function pass. 72 class BranchFolderPass : public MachineFunctionPass { 73 public: 74 static char ID; 75 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 76 77 bool runOnMachineFunction(MachineFunction &MF) override; 78 79 void getAnalysisUsage(AnalysisUsage &AU) const override { 80 AU.addRequired<MachineBlockFrequencyInfo>(); 81 AU.addRequired<MachineBranchProbabilityInfo>(); 82 AU.addRequired<TargetPassConfig>(); 83 MachineFunctionPass::getAnalysisUsage(AU); 84 } 85 }; 86 } 87 88 char BranchFolderPass::ID = 0; 89 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 90 91 INITIALIZE_PASS(BranchFolderPass, "branch-folder", 92 "Control Flow Optimizer", false, false) 93 94 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 95 if (skipFunction(*MF.getFunction())) 96 return false; 97 98 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 99 // TailMerge can create jump into if branches that make CFG irreducible for 100 // HW that requires structurized CFG. 101 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 102 PassConfig->getEnableTailMerge(); 103 BranchFolder::MBFIWrapper MBBFreqInfo( 104 getAnalysis<MachineBlockFrequencyInfo>()); 105 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 106 getAnalysis<MachineBranchProbabilityInfo>()); 107 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), 108 MF.getSubtarget().getRegisterInfo(), 109 getAnalysisIfAvailable<MachineModuleInfo>()); 110 } 111 112 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, 113 MBFIWrapper &FreqInfo, 114 const MachineBranchProbabilityInfo &ProbInfo, 115 unsigned MinTailLength) 116 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 117 MBBFreqInfo(FreqInfo), MBPI(ProbInfo) { 118 if (MinCommonTailLength == 0) 119 MinCommonTailLength = TailMergeSize; 120 switch (FlagEnableTailMerge) { 121 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; 122 case cl::BOU_TRUE: EnableTailMerge = true; break; 123 case cl::BOU_FALSE: EnableTailMerge = false; break; 124 } 125 } 126 127 /// RemoveDeadBlock - Remove the specified dead machine basic block from the 128 /// function, updating the CFG. 129 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 130 assert(MBB->pred_empty() && "MBB must be dead!"); 131 DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 132 133 MachineFunction *MF = MBB->getParent(); 134 // drop all successors. 135 while (!MBB->succ_empty()) 136 MBB->removeSuccessor(MBB->succ_end()-1); 137 138 // Avoid matching if this pointer gets reused. 139 TriedMerging.erase(MBB); 140 141 // Remove the block. 142 MF->erase(MBB); 143 FuncletMembership.erase(MBB); 144 if (MLI) 145 MLI->removeBlock(MBB); 146 } 147 148 /// OptimizeImpDefsBlock - If a basic block is just a bunch of implicit_def 149 /// followed by terminators, and if the implicitly defined registers are not 150 /// used by the terminators, remove those implicit_def's. e.g. 151 /// BB1: 152 /// r0 = implicit_def 153 /// r1 = implicit_def 154 /// br 155 /// This block can be optimized away later if the implicit instructions are 156 /// removed. 157 bool BranchFolder::OptimizeImpDefsBlock(MachineBasicBlock *MBB) { 158 SmallSet<unsigned, 4> ImpDefRegs; 159 MachineBasicBlock::iterator I = MBB->begin(); 160 while (I != MBB->end()) { 161 if (!I->isImplicitDef()) 162 break; 163 unsigned Reg = I->getOperand(0).getReg(); 164 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 165 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 166 SubRegs.isValid(); ++SubRegs) 167 ImpDefRegs.insert(*SubRegs); 168 } else { 169 ImpDefRegs.insert(Reg); 170 } 171 ++I; 172 } 173 if (ImpDefRegs.empty()) 174 return false; 175 176 MachineBasicBlock::iterator FirstTerm = I; 177 while (I != MBB->end()) { 178 if (!TII->isUnpredicatedTerminator(*I)) 179 return false; 180 // See if it uses any of the implicitly defined registers. 181 for (const MachineOperand &MO : I->operands()) { 182 if (!MO.isReg() || !MO.isUse()) 183 continue; 184 unsigned Reg = MO.getReg(); 185 if (ImpDefRegs.count(Reg)) 186 return false; 187 } 188 ++I; 189 } 190 191 I = MBB->begin(); 192 while (I != FirstTerm) { 193 MachineInstr *ImpDefMI = &*I; 194 ++I; 195 MBB->erase(ImpDefMI); 196 } 197 198 return true; 199 } 200 201 /// OptimizeFunction - Perhaps branch folding, tail merging and other 202 /// CFG optimizations on the given function. Block placement changes the layout 203 /// and may create new tail merging opportunities. 204 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 205 const TargetInstrInfo *tii, 206 const TargetRegisterInfo *tri, 207 MachineModuleInfo *mmi, 208 MachineLoopInfo *mli, bool AfterPlacement) { 209 if (!tii) return false; 210 211 TriedMerging.clear(); 212 213 AfterBlockPlacement = AfterPlacement; 214 TII = tii; 215 TRI = tri; 216 MMI = mmi; 217 MLI = mli; 218 219 MachineRegisterInfo &MRI = MF.getRegInfo(); 220 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 221 if (!UpdateLiveIns) 222 MRI.invalidateLiveness(); 223 224 // Fix CFG. The later algorithms expect it to be right. 225 bool MadeChange = false; 226 for (MachineBasicBlock &MBB : MF) { 227 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 228 SmallVector<MachineOperand, 4> Cond; 229 if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true)) 230 MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 231 MadeChange |= OptimizeImpDefsBlock(&MBB); 232 } 233 234 // Recalculate funclet membership. 235 FuncletMembership = getFuncletMembership(MF); 236 237 bool MadeChangeThisIteration = true; 238 while (MadeChangeThisIteration) { 239 MadeChangeThisIteration = TailMergeBlocks(MF); 240 // No need to clean up if tail merging does not change anything after the 241 // block placement. 242 if (!AfterBlockPlacement || MadeChangeThisIteration) 243 MadeChangeThisIteration |= OptimizeBranches(MF); 244 if (EnableHoistCommonCode) 245 MadeChangeThisIteration |= HoistCommonCode(MF); 246 MadeChange |= MadeChangeThisIteration; 247 } 248 249 // See if any jump tables have become dead as the code generator 250 // did its thing. 251 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 252 if (!JTI) 253 return MadeChange; 254 255 // Walk the function to find jump tables that are live. 256 BitVector JTIsLive(JTI->getJumpTables().size()); 257 for (const MachineBasicBlock &BB : MF) { 258 for (const MachineInstr &I : BB) 259 for (const MachineOperand &Op : I.operands()) { 260 if (!Op.isJTI()) continue; 261 262 // Remember that this JT is live. 263 JTIsLive.set(Op.getIndex()); 264 } 265 } 266 267 // Finally, remove dead jump tables. This happens when the 268 // indirect jump was unreachable (and thus deleted). 269 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 270 if (!JTIsLive.test(i)) { 271 JTI->RemoveJumpTable(i); 272 MadeChange = true; 273 } 274 275 return MadeChange; 276 } 277 278 //===----------------------------------------------------------------------===// 279 // Tail Merging of Blocks 280 //===----------------------------------------------------------------------===// 281 282 /// HashMachineInstr - Compute a hash value for MI and its operands. 283 static unsigned HashMachineInstr(const MachineInstr &MI) { 284 unsigned Hash = MI.getOpcode(); 285 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 286 const MachineOperand &Op = MI.getOperand(i); 287 288 // Merge in bits from the operand if easy. We can't use MachineOperand's 289 // hash_code here because it's not deterministic and we sort by hash value 290 // later. 291 unsigned OperandHash = 0; 292 switch (Op.getType()) { 293 case MachineOperand::MO_Register: 294 OperandHash = Op.getReg(); 295 break; 296 case MachineOperand::MO_Immediate: 297 OperandHash = Op.getImm(); 298 break; 299 case MachineOperand::MO_MachineBasicBlock: 300 OperandHash = Op.getMBB()->getNumber(); 301 break; 302 case MachineOperand::MO_FrameIndex: 303 case MachineOperand::MO_ConstantPoolIndex: 304 case MachineOperand::MO_JumpTableIndex: 305 OperandHash = Op.getIndex(); 306 break; 307 case MachineOperand::MO_GlobalAddress: 308 case MachineOperand::MO_ExternalSymbol: 309 // Global address / external symbol are too hard, don't bother, but do 310 // pull in the offset. 311 OperandHash = Op.getOffset(); 312 break; 313 default: 314 break; 315 } 316 317 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 318 } 319 return Hash; 320 } 321 322 /// HashEndOfMBB - Hash the last instruction in the MBB. 323 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 324 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 325 if (I == MBB.end()) 326 return 0; 327 328 return HashMachineInstr(*I); 329 } 330 331 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number 332 /// of instructions they actually have in common together at their end. Return 333 /// iterators for the first shared instruction in each block. 334 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 335 MachineBasicBlock *MBB2, 336 MachineBasicBlock::iterator &I1, 337 MachineBasicBlock::iterator &I2) { 338 I1 = MBB1->end(); 339 I2 = MBB2->end(); 340 341 unsigned TailLen = 0; 342 while (I1 != MBB1->begin() && I2 != MBB2->begin()) { 343 --I1; --I2; 344 // Skip debugging pseudos; necessary to avoid changing the code. 345 while (I1->isDebugValue()) { 346 if (I1==MBB1->begin()) { 347 while (I2->isDebugValue()) { 348 if (I2==MBB2->begin()) 349 // I1==DBG at begin; I2==DBG at begin 350 return TailLen; 351 --I2; 352 } 353 ++I2; 354 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin 355 return TailLen; 356 } 357 --I1; 358 } 359 // I1==first (untested) non-DBG preceding known match 360 while (I2->isDebugValue()) { 361 if (I2==MBB2->begin()) { 362 ++I1; 363 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin 364 return TailLen; 365 } 366 --I2; 367 } 368 // I1, I2==first (untested) non-DBGs preceding known match 369 if (!I1->isIdenticalTo(*I2) || 370 // FIXME: This check is dubious. It's used to get around a problem where 371 // people incorrectly expect inline asm directives to remain in the same 372 // relative order. This is untenable because normal compiler 373 // optimizations (like this one) may reorder and/or merge these 374 // directives. 375 I1->isInlineAsm()) { 376 ++I1; ++I2; 377 break; 378 } 379 ++TailLen; 380 } 381 // Back past possible debugging pseudos at beginning of block. This matters 382 // when one block differs from the other only by whether debugging pseudos 383 // are present at the beginning. (This way, the various checks later for 384 // I1==MBB1->begin() work as expected.) 385 if (I1 == MBB1->begin() && I2 != MBB2->begin()) { 386 --I2; 387 while (I2->isDebugValue()) { 388 if (I2 == MBB2->begin()) 389 return TailLen; 390 --I2; 391 } 392 ++I2; 393 } 394 if (I2 == MBB2->begin() && I1 != MBB1->begin()) { 395 --I1; 396 while (I1->isDebugValue()) { 397 if (I1 == MBB1->begin()) 398 return TailLen; 399 --I1; 400 } 401 ++I1; 402 } 403 return TailLen; 404 } 405 406 void BranchFolder::computeLiveIns(MachineBasicBlock &MBB) { 407 if (!UpdateLiveIns) 408 return; 409 410 LiveRegs.init(TRI); 411 LiveRegs.addLiveOutsNoPristines(MBB); 412 for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) 413 LiveRegs.stepBackward(MI); 414 415 for (unsigned Reg : LiveRegs) { 416 // Skip the register if we are about to add one of its super registers. 417 bool ContainsSuperReg = false; 418 for (MCSuperRegIterator SReg(Reg, TRI); SReg.isValid(); ++SReg) { 419 if (LiveRegs.contains(*SReg)) { 420 ContainsSuperReg = true; 421 break; 422 } 423 } 424 if (ContainsSuperReg) 425 continue; 426 MBB.addLiveIn(Reg); 427 } 428 } 429 430 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 431 /// after it, replacing it with an unconditional branch to NewDest. 432 void BranchFolder::ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 433 MachineBasicBlock *NewDest) { 434 TII->ReplaceTailWithBranchTo(OldInst, NewDest); 435 436 computeLiveIns(*NewDest); 437 438 ++NumTailMerge; 439 } 440 441 /// SplitMBBAt - Given a machine basic block and an iterator into it, split the 442 /// MBB so that the part before the iterator falls into the part starting at the 443 /// iterator. This returns the new MBB. 444 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 445 MachineBasicBlock::iterator BBI1, 446 const BasicBlock *BB) { 447 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 448 return nullptr; 449 450 MachineFunction &MF = *CurMBB.getParent(); 451 452 // Create the fall-through block. 453 MachineFunction::iterator MBBI = CurMBB.getIterator(); 454 MachineBasicBlock *NewMBB =MF.CreateMachineBasicBlock(BB); 455 CurMBB.getParent()->insert(++MBBI, NewMBB); 456 457 // Move all the successors of this block to the specified block. 458 NewMBB->transferSuccessors(&CurMBB); 459 460 // Add an edge from CurMBB to NewMBB for the fall-through. 461 CurMBB.addSuccessor(NewMBB); 462 463 // Splice the code over. 464 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 465 466 // NewMBB belongs to the same loop as CurMBB. 467 if (MLI) 468 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 469 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 470 471 // NewMBB inherits CurMBB's block frequency. 472 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 473 474 computeLiveIns(*NewMBB); 475 476 // Add the new block to the funclet. 477 const auto &FuncletI = FuncletMembership.find(&CurMBB); 478 if (FuncletI != FuncletMembership.end()) { 479 auto n = FuncletI->second; 480 FuncletMembership[NewMBB] = n; 481 } 482 483 return NewMBB; 484 } 485 486 /// EstimateRuntime - Make a rough estimate for how long it will take to run 487 /// the specified code. 488 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 489 MachineBasicBlock::iterator E) { 490 unsigned Time = 0; 491 for (; I != E; ++I) { 492 if (I->isDebugValue()) 493 continue; 494 if (I->isCall()) 495 Time += 10; 496 else if (I->mayLoad() || I->mayStore()) 497 Time += 2; 498 else 499 ++Time; 500 } 501 return Time; 502 } 503 504 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 505 // branches temporarily for tail merging). In the case where CurMBB ends 506 // with a conditional branch to the next block, optimize by reversing the 507 // test and conditionally branching to SuccMBB instead. 508 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 509 const TargetInstrInfo *TII) { 510 MachineFunction *MF = CurMBB->getParent(); 511 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 512 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 513 SmallVector<MachineOperand, 4> Cond; 514 DebugLoc dl; // FIXME: this is nowhere 515 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 516 MachineBasicBlock *NextBB = &*I; 517 if (TBB == NextBB && !Cond.empty() && !FBB) { 518 if (!TII->ReverseBranchCondition(Cond)) { 519 TII->RemoveBranch(*CurMBB); 520 TII->InsertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 521 return; 522 } 523 } 524 } 525 TII->InsertBranch(*CurMBB, SuccBB, nullptr, 526 SmallVector<MachineOperand, 0>(), dl); 527 } 528 529 bool 530 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 531 if (getHash() < o.getHash()) 532 return true; 533 if (getHash() > o.getHash()) 534 return false; 535 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 536 return true; 537 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 538 return false; 539 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 540 // an object with itself. 541 #ifndef _GLIBCXX_DEBUG 542 llvm_unreachable("Predecessor appears twice"); 543 #else 544 return false; 545 #endif 546 } 547 548 BlockFrequency 549 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const { 550 auto I = MergedBBFreq.find(MBB); 551 552 if (I != MergedBBFreq.end()) 553 return I->second; 554 555 return MBFI.getBlockFreq(MBB); 556 } 557 558 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB, 559 BlockFrequency F) { 560 MergedBBFreq[MBB] = F; 561 } 562 563 raw_ostream & 564 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 565 const MachineBasicBlock *MBB) const { 566 return MBFI.printBlockFreq(OS, getBlockFreq(MBB)); 567 } 568 569 raw_ostream & 570 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 571 const BlockFrequency Freq) const { 572 return MBFI.printBlockFreq(OS, Freq); 573 } 574 575 /// CountTerminators - Count the number of terminators in the given 576 /// block and set I to the position of the first non-terminator, if there 577 /// is one, or MBB->end() otherwise. 578 static unsigned CountTerminators(MachineBasicBlock *MBB, 579 MachineBasicBlock::iterator &I) { 580 I = MBB->end(); 581 unsigned NumTerms = 0; 582 for (;;) { 583 if (I == MBB->begin()) { 584 I = MBB->end(); 585 break; 586 } 587 --I; 588 if (!I->isTerminator()) break; 589 ++NumTerms; 590 } 591 return NumTerms; 592 } 593 594 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 595 /// and decide if it would be profitable to merge those tails. Return the 596 /// length of the common tail and iterators to the first common instruction 597 /// in each block. 598 /// MBB1, MBB2 The blocks to check 599 /// MinCommonTailLength Minimum size of tail block to be merged. 600 /// CommonTailLen Out parameter to record the size of the shared tail between 601 /// MBB1 and MBB2 602 /// I1, I2 Iterator references that will be changed to point to the first 603 /// instruction in the common tail shared by MBB1,MBB2 604 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 605 /// relative to SuccBB 606 /// PredBB The layout predecessor of SuccBB, if any. 607 /// FuncletMembership map from block to funclet #. 608 /// AfterPlacement True if we are merging blocks after layout. Stricter 609 /// thresholds apply to prevent undoing tail-duplication. 610 static bool 611 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 612 unsigned MinCommonTailLength, unsigned &CommonTailLen, 613 MachineBasicBlock::iterator &I1, 614 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 615 MachineBasicBlock *PredBB, 616 DenseMap<const MachineBasicBlock *, int> &FuncletMembership, 617 bool AfterPlacement) { 618 // It is never profitable to tail-merge blocks from two different funclets. 619 if (!FuncletMembership.empty()) { 620 auto Funclet1 = FuncletMembership.find(MBB1); 621 assert(Funclet1 != FuncletMembership.end()); 622 auto Funclet2 = FuncletMembership.find(MBB2); 623 assert(Funclet2 != FuncletMembership.end()); 624 if (Funclet1->second != Funclet2->second) 625 return false; 626 } 627 628 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 629 if (CommonTailLen == 0) 630 return false; 631 DEBUG(dbgs() << "Common tail length of BB#" << MBB1->getNumber() 632 << " and BB#" << MBB2->getNumber() << " is " << CommonTailLen 633 << '\n'); 634 635 // It's almost always profitable to merge any number of non-terminator 636 // instructions with the block that falls through into the common successor. 637 // This is true only for a single successor. For multiple successors, we are 638 // trading a conditional branch for an unconditional one. 639 // TODO: Re-visit successor size for non-layout tail merging. 640 if ((MBB1 == PredBB || MBB2 == PredBB) && 641 (!AfterPlacement || MBB1->succ_size() == 1)) { 642 MachineBasicBlock::iterator I; 643 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 644 if (CommonTailLen > NumTerms) 645 return true; 646 } 647 648 // If one of the blocks can be completely merged and happens to be in 649 // a position where the other could fall through into it, merge any number 650 // of instructions, because it can be done without a branch. 651 // TODO: If the blocks are not adjacent, move one of them so that they are? 652 if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin()) 653 return true; 654 if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin()) 655 return true; 656 657 // If both blocks have an unconditional branch temporarily stripped out, 658 // count that as an additional common instruction for the following 659 // heuristics. This heuristic is only accurate for single-succ blocks, so to 660 // make sure that during layout merging and duplicating don't crash, we check 661 // for that when merging during layout. 662 unsigned EffectiveTailLen = CommonTailLen; 663 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 664 (MBB1->succ_size() == 1 || !AfterPlacement) && 665 !MBB1->back().isBarrier() && 666 !MBB2->back().isBarrier()) 667 ++EffectiveTailLen; 668 669 // Check if the common tail is long enough to be worthwhile. 670 if (EffectiveTailLen >= MinCommonTailLength) 671 return true; 672 673 // If we are optimizing for code size, 2 instructions in common is enough if 674 // we don't have to split a block. At worst we will be introducing 1 new 675 // branch instruction, which is likely to be smaller than the 2 676 // instructions that would be deleted in the merge. 677 MachineFunction *MF = MBB1->getParent(); 678 return EffectiveTailLen >= 2 && MF->getFunction()->optForSize() && 679 (I1 == MBB1->begin() || I2 == MBB2->begin()); 680 } 681 682 /// ComputeSameTails - Look through all the blocks in MergePotentials that have 683 /// hash CurHash (guaranteed to match the last element). Build the vector 684 /// SameTails of all those that have the (same) largest number of instructions 685 /// in common of any pair of these blocks. SameTails entries contain an 686 /// iterator into MergePotentials (from which the MachineBasicBlock can be 687 /// found) and a MachineBasicBlock::iterator into that MBB indicating the 688 /// instruction where the matching code sequence begins. 689 /// Order of elements in SameTails is the reverse of the order in which 690 /// those blocks appear in MergePotentials (where they are not necessarily 691 /// consecutive). 692 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 693 unsigned MinCommonTailLength, 694 MachineBasicBlock *SuccBB, 695 MachineBasicBlock *PredBB) { 696 unsigned maxCommonTailLength = 0U; 697 SameTails.clear(); 698 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 699 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 700 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 701 B = MergePotentials.begin(); 702 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 703 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 704 unsigned CommonTailLen; 705 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 706 MinCommonTailLength, 707 CommonTailLen, TrialBBI1, TrialBBI2, 708 SuccBB, PredBB, 709 FuncletMembership, 710 AfterBlockPlacement)) { 711 if (CommonTailLen > maxCommonTailLength) { 712 SameTails.clear(); 713 maxCommonTailLength = CommonTailLen; 714 HighestMPIter = CurMPIter; 715 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 716 } 717 if (HighestMPIter == CurMPIter && 718 CommonTailLen == maxCommonTailLength) 719 SameTails.push_back(SameTailElt(I, TrialBBI2)); 720 } 721 if (I == B) 722 break; 723 } 724 } 725 return maxCommonTailLength; 726 } 727 728 /// RemoveBlocksWithHash - Remove all blocks with hash CurHash from 729 /// MergePotentials, restoring branches at ends of blocks as appropriate. 730 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 731 MachineBasicBlock *SuccBB, 732 MachineBasicBlock *PredBB) { 733 MPIterator CurMPIter, B; 734 for (CurMPIter = std::prev(MergePotentials.end()), 735 B = MergePotentials.begin(); 736 CurMPIter->getHash() == CurHash; --CurMPIter) { 737 // Put the unconditional branch back, if we need one. 738 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 739 if (SuccBB && CurMBB != PredBB) 740 FixTail(CurMBB, SuccBB, TII); 741 if (CurMPIter == B) 742 break; 743 } 744 if (CurMPIter->getHash() != CurHash) 745 CurMPIter++; 746 MergePotentials.erase(CurMPIter, MergePotentials.end()); 747 } 748 749 /// CreateCommonTailOnlyBlock - None of the blocks to be tail-merged consist 750 /// only of the common tail. Create a block that does by splitting one. 751 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 752 MachineBasicBlock *SuccBB, 753 unsigned maxCommonTailLength, 754 unsigned &commonTailIndex) { 755 commonTailIndex = 0; 756 unsigned TimeEstimate = ~0U; 757 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 758 // Use PredBB if possible; that doesn't require a new branch. 759 if (SameTails[i].getBlock() == PredBB) { 760 commonTailIndex = i; 761 break; 762 } 763 // Otherwise, make a (fairly bogus) choice based on estimate of 764 // how long it will take the various blocks to execute. 765 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 766 SameTails[i].getTailStartPos()); 767 if (t <= TimeEstimate) { 768 TimeEstimate = t; 769 commonTailIndex = i; 770 } 771 } 772 773 MachineBasicBlock::iterator BBI = 774 SameTails[commonTailIndex].getTailStartPos(); 775 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 776 777 // If the common tail includes any debug info we will take it pretty 778 // randomly from one of the inputs. Might be better to remove it? 779 DEBUG(dbgs() << "\nSplitting BB#" << MBB->getNumber() << ", size " 780 << maxCommonTailLength); 781 782 // If the split block unconditionally falls-thru to SuccBB, it will be 783 // merged. In control flow terms it should then take SuccBB's name. e.g. If 784 // SuccBB is an inner loop, the common tail is still part of the inner loop. 785 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 786 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 787 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 788 if (!newMBB) { 789 DEBUG(dbgs() << "... failed!"); 790 return false; 791 } 792 793 SameTails[commonTailIndex].setBlock(newMBB); 794 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 795 796 // If we split PredBB, newMBB is the new predecessor. 797 if (PredBB == MBB) 798 PredBB = newMBB; 799 800 return true; 801 } 802 803 static void 804 mergeMMOsFromMemoryOperations(MachineBasicBlock::iterator MBBIStartPos, 805 MachineBasicBlock &MBBCommon) { 806 // Merge MMOs from memory operations in the common block. 807 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 808 // Note CommonTailLen does not necessarily matches the size of 809 // the common BB nor all its instructions because of debug 810 // instructions differences. 811 unsigned CommonTailLen = 0; 812 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 813 ++CommonTailLen; 814 815 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 816 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 817 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 818 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 819 820 while (CommonTailLen--) { 821 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 822 (void)MBBIE; 823 824 if (MBBI->isDebugValue()) { 825 ++MBBI; 826 continue; 827 } 828 829 while ((MBBICommon != MBBIECommon) && MBBICommon->isDebugValue()) 830 ++MBBICommon; 831 832 assert(MBBICommon != MBBIECommon && 833 "Reached BB end within common tail length!"); 834 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 835 836 if (MBBICommon->mayLoad() || MBBICommon->mayStore()) 837 MBBICommon->setMemRefs(MBBICommon->mergeMemRefsWith(*MBBI)); 838 839 ++MBBI; 840 ++MBBICommon; 841 } 842 } 843 844 // See if any of the blocks in MergePotentials (which all have SuccBB as a 845 // successor, or all have no successor if it is null) can be tail-merged. 846 // If there is a successor, any blocks in MergePotentials that are not 847 // tail-merged and are not immediately before Succ must have an unconditional 848 // branch to Succ added (but the predecessor/successor lists need no 849 // adjustment). The lone predecessor of Succ that falls through into Succ, 850 // if any, is given in PredBB. 851 // MinCommonTailLength - Except for the special cases below, tail-merge if 852 // there are at least this many instructions in common. 853 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 854 MachineBasicBlock *PredBB, 855 unsigned MinCommonTailLength) { 856 bool MadeChange = false; 857 858 DEBUG(dbgs() << "\nTryTailMergeBlocks: "; 859 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 860 dbgs() << "BB#" << MergePotentials[i].getBlock()->getNumber() 861 << (i == e-1 ? "" : ", "); 862 dbgs() << "\n"; 863 if (SuccBB) { 864 dbgs() << " with successor BB#" << SuccBB->getNumber() << '\n'; 865 if (PredBB) 866 dbgs() << " which has fall-through from BB#" 867 << PredBB->getNumber() << "\n"; 868 } 869 dbgs() << "Looking for common tails of at least " 870 << MinCommonTailLength << " instruction" 871 << (MinCommonTailLength == 1 ? "" : "s") << '\n'; 872 ); 873 874 // Sort by hash value so that blocks with identical end sequences sort 875 // together. 876 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 877 878 // Walk through equivalence sets looking for actual exact matches. 879 while (MergePotentials.size() > 1) { 880 unsigned CurHash = MergePotentials.back().getHash(); 881 882 // Build SameTails, identifying the set of blocks with this hash code 883 // and with the maximum number of instructions in common. 884 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 885 MinCommonTailLength, 886 SuccBB, PredBB); 887 888 // If we didn't find any pair that has at least MinCommonTailLength 889 // instructions in common, remove all blocks with this hash code and retry. 890 if (SameTails.empty()) { 891 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 892 continue; 893 } 894 895 // If one of the blocks is the entire common tail (and not the entry 896 // block, which we can't jump to), we can treat all blocks with this same 897 // tail at once. Use PredBB if that is one of the possibilities, as that 898 // will not introduce any extra branches. 899 MachineBasicBlock *EntryBB = 900 &MergePotentials.front().getBlock()->getParent()->front(); 901 unsigned commonTailIndex = SameTails.size(); 902 // If there are two blocks, check to see if one can be made to fall through 903 // into the other. 904 if (SameTails.size() == 2 && 905 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 906 SameTails[1].tailIsWholeBlock()) 907 commonTailIndex = 1; 908 else if (SameTails.size() == 2 && 909 SameTails[1].getBlock()->isLayoutSuccessor( 910 SameTails[0].getBlock()) && 911 SameTails[0].tailIsWholeBlock()) 912 commonTailIndex = 0; 913 else { 914 // Otherwise just pick one, favoring the fall-through predecessor if 915 // there is one. 916 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 917 MachineBasicBlock *MBB = SameTails[i].getBlock(); 918 if (MBB == EntryBB && SameTails[i].tailIsWholeBlock()) 919 continue; 920 if (MBB == PredBB) { 921 commonTailIndex = i; 922 break; 923 } 924 if (SameTails[i].tailIsWholeBlock()) 925 commonTailIndex = i; 926 } 927 } 928 929 if (commonTailIndex == SameTails.size() || 930 (SameTails[commonTailIndex].getBlock() == PredBB && 931 !SameTails[commonTailIndex].tailIsWholeBlock())) { 932 // None of the blocks consist entirely of the common tail. 933 // Split a block so that one does. 934 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 935 maxCommonTailLength, commonTailIndex)) { 936 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 937 continue; 938 } 939 } 940 941 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 942 943 // Recompute common tail MBB's edge weights and block frequency. 944 setCommonTailEdgeWeights(*MBB); 945 946 // MBB is common tail. Adjust all other BB's to jump to this one. 947 // Traversal must be forwards so erases work. 948 DEBUG(dbgs() << "\nUsing common tail in BB#" << MBB->getNumber() 949 << " for "); 950 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 951 if (commonTailIndex == i) 952 continue; 953 DEBUG(dbgs() << "BB#" << SameTails[i].getBlock()->getNumber() 954 << (i == e-1 ? "" : ", ")); 955 // Merge MMOs from memory operations as needed. 956 mergeMMOsFromMemoryOperations(SameTails[i].getTailStartPos(), *MBB); 957 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 958 ReplaceTailWithBranchTo(SameTails[i].getTailStartPos(), MBB); 959 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 960 MergePotentials.erase(SameTails[i].getMPIter()); 961 } 962 DEBUG(dbgs() << "\n"); 963 // We leave commonTailIndex in the worklist in case there are other blocks 964 // that match it with a smaller number of instructions. 965 MadeChange = true; 966 } 967 return MadeChange; 968 } 969 970 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 971 bool MadeChange = false; 972 if (!EnableTailMerge) return MadeChange; 973 974 // First find blocks with no successors. 975 // Block placement does not create new tail merging opportunities for these 976 // blocks. 977 if (!AfterBlockPlacement) { 978 MergePotentials.clear(); 979 for (MachineBasicBlock &MBB : MF) { 980 if (MergePotentials.size() == TailMergeThreshold) 981 break; 982 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 983 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 984 } 985 986 // If this is a large problem, avoid visiting the same basic blocks 987 // multiple times. 988 if (MergePotentials.size() == TailMergeThreshold) 989 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 990 TriedMerging.insert(MergePotentials[i].getBlock()); 991 992 // See if we can do any tail merging on those. 993 if (MergePotentials.size() >= 2) 994 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 995 } 996 997 // Look at blocks (IBB) with multiple predecessors (PBB). 998 // We change each predecessor to a canonical form, by 999 // (1) temporarily removing any unconditional branch from the predecessor 1000 // to IBB, and 1001 // (2) alter conditional branches so they branch to the other block 1002 // not IBB; this may require adding back an unconditional branch to IBB 1003 // later, where there wasn't one coming in. E.g. 1004 // Bcc IBB 1005 // fallthrough to QBB 1006 // here becomes 1007 // Bncc QBB 1008 // with a conceptual B to IBB after that, which never actually exists. 1009 // With those changes, we see whether the predecessors' tails match, 1010 // and merge them if so. We change things out of canonical form and 1011 // back to the way they were later in the process. (OptimizeBranches 1012 // would undo some of this, but we can't use it, because we'd get into 1013 // a compile-time infinite loop repeatedly doing and undoing the same 1014 // transformations.) 1015 1016 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1017 I != E; ++I) { 1018 if (I->pred_size() < 2) continue; 1019 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1020 MachineBasicBlock *IBB = &*I; 1021 MachineBasicBlock *PredBB = &*std::prev(I); 1022 MergePotentials.clear(); 1023 MachineLoop *ML; 1024 1025 // Bail if merging after placement and IBB is the loop header because 1026 // -- If merging predecessors that belong to the same loop as IBB, the 1027 // common tail of merged predecessors may become the loop top if block 1028 // placement is called again and the predecessors may branch to this common 1029 // tail and require more branches. This can be relaxed if 1030 // MachineBlockPlacement::findBestLoopTop is more flexible. 1031 // --If merging predecessors that do not belong to the same loop as IBB, the 1032 // loop info of IBB's loop and the other loops may be affected. Calling the 1033 // block placement again may make big change to the layout and eliminate the 1034 // reason to do tail merging here. 1035 if (AfterBlockPlacement && MLI) { 1036 ML = MLI->getLoopFor(IBB); 1037 if (ML && IBB == ML->getHeader()) 1038 continue; 1039 } 1040 1041 for (MachineBasicBlock *PBB : I->predecessors()) { 1042 if (MergePotentials.size() == TailMergeThreshold) 1043 break; 1044 1045 if (TriedMerging.count(PBB)) 1046 continue; 1047 1048 // Skip blocks that loop to themselves, can't tail merge these. 1049 if (PBB == IBB) 1050 continue; 1051 1052 // Visit each predecessor only once. 1053 if (!UniquePreds.insert(PBB).second) 1054 continue; 1055 1056 // Skip blocks which may jump to a landing pad. Can't tail merge these. 1057 if (PBB->hasEHPadSuccessor()) 1058 continue; 1059 1060 // After block placement, only consider predecessors that belong to the 1061 // same loop as IBB. The reason is the same as above when skipping loop 1062 // header. 1063 if (AfterBlockPlacement && MLI) 1064 if (ML != MLI->getLoopFor(PBB)) 1065 continue; 1066 1067 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1068 SmallVector<MachineOperand, 4> Cond; 1069 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1070 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1071 // branch. 1072 SmallVector<MachineOperand, 4> NewCond(Cond); 1073 if (!Cond.empty() && TBB == IBB) { 1074 if (TII->ReverseBranchCondition(NewCond)) 1075 continue; 1076 // This is the QBB case described above 1077 if (!FBB) { 1078 auto Next = ++PBB->getIterator(); 1079 if (Next != MF.end()) 1080 FBB = &*Next; 1081 } 1082 } 1083 1084 // Failing case: the only way IBB can be reached from PBB is via 1085 // exception handling. Happens for landing pads. Would be nice to have 1086 // a bit in the edge so we didn't have to do all this. 1087 if (IBB->isEHPad()) { 1088 MachineFunction::iterator IP = ++PBB->getIterator(); 1089 MachineBasicBlock *PredNextBB = nullptr; 1090 if (IP != MF.end()) 1091 PredNextBB = &*IP; 1092 if (!TBB) { 1093 if (IBB != PredNextBB) // fallthrough 1094 continue; 1095 } else if (FBB) { 1096 if (TBB != IBB && FBB != IBB) // cbr then ubr 1097 continue; 1098 } else if (Cond.empty()) { 1099 if (TBB != IBB) // ubr 1100 continue; 1101 } else { 1102 if (TBB != IBB && IBB != PredNextBB) // cbr 1103 continue; 1104 } 1105 } 1106 1107 // Remove the unconditional branch at the end, if any. 1108 if (TBB && (Cond.empty() || FBB)) { 1109 DebugLoc dl; // FIXME: this is nowhere 1110 TII->RemoveBranch(*PBB); 1111 if (!Cond.empty()) 1112 // reinsert conditional branch only, for now 1113 TII->InsertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1114 NewCond, dl); 1115 } 1116 1117 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1118 } 1119 } 1120 1121 // If this is a large problem, avoid visiting the same basic blocks multiple 1122 // times. 1123 if (MergePotentials.size() == TailMergeThreshold) 1124 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1125 TriedMerging.insert(MergePotentials[i].getBlock()); 1126 1127 if (MergePotentials.size() >= 2) 1128 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1129 1130 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1131 // result of removing blocks in TryTailMergeBlocks. 1132 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1133 if (MergePotentials.size() == 1 && 1134 MergePotentials.begin()->getBlock() != PredBB) 1135 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1136 } 1137 1138 return MadeChange; 1139 } 1140 1141 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1142 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1143 BlockFrequency AccumulatedMBBFreq; 1144 1145 // Aggregate edge frequency of successor edge j: 1146 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1147 // where bb is a basic block that is in SameTails. 1148 for (const auto &Src : SameTails) { 1149 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1150 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1151 AccumulatedMBBFreq += BlockFreq; 1152 1153 // It is not necessary to recompute edge weights if TailBB has less than two 1154 // successors. 1155 if (TailMBB.succ_size() <= 1) 1156 continue; 1157 1158 auto EdgeFreq = EdgeFreqLs.begin(); 1159 1160 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1161 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1162 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1163 } 1164 1165 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1166 1167 if (TailMBB.succ_size() <= 1) 1168 return; 1169 1170 auto SumEdgeFreq = 1171 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1172 .getFrequency(); 1173 auto EdgeFreq = EdgeFreqLs.begin(); 1174 1175 if (SumEdgeFreq > 0) { 1176 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1177 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1178 auto Prob = BranchProbability::getBranchProbability( 1179 EdgeFreq->getFrequency(), SumEdgeFreq); 1180 TailMBB.setSuccProbability(SuccI, Prob); 1181 } 1182 } 1183 } 1184 1185 //===----------------------------------------------------------------------===// 1186 // Branch Optimization 1187 //===----------------------------------------------------------------------===// 1188 1189 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1190 bool MadeChange = false; 1191 1192 // Make sure blocks are numbered in order 1193 MF.RenumberBlocks(); 1194 // Renumbering blocks alters funclet membership, recalculate it. 1195 FuncletMembership = getFuncletMembership(MF); 1196 1197 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1198 I != E; ) { 1199 MachineBasicBlock *MBB = &*I++; 1200 MadeChange |= OptimizeBlock(MBB); 1201 1202 // If it is dead, remove it. 1203 if (MBB->pred_empty()) { 1204 RemoveDeadBlock(MBB); 1205 MadeChange = true; 1206 ++NumDeadBlocks; 1207 } 1208 } 1209 1210 return MadeChange; 1211 } 1212 1213 // Blocks should be considered empty if they contain only debug info; 1214 // else the debug info would affect codegen. 1215 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1216 return MBB->getFirstNonDebugInstr() == MBB->end(); 1217 } 1218 1219 // Blocks with only debug info and branches should be considered the same 1220 // as blocks with only branches. 1221 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1222 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1223 assert(I != MBB->end() && "empty block!"); 1224 return I->isBranch(); 1225 } 1226 1227 /// IsBetterFallthrough - Return true if it would be clearly better to 1228 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1229 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1230 /// result in infinite loops. 1231 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1232 MachineBasicBlock *MBB2) { 1233 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1234 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1235 // optimize branches that branch to either a return block or an assert block 1236 // into a fallthrough to the return. 1237 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1238 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1239 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1240 return false; 1241 1242 // If there is a clear successor ordering we make sure that one block 1243 // will fall through to the next 1244 if (MBB1->isSuccessor(MBB2)) return true; 1245 if (MBB2->isSuccessor(MBB1)) return false; 1246 1247 return MBB2I->isCall() && !MBB1I->isCall(); 1248 } 1249 1250 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1251 /// instructions on the block. 1252 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1253 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1254 if (I != MBB.end() && I->isBranch()) 1255 return I->getDebugLoc(); 1256 return DebugLoc(); 1257 } 1258 1259 /// OptimizeBlock - Analyze and optimize control flow related to the specified 1260 /// block. This is never called on the entry block. 1261 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1262 bool MadeChange = false; 1263 MachineFunction &MF = *MBB->getParent(); 1264 ReoptimizeBlock: 1265 1266 MachineFunction::iterator FallThrough = MBB->getIterator(); 1267 ++FallThrough; 1268 1269 // Make sure MBB and FallThrough belong to the same funclet. 1270 bool SameFunclet = true; 1271 if (!FuncletMembership.empty() && FallThrough != MF.end()) { 1272 auto MBBFunclet = FuncletMembership.find(MBB); 1273 assert(MBBFunclet != FuncletMembership.end()); 1274 auto FallThroughFunclet = FuncletMembership.find(&*FallThrough); 1275 assert(FallThroughFunclet != FuncletMembership.end()); 1276 SameFunclet = MBBFunclet->second == FallThroughFunclet->second; 1277 } 1278 1279 // If this block is empty, make everyone use its fall-through, not the block 1280 // explicitly. Landing pads should not do this since the landing-pad table 1281 // points to this block. Blocks with their addresses taken shouldn't be 1282 // optimized away. 1283 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1284 SameFunclet) { 1285 // Dead block? Leave for cleanup later. 1286 if (MBB->pred_empty()) return MadeChange; 1287 1288 if (FallThrough == MF.end()) { 1289 // TODO: Simplify preds to not branch here if possible! 1290 } else if (FallThrough->isEHPad()) { 1291 // Don't rewrite to a landing pad fallthough. That could lead to the case 1292 // where a BB jumps to more than one landing pad. 1293 // TODO: Is it ever worth rewriting predecessors which don't already 1294 // jump to a landing pad, and so can safely jump to the fallthrough? 1295 } else if (MBB->isSuccessor(&*FallThrough)) { 1296 // Rewrite all predecessors of the old block to go to the fallthrough 1297 // instead. 1298 while (!MBB->pred_empty()) { 1299 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1300 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1301 } 1302 // If MBB was the target of a jump table, update jump tables to go to the 1303 // fallthrough instead. 1304 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1305 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1306 MadeChange = true; 1307 } 1308 return MadeChange; 1309 } 1310 1311 // Check to see if we can simplify the terminator of the block before this 1312 // one. 1313 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1314 1315 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1316 SmallVector<MachineOperand, 4> PriorCond; 1317 bool PriorUnAnalyzable = 1318 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1319 if (!PriorUnAnalyzable) { 1320 // If the CFG for the prior block has extra edges, remove them. 1321 MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB, 1322 !PriorCond.empty()); 1323 1324 // If the previous branch is conditional and both conditions go to the same 1325 // destination, remove the branch, replacing it with an unconditional one or 1326 // a fall-through. 1327 if (PriorTBB && PriorTBB == PriorFBB) { 1328 DebugLoc dl = getBranchDebugLoc(PrevBB); 1329 TII->RemoveBranch(PrevBB); 1330 PriorCond.clear(); 1331 if (PriorTBB != MBB) 1332 TII->InsertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1333 MadeChange = true; 1334 ++NumBranchOpts; 1335 goto ReoptimizeBlock; 1336 } 1337 1338 // If the previous block unconditionally falls through to this block and 1339 // this block has no other predecessors, move the contents of this block 1340 // into the prior block. This doesn't usually happen when SimplifyCFG 1341 // has been used, but it can happen if tail merging splits a fall-through 1342 // predecessor of a block. 1343 // This has to check PrevBB->succ_size() because EH edges are ignored by 1344 // AnalyzeBranch. 1345 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1346 PrevBB.succ_size() == 1 && 1347 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1348 DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1349 << "From MBB: " << *MBB); 1350 // Remove redundant DBG_VALUEs first. 1351 if (PrevBB.begin() != PrevBB.end()) { 1352 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1353 --PrevBBIter; 1354 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1355 // Check if DBG_VALUE at the end of PrevBB is identical to the 1356 // DBG_VALUE at the beginning of MBB. 1357 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1358 && PrevBBIter->isDebugValue() && MBBIter->isDebugValue()) { 1359 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1360 break; 1361 MachineInstr &DuplicateDbg = *MBBIter; 1362 ++MBBIter; -- PrevBBIter; 1363 DuplicateDbg.eraseFromParent(); 1364 } 1365 } 1366 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1367 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1368 assert(PrevBB.succ_empty()); 1369 PrevBB.transferSuccessors(MBB); 1370 MadeChange = true; 1371 return MadeChange; 1372 } 1373 1374 // If the previous branch *only* branches to *this* block (conditional or 1375 // not) remove the branch. 1376 if (PriorTBB == MBB && !PriorFBB) { 1377 TII->RemoveBranch(PrevBB); 1378 MadeChange = true; 1379 ++NumBranchOpts; 1380 goto ReoptimizeBlock; 1381 } 1382 1383 // If the prior block branches somewhere else on the condition and here if 1384 // the condition is false, remove the uncond second branch. 1385 if (PriorFBB == MBB) { 1386 DebugLoc dl = getBranchDebugLoc(PrevBB); 1387 TII->RemoveBranch(PrevBB); 1388 TII->InsertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1389 MadeChange = true; 1390 ++NumBranchOpts; 1391 goto ReoptimizeBlock; 1392 } 1393 1394 // If the prior block branches here on true and somewhere else on false, and 1395 // if the branch condition is reversible, reverse the branch to create a 1396 // fall-through. 1397 if (PriorTBB == MBB) { 1398 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1399 if (!TII->ReverseBranchCondition(NewPriorCond)) { 1400 DebugLoc dl = getBranchDebugLoc(PrevBB); 1401 TII->RemoveBranch(PrevBB); 1402 TII->InsertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1403 MadeChange = true; 1404 ++NumBranchOpts; 1405 goto ReoptimizeBlock; 1406 } 1407 } 1408 1409 // If this block has no successors (e.g. it is a return block or ends with 1410 // a call to a no-return function like abort or __cxa_throw) and if the pred 1411 // falls through into this block, and if it would otherwise fall through 1412 // into the block after this, move this block to the end of the function. 1413 // 1414 // We consider it more likely that execution will stay in the function (e.g. 1415 // due to loops) than it is to exit it. This asserts in loops etc, moving 1416 // the assert condition out of the loop body. 1417 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1418 MachineFunction::iterator(PriorTBB) == FallThrough && 1419 !MBB->canFallThrough()) { 1420 bool DoTransform = true; 1421 1422 // We have to be careful that the succs of PredBB aren't both no-successor 1423 // blocks. If neither have successors and if PredBB is the second from 1424 // last block in the function, we'd just keep swapping the two blocks for 1425 // last. Only do the swap if one is clearly better to fall through than 1426 // the other. 1427 if (FallThrough == --MF.end() && 1428 !IsBetterFallthrough(PriorTBB, MBB)) 1429 DoTransform = false; 1430 1431 if (DoTransform) { 1432 // Reverse the branch so we will fall through on the previous true cond. 1433 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1434 if (!TII->ReverseBranchCondition(NewPriorCond)) { 1435 DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1436 << "To make fallthrough to: " << *PriorTBB << "\n"); 1437 1438 DebugLoc dl = getBranchDebugLoc(PrevBB); 1439 TII->RemoveBranch(PrevBB); 1440 TII->InsertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1441 1442 // Move this block to the end of the function. 1443 MBB->moveAfter(&MF.back()); 1444 MadeChange = true; 1445 ++NumBranchOpts; 1446 return MadeChange; 1447 } 1448 } 1449 } 1450 } 1451 1452 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && 1453 MF.getFunction()->optForSize()) { 1454 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1455 // direction, thereby defeating careful block placement and regressing 1456 // performance. Therefore, only consider this for optsize functions. 1457 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1458 if (TII->isUnconditionalTailCall(TailCall)) { 1459 MachineBasicBlock *Pred = *MBB->pred_begin(); 1460 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1461 SmallVector<MachineOperand, 4> PredCond; 1462 bool PredAnalyzable = 1463 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1464 1465 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB) { 1466 // The predecessor has a conditional branch to this block which consists 1467 // of only a tail call. Try to fold the tail call into the conditional 1468 // branch. 1469 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1470 // TODO: It would be nice if analyzeBranch() could provide a pointer 1471 // to the branch insturction so replaceBranchWithTailCall() doesn't 1472 // have to search for it. 1473 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1474 ++NumTailCalls; 1475 Pred->removeSuccessor(MBB); 1476 MadeChange = true; 1477 return MadeChange; 1478 } 1479 } 1480 // If the predecessor is falling through to this block, we could reverse 1481 // the branch condition and fold the tail call into that. However, after 1482 // that we might have to re-arrange the CFG to fall through to the other 1483 // block and there is a high risk of regressing code size rather than 1484 // improving it. 1485 } 1486 } 1487 1488 // Analyze the branch in the current block. 1489 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1490 SmallVector<MachineOperand, 4> CurCond; 1491 bool CurUnAnalyzable = 1492 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1493 if (!CurUnAnalyzable) { 1494 // If the CFG for the prior block has extra edges, remove them. 1495 MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty()); 1496 1497 // If this is a two-way branch, and the FBB branches to this block, reverse 1498 // the condition so the single-basic-block loop is faster. Instead of: 1499 // Loop: xxx; jcc Out; jmp Loop 1500 // we want: 1501 // Loop: xxx; jncc Loop; jmp Out 1502 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1503 SmallVector<MachineOperand, 4> NewCond(CurCond); 1504 if (!TII->ReverseBranchCondition(NewCond)) { 1505 DebugLoc dl = getBranchDebugLoc(*MBB); 1506 TII->RemoveBranch(*MBB); 1507 TII->InsertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1508 MadeChange = true; 1509 ++NumBranchOpts; 1510 goto ReoptimizeBlock; 1511 } 1512 } 1513 1514 // If this branch is the only thing in its block, see if we can forward 1515 // other blocks across it. 1516 if (CurTBB && CurCond.empty() && !CurFBB && 1517 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1518 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1519 DebugLoc dl = getBranchDebugLoc(*MBB); 1520 // This block may contain just an unconditional branch. Because there can 1521 // be 'non-branch terminators' in the block, try removing the branch and 1522 // then seeing if the block is empty. 1523 TII->RemoveBranch(*MBB); 1524 // If the only things remaining in the block are debug info, remove these 1525 // as well, so this will behave the same as an empty block in non-debug 1526 // mode. 1527 if (IsEmptyBlock(MBB)) { 1528 // Make the block empty, losing the debug info (we could probably 1529 // improve this in some cases.) 1530 MBB->erase(MBB->begin(), MBB->end()); 1531 } 1532 // If this block is just an unconditional branch to CurTBB, we can 1533 // usually completely eliminate the block. The only case we cannot 1534 // completely eliminate the block is when the block before this one 1535 // falls through into MBB and we can't understand the prior block's branch 1536 // condition. 1537 if (MBB->empty()) { 1538 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1539 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1540 !PrevBB.isSuccessor(MBB)) { 1541 // If the prior block falls through into us, turn it into an 1542 // explicit branch to us to make updates simpler. 1543 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1544 PriorTBB != MBB && PriorFBB != MBB) { 1545 if (!PriorTBB) { 1546 assert(PriorCond.empty() && !PriorFBB && 1547 "Bad branch analysis"); 1548 PriorTBB = MBB; 1549 } else { 1550 assert(!PriorFBB && "Machine CFG out of date!"); 1551 PriorFBB = MBB; 1552 } 1553 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1554 TII->RemoveBranch(PrevBB); 1555 TII->InsertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1556 } 1557 1558 // Iterate through all the predecessors, revectoring each in-turn. 1559 size_t PI = 0; 1560 bool DidChange = false; 1561 bool HasBranchToSelf = false; 1562 while(PI != MBB->pred_size()) { 1563 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1564 if (PMBB == MBB) { 1565 // If this block has an uncond branch to itself, leave it. 1566 ++PI; 1567 HasBranchToSelf = true; 1568 } else { 1569 DidChange = true; 1570 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1571 // If this change resulted in PMBB ending in a conditional 1572 // branch where both conditions go to the same destination, 1573 // change this to an unconditional branch (and fix the CFG). 1574 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1575 SmallVector<MachineOperand, 4> NewCurCond; 1576 bool NewCurUnAnalyzable = TII->analyzeBranch( 1577 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1578 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1579 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1580 TII->RemoveBranch(*PMBB); 1581 NewCurCond.clear(); 1582 TII->InsertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1583 MadeChange = true; 1584 ++NumBranchOpts; 1585 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false); 1586 } 1587 } 1588 } 1589 1590 // Change any jumptables to go to the new MBB. 1591 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1592 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1593 if (DidChange) { 1594 ++NumBranchOpts; 1595 MadeChange = true; 1596 if (!HasBranchToSelf) return MadeChange; 1597 } 1598 } 1599 } 1600 1601 // Add the branch back if the block is more than just an uncond branch. 1602 TII->InsertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1603 } 1604 } 1605 1606 // If the prior block doesn't fall through into this block, and if this 1607 // block doesn't fall through into some other block, see if we can find a 1608 // place to move this block where a fall-through will happen. 1609 if (!PrevBB.canFallThrough()) { 1610 1611 // Now we know that there was no fall-through into this block, check to 1612 // see if it has a fall-through into its successor. 1613 bool CurFallsThru = MBB->canFallThrough(); 1614 1615 if (!MBB->isEHPad()) { 1616 // Check all the predecessors of this block. If one of them has no fall 1617 // throughs, move this block right after it. 1618 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1619 // Analyze the branch at the end of the pred. 1620 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1621 SmallVector<MachineOperand, 4> PredCond; 1622 if (PredBB != MBB && !PredBB->canFallThrough() && 1623 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1624 (!CurFallsThru || !CurTBB || !CurFBB) && 1625 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1626 // If the current block doesn't fall through, just move it. 1627 // If the current block can fall through and does not end with a 1628 // conditional branch, we need to append an unconditional jump to 1629 // the (current) next block. To avoid a possible compile-time 1630 // infinite loop, move blocks only backward in this case. 1631 // Also, if there are already 2 branches here, we cannot add a third; 1632 // this means we have the case 1633 // Bcc next 1634 // B elsewhere 1635 // next: 1636 if (CurFallsThru) { 1637 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1638 CurCond.clear(); 1639 TII->InsertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1640 } 1641 MBB->moveAfter(PredBB); 1642 MadeChange = true; 1643 goto ReoptimizeBlock; 1644 } 1645 } 1646 } 1647 1648 if (!CurFallsThru) { 1649 // Check all successors to see if we can move this block before it. 1650 for (MachineBasicBlock *SuccBB : MBB->successors()) { 1651 // Analyze the branch at the end of the block before the succ. 1652 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1653 1654 // If this block doesn't already fall-through to that successor, and if 1655 // the succ doesn't already have a block that can fall through into it, 1656 // and if the successor isn't an EH destination, we can arrange for the 1657 // fallthrough to happen. 1658 if (SuccBB != MBB && &*SuccPrev != MBB && 1659 !SuccPrev->canFallThrough() && !CurUnAnalyzable && 1660 !SuccBB->isEHPad()) { 1661 MBB->moveBefore(SuccBB); 1662 MadeChange = true; 1663 goto ReoptimizeBlock; 1664 } 1665 } 1666 1667 // Okay, there is no really great place to put this block. If, however, 1668 // the block before this one would be a fall-through if this block were 1669 // removed, move this block to the end of the function. 1670 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1671 SmallVector<MachineOperand, 4> PrevCond; 1672 if (FallThrough != MF.end() && 1673 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1674 PrevBB.isSuccessor(&*FallThrough)) { 1675 MBB->moveAfter(&MF.back()); 1676 MadeChange = true; 1677 return MadeChange; 1678 } 1679 } 1680 } 1681 1682 return MadeChange; 1683 } 1684 1685 //===----------------------------------------------------------------------===// 1686 // Hoist Common Code 1687 //===----------------------------------------------------------------------===// 1688 1689 /// HoistCommonCode - Hoist common instruction sequences at the start of basic 1690 /// blocks to their common predecessor. 1691 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1692 bool MadeChange = false; 1693 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1694 MachineBasicBlock *MBB = &*I++; 1695 MadeChange |= HoistCommonCodeInSuccs(MBB); 1696 } 1697 1698 return MadeChange; 1699 } 1700 1701 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1702 /// its 'true' successor. 1703 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1704 MachineBasicBlock *TrueBB) { 1705 for (MachineBasicBlock *SuccBB : BB->successors()) 1706 if (SuccBB != TrueBB) 1707 return SuccBB; 1708 return nullptr; 1709 } 1710 1711 template <class Container> 1712 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, 1713 Container &Set) { 1714 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1715 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1716 Set.insert(*AI); 1717 } else { 1718 Set.insert(Reg); 1719 } 1720 } 1721 1722 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1723 /// in successors to. The location is usually just before the terminator, 1724 /// however if the terminator is a conditional branch and its previous 1725 /// instruction is the flag setting instruction, the previous instruction is 1726 /// the preferred location. This function also gathers uses and defs of the 1727 /// instructions from the insertion point to the end of the block. The data is 1728 /// used by HoistCommonCodeInSuccs to ensure safety. 1729 static 1730 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1731 const TargetInstrInfo *TII, 1732 const TargetRegisterInfo *TRI, 1733 SmallSet<unsigned,4> &Uses, 1734 SmallSet<unsigned,4> &Defs) { 1735 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1736 if (!TII->isUnpredicatedTerminator(*Loc)) 1737 return MBB->end(); 1738 1739 for (const MachineOperand &MO : Loc->operands()) { 1740 if (!MO.isReg()) 1741 continue; 1742 unsigned Reg = MO.getReg(); 1743 if (!Reg) 1744 continue; 1745 if (MO.isUse()) { 1746 addRegAndItsAliases(Reg, TRI, Uses); 1747 } else { 1748 if (!MO.isDead()) 1749 // Don't try to hoist code in the rare case the terminator defines a 1750 // register that is later used. 1751 return MBB->end(); 1752 1753 // If the terminator defines a register, make sure we don't hoist 1754 // the instruction whose def might be clobbered by the terminator. 1755 addRegAndItsAliases(Reg, TRI, Defs); 1756 } 1757 } 1758 1759 if (Uses.empty()) 1760 return Loc; 1761 if (Loc == MBB->begin()) 1762 return MBB->end(); 1763 1764 // The terminator is probably a conditional branch, try not to separate the 1765 // branch from condition setting instruction. 1766 MachineBasicBlock::iterator PI = Loc; 1767 --PI; 1768 while (PI != MBB->begin() && PI->isDebugValue()) 1769 --PI; 1770 1771 bool IsDef = false; 1772 for (const MachineOperand &MO : PI->operands()) { 1773 // If PI has a regmask operand, it is probably a call. Separate away. 1774 if (MO.isRegMask()) 1775 return Loc; 1776 if (!MO.isReg() || MO.isUse()) 1777 continue; 1778 unsigned Reg = MO.getReg(); 1779 if (!Reg) 1780 continue; 1781 if (Uses.count(Reg)) { 1782 IsDef = true; 1783 break; 1784 } 1785 } 1786 if (!IsDef) 1787 // The condition setting instruction is not just before the conditional 1788 // branch. 1789 return Loc; 1790 1791 // Be conservative, don't insert instruction above something that may have 1792 // side-effects. And since it's potentially bad to separate flag setting 1793 // instruction from the conditional branch, just abort the optimization 1794 // completely. 1795 // Also avoid moving code above predicated instruction since it's hard to 1796 // reason about register liveness with predicated instruction. 1797 bool DontMoveAcrossStore = true; 1798 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1799 return MBB->end(); 1800 1801 1802 // Find out what registers are live. Note this routine is ignoring other live 1803 // registers which are only used by instructions in successor blocks. 1804 for (const MachineOperand &MO : PI->operands()) { 1805 if (!MO.isReg()) 1806 continue; 1807 unsigned Reg = MO.getReg(); 1808 if (!Reg) 1809 continue; 1810 if (MO.isUse()) { 1811 addRegAndItsAliases(Reg, TRI, Uses); 1812 } else { 1813 if (Uses.erase(Reg)) { 1814 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1815 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1816 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1817 } 1818 } 1819 addRegAndItsAliases(Reg, TRI, Defs); 1820 } 1821 } 1822 1823 return PI; 1824 } 1825 1826 /// HoistCommonCodeInSuccs - If the successors of MBB has common instruction 1827 /// sequence at the start of the function, move the instructions before MBB 1828 /// terminator if it's legal. 1829 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1830 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1831 SmallVector<MachineOperand, 4> Cond; 1832 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1833 return false; 1834 1835 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1836 if (!FBB) 1837 // Malformed bcc? True and false blocks are the same? 1838 return false; 1839 1840 // Restrict the optimization to cases where MBB is the only predecessor, 1841 // it is an obvious win. 1842 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1843 return false; 1844 1845 // Find a suitable position to hoist the common instructions to. Also figure 1846 // out which registers are used or defined by instructions from the insertion 1847 // point to the end of the block. 1848 SmallSet<unsigned, 4> Uses, Defs; 1849 MachineBasicBlock::iterator Loc = 1850 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1851 if (Loc == MBB->end()) 1852 return false; 1853 1854 bool HasDups = false; 1855 SmallVector<unsigned, 4> LocalDefs; 1856 SmallSet<unsigned, 4> LocalDefsSet; 1857 MachineBasicBlock::iterator TIB = TBB->begin(); 1858 MachineBasicBlock::iterator FIB = FBB->begin(); 1859 MachineBasicBlock::iterator TIE = TBB->end(); 1860 MachineBasicBlock::iterator FIE = FBB->end(); 1861 while (TIB != TIE && FIB != FIE) { 1862 // Skip dbg_value instructions. These do not count. 1863 if (TIB->isDebugValue()) { 1864 while (TIB != TIE && TIB->isDebugValue()) 1865 ++TIB; 1866 if (TIB == TIE) 1867 break; 1868 } 1869 if (FIB->isDebugValue()) { 1870 while (FIB != FIE && FIB->isDebugValue()) 1871 ++FIB; 1872 if (FIB == FIE) 1873 break; 1874 } 1875 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 1876 break; 1877 1878 if (TII->isPredicated(*TIB)) 1879 // Hard to reason about register liveness with predicated instruction. 1880 break; 1881 1882 bool IsSafe = true; 1883 for (MachineOperand &MO : TIB->operands()) { 1884 // Don't attempt to hoist instructions with register masks. 1885 if (MO.isRegMask()) { 1886 IsSafe = false; 1887 break; 1888 } 1889 if (!MO.isReg()) 1890 continue; 1891 unsigned Reg = MO.getReg(); 1892 if (!Reg) 1893 continue; 1894 if (MO.isDef()) { 1895 if (Uses.count(Reg)) { 1896 // Avoid clobbering a register that's used by the instruction at 1897 // the point of insertion. 1898 IsSafe = false; 1899 break; 1900 } 1901 1902 if (Defs.count(Reg) && !MO.isDead()) { 1903 // Don't hoist the instruction if the def would be clobber by the 1904 // instruction at the point insertion. FIXME: This is overly 1905 // conservative. It should be possible to hoist the instructions 1906 // in BB2 in the following example: 1907 // BB1: 1908 // r1, eflag = op1 r2, r3 1909 // brcc eflag 1910 // 1911 // BB2: 1912 // r1 = op2, ... 1913 // = op3, r1<kill> 1914 IsSafe = false; 1915 break; 1916 } 1917 } else if (!LocalDefsSet.count(Reg)) { 1918 if (Defs.count(Reg)) { 1919 // Use is defined by the instruction at the point of insertion. 1920 IsSafe = false; 1921 break; 1922 } 1923 1924 if (MO.isKill() && Uses.count(Reg)) 1925 // Kills a register that's read by the instruction at the point of 1926 // insertion. Remove the kill marker. 1927 MO.setIsKill(false); 1928 } 1929 } 1930 if (!IsSafe) 1931 break; 1932 1933 bool DontMoveAcrossStore = true; 1934 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 1935 break; 1936 1937 // Remove kills from LocalDefsSet, these registers had short live ranges. 1938 for (const MachineOperand &MO : TIB->operands()) { 1939 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1940 continue; 1941 unsigned Reg = MO.getReg(); 1942 if (!Reg || !LocalDefsSet.count(Reg)) 1943 continue; 1944 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1945 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1946 LocalDefsSet.erase(*AI); 1947 } else { 1948 LocalDefsSet.erase(Reg); 1949 } 1950 } 1951 1952 // Track local defs so we can update liveins. 1953 for (const MachineOperand &MO : TIB->operands()) { 1954 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1955 continue; 1956 unsigned Reg = MO.getReg(); 1957 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg)) 1958 continue; 1959 LocalDefs.push_back(Reg); 1960 addRegAndItsAliases(Reg, TRI, LocalDefsSet); 1961 } 1962 1963 HasDups = true; 1964 ++TIB; 1965 ++FIB; 1966 } 1967 1968 if (!HasDups) 1969 return false; 1970 1971 MBB->splice(Loc, TBB, TBB->begin(), TIB); 1972 FBB->erase(FBB->begin(), FIB); 1973 1974 // Update livein's. 1975 for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) { 1976 unsigned Def = LocalDefs[i]; 1977 if (LocalDefsSet.count(Def)) { 1978 TBB->addLiveIn(Def); 1979 FBB->addLiveIn(Def); 1980 } 1981 } 1982 1983 ++NumHoist; 1984 return true; 1985 } 1986