1 //===-- BranchFolding.cpp - Fold machine code branch instructions ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass forwards branches to unconditional branches to make them branch 11 // directly to the target block. This pass often results in dead MBB's, which 12 // it then removes. 13 // 14 // Note that this pass must be run after register allocation, it cannot handle 15 // SSA form. It also must handle virtual registers for targets that emit virtual 16 // ISA (e.g. NVPTX). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "BranchFolding.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Target/TargetSubtargetInfo.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 #define DEBUG_TYPE "branchfolding" 47 48 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 49 STATISTIC(NumBranchOpts, "Number of branches optimized"); 50 STATISTIC(NumTailMerge , "Number of block tails merged"); 51 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 52 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 53 54 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 55 cl::init(cl::BOU_UNSET), cl::Hidden); 56 57 // Throttle for huge numbers of predecessors (compile speed problems) 58 static cl::opt<unsigned> 59 TailMergeThreshold("tail-merge-threshold", 60 cl::desc("Max number of predecessors to consider tail merging"), 61 cl::init(150), cl::Hidden); 62 63 // Heuristic for tail merging (and, inversely, tail duplication). 64 // TODO: This should be replaced with a target query. 65 static cl::opt<unsigned> 66 TailMergeSize("tail-merge-size", 67 cl::desc("Min number of instructions to consider tail merging"), 68 cl::init(3), cl::Hidden); 69 70 namespace { 71 /// BranchFolderPass - Wrap branch folder in a machine function pass. 72 class BranchFolderPass : public MachineFunctionPass { 73 public: 74 static char ID; 75 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 76 77 bool runOnMachineFunction(MachineFunction &MF) override; 78 79 void getAnalysisUsage(AnalysisUsage &AU) const override { 80 AU.addRequired<MachineBlockFrequencyInfo>(); 81 AU.addRequired<MachineBranchProbabilityInfo>(); 82 AU.addRequired<TargetPassConfig>(); 83 MachineFunctionPass::getAnalysisUsage(AU); 84 } 85 }; 86 } 87 88 char BranchFolderPass::ID = 0; 89 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 90 91 INITIALIZE_PASS(BranchFolderPass, "branch-folder", 92 "Control Flow Optimizer", false, false) 93 94 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 95 if (skipFunction(*MF.getFunction())) 96 return false; 97 98 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 99 // TailMerge can create jump into if branches that make CFG irreducible for 100 // HW that requires structurized CFG. 101 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 102 PassConfig->getEnableTailMerge(); 103 BranchFolder::MBFIWrapper MBBFreqInfo( 104 getAnalysis<MachineBlockFrequencyInfo>()); 105 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 106 getAnalysis<MachineBranchProbabilityInfo>()); 107 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), 108 MF.getSubtarget().getRegisterInfo(), 109 getAnalysisIfAvailable<MachineModuleInfo>()); 110 } 111 112 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, 113 MBFIWrapper &FreqInfo, 114 const MachineBranchProbabilityInfo &ProbInfo, 115 unsigned MinTailLength) 116 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 117 MBBFreqInfo(FreqInfo), MBPI(ProbInfo) { 118 if (MinCommonTailLength == 0) 119 MinCommonTailLength = TailMergeSize; 120 switch (FlagEnableTailMerge) { 121 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; 122 case cl::BOU_TRUE: EnableTailMerge = true; break; 123 case cl::BOU_FALSE: EnableTailMerge = false; break; 124 } 125 } 126 127 /// RemoveDeadBlock - Remove the specified dead machine basic block from the 128 /// function, updating the CFG. 129 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 130 assert(MBB->pred_empty() && "MBB must be dead!"); 131 DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 132 133 MachineFunction *MF = MBB->getParent(); 134 // drop all successors. 135 while (!MBB->succ_empty()) 136 MBB->removeSuccessor(MBB->succ_end()-1); 137 138 // Avoid matching if this pointer gets reused. 139 TriedMerging.erase(MBB); 140 141 // Remove the block. 142 MF->erase(MBB); 143 FuncletMembership.erase(MBB); 144 if (MLI) 145 MLI->removeBlock(MBB); 146 } 147 148 /// OptimizeFunction - Perhaps branch folding, tail merging and other 149 /// CFG optimizations on the given function. Block placement changes the layout 150 /// and may create new tail merging opportunities. 151 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 152 const TargetInstrInfo *tii, 153 const TargetRegisterInfo *tri, 154 MachineModuleInfo *mmi, 155 MachineLoopInfo *mli, bool AfterPlacement) { 156 if (!tii) return false; 157 158 TriedMerging.clear(); 159 160 AfterBlockPlacement = AfterPlacement; 161 TII = tii; 162 TRI = tri; 163 MMI = mmi; 164 MLI = mli; 165 166 MachineRegisterInfo &MRI = MF.getRegInfo(); 167 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 168 if (!UpdateLiveIns) 169 MRI.invalidateLiveness(); 170 171 // Fix CFG. The later algorithms expect it to be right. 172 bool MadeChange = false; 173 for (MachineBasicBlock &MBB : MF) { 174 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 175 SmallVector<MachineOperand, 4> Cond; 176 if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true)) 177 MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 178 } 179 180 // Recalculate funclet membership. 181 FuncletMembership = getFuncletMembership(MF); 182 183 bool MadeChangeThisIteration = true; 184 while (MadeChangeThisIteration) { 185 MadeChangeThisIteration = TailMergeBlocks(MF); 186 // No need to clean up if tail merging does not change anything after the 187 // block placement. 188 if (!AfterBlockPlacement || MadeChangeThisIteration) 189 MadeChangeThisIteration |= OptimizeBranches(MF); 190 if (EnableHoistCommonCode) 191 MadeChangeThisIteration |= HoistCommonCode(MF); 192 MadeChange |= MadeChangeThisIteration; 193 } 194 195 // See if any jump tables have become dead as the code generator 196 // did its thing. 197 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 198 if (!JTI) 199 return MadeChange; 200 201 // Walk the function to find jump tables that are live. 202 BitVector JTIsLive(JTI->getJumpTables().size()); 203 for (const MachineBasicBlock &BB : MF) { 204 for (const MachineInstr &I : BB) 205 for (const MachineOperand &Op : I.operands()) { 206 if (!Op.isJTI()) continue; 207 208 // Remember that this JT is live. 209 JTIsLive.set(Op.getIndex()); 210 } 211 } 212 213 // Finally, remove dead jump tables. This happens when the 214 // indirect jump was unreachable (and thus deleted). 215 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 216 if (!JTIsLive.test(i)) { 217 JTI->RemoveJumpTable(i); 218 MadeChange = true; 219 } 220 221 return MadeChange; 222 } 223 224 //===----------------------------------------------------------------------===// 225 // Tail Merging of Blocks 226 //===----------------------------------------------------------------------===// 227 228 /// HashMachineInstr - Compute a hash value for MI and its operands. 229 static unsigned HashMachineInstr(const MachineInstr &MI) { 230 unsigned Hash = MI.getOpcode(); 231 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 232 const MachineOperand &Op = MI.getOperand(i); 233 234 // Merge in bits from the operand if easy. We can't use MachineOperand's 235 // hash_code here because it's not deterministic and we sort by hash value 236 // later. 237 unsigned OperandHash = 0; 238 switch (Op.getType()) { 239 case MachineOperand::MO_Register: 240 OperandHash = Op.getReg(); 241 break; 242 case MachineOperand::MO_Immediate: 243 OperandHash = Op.getImm(); 244 break; 245 case MachineOperand::MO_MachineBasicBlock: 246 OperandHash = Op.getMBB()->getNumber(); 247 break; 248 case MachineOperand::MO_FrameIndex: 249 case MachineOperand::MO_ConstantPoolIndex: 250 case MachineOperand::MO_JumpTableIndex: 251 OperandHash = Op.getIndex(); 252 break; 253 case MachineOperand::MO_GlobalAddress: 254 case MachineOperand::MO_ExternalSymbol: 255 // Global address / external symbol are too hard, don't bother, but do 256 // pull in the offset. 257 OperandHash = Op.getOffset(); 258 break; 259 default: 260 break; 261 } 262 263 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 264 } 265 return Hash; 266 } 267 268 /// HashEndOfMBB - Hash the last instruction in the MBB. 269 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 270 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 271 if (I == MBB.end()) 272 return 0; 273 274 return HashMachineInstr(*I); 275 } 276 277 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number 278 /// of instructions they actually have in common together at their end. Return 279 /// iterators for the first shared instruction in each block. 280 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 281 MachineBasicBlock *MBB2, 282 MachineBasicBlock::iterator &I1, 283 MachineBasicBlock::iterator &I2) { 284 I1 = MBB1->end(); 285 I2 = MBB2->end(); 286 287 unsigned TailLen = 0; 288 while (I1 != MBB1->begin() && I2 != MBB2->begin()) { 289 --I1; --I2; 290 // Skip debugging pseudos; necessary to avoid changing the code. 291 while (I1->isDebugValue()) { 292 if (I1==MBB1->begin()) { 293 while (I2->isDebugValue()) { 294 if (I2==MBB2->begin()) 295 // I1==DBG at begin; I2==DBG at begin 296 return TailLen; 297 --I2; 298 } 299 ++I2; 300 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin 301 return TailLen; 302 } 303 --I1; 304 } 305 // I1==first (untested) non-DBG preceding known match 306 while (I2->isDebugValue()) { 307 if (I2==MBB2->begin()) { 308 ++I1; 309 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin 310 return TailLen; 311 } 312 --I2; 313 } 314 // I1, I2==first (untested) non-DBGs preceding known match 315 if (!I1->isIdenticalTo(*I2) || 316 // FIXME: This check is dubious. It's used to get around a problem where 317 // people incorrectly expect inline asm directives to remain in the same 318 // relative order. This is untenable because normal compiler 319 // optimizations (like this one) may reorder and/or merge these 320 // directives. 321 I1->isInlineAsm()) { 322 ++I1; ++I2; 323 break; 324 } 325 ++TailLen; 326 } 327 // Back past possible debugging pseudos at beginning of block. This matters 328 // when one block differs from the other only by whether debugging pseudos 329 // are present at the beginning. (This way, the various checks later for 330 // I1==MBB1->begin() work as expected.) 331 if (I1 == MBB1->begin() && I2 != MBB2->begin()) { 332 --I2; 333 while (I2->isDebugValue()) { 334 if (I2 == MBB2->begin()) 335 return TailLen; 336 --I2; 337 } 338 ++I2; 339 } 340 if (I2 == MBB2->begin() && I1 != MBB1->begin()) { 341 --I1; 342 while (I1->isDebugValue()) { 343 if (I1 == MBB1->begin()) 344 return TailLen; 345 --I1; 346 } 347 ++I1; 348 } 349 return TailLen; 350 } 351 352 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 353 /// after it, replacing it with an unconditional branch to NewDest. 354 void BranchFolder::ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 355 MachineBasicBlock *NewDest) { 356 TII->ReplaceTailWithBranchTo(OldInst, NewDest); 357 358 if (UpdateLiveIns) { 359 NewDest->clearLiveIns(); 360 computeLiveIns(LiveRegs, *TRI, *NewDest); 361 } 362 363 ++NumTailMerge; 364 } 365 366 /// SplitMBBAt - Given a machine basic block and an iterator into it, split the 367 /// MBB so that the part before the iterator falls into the part starting at the 368 /// iterator. This returns the new MBB. 369 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 370 MachineBasicBlock::iterator BBI1, 371 const BasicBlock *BB) { 372 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 373 return nullptr; 374 375 MachineFunction &MF = *CurMBB.getParent(); 376 377 // Create the fall-through block. 378 MachineFunction::iterator MBBI = CurMBB.getIterator(); 379 MachineBasicBlock *NewMBB =MF.CreateMachineBasicBlock(BB); 380 CurMBB.getParent()->insert(++MBBI, NewMBB); 381 382 // Move all the successors of this block to the specified block. 383 NewMBB->transferSuccessors(&CurMBB); 384 385 // Add an edge from CurMBB to NewMBB for the fall-through. 386 CurMBB.addSuccessor(NewMBB); 387 388 // Splice the code over. 389 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 390 391 // NewMBB belongs to the same loop as CurMBB. 392 if (MLI) 393 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 394 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 395 396 // NewMBB inherits CurMBB's block frequency. 397 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 398 399 if (UpdateLiveIns) 400 computeLiveIns(LiveRegs, *TRI, *NewMBB); 401 402 // Add the new block to the funclet. 403 const auto &FuncletI = FuncletMembership.find(&CurMBB); 404 if (FuncletI != FuncletMembership.end()) { 405 auto n = FuncletI->second; 406 FuncletMembership[NewMBB] = n; 407 } 408 409 return NewMBB; 410 } 411 412 /// EstimateRuntime - Make a rough estimate for how long it will take to run 413 /// the specified code. 414 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 415 MachineBasicBlock::iterator E) { 416 unsigned Time = 0; 417 for (; I != E; ++I) { 418 if (I->isDebugValue()) 419 continue; 420 if (I->isCall()) 421 Time += 10; 422 else if (I->mayLoad() || I->mayStore()) 423 Time += 2; 424 else 425 ++Time; 426 } 427 return Time; 428 } 429 430 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 431 // branches temporarily for tail merging). In the case where CurMBB ends 432 // with a conditional branch to the next block, optimize by reversing the 433 // test and conditionally branching to SuccMBB instead. 434 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 435 const TargetInstrInfo *TII) { 436 MachineFunction *MF = CurMBB->getParent(); 437 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 438 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 439 SmallVector<MachineOperand, 4> Cond; 440 DebugLoc dl = CurMBB->findBranchDebugLoc(); 441 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 442 MachineBasicBlock *NextBB = &*I; 443 if (TBB == NextBB && !Cond.empty() && !FBB) { 444 if (!TII->reverseBranchCondition(Cond)) { 445 TII->removeBranch(*CurMBB); 446 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 447 return; 448 } 449 } 450 } 451 TII->insertBranch(*CurMBB, SuccBB, nullptr, 452 SmallVector<MachineOperand, 0>(), dl); 453 } 454 455 bool 456 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 457 if (getHash() < o.getHash()) 458 return true; 459 if (getHash() > o.getHash()) 460 return false; 461 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 462 return true; 463 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 464 return false; 465 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 466 // an object with itself. 467 #ifndef _GLIBCXX_DEBUG 468 llvm_unreachable("Predecessor appears twice"); 469 #else 470 return false; 471 #endif 472 } 473 474 BlockFrequency 475 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const { 476 auto I = MergedBBFreq.find(MBB); 477 478 if (I != MergedBBFreq.end()) 479 return I->second; 480 481 return MBFI.getBlockFreq(MBB); 482 } 483 484 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB, 485 BlockFrequency F) { 486 MergedBBFreq[MBB] = F; 487 } 488 489 raw_ostream & 490 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 491 const MachineBasicBlock *MBB) const { 492 return MBFI.printBlockFreq(OS, getBlockFreq(MBB)); 493 } 494 495 raw_ostream & 496 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 497 const BlockFrequency Freq) const { 498 return MBFI.printBlockFreq(OS, Freq); 499 } 500 501 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) { 502 MBFI.view(Name, isSimple); 503 } 504 505 uint64_t 506 BranchFolder::MBFIWrapper::getEntryFreq() const { 507 return MBFI.getEntryFreq(); 508 } 509 510 /// CountTerminators - Count the number of terminators in the given 511 /// block and set I to the position of the first non-terminator, if there 512 /// is one, or MBB->end() otherwise. 513 static unsigned CountTerminators(MachineBasicBlock *MBB, 514 MachineBasicBlock::iterator &I) { 515 I = MBB->end(); 516 unsigned NumTerms = 0; 517 for (;;) { 518 if (I == MBB->begin()) { 519 I = MBB->end(); 520 break; 521 } 522 --I; 523 if (!I->isTerminator()) break; 524 ++NumTerms; 525 } 526 return NumTerms; 527 } 528 529 /// A no successor, non-return block probably ends in unreachable and is cold. 530 /// Also consider a block that ends in an indirect branch to be a return block, 531 /// since many targets use plain indirect branches to return. 532 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 533 if (!MBB->succ_empty()) 534 return false; 535 if (MBB->empty()) 536 return true; 537 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 538 } 539 540 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 541 /// and decide if it would be profitable to merge those tails. Return the 542 /// length of the common tail and iterators to the first common instruction 543 /// in each block. 544 /// MBB1, MBB2 The blocks to check 545 /// MinCommonTailLength Minimum size of tail block to be merged. 546 /// CommonTailLen Out parameter to record the size of the shared tail between 547 /// MBB1 and MBB2 548 /// I1, I2 Iterator references that will be changed to point to the first 549 /// instruction in the common tail shared by MBB1,MBB2 550 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 551 /// relative to SuccBB 552 /// PredBB The layout predecessor of SuccBB, if any. 553 /// FuncletMembership map from block to funclet #. 554 /// AfterPlacement True if we are merging blocks after layout. Stricter 555 /// thresholds apply to prevent undoing tail-duplication. 556 static bool 557 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 558 unsigned MinCommonTailLength, unsigned &CommonTailLen, 559 MachineBasicBlock::iterator &I1, 560 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 561 MachineBasicBlock *PredBB, 562 DenseMap<const MachineBasicBlock *, int> &FuncletMembership, 563 bool AfterPlacement) { 564 // It is never profitable to tail-merge blocks from two different funclets. 565 if (!FuncletMembership.empty()) { 566 auto Funclet1 = FuncletMembership.find(MBB1); 567 assert(Funclet1 != FuncletMembership.end()); 568 auto Funclet2 = FuncletMembership.find(MBB2); 569 assert(Funclet2 != FuncletMembership.end()); 570 if (Funclet1->second != Funclet2->second) 571 return false; 572 } 573 574 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 575 if (CommonTailLen == 0) 576 return false; 577 DEBUG(dbgs() << "Common tail length of BB#" << MBB1->getNumber() 578 << " and BB#" << MBB2->getNumber() << " is " << CommonTailLen 579 << '\n'); 580 581 // It's almost always profitable to merge any number of non-terminator 582 // instructions with the block that falls through into the common successor. 583 // This is true only for a single successor. For multiple successors, we are 584 // trading a conditional branch for an unconditional one. 585 // TODO: Re-visit successor size for non-layout tail merging. 586 if ((MBB1 == PredBB || MBB2 == PredBB) && 587 (!AfterPlacement || MBB1->succ_size() == 1)) { 588 MachineBasicBlock::iterator I; 589 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 590 if (CommonTailLen > NumTerms) 591 return true; 592 } 593 594 // If these are identical non-return blocks with no successors, merge them. 595 // Such blocks are typically cold calls to noreturn functions like abort, and 596 // are unlikely to become a fallthrough target after machine block placement. 597 // Tail merging these blocks is unlikely to create additional unconditional 598 // branches, and will reduce the size of this cold code. 599 if (I1 == MBB1->begin() && I2 == MBB2->begin() && 600 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 601 return true; 602 603 // If one of the blocks can be completely merged and happens to be in 604 // a position where the other could fall through into it, merge any number 605 // of instructions, because it can be done without a branch. 606 // TODO: If the blocks are not adjacent, move one of them so that they are? 607 if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin()) 608 return true; 609 if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin()) 610 return true; 611 612 // If both blocks have an unconditional branch temporarily stripped out, 613 // count that as an additional common instruction for the following 614 // heuristics. This heuristic is only accurate for single-succ blocks, so to 615 // make sure that during layout merging and duplicating don't crash, we check 616 // for that when merging during layout. 617 unsigned EffectiveTailLen = CommonTailLen; 618 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 619 (MBB1->succ_size() == 1 || !AfterPlacement) && 620 !MBB1->back().isBarrier() && 621 !MBB2->back().isBarrier()) 622 ++EffectiveTailLen; 623 624 // Check if the common tail is long enough to be worthwhile. 625 if (EffectiveTailLen >= MinCommonTailLength) 626 return true; 627 628 // If we are optimizing for code size, 2 instructions in common is enough if 629 // we don't have to split a block. At worst we will be introducing 1 new 630 // branch instruction, which is likely to be smaller than the 2 631 // instructions that would be deleted in the merge. 632 MachineFunction *MF = MBB1->getParent(); 633 return EffectiveTailLen >= 2 && MF->getFunction()->optForSize() && 634 (I1 == MBB1->begin() || I2 == MBB2->begin()); 635 } 636 637 /// ComputeSameTails - Look through all the blocks in MergePotentials that have 638 /// hash CurHash (guaranteed to match the last element). Build the vector 639 /// SameTails of all those that have the (same) largest number of instructions 640 /// in common of any pair of these blocks. SameTails entries contain an 641 /// iterator into MergePotentials (from which the MachineBasicBlock can be 642 /// found) and a MachineBasicBlock::iterator into that MBB indicating the 643 /// instruction where the matching code sequence begins. 644 /// Order of elements in SameTails is the reverse of the order in which 645 /// those blocks appear in MergePotentials (where they are not necessarily 646 /// consecutive). 647 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 648 unsigned MinCommonTailLength, 649 MachineBasicBlock *SuccBB, 650 MachineBasicBlock *PredBB) { 651 unsigned maxCommonTailLength = 0U; 652 SameTails.clear(); 653 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 654 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 655 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 656 B = MergePotentials.begin(); 657 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 658 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 659 unsigned CommonTailLen; 660 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 661 MinCommonTailLength, 662 CommonTailLen, TrialBBI1, TrialBBI2, 663 SuccBB, PredBB, 664 FuncletMembership, 665 AfterBlockPlacement)) { 666 if (CommonTailLen > maxCommonTailLength) { 667 SameTails.clear(); 668 maxCommonTailLength = CommonTailLen; 669 HighestMPIter = CurMPIter; 670 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 671 } 672 if (HighestMPIter == CurMPIter && 673 CommonTailLen == maxCommonTailLength) 674 SameTails.push_back(SameTailElt(I, TrialBBI2)); 675 } 676 if (I == B) 677 break; 678 } 679 } 680 return maxCommonTailLength; 681 } 682 683 /// RemoveBlocksWithHash - Remove all blocks with hash CurHash from 684 /// MergePotentials, restoring branches at ends of blocks as appropriate. 685 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 686 MachineBasicBlock *SuccBB, 687 MachineBasicBlock *PredBB) { 688 MPIterator CurMPIter, B; 689 for (CurMPIter = std::prev(MergePotentials.end()), 690 B = MergePotentials.begin(); 691 CurMPIter->getHash() == CurHash; --CurMPIter) { 692 // Put the unconditional branch back, if we need one. 693 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 694 if (SuccBB && CurMBB != PredBB) 695 FixTail(CurMBB, SuccBB, TII); 696 if (CurMPIter == B) 697 break; 698 } 699 if (CurMPIter->getHash() != CurHash) 700 CurMPIter++; 701 MergePotentials.erase(CurMPIter, MergePotentials.end()); 702 } 703 704 /// CreateCommonTailOnlyBlock - None of the blocks to be tail-merged consist 705 /// only of the common tail. Create a block that does by splitting one. 706 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 707 MachineBasicBlock *SuccBB, 708 unsigned maxCommonTailLength, 709 unsigned &commonTailIndex) { 710 commonTailIndex = 0; 711 unsigned TimeEstimate = ~0U; 712 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 713 // Use PredBB if possible; that doesn't require a new branch. 714 if (SameTails[i].getBlock() == PredBB) { 715 commonTailIndex = i; 716 break; 717 } 718 // Otherwise, make a (fairly bogus) choice based on estimate of 719 // how long it will take the various blocks to execute. 720 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 721 SameTails[i].getTailStartPos()); 722 if (t <= TimeEstimate) { 723 TimeEstimate = t; 724 commonTailIndex = i; 725 } 726 } 727 728 MachineBasicBlock::iterator BBI = 729 SameTails[commonTailIndex].getTailStartPos(); 730 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 731 732 DEBUG(dbgs() << "\nSplitting BB#" << MBB->getNumber() << ", size " 733 << maxCommonTailLength); 734 735 // If the split block unconditionally falls-thru to SuccBB, it will be 736 // merged. In control flow terms it should then take SuccBB's name. e.g. If 737 // SuccBB is an inner loop, the common tail is still part of the inner loop. 738 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 739 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 740 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 741 if (!newMBB) { 742 DEBUG(dbgs() << "... failed!"); 743 return false; 744 } 745 746 SameTails[commonTailIndex].setBlock(newMBB); 747 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 748 749 // If we split PredBB, newMBB is the new predecessor. 750 if (PredBB == MBB) 751 PredBB = newMBB; 752 753 return true; 754 } 755 756 static void 757 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 758 MachineBasicBlock &MBBCommon) { 759 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 760 // Note CommonTailLen does not necessarily matches the size of 761 // the common BB nor all its instructions because of debug 762 // instructions differences. 763 unsigned CommonTailLen = 0; 764 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 765 ++CommonTailLen; 766 767 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 768 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 769 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 770 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 771 772 while (CommonTailLen--) { 773 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 774 (void)MBBIE; 775 776 if (MBBI->isDebugValue()) { 777 ++MBBI; 778 continue; 779 } 780 781 while ((MBBICommon != MBBIECommon) && MBBICommon->isDebugValue()) 782 ++MBBICommon; 783 784 assert(MBBICommon != MBBIECommon && 785 "Reached BB end within common tail length!"); 786 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 787 788 // Merge MMOs from memory operations in the common block. 789 if (MBBICommon->mayLoad() || MBBICommon->mayStore()) 790 MBBICommon->setMemRefs(MBBICommon->mergeMemRefsWith(*MBBI)); 791 // Drop undef flags if they aren't present in all merged instructions. 792 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 793 MachineOperand &MO = MBBICommon->getOperand(I); 794 if (MO.isReg() && MO.isUndef()) { 795 const MachineOperand &OtherMO = MBBI->getOperand(I); 796 if (!OtherMO.isUndef()) 797 MO.setIsUndef(false); 798 } 799 } 800 801 ++MBBI; 802 ++MBBICommon; 803 } 804 } 805 806 // See if any of the blocks in MergePotentials (which all have SuccBB as a 807 // successor, or all have no successor if it is null) can be tail-merged. 808 // If there is a successor, any blocks in MergePotentials that are not 809 // tail-merged and are not immediately before Succ must have an unconditional 810 // branch to Succ added (but the predecessor/successor lists need no 811 // adjustment). The lone predecessor of Succ that falls through into Succ, 812 // if any, is given in PredBB. 813 // MinCommonTailLength - Except for the special cases below, tail-merge if 814 // there are at least this many instructions in common. 815 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 816 MachineBasicBlock *PredBB, 817 unsigned MinCommonTailLength) { 818 bool MadeChange = false; 819 820 DEBUG(dbgs() << "\nTryTailMergeBlocks: "; 821 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 822 dbgs() << "BB#" << MergePotentials[i].getBlock()->getNumber() 823 << (i == e-1 ? "" : ", "); 824 dbgs() << "\n"; 825 if (SuccBB) { 826 dbgs() << " with successor BB#" << SuccBB->getNumber() << '\n'; 827 if (PredBB) 828 dbgs() << " which has fall-through from BB#" 829 << PredBB->getNumber() << "\n"; 830 } 831 dbgs() << "Looking for common tails of at least " 832 << MinCommonTailLength << " instruction" 833 << (MinCommonTailLength == 1 ? "" : "s") << '\n'; 834 ); 835 836 // Sort by hash value so that blocks with identical end sequences sort 837 // together. 838 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 839 840 // Walk through equivalence sets looking for actual exact matches. 841 while (MergePotentials.size() > 1) { 842 unsigned CurHash = MergePotentials.back().getHash(); 843 844 // Build SameTails, identifying the set of blocks with this hash code 845 // and with the maximum number of instructions in common. 846 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 847 MinCommonTailLength, 848 SuccBB, PredBB); 849 850 // If we didn't find any pair that has at least MinCommonTailLength 851 // instructions in common, remove all blocks with this hash code and retry. 852 if (SameTails.empty()) { 853 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 854 continue; 855 } 856 857 // If one of the blocks is the entire common tail (and not the entry 858 // block, which we can't jump to), we can treat all blocks with this same 859 // tail at once. Use PredBB if that is one of the possibilities, as that 860 // will not introduce any extra branches. 861 MachineBasicBlock *EntryBB = 862 &MergePotentials.front().getBlock()->getParent()->front(); 863 unsigned commonTailIndex = SameTails.size(); 864 // If there are two blocks, check to see if one can be made to fall through 865 // into the other. 866 if (SameTails.size() == 2 && 867 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 868 SameTails[1].tailIsWholeBlock()) 869 commonTailIndex = 1; 870 else if (SameTails.size() == 2 && 871 SameTails[1].getBlock()->isLayoutSuccessor( 872 SameTails[0].getBlock()) && 873 SameTails[0].tailIsWholeBlock()) 874 commonTailIndex = 0; 875 else { 876 // Otherwise just pick one, favoring the fall-through predecessor if 877 // there is one. 878 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 879 MachineBasicBlock *MBB = SameTails[i].getBlock(); 880 if (MBB == EntryBB && SameTails[i].tailIsWholeBlock()) 881 continue; 882 if (MBB == PredBB) { 883 commonTailIndex = i; 884 break; 885 } 886 if (SameTails[i].tailIsWholeBlock()) 887 commonTailIndex = i; 888 } 889 } 890 891 if (commonTailIndex == SameTails.size() || 892 (SameTails[commonTailIndex].getBlock() == PredBB && 893 !SameTails[commonTailIndex].tailIsWholeBlock())) { 894 // None of the blocks consist entirely of the common tail. 895 // Split a block so that one does. 896 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 897 maxCommonTailLength, commonTailIndex)) { 898 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 899 continue; 900 } 901 } 902 903 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 904 905 // Recompute common tail MBB's edge weights and block frequency. 906 setCommonTailEdgeWeights(*MBB); 907 908 // Remove the original debug location from the common tail. 909 for (auto &MI : *MBB) 910 if (!MI.isDebugValue()) 911 MI.setDebugLoc(DebugLoc()); 912 913 // MBB is common tail. Adjust all other BB's to jump to this one. 914 // Traversal must be forwards so erases work. 915 DEBUG(dbgs() << "\nUsing common tail in BB#" << MBB->getNumber() 916 << " for "); 917 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 918 if (commonTailIndex == i) 919 continue; 920 DEBUG(dbgs() << "BB#" << SameTails[i].getBlock()->getNumber() 921 << (i == e-1 ? "" : ", ")); 922 // Merge operations (MMOs, undef flags) 923 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 924 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 925 ReplaceTailWithBranchTo(SameTails[i].getTailStartPos(), MBB); 926 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 927 MergePotentials.erase(SameTails[i].getMPIter()); 928 } 929 DEBUG(dbgs() << "\n"); 930 // We leave commonTailIndex in the worklist in case there are other blocks 931 // that match it with a smaller number of instructions. 932 MadeChange = true; 933 } 934 return MadeChange; 935 } 936 937 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 938 bool MadeChange = false; 939 if (!EnableTailMerge) return MadeChange; 940 941 // First find blocks with no successors. 942 // Block placement does not create new tail merging opportunities for these 943 // blocks. 944 if (!AfterBlockPlacement) { 945 MergePotentials.clear(); 946 for (MachineBasicBlock &MBB : MF) { 947 if (MergePotentials.size() == TailMergeThreshold) 948 break; 949 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 950 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 951 } 952 953 // If this is a large problem, avoid visiting the same basic blocks 954 // multiple times. 955 if (MergePotentials.size() == TailMergeThreshold) 956 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 957 TriedMerging.insert(MergePotentials[i].getBlock()); 958 959 // See if we can do any tail merging on those. 960 if (MergePotentials.size() >= 2) 961 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 962 } 963 964 // Look at blocks (IBB) with multiple predecessors (PBB). 965 // We change each predecessor to a canonical form, by 966 // (1) temporarily removing any unconditional branch from the predecessor 967 // to IBB, and 968 // (2) alter conditional branches so they branch to the other block 969 // not IBB; this may require adding back an unconditional branch to IBB 970 // later, where there wasn't one coming in. E.g. 971 // Bcc IBB 972 // fallthrough to QBB 973 // here becomes 974 // Bncc QBB 975 // with a conceptual B to IBB after that, which never actually exists. 976 // With those changes, we see whether the predecessors' tails match, 977 // and merge them if so. We change things out of canonical form and 978 // back to the way they were later in the process. (OptimizeBranches 979 // would undo some of this, but we can't use it, because we'd get into 980 // a compile-time infinite loop repeatedly doing and undoing the same 981 // transformations.) 982 983 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 984 I != E; ++I) { 985 if (I->pred_size() < 2) continue; 986 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 987 MachineBasicBlock *IBB = &*I; 988 MachineBasicBlock *PredBB = &*std::prev(I); 989 MergePotentials.clear(); 990 MachineLoop *ML; 991 992 // Bail if merging after placement and IBB is the loop header because 993 // -- If merging predecessors that belong to the same loop as IBB, the 994 // common tail of merged predecessors may become the loop top if block 995 // placement is called again and the predecessors may branch to this common 996 // tail and require more branches. This can be relaxed if 997 // MachineBlockPlacement::findBestLoopTop is more flexible. 998 // --If merging predecessors that do not belong to the same loop as IBB, the 999 // loop info of IBB's loop and the other loops may be affected. Calling the 1000 // block placement again may make big change to the layout and eliminate the 1001 // reason to do tail merging here. 1002 if (AfterBlockPlacement && MLI) { 1003 ML = MLI->getLoopFor(IBB); 1004 if (ML && IBB == ML->getHeader()) 1005 continue; 1006 } 1007 1008 for (MachineBasicBlock *PBB : I->predecessors()) { 1009 if (MergePotentials.size() == TailMergeThreshold) 1010 break; 1011 1012 if (TriedMerging.count(PBB)) 1013 continue; 1014 1015 // Skip blocks that loop to themselves, can't tail merge these. 1016 if (PBB == IBB) 1017 continue; 1018 1019 // Visit each predecessor only once. 1020 if (!UniquePreds.insert(PBB).second) 1021 continue; 1022 1023 // Skip blocks which may jump to a landing pad. Can't tail merge these. 1024 if (PBB->hasEHPadSuccessor()) 1025 continue; 1026 1027 // After block placement, only consider predecessors that belong to the 1028 // same loop as IBB. The reason is the same as above when skipping loop 1029 // header. 1030 if (AfterBlockPlacement && MLI) 1031 if (ML != MLI->getLoopFor(PBB)) 1032 continue; 1033 1034 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1035 SmallVector<MachineOperand, 4> Cond; 1036 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1037 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1038 // branch. 1039 SmallVector<MachineOperand, 4> NewCond(Cond); 1040 if (!Cond.empty() && TBB == IBB) { 1041 if (TII->reverseBranchCondition(NewCond)) 1042 continue; 1043 // This is the QBB case described above 1044 if (!FBB) { 1045 auto Next = ++PBB->getIterator(); 1046 if (Next != MF.end()) 1047 FBB = &*Next; 1048 } 1049 } 1050 1051 // Failing case: the only way IBB can be reached from PBB is via 1052 // exception handling. Happens for landing pads. Would be nice to have 1053 // a bit in the edge so we didn't have to do all this. 1054 if (IBB->isEHPad()) { 1055 MachineFunction::iterator IP = ++PBB->getIterator(); 1056 MachineBasicBlock *PredNextBB = nullptr; 1057 if (IP != MF.end()) 1058 PredNextBB = &*IP; 1059 if (!TBB) { 1060 if (IBB != PredNextBB) // fallthrough 1061 continue; 1062 } else if (FBB) { 1063 if (TBB != IBB && FBB != IBB) // cbr then ubr 1064 continue; 1065 } else if (Cond.empty()) { 1066 if (TBB != IBB) // ubr 1067 continue; 1068 } else { 1069 if (TBB != IBB && IBB != PredNextBB) // cbr 1070 continue; 1071 } 1072 } 1073 1074 // Remove the unconditional branch at the end, if any. 1075 if (TBB && (Cond.empty() || FBB)) { 1076 DebugLoc dl = PBB->findBranchDebugLoc(); 1077 TII->removeBranch(*PBB); 1078 if (!Cond.empty()) 1079 // reinsert conditional branch only, for now 1080 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1081 NewCond, dl); 1082 } 1083 1084 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1085 } 1086 } 1087 1088 // If this is a large problem, avoid visiting the same basic blocks multiple 1089 // times. 1090 if (MergePotentials.size() == TailMergeThreshold) 1091 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1092 TriedMerging.insert(MergePotentials[i].getBlock()); 1093 1094 if (MergePotentials.size() >= 2) 1095 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1096 1097 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1098 // result of removing blocks in TryTailMergeBlocks. 1099 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1100 if (MergePotentials.size() == 1 && 1101 MergePotentials.begin()->getBlock() != PredBB) 1102 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1103 } 1104 1105 return MadeChange; 1106 } 1107 1108 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1109 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1110 BlockFrequency AccumulatedMBBFreq; 1111 1112 // Aggregate edge frequency of successor edge j: 1113 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1114 // where bb is a basic block that is in SameTails. 1115 for (const auto &Src : SameTails) { 1116 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1117 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1118 AccumulatedMBBFreq += BlockFreq; 1119 1120 // It is not necessary to recompute edge weights if TailBB has less than two 1121 // successors. 1122 if (TailMBB.succ_size() <= 1) 1123 continue; 1124 1125 auto EdgeFreq = EdgeFreqLs.begin(); 1126 1127 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1128 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1129 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1130 } 1131 1132 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1133 1134 if (TailMBB.succ_size() <= 1) 1135 return; 1136 1137 auto SumEdgeFreq = 1138 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1139 .getFrequency(); 1140 auto EdgeFreq = EdgeFreqLs.begin(); 1141 1142 if (SumEdgeFreq > 0) { 1143 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1144 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1145 auto Prob = BranchProbability::getBranchProbability( 1146 EdgeFreq->getFrequency(), SumEdgeFreq); 1147 TailMBB.setSuccProbability(SuccI, Prob); 1148 } 1149 } 1150 } 1151 1152 //===----------------------------------------------------------------------===// 1153 // Branch Optimization 1154 //===----------------------------------------------------------------------===// 1155 1156 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1157 bool MadeChange = false; 1158 1159 // Make sure blocks are numbered in order 1160 MF.RenumberBlocks(); 1161 // Renumbering blocks alters funclet membership, recalculate it. 1162 FuncletMembership = getFuncletMembership(MF); 1163 1164 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1165 I != E; ) { 1166 MachineBasicBlock *MBB = &*I++; 1167 MadeChange |= OptimizeBlock(MBB); 1168 1169 // If it is dead, remove it. 1170 if (MBB->pred_empty()) { 1171 RemoveDeadBlock(MBB); 1172 MadeChange = true; 1173 ++NumDeadBlocks; 1174 } 1175 } 1176 1177 return MadeChange; 1178 } 1179 1180 // Blocks should be considered empty if they contain only debug info; 1181 // else the debug info would affect codegen. 1182 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1183 return MBB->getFirstNonDebugInstr() == MBB->end(); 1184 } 1185 1186 // Blocks with only debug info and branches should be considered the same 1187 // as blocks with only branches. 1188 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1189 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1190 assert(I != MBB->end() && "empty block!"); 1191 return I->isBranch(); 1192 } 1193 1194 /// IsBetterFallthrough - Return true if it would be clearly better to 1195 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1196 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1197 /// result in infinite loops. 1198 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1199 MachineBasicBlock *MBB2) { 1200 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1201 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1202 // optimize branches that branch to either a return block or an assert block 1203 // into a fallthrough to the return. 1204 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1205 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1206 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1207 return false; 1208 1209 // If there is a clear successor ordering we make sure that one block 1210 // will fall through to the next 1211 if (MBB1->isSuccessor(MBB2)) return true; 1212 if (MBB2->isSuccessor(MBB1)) return false; 1213 1214 return MBB2I->isCall() && !MBB1I->isCall(); 1215 } 1216 1217 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1218 /// instructions on the block. 1219 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1220 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1221 if (I != MBB.end() && I->isBranch()) 1222 return I->getDebugLoc(); 1223 return DebugLoc(); 1224 } 1225 1226 /// OptimizeBlock - Analyze and optimize control flow related to the specified 1227 /// block. This is never called on the entry block. 1228 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1229 bool MadeChange = false; 1230 MachineFunction &MF = *MBB->getParent(); 1231 ReoptimizeBlock: 1232 1233 MachineFunction::iterator FallThrough = MBB->getIterator(); 1234 ++FallThrough; 1235 1236 // Make sure MBB and FallThrough belong to the same funclet. 1237 bool SameFunclet = true; 1238 if (!FuncletMembership.empty() && FallThrough != MF.end()) { 1239 auto MBBFunclet = FuncletMembership.find(MBB); 1240 assert(MBBFunclet != FuncletMembership.end()); 1241 auto FallThroughFunclet = FuncletMembership.find(&*FallThrough); 1242 assert(FallThroughFunclet != FuncletMembership.end()); 1243 SameFunclet = MBBFunclet->second == FallThroughFunclet->second; 1244 } 1245 1246 // If this block is empty, make everyone use its fall-through, not the block 1247 // explicitly. Landing pads should not do this since the landing-pad table 1248 // points to this block. Blocks with their addresses taken shouldn't be 1249 // optimized away. 1250 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1251 SameFunclet) { 1252 // Dead block? Leave for cleanup later. 1253 if (MBB->pred_empty()) return MadeChange; 1254 1255 if (FallThrough == MF.end()) { 1256 // TODO: Simplify preds to not branch here if possible! 1257 } else if (FallThrough->isEHPad()) { 1258 // Don't rewrite to a landing pad fallthough. That could lead to the case 1259 // where a BB jumps to more than one landing pad. 1260 // TODO: Is it ever worth rewriting predecessors which don't already 1261 // jump to a landing pad, and so can safely jump to the fallthrough? 1262 } else if (MBB->isSuccessor(&*FallThrough)) { 1263 // Rewrite all predecessors of the old block to go to the fallthrough 1264 // instead. 1265 while (!MBB->pred_empty()) { 1266 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1267 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1268 } 1269 // If MBB was the target of a jump table, update jump tables to go to the 1270 // fallthrough instead. 1271 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1272 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1273 MadeChange = true; 1274 } 1275 return MadeChange; 1276 } 1277 1278 // Check to see if we can simplify the terminator of the block before this 1279 // one. 1280 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1281 1282 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1283 SmallVector<MachineOperand, 4> PriorCond; 1284 bool PriorUnAnalyzable = 1285 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1286 if (!PriorUnAnalyzable) { 1287 // If the CFG for the prior block has extra edges, remove them. 1288 MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB, 1289 !PriorCond.empty()); 1290 1291 // If the previous branch is conditional and both conditions go to the same 1292 // destination, remove the branch, replacing it with an unconditional one or 1293 // a fall-through. 1294 if (PriorTBB && PriorTBB == PriorFBB) { 1295 DebugLoc dl = getBranchDebugLoc(PrevBB); 1296 TII->removeBranch(PrevBB); 1297 PriorCond.clear(); 1298 if (PriorTBB != MBB) 1299 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1300 MadeChange = true; 1301 ++NumBranchOpts; 1302 goto ReoptimizeBlock; 1303 } 1304 1305 // If the previous block unconditionally falls through to this block and 1306 // this block has no other predecessors, move the contents of this block 1307 // into the prior block. This doesn't usually happen when SimplifyCFG 1308 // has been used, but it can happen if tail merging splits a fall-through 1309 // predecessor of a block. 1310 // This has to check PrevBB->succ_size() because EH edges are ignored by 1311 // AnalyzeBranch. 1312 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1313 PrevBB.succ_size() == 1 && 1314 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1315 DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1316 << "From MBB: " << *MBB); 1317 // Remove redundant DBG_VALUEs first. 1318 if (PrevBB.begin() != PrevBB.end()) { 1319 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1320 --PrevBBIter; 1321 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1322 // Check if DBG_VALUE at the end of PrevBB is identical to the 1323 // DBG_VALUE at the beginning of MBB. 1324 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1325 && PrevBBIter->isDebugValue() && MBBIter->isDebugValue()) { 1326 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1327 break; 1328 MachineInstr &DuplicateDbg = *MBBIter; 1329 ++MBBIter; -- PrevBBIter; 1330 DuplicateDbg.eraseFromParent(); 1331 } 1332 } 1333 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1334 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1335 assert(PrevBB.succ_empty()); 1336 PrevBB.transferSuccessors(MBB); 1337 MadeChange = true; 1338 return MadeChange; 1339 } 1340 1341 // If the previous branch *only* branches to *this* block (conditional or 1342 // not) remove the branch. 1343 if (PriorTBB == MBB && !PriorFBB) { 1344 TII->removeBranch(PrevBB); 1345 MadeChange = true; 1346 ++NumBranchOpts; 1347 goto ReoptimizeBlock; 1348 } 1349 1350 // If the prior block branches somewhere else on the condition and here if 1351 // the condition is false, remove the uncond second branch. 1352 if (PriorFBB == MBB) { 1353 DebugLoc dl = getBranchDebugLoc(PrevBB); 1354 TII->removeBranch(PrevBB); 1355 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1356 MadeChange = true; 1357 ++NumBranchOpts; 1358 goto ReoptimizeBlock; 1359 } 1360 1361 // If the prior block branches here on true and somewhere else on false, and 1362 // if the branch condition is reversible, reverse the branch to create a 1363 // fall-through. 1364 if (PriorTBB == MBB) { 1365 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1366 if (!TII->reverseBranchCondition(NewPriorCond)) { 1367 DebugLoc dl = getBranchDebugLoc(PrevBB); 1368 TII->removeBranch(PrevBB); 1369 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1370 MadeChange = true; 1371 ++NumBranchOpts; 1372 goto ReoptimizeBlock; 1373 } 1374 } 1375 1376 // If this block has no successors (e.g. it is a return block or ends with 1377 // a call to a no-return function like abort or __cxa_throw) and if the pred 1378 // falls through into this block, and if it would otherwise fall through 1379 // into the block after this, move this block to the end of the function. 1380 // 1381 // We consider it more likely that execution will stay in the function (e.g. 1382 // due to loops) than it is to exit it. This asserts in loops etc, moving 1383 // the assert condition out of the loop body. 1384 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1385 MachineFunction::iterator(PriorTBB) == FallThrough && 1386 !MBB->canFallThrough()) { 1387 bool DoTransform = true; 1388 1389 // We have to be careful that the succs of PredBB aren't both no-successor 1390 // blocks. If neither have successors and if PredBB is the second from 1391 // last block in the function, we'd just keep swapping the two blocks for 1392 // last. Only do the swap if one is clearly better to fall through than 1393 // the other. 1394 if (FallThrough == --MF.end() && 1395 !IsBetterFallthrough(PriorTBB, MBB)) 1396 DoTransform = false; 1397 1398 if (DoTransform) { 1399 // Reverse the branch so we will fall through on the previous true cond. 1400 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1401 if (!TII->reverseBranchCondition(NewPriorCond)) { 1402 DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1403 << "To make fallthrough to: " << *PriorTBB << "\n"); 1404 1405 DebugLoc dl = getBranchDebugLoc(PrevBB); 1406 TII->removeBranch(PrevBB); 1407 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1408 1409 // Move this block to the end of the function. 1410 MBB->moveAfter(&MF.back()); 1411 MadeChange = true; 1412 ++NumBranchOpts; 1413 return MadeChange; 1414 } 1415 } 1416 } 1417 } 1418 1419 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && 1420 MF.getFunction()->optForSize()) { 1421 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1422 // direction, thereby defeating careful block placement and regressing 1423 // performance. Therefore, only consider this for optsize functions. 1424 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1425 if (TII->isUnconditionalTailCall(TailCall)) { 1426 MachineBasicBlock *Pred = *MBB->pred_begin(); 1427 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1428 SmallVector<MachineOperand, 4> PredCond; 1429 bool PredAnalyzable = 1430 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1431 1432 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB) { 1433 // The predecessor has a conditional branch to this block which consists 1434 // of only a tail call. Try to fold the tail call into the conditional 1435 // branch. 1436 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1437 // TODO: It would be nice if analyzeBranch() could provide a pointer 1438 // to the branch insturction so replaceBranchWithTailCall() doesn't 1439 // have to search for it. 1440 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1441 ++NumTailCalls; 1442 Pred->removeSuccessor(MBB); 1443 MadeChange = true; 1444 return MadeChange; 1445 } 1446 } 1447 // If the predecessor is falling through to this block, we could reverse 1448 // the branch condition and fold the tail call into that. However, after 1449 // that we might have to re-arrange the CFG to fall through to the other 1450 // block and there is a high risk of regressing code size rather than 1451 // improving it. 1452 } 1453 } 1454 1455 // Analyze the branch in the current block. 1456 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1457 SmallVector<MachineOperand, 4> CurCond; 1458 bool CurUnAnalyzable = 1459 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1460 if (!CurUnAnalyzable) { 1461 // If the CFG for the prior block has extra edges, remove them. 1462 MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty()); 1463 1464 // If this is a two-way branch, and the FBB branches to this block, reverse 1465 // the condition so the single-basic-block loop is faster. Instead of: 1466 // Loop: xxx; jcc Out; jmp Loop 1467 // we want: 1468 // Loop: xxx; jncc Loop; jmp Out 1469 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1470 SmallVector<MachineOperand, 4> NewCond(CurCond); 1471 if (!TII->reverseBranchCondition(NewCond)) { 1472 DebugLoc dl = getBranchDebugLoc(*MBB); 1473 TII->removeBranch(*MBB); 1474 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1475 MadeChange = true; 1476 ++NumBranchOpts; 1477 goto ReoptimizeBlock; 1478 } 1479 } 1480 1481 // If this branch is the only thing in its block, see if we can forward 1482 // other blocks across it. 1483 if (CurTBB && CurCond.empty() && !CurFBB && 1484 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1485 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1486 DebugLoc dl = getBranchDebugLoc(*MBB); 1487 // This block may contain just an unconditional branch. Because there can 1488 // be 'non-branch terminators' in the block, try removing the branch and 1489 // then seeing if the block is empty. 1490 TII->removeBranch(*MBB); 1491 // If the only things remaining in the block are debug info, remove these 1492 // as well, so this will behave the same as an empty block in non-debug 1493 // mode. 1494 if (IsEmptyBlock(MBB)) { 1495 // Make the block empty, losing the debug info (we could probably 1496 // improve this in some cases.) 1497 MBB->erase(MBB->begin(), MBB->end()); 1498 } 1499 // If this block is just an unconditional branch to CurTBB, we can 1500 // usually completely eliminate the block. The only case we cannot 1501 // completely eliminate the block is when the block before this one 1502 // falls through into MBB and we can't understand the prior block's branch 1503 // condition. 1504 if (MBB->empty()) { 1505 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1506 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1507 !PrevBB.isSuccessor(MBB)) { 1508 // If the prior block falls through into us, turn it into an 1509 // explicit branch to us to make updates simpler. 1510 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1511 PriorTBB != MBB && PriorFBB != MBB) { 1512 if (!PriorTBB) { 1513 assert(PriorCond.empty() && !PriorFBB && 1514 "Bad branch analysis"); 1515 PriorTBB = MBB; 1516 } else { 1517 assert(!PriorFBB && "Machine CFG out of date!"); 1518 PriorFBB = MBB; 1519 } 1520 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1521 TII->removeBranch(PrevBB); 1522 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1523 } 1524 1525 // Iterate through all the predecessors, revectoring each in-turn. 1526 size_t PI = 0; 1527 bool DidChange = false; 1528 bool HasBranchToSelf = false; 1529 while(PI != MBB->pred_size()) { 1530 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1531 if (PMBB == MBB) { 1532 // If this block has an uncond branch to itself, leave it. 1533 ++PI; 1534 HasBranchToSelf = true; 1535 } else { 1536 DidChange = true; 1537 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1538 // If this change resulted in PMBB ending in a conditional 1539 // branch where both conditions go to the same destination, 1540 // change this to an unconditional branch (and fix the CFG). 1541 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1542 SmallVector<MachineOperand, 4> NewCurCond; 1543 bool NewCurUnAnalyzable = TII->analyzeBranch( 1544 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1545 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1546 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1547 TII->removeBranch(*PMBB); 1548 NewCurCond.clear(); 1549 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1550 MadeChange = true; 1551 ++NumBranchOpts; 1552 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false); 1553 } 1554 } 1555 } 1556 1557 // Change any jumptables to go to the new MBB. 1558 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1559 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1560 if (DidChange) { 1561 ++NumBranchOpts; 1562 MadeChange = true; 1563 if (!HasBranchToSelf) return MadeChange; 1564 } 1565 } 1566 } 1567 1568 // Add the branch back if the block is more than just an uncond branch. 1569 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1570 } 1571 } 1572 1573 // If the prior block doesn't fall through into this block, and if this 1574 // block doesn't fall through into some other block, see if we can find a 1575 // place to move this block where a fall-through will happen. 1576 if (!PrevBB.canFallThrough()) { 1577 1578 // Now we know that there was no fall-through into this block, check to 1579 // see if it has a fall-through into its successor. 1580 bool CurFallsThru = MBB->canFallThrough(); 1581 1582 if (!MBB->isEHPad()) { 1583 // Check all the predecessors of this block. If one of them has no fall 1584 // throughs, move this block right after it. 1585 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1586 // Analyze the branch at the end of the pred. 1587 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1588 SmallVector<MachineOperand, 4> PredCond; 1589 if (PredBB != MBB && !PredBB->canFallThrough() && 1590 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1591 (!CurFallsThru || !CurTBB || !CurFBB) && 1592 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1593 // If the current block doesn't fall through, just move it. 1594 // If the current block can fall through and does not end with a 1595 // conditional branch, we need to append an unconditional jump to 1596 // the (current) next block. To avoid a possible compile-time 1597 // infinite loop, move blocks only backward in this case. 1598 // Also, if there are already 2 branches here, we cannot add a third; 1599 // this means we have the case 1600 // Bcc next 1601 // B elsewhere 1602 // next: 1603 if (CurFallsThru) { 1604 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1605 CurCond.clear(); 1606 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1607 } 1608 MBB->moveAfter(PredBB); 1609 MadeChange = true; 1610 goto ReoptimizeBlock; 1611 } 1612 } 1613 } 1614 1615 if (!CurFallsThru) { 1616 // Check all successors to see if we can move this block before it. 1617 for (MachineBasicBlock *SuccBB : MBB->successors()) { 1618 // Analyze the branch at the end of the block before the succ. 1619 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1620 1621 // If this block doesn't already fall-through to that successor, and if 1622 // the succ doesn't already have a block that can fall through into it, 1623 // and if the successor isn't an EH destination, we can arrange for the 1624 // fallthrough to happen. 1625 if (SuccBB != MBB && &*SuccPrev != MBB && 1626 !SuccPrev->canFallThrough() && !CurUnAnalyzable && 1627 !SuccBB->isEHPad()) { 1628 MBB->moveBefore(SuccBB); 1629 MadeChange = true; 1630 goto ReoptimizeBlock; 1631 } 1632 } 1633 1634 // Okay, there is no really great place to put this block. If, however, 1635 // the block before this one would be a fall-through if this block were 1636 // removed, move this block to the end of the function. There is no real 1637 // advantage in "falling through" to an EH block, so we don't want to 1638 // perform this transformation for that case. 1639 // 1640 // Also, Windows EH introduced the possibility of an arbitrary number of 1641 // successors to a given block. The analyzeBranch call does not consider 1642 // exception handling and so we can get in a state where a block 1643 // containing a call is followed by multiple EH blocks that would be 1644 // rotated infinitely at the end of the function if the transformation 1645 // below were performed for EH "FallThrough" blocks. Therefore, even if 1646 // that appears not to be happening anymore, we should assume that it is 1647 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1648 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1649 SmallVector<MachineOperand, 4> PrevCond; 1650 if (FallThrough != MF.end() && 1651 !FallThrough->isEHPad() && 1652 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1653 PrevBB.isSuccessor(&*FallThrough)) { 1654 MBB->moveAfter(&MF.back()); 1655 MadeChange = true; 1656 return MadeChange; 1657 } 1658 } 1659 } 1660 1661 return MadeChange; 1662 } 1663 1664 //===----------------------------------------------------------------------===// 1665 // Hoist Common Code 1666 //===----------------------------------------------------------------------===// 1667 1668 /// HoistCommonCode - Hoist common instruction sequences at the start of basic 1669 /// blocks to their common predecessor. 1670 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1671 bool MadeChange = false; 1672 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1673 MachineBasicBlock *MBB = &*I++; 1674 MadeChange |= HoistCommonCodeInSuccs(MBB); 1675 } 1676 1677 return MadeChange; 1678 } 1679 1680 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1681 /// its 'true' successor. 1682 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1683 MachineBasicBlock *TrueBB) { 1684 for (MachineBasicBlock *SuccBB : BB->successors()) 1685 if (SuccBB != TrueBB) 1686 return SuccBB; 1687 return nullptr; 1688 } 1689 1690 template <class Container> 1691 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, 1692 Container &Set) { 1693 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1694 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1695 Set.insert(*AI); 1696 } else { 1697 Set.insert(Reg); 1698 } 1699 } 1700 1701 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1702 /// in successors to. The location is usually just before the terminator, 1703 /// however if the terminator is a conditional branch and its previous 1704 /// instruction is the flag setting instruction, the previous instruction is 1705 /// the preferred location. This function also gathers uses and defs of the 1706 /// instructions from the insertion point to the end of the block. The data is 1707 /// used by HoistCommonCodeInSuccs to ensure safety. 1708 static 1709 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1710 const TargetInstrInfo *TII, 1711 const TargetRegisterInfo *TRI, 1712 SmallSet<unsigned,4> &Uses, 1713 SmallSet<unsigned,4> &Defs) { 1714 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1715 if (!TII->isUnpredicatedTerminator(*Loc)) 1716 return MBB->end(); 1717 1718 for (const MachineOperand &MO : Loc->operands()) { 1719 if (!MO.isReg()) 1720 continue; 1721 unsigned Reg = MO.getReg(); 1722 if (!Reg) 1723 continue; 1724 if (MO.isUse()) { 1725 addRegAndItsAliases(Reg, TRI, Uses); 1726 } else { 1727 if (!MO.isDead()) 1728 // Don't try to hoist code in the rare case the terminator defines a 1729 // register that is later used. 1730 return MBB->end(); 1731 1732 // If the terminator defines a register, make sure we don't hoist 1733 // the instruction whose def might be clobbered by the terminator. 1734 addRegAndItsAliases(Reg, TRI, Defs); 1735 } 1736 } 1737 1738 if (Uses.empty()) 1739 return Loc; 1740 if (Loc == MBB->begin()) 1741 return MBB->end(); 1742 1743 // The terminator is probably a conditional branch, try not to separate the 1744 // branch from condition setting instruction. 1745 MachineBasicBlock::iterator PI = 1746 skipDebugInstructionsBackward(std::prev(Loc), MBB->begin()); 1747 1748 bool IsDef = false; 1749 for (const MachineOperand &MO : PI->operands()) { 1750 // If PI has a regmask operand, it is probably a call. Separate away. 1751 if (MO.isRegMask()) 1752 return Loc; 1753 if (!MO.isReg() || MO.isUse()) 1754 continue; 1755 unsigned Reg = MO.getReg(); 1756 if (!Reg) 1757 continue; 1758 if (Uses.count(Reg)) { 1759 IsDef = true; 1760 break; 1761 } 1762 } 1763 if (!IsDef) 1764 // The condition setting instruction is not just before the conditional 1765 // branch. 1766 return Loc; 1767 1768 // Be conservative, don't insert instruction above something that may have 1769 // side-effects. And since it's potentially bad to separate flag setting 1770 // instruction from the conditional branch, just abort the optimization 1771 // completely. 1772 // Also avoid moving code above predicated instruction since it's hard to 1773 // reason about register liveness with predicated instruction. 1774 bool DontMoveAcrossStore = true; 1775 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1776 return MBB->end(); 1777 1778 1779 // Find out what registers are live. Note this routine is ignoring other live 1780 // registers which are only used by instructions in successor blocks. 1781 for (const MachineOperand &MO : PI->operands()) { 1782 if (!MO.isReg()) 1783 continue; 1784 unsigned Reg = MO.getReg(); 1785 if (!Reg) 1786 continue; 1787 if (MO.isUse()) { 1788 addRegAndItsAliases(Reg, TRI, Uses); 1789 } else { 1790 if (Uses.erase(Reg)) { 1791 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1792 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1793 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1794 } 1795 } 1796 addRegAndItsAliases(Reg, TRI, Defs); 1797 } 1798 } 1799 1800 return PI; 1801 } 1802 1803 /// HoistCommonCodeInSuccs - If the successors of MBB has common instruction 1804 /// sequence at the start of the function, move the instructions before MBB 1805 /// terminator if it's legal. 1806 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1807 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1808 SmallVector<MachineOperand, 4> Cond; 1809 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1810 return false; 1811 1812 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1813 if (!FBB) 1814 // Malformed bcc? True and false blocks are the same? 1815 return false; 1816 1817 // Restrict the optimization to cases where MBB is the only predecessor, 1818 // it is an obvious win. 1819 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1820 return false; 1821 1822 // Find a suitable position to hoist the common instructions to. Also figure 1823 // out which registers are used or defined by instructions from the insertion 1824 // point to the end of the block. 1825 SmallSet<unsigned, 4> Uses, Defs; 1826 MachineBasicBlock::iterator Loc = 1827 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1828 if (Loc == MBB->end()) 1829 return false; 1830 1831 bool HasDups = false; 1832 SmallVector<unsigned, 4> LocalDefs; 1833 SmallSet<unsigned, 4> LocalDefsSet; 1834 MachineBasicBlock::iterator TIB = TBB->begin(); 1835 MachineBasicBlock::iterator FIB = FBB->begin(); 1836 MachineBasicBlock::iterator TIE = TBB->end(); 1837 MachineBasicBlock::iterator FIE = FBB->end(); 1838 while (TIB != TIE && FIB != FIE) { 1839 // Skip dbg_value instructions. These do not count. 1840 TIB = skipDebugInstructionsForward(TIB, TIE); 1841 FIB = skipDebugInstructionsForward(FIB, FIE); 1842 if (TIB == TIE || FIB == FIE) 1843 break; 1844 1845 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 1846 break; 1847 1848 if (TII->isPredicated(*TIB)) 1849 // Hard to reason about register liveness with predicated instruction. 1850 break; 1851 1852 bool IsSafe = true; 1853 for (MachineOperand &MO : TIB->operands()) { 1854 // Don't attempt to hoist instructions with register masks. 1855 if (MO.isRegMask()) { 1856 IsSafe = false; 1857 break; 1858 } 1859 if (!MO.isReg()) 1860 continue; 1861 unsigned Reg = MO.getReg(); 1862 if (!Reg) 1863 continue; 1864 if (MO.isDef()) { 1865 if (Uses.count(Reg)) { 1866 // Avoid clobbering a register that's used by the instruction at 1867 // the point of insertion. 1868 IsSafe = false; 1869 break; 1870 } 1871 1872 if (Defs.count(Reg) && !MO.isDead()) { 1873 // Don't hoist the instruction if the def would be clobber by the 1874 // instruction at the point insertion. FIXME: This is overly 1875 // conservative. It should be possible to hoist the instructions 1876 // in BB2 in the following example: 1877 // BB1: 1878 // r1, eflag = op1 r2, r3 1879 // brcc eflag 1880 // 1881 // BB2: 1882 // r1 = op2, ... 1883 // = op3, r1<kill> 1884 IsSafe = false; 1885 break; 1886 } 1887 } else if (!LocalDefsSet.count(Reg)) { 1888 if (Defs.count(Reg)) { 1889 // Use is defined by the instruction at the point of insertion. 1890 IsSafe = false; 1891 break; 1892 } 1893 1894 if (MO.isKill() && Uses.count(Reg)) 1895 // Kills a register that's read by the instruction at the point of 1896 // insertion. Remove the kill marker. 1897 MO.setIsKill(false); 1898 } 1899 } 1900 if (!IsSafe) 1901 break; 1902 1903 bool DontMoveAcrossStore = true; 1904 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 1905 break; 1906 1907 // Remove kills from LocalDefsSet, these registers had short live ranges. 1908 for (const MachineOperand &MO : TIB->operands()) { 1909 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1910 continue; 1911 unsigned Reg = MO.getReg(); 1912 if (!Reg || !LocalDefsSet.count(Reg)) 1913 continue; 1914 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1915 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1916 LocalDefsSet.erase(*AI); 1917 } else { 1918 LocalDefsSet.erase(Reg); 1919 } 1920 } 1921 1922 // Track local defs so we can update liveins. 1923 for (const MachineOperand &MO : TIB->operands()) { 1924 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1925 continue; 1926 unsigned Reg = MO.getReg(); 1927 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg)) 1928 continue; 1929 LocalDefs.push_back(Reg); 1930 addRegAndItsAliases(Reg, TRI, LocalDefsSet); 1931 } 1932 1933 HasDups = true; 1934 ++TIB; 1935 ++FIB; 1936 } 1937 1938 if (!HasDups) 1939 return false; 1940 1941 MBB->splice(Loc, TBB, TBB->begin(), TIB); 1942 FBB->erase(FBB->begin(), FIB); 1943 1944 // Update livein's. 1945 bool AddedLiveIns = false; 1946 for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) { 1947 unsigned Def = LocalDefs[i]; 1948 if (LocalDefsSet.count(Def)) { 1949 TBB->addLiveIn(Def); 1950 FBB->addLiveIn(Def); 1951 AddedLiveIns = true; 1952 } 1953 } 1954 1955 if (AddedLiveIns) { 1956 TBB->sortUniqueLiveIns(); 1957 FBB->sortUniqueLiveIns(); 1958 } 1959 1960 ++NumHoist; 1961 return true; 1962 } 1963