1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass forwards branches to unconditional branches to make them branch 11 // directly to the target block. This pass often results in dead MBB's, which 12 // it then removes. 13 // 14 // Note that this pass must be run after register allocation, it cannot handle 15 // SSA form. It also must handle virtual registers for targets that emit virtual 16 // ISA (e.g. NVPTX). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "BranchFolding.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/CodeGen/Analysis.h" 29 #include "llvm/CodeGen/LivePhysRegs.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetPassConfig.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/MC/LaneBitmask.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BlockFrequency.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetMachine.h" 60 #include <cassert> 61 #include <cstddef> 62 #include <iterator> 63 #include <numeric> 64 #include <vector> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "branch-folder" 69 70 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 71 STATISTIC(NumBranchOpts, "Number of branches optimized"); 72 STATISTIC(NumTailMerge , "Number of block tails merged"); 73 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 74 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 75 76 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 77 cl::init(cl::BOU_UNSET), cl::Hidden); 78 79 // Throttle for huge numbers of predecessors (compile speed problems) 80 static cl::opt<unsigned> 81 TailMergeThreshold("tail-merge-threshold", 82 cl::desc("Max number of predecessors to consider tail merging"), 83 cl::init(150), cl::Hidden); 84 85 // Heuristic for tail merging (and, inversely, tail duplication). 86 // TODO: This should be replaced with a target query. 87 static cl::opt<unsigned> 88 TailMergeSize("tail-merge-size", 89 cl::desc("Min number of instructions to consider tail merging"), 90 cl::init(3), cl::Hidden); 91 92 namespace { 93 94 /// BranchFolderPass - Wrap branch folder in a machine function pass. 95 class BranchFolderPass : public MachineFunctionPass { 96 public: 97 static char ID; 98 99 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 100 101 bool runOnMachineFunction(MachineFunction &MF) override; 102 103 void getAnalysisUsage(AnalysisUsage &AU) const override { 104 AU.addRequired<MachineBlockFrequencyInfo>(); 105 AU.addRequired<MachineBranchProbabilityInfo>(); 106 AU.addRequired<TargetPassConfig>(); 107 MachineFunctionPass::getAnalysisUsage(AU); 108 } 109 }; 110 111 } // end anonymous namespace 112 113 char BranchFolderPass::ID = 0; 114 115 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 116 117 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, 118 "Control Flow Optimizer", false, false) 119 120 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 121 if (skipFunction(MF.getFunction())) 122 return false; 123 124 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 125 // TailMerge can create jump into if branches that make CFG irreducible for 126 // HW that requires structurized CFG. 127 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 128 PassConfig->getEnableTailMerge(); 129 BranchFolder::MBFIWrapper MBBFreqInfo( 130 getAnalysis<MachineBlockFrequencyInfo>()); 131 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 132 getAnalysis<MachineBranchProbabilityInfo>()); 133 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), 134 MF.getSubtarget().getRegisterInfo(), 135 getAnalysisIfAvailable<MachineModuleInfo>()); 136 } 137 138 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, 139 MBFIWrapper &FreqInfo, 140 const MachineBranchProbabilityInfo &ProbInfo, 141 unsigned MinTailLength) 142 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 143 MBBFreqInfo(FreqInfo), MBPI(ProbInfo) { 144 if (MinCommonTailLength == 0) 145 MinCommonTailLength = TailMergeSize; 146 switch (FlagEnableTailMerge) { 147 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; 148 case cl::BOU_TRUE: EnableTailMerge = true; break; 149 case cl::BOU_FALSE: EnableTailMerge = false; break; 150 } 151 } 152 153 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 154 assert(MBB->pred_empty() && "MBB must be dead!"); 155 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 156 157 MachineFunction *MF = MBB->getParent(); 158 // drop all successors. 159 while (!MBB->succ_empty()) 160 MBB->removeSuccessor(MBB->succ_end()-1); 161 162 // Avoid matching if this pointer gets reused. 163 TriedMerging.erase(MBB); 164 165 // Remove the block. 166 MF->erase(MBB); 167 EHScopeMembership.erase(MBB); 168 if (MLI) 169 MLI->removeBlock(MBB); 170 } 171 172 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 173 const TargetInstrInfo *tii, 174 const TargetRegisterInfo *tri, 175 MachineModuleInfo *mmi, 176 MachineLoopInfo *mli, bool AfterPlacement) { 177 if (!tii) return false; 178 179 TriedMerging.clear(); 180 181 MachineRegisterInfo &MRI = MF.getRegInfo(); 182 AfterBlockPlacement = AfterPlacement; 183 TII = tii; 184 TRI = tri; 185 MMI = mmi; 186 MLI = mli; 187 this->MRI = &MRI; 188 189 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 190 if (!UpdateLiveIns) 191 MRI.invalidateLiveness(); 192 193 // Fix CFG. The later algorithms expect it to be right. 194 bool MadeChange = false; 195 for (MachineBasicBlock &MBB : MF) { 196 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 197 SmallVector<MachineOperand, 4> Cond; 198 if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true)) 199 MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 200 } 201 202 // Recalculate EH scope membership. 203 EHScopeMembership = getEHScopeMembership(MF); 204 205 bool MadeChangeThisIteration = true; 206 while (MadeChangeThisIteration) { 207 MadeChangeThisIteration = TailMergeBlocks(MF); 208 // No need to clean up if tail merging does not change anything after the 209 // block placement. 210 if (!AfterBlockPlacement || MadeChangeThisIteration) 211 MadeChangeThisIteration |= OptimizeBranches(MF); 212 if (EnableHoistCommonCode) 213 MadeChangeThisIteration |= HoistCommonCode(MF); 214 MadeChange |= MadeChangeThisIteration; 215 } 216 217 // See if any jump tables have become dead as the code generator 218 // did its thing. 219 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 220 if (!JTI) 221 return MadeChange; 222 223 // Walk the function to find jump tables that are live. 224 BitVector JTIsLive(JTI->getJumpTables().size()); 225 for (const MachineBasicBlock &BB : MF) { 226 for (const MachineInstr &I : BB) 227 for (const MachineOperand &Op : I.operands()) { 228 if (!Op.isJTI()) continue; 229 230 // Remember that this JT is live. 231 JTIsLive.set(Op.getIndex()); 232 } 233 } 234 235 // Finally, remove dead jump tables. This happens when the 236 // indirect jump was unreachable (and thus deleted). 237 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 238 if (!JTIsLive.test(i)) { 239 JTI->RemoveJumpTable(i); 240 MadeChange = true; 241 } 242 243 return MadeChange; 244 } 245 246 //===----------------------------------------------------------------------===// 247 // Tail Merging of Blocks 248 //===----------------------------------------------------------------------===// 249 250 /// HashMachineInstr - Compute a hash value for MI and its operands. 251 static unsigned HashMachineInstr(const MachineInstr &MI) { 252 unsigned Hash = MI.getOpcode(); 253 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 254 const MachineOperand &Op = MI.getOperand(i); 255 256 // Merge in bits from the operand if easy. We can't use MachineOperand's 257 // hash_code here because it's not deterministic and we sort by hash value 258 // later. 259 unsigned OperandHash = 0; 260 switch (Op.getType()) { 261 case MachineOperand::MO_Register: 262 OperandHash = Op.getReg(); 263 break; 264 case MachineOperand::MO_Immediate: 265 OperandHash = Op.getImm(); 266 break; 267 case MachineOperand::MO_MachineBasicBlock: 268 OperandHash = Op.getMBB()->getNumber(); 269 break; 270 case MachineOperand::MO_FrameIndex: 271 case MachineOperand::MO_ConstantPoolIndex: 272 case MachineOperand::MO_JumpTableIndex: 273 OperandHash = Op.getIndex(); 274 break; 275 case MachineOperand::MO_GlobalAddress: 276 case MachineOperand::MO_ExternalSymbol: 277 // Global address / external symbol are too hard, don't bother, but do 278 // pull in the offset. 279 OperandHash = Op.getOffset(); 280 break; 281 default: 282 break; 283 } 284 285 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 286 } 287 return Hash; 288 } 289 290 /// HashEndOfMBB - Hash the last instruction in the MBB. 291 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 292 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 293 if (I == MBB.end()) 294 return 0; 295 296 return HashMachineInstr(*I); 297 } 298 299 /// Whether MI should be counted as an instruction when calculating common tail. 300 static bool countsAsInstruction(const MachineInstr &MI) { 301 return !(MI.isDebugValue() || MI.isCFIInstruction()); 302 } 303 304 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number 305 /// of instructions they actually have in common together at their end. Return 306 /// iterators for the first shared instruction in each block. 307 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 308 MachineBasicBlock *MBB2, 309 MachineBasicBlock::iterator &I1, 310 MachineBasicBlock::iterator &I2) { 311 I1 = MBB1->end(); 312 I2 = MBB2->end(); 313 314 unsigned TailLen = 0; 315 while (I1 != MBB1->begin() && I2 != MBB2->begin()) { 316 --I1; --I2; 317 // Skip debugging pseudos; necessary to avoid changing the code. 318 while (!countsAsInstruction(*I1)) { 319 if (I1==MBB1->begin()) { 320 while (!countsAsInstruction(*I2)) { 321 if (I2==MBB2->begin()) { 322 // I1==DBG at begin; I2==DBG at begin 323 goto SkipTopCFIAndReturn; 324 } 325 --I2; 326 } 327 ++I2; 328 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin 329 goto SkipTopCFIAndReturn; 330 } 331 --I1; 332 } 333 // I1==first (untested) non-DBG preceding known match 334 while (!countsAsInstruction(*I2)) { 335 if (I2==MBB2->begin()) { 336 ++I1; 337 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin 338 goto SkipTopCFIAndReturn; 339 } 340 --I2; 341 } 342 // I1, I2==first (untested) non-DBGs preceding known match 343 if (!I1->isIdenticalTo(*I2) || 344 // FIXME: This check is dubious. It's used to get around a problem where 345 // people incorrectly expect inline asm directives to remain in the same 346 // relative order. This is untenable because normal compiler 347 // optimizations (like this one) may reorder and/or merge these 348 // directives. 349 I1->isInlineAsm()) { 350 ++I1; ++I2; 351 break; 352 } 353 ++TailLen; 354 } 355 // Back past possible debugging pseudos at beginning of block. This matters 356 // when one block differs from the other only by whether debugging pseudos 357 // are present at the beginning. (This way, the various checks later for 358 // I1==MBB1->begin() work as expected.) 359 if (I1 == MBB1->begin() && I2 != MBB2->begin()) { 360 --I2; 361 while (I2->isDebugInstr()) { 362 if (I2 == MBB2->begin()) 363 return TailLen; 364 --I2; 365 } 366 ++I2; 367 } 368 if (I2 == MBB2->begin() && I1 != MBB1->begin()) { 369 --I1; 370 while (I1->isDebugInstr()) { 371 if (I1 == MBB1->begin()) 372 return TailLen; 373 --I1; 374 } 375 ++I1; 376 } 377 378 SkipTopCFIAndReturn: 379 // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if 380 // I1 and I2 are non-identical when compared and then one or both of them ends 381 // up pointing to a CFI instruction after being incremented. For example: 382 /* 383 BB1: 384 ... 385 INSTRUCTION_A 386 ADD32ri8 <- last common instruction 387 ... 388 BB2: 389 ... 390 INSTRUCTION_B 391 CFI_INSTRUCTION 392 ADD32ri8 <- last common instruction 393 ... 394 */ 395 // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after 396 // incrementing the iterators, I1 will point to ADD, however I2 will point to 397 // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the 398 // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI 399 // instruction. 400 while (I1 != MBB1->end() && I1->isCFIInstruction()) { 401 ++I1; 402 } 403 404 while (I2 != MBB2->end() && I2->isCFIInstruction()) { 405 ++I2; 406 } 407 408 return TailLen; 409 } 410 411 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 412 MachineBasicBlock &NewDest) { 413 if (UpdateLiveIns) { 414 // OldInst should always point to an instruction. 415 MachineBasicBlock &OldMBB = *OldInst->getParent(); 416 LiveRegs.clear(); 417 LiveRegs.addLiveOuts(OldMBB); 418 // Move backward to the place where will insert the jump. 419 MachineBasicBlock::iterator I = OldMBB.end(); 420 do { 421 --I; 422 LiveRegs.stepBackward(*I); 423 } while (I != OldInst); 424 425 // Merging the tails may have switched some undef operand to non-undef ones. 426 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the 427 // register. 428 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { 429 // We computed the liveins with computeLiveIn earlier and should only see 430 // full registers: 431 assert(P.LaneMask == LaneBitmask::getAll() && 432 "Can only handle full register."); 433 MCPhysReg Reg = P.PhysReg; 434 if (!LiveRegs.available(*MRI, Reg)) 435 continue; 436 DebugLoc DL; 437 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); 438 } 439 } 440 441 TII->ReplaceTailWithBranchTo(OldInst, &NewDest); 442 ++NumTailMerge; 443 } 444 445 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 446 MachineBasicBlock::iterator BBI1, 447 const BasicBlock *BB) { 448 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 449 return nullptr; 450 451 MachineFunction &MF = *CurMBB.getParent(); 452 453 // Create the fall-through block. 454 MachineFunction::iterator MBBI = CurMBB.getIterator(); 455 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); 456 CurMBB.getParent()->insert(++MBBI, NewMBB); 457 458 // Move all the successors of this block to the specified block. 459 NewMBB->transferSuccessors(&CurMBB); 460 461 // Add an edge from CurMBB to NewMBB for the fall-through. 462 CurMBB.addSuccessor(NewMBB); 463 464 // Splice the code over. 465 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 466 467 // NewMBB belongs to the same loop as CurMBB. 468 if (MLI) 469 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 470 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 471 472 // NewMBB inherits CurMBB's block frequency. 473 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 474 475 if (UpdateLiveIns) 476 computeAndAddLiveIns(LiveRegs, *NewMBB); 477 478 // Add the new block to the EH scope. 479 const auto &EHScopeI = EHScopeMembership.find(&CurMBB); 480 if (EHScopeI != EHScopeMembership.end()) { 481 auto n = EHScopeI->second; 482 EHScopeMembership[NewMBB] = n; 483 } 484 485 return NewMBB; 486 } 487 488 /// EstimateRuntime - Make a rough estimate for how long it will take to run 489 /// the specified code. 490 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 491 MachineBasicBlock::iterator E) { 492 unsigned Time = 0; 493 for (; I != E; ++I) { 494 if (!countsAsInstruction(*I)) 495 continue; 496 if (I->isCall()) 497 Time += 10; 498 else if (I->mayLoad() || I->mayStore()) 499 Time += 2; 500 else 501 ++Time; 502 } 503 return Time; 504 } 505 506 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 507 // branches temporarily for tail merging). In the case where CurMBB ends 508 // with a conditional branch to the next block, optimize by reversing the 509 // test and conditionally branching to SuccMBB instead. 510 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 511 const TargetInstrInfo *TII) { 512 MachineFunction *MF = CurMBB->getParent(); 513 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 514 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 515 SmallVector<MachineOperand, 4> Cond; 516 DebugLoc dl = CurMBB->findBranchDebugLoc(); 517 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 518 MachineBasicBlock *NextBB = &*I; 519 if (TBB == NextBB && !Cond.empty() && !FBB) { 520 if (!TII->reverseBranchCondition(Cond)) { 521 TII->removeBranch(*CurMBB); 522 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 523 return; 524 } 525 } 526 } 527 TII->insertBranch(*CurMBB, SuccBB, nullptr, 528 SmallVector<MachineOperand, 0>(), dl); 529 } 530 531 bool 532 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 533 if (getHash() < o.getHash()) 534 return true; 535 if (getHash() > o.getHash()) 536 return false; 537 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 538 return true; 539 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 540 return false; 541 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 542 // an object with itself. 543 #ifndef _GLIBCXX_DEBUG 544 llvm_unreachable("Predecessor appears twice"); 545 #else 546 return false; 547 #endif 548 } 549 550 BlockFrequency 551 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const { 552 auto I = MergedBBFreq.find(MBB); 553 554 if (I != MergedBBFreq.end()) 555 return I->second; 556 557 return MBFI.getBlockFreq(MBB); 558 } 559 560 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB, 561 BlockFrequency F) { 562 MergedBBFreq[MBB] = F; 563 } 564 565 raw_ostream & 566 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 567 const MachineBasicBlock *MBB) const { 568 return MBFI.printBlockFreq(OS, getBlockFreq(MBB)); 569 } 570 571 raw_ostream & 572 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 573 const BlockFrequency Freq) const { 574 return MBFI.printBlockFreq(OS, Freq); 575 } 576 577 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) { 578 MBFI.view(Name, isSimple); 579 } 580 581 uint64_t 582 BranchFolder::MBFIWrapper::getEntryFreq() const { 583 return MBFI.getEntryFreq(); 584 } 585 586 /// CountTerminators - Count the number of terminators in the given 587 /// block and set I to the position of the first non-terminator, if there 588 /// is one, or MBB->end() otherwise. 589 static unsigned CountTerminators(MachineBasicBlock *MBB, 590 MachineBasicBlock::iterator &I) { 591 I = MBB->end(); 592 unsigned NumTerms = 0; 593 while (true) { 594 if (I == MBB->begin()) { 595 I = MBB->end(); 596 break; 597 } 598 --I; 599 if (!I->isTerminator()) break; 600 ++NumTerms; 601 } 602 return NumTerms; 603 } 604 605 /// A no successor, non-return block probably ends in unreachable and is cold. 606 /// Also consider a block that ends in an indirect branch to be a return block, 607 /// since many targets use plain indirect branches to return. 608 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 609 if (!MBB->succ_empty()) 610 return false; 611 if (MBB->empty()) 612 return true; 613 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 614 } 615 616 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 617 /// and decide if it would be profitable to merge those tails. Return the 618 /// length of the common tail and iterators to the first common instruction 619 /// in each block. 620 /// MBB1, MBB2 The blocks to check 621 /// MinCommonTailLength Minimum size of tail block to be merged. 622 /// CommonTailLen Out parameter to record the size of the shared tail between 623 /// MBB1 and MBB2 624 /// I1, I2 Iterator references that will be changed to point to the first 625 /// instruction in the common tail shared by MBB1,MBB2 626 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 627 /// relative to SuccBB 628 /// PredBB The layout predecessor of SuccBB, if any. 629 /// EHScopeMembership map from block to EH scope #. 630 /// AfterPlacement True if we are merging blocks after layout. Stricter 631 /// thresholds apply to prevent undoing tail-duplication. 632 static bool 633 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 634 unsigned MinCommonTailLength, unsigned &CommonTailLen, 635 MachineBasicBlock::iterator &I1, 636 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 637 MachineBasicBlock *PredBB, 638 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, 639 bool AfterPlacement) { 640 // It is never profitable to tail-merge blocks from two different EH scopes. 641 if (!EHScopeMembership.empty()) { 642 auto EHScope1 = EHScopeMembership.find(MBB1); 643 assert(EHScope1 != EHScopeMembership.end()); 644 auto EHScope2 = EHScopeMembership.find(MBB2); 645 assert(EHScope2 != EHScopeMembership.end()); 646 if (EHScope1->second != EHScope2->second) 647 return false; 648 } 649 650 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 651 if (CommonTailLen == 0) 652 return false; 653 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) 654 << " and " << printMBBReference(*MBB2) << " is " 655 << CommonTailLen << '\n'); 656 657 // It's almost always profitable to merge any number of non-terminator 658 // instructions with the block that falls through into the common successor. 659 // This is true only for a single successor. For multiple successors, we are 660 // trading a conditional branch for an unconditional one. 661 // TODO: Re-visit successor size for non-layout tail merging. 662 if ((MBB1 == PredBB || MBB2 == PredBB) && 663 (!AfterPlacement || MBB1->succ_size() == 1)) { 664 MachineBasicBlock::iterator I; 665 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 666 if (CommonTailLen > NumTerms) 667 return true; 668 } 669 670 // If these are identical non-return blocks with no successors, merge them. 671 // Such blocks are typically cold calls to noreturn functions like abort, and 672 // are unlikely to become a fallthrough target after machine block placement. 673 // Tail merging these blocks is unlikely to create additional unconditional 674 // branches, and will reduce the size of this cold code. 675 if (I1 == MBB1->begin() && I2 == MBB2->begin() && 676 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 677 return true; 678 679 // If one of the blocks can be completely merged and happens to be in 680 // a position where the other could fall through into it, merge any number 681 // of instructions, because it can be done without a branch. 682 // TODO: If the blocks are not adjacent, move one of them so that they are? 683 if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin()) 684 return true; 685 if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin()) 686 return true; 687 688 // If both blocks are identical and end in a branch, merge them unless they 689 // both have a fallthrough predecessor and successor. 690 // We can only do this after block placement because it depends on whether 691 // there are fallthroughs, and we don't know until after layout. 692 if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) { 693 auto BothFallThrough = [](MachineBasicBlock *MBB) { 694 if (MBB->succ_size() != 0 && !MBB->canFallThrough()) 695 return false; 696 MachineFunction::iterator I(MBB); 697 MachineFunction *MF = MBB->getParent(); 698 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 699 }; 700 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 701 return true; 702 } 703 704 // If both blocks have an unconditional branch temporarily stripped out, 705 // count that as an additional common instruction for the following 706 // heuristics. This heuristic is only accurate for single-succ blocks, so to 707 // make sure that during layout merging and duplicating don't crash, we check 708 // for that when merging during layout. 709 unsigned EffectiveTailLen = CommonTailLen; 710 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 711 (MBB1->succ_size() == 1 || !AfterPlacement) && 712 !MBB1->back().isBarrier() && 713 !MBB2->back().isBarrier()) 714 ++EffectiveTailLen; 715 716 // Check if the common tail is long enough to be worthwhile. 717 if (EffectiveTailLen >= MinCommonTailLength) 718 return true; 719 720 // If we are optimizing for code size, 2 instructions in common is enough if 721 // we don't have to split a block. At worst we will be introducing 1 new 722 // branch instruction, which is likely to be smaller than the 2 723 // instructions that would be deleted in the merge. 724 MachineFunction *MF = MBB1->getParent(); 725 return EffectiveTailLen >= 2 && MF->getFunction().optForSize() && 726 (I1 == MBB1->begin() || I2 == MBB2->begin()); 727 } 728 729 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 730 unsigned MinCommonTailLength, 731 MachineBasicBlock *SuccBB, 732 MachineBasicBlock *PredBB) { 733 unsigned maxCommonTailLength = 0U; 734 SameTails.clear(); 735 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 736 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 737 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 738 B = MergePotentials.begin(); 739 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 740 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 741 unsigned CommonTailLen; 742 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 743 MinCommonTailLength, 744 CommonTailLen, TrialBBI1, TrialBBI2, 745 SuccBB, PredBB, 746 EHScopeMembership, 747 AfterBlockPlacement)) { 748 if (CommonTailLen > maxCommonTailLength) { 749 SameTails.clear(); 750 maxCommonTailLength = CommonTailLen; 751 HighestMPIter = CurMPIter; 752 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 753 } 754 if (HighestMPIter == CurMPIter && 755 CommonTailLen == maxCommonTailLength) 756 SameTails.push_back(SameTailElt(I, TrialBBI2)); 757 } 758 if (I == B) 759 break; 760 } 761 } 762 return maxCommonTailLength; 763 } 764 765 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 766 MachineBasicBlock *SuccBB, 767 MachineBasicBlock *PredBB) { 768 MPIterator CurMPIter, B; 769 for (CurMPIter = std::prev(MergePotentials.end()), 770 B = MergePotentials.begin(); 771 CurMPIter->getHash() == CurHash; --CurMPIter) { 772 // Put the unconditional branch back, if we need one. 773 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 774 if (SuccBB && CurMBB != PredBB) 775 FixTail(CurMBB, SuccBB, TII); 776 if (CurMPIter == B) 777 break; 778 } 779 if (CurMPIter->getHash() != CurHash) 780 CurMPIter++; 781 MergePotentials.erase(CurMPIter, MergePotentials.end()); 782 } 783 784 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 785 MachineBasicBlock *SuccBB, 786 unsigned maxCommonTailLength, 787 unsigned &commonTailIndex) { 788 commonTailIndex = 0; 789 unsigned TimeEstimate = ~0U; 790 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 791 // Use PredBB if possible; that doesn't require a new branch. 792 if (SameTails[i].getBlock() == PredBB) { 793 commonTailIndex = i; 794 break; 795 } 796 // Otherwise, make a (fairly bogus) choice based on estimate of 797 // how long it will take the various blocks to execute. 798 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 799 SameTails[i].getTailStartPos()); 800 if (t <= TimeEstimate) { 801 TimeEstimate = t; 802 commonTailIndex = i; 803 } 804 } 805 806 MachineBasicBlock::iterator BBI = 807 SameTails[commonTailIndex].getTailStartPos(); 808 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 809 810 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " 811 << maxCommonTailLength); 812 813 // If the split block unconditionally falls-thru to SuccBB, it will be 814 // merged. In control flow terms it should then take SuccBB's name. e.g. If 815 // SuccBB is an inner loop, the common tail is still part of the inner loop. 816 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 817 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 818 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 819 if (!newMBB) { 820 LLVM_DEBUG(dbgs() << "... failed!"); 821 return false; 822 } 823 824 SameTails[commonTailIndex].setBlock(newMBB); 825 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 826 827 // If we split PredBB, newMBB is the new predecessor. 828 if (PredBB == MBB) 829 PredBB = newMBB; 830 831 return true; 832 } 833 834 static void 835 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 836 MachineBasicBlock &MBBCommon) { 837 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 838 // Note CommonTailLen does not necessarily matches the size of 839 // the common BB nor all its instructions because of debug 840 // instructions differences. 841 unsigned CommonTailLen = 0; 842 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 843 ++CommonTailLen; 844 845 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 846 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 847 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 848 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 849 850 while (CommonTailLen--) { 851 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 852 (void)MBBIE; 853 854 if (!countsAsInstruction(*MBBI)) { 855 ++MBBI; 856 continue; 857 } 858 859 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) 860 ++MBBICommon; 861 862 assert(MBBICommon != MBBIECommon && 863 "Reached BB end within common tail length!"); 864 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 865 866 // Merge MMOs from memory operations in the common block. 867 if (MBBICommon->mayLoad() || MBBICommon->mayStore()) 868 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); 869 // Drop undef flags if they aren't present in all merged instructions. 870 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 871 MachineOperand &MO = MBBICommon->getOperand(I); 872 if (MO.isReg() && MO.isUndef()) { 873 const MachineOperand &OtherMO = MBBI->getOperand(I); 874 if (!OtherMO.isUndef()) 875 MO.setIsUndef(false); 876 } 877 } 878 879 ++MBBI; 880 ++MBBICommon; 881 } 882 } 883 884 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { 885 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 886 887 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 888 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 889 if (i != commonTailIndex) { 890 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 891 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 892 } else { 893 assert(SameTails[i].getTailStartPos() == MBB->begin() && 894 "MBB is not a common tail only block"); 895 } 896 } 897 898 for (auto &MI : *MBB) { 899 if (!countsAsInstruction(MI)) 900 continue; 901 DebugLoc DL = MI.getDebugLoc(); 902 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 903 if (i == commonTailIndex) 904 continue; 905 906 auto &Pos = NextCommonInsts[i]; 907 assert(Pos != SameTails[i].getBlock()->end() && 908 "Reached BB end within common tail"); 909 while (!countsAsInstruction(*Pos)) { 910 ++Pos; 911 assert(Pos != SameTails[i].getBlock()->end() && 912 "Reached BB end within common tail"); 913 } 914 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 915 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 916 NextCommonInsts[i] = ++Pos; 917 } 918 MI.setDebugLoc(DL); 919 } 920 921 if (UpdateLiveIns) { 922 LivePhysRegs NewLiveIns(*TRI); 923 computeLiveIns(NewLiveIns, *MBB); 924 LiveRegs.init(*TRI); 925 926 // The flag merging may lead to some register uses no longer using the 927 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. 928 for (MachineBasicBlock *Pred : MBB->predecessors()) { 929 LiveRegs.clear(); 930 LiveRegs.addLiveOuts(*Pred); 931 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); 932 for (unsigned Reg : NewLiveIns) { 933 if (!LiveRegs.available(*MRI, Reg)) 934 continue; 935 DebugLoc DL; 936 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), 937 Reg); 938 } 939 } 940 941 MBB->clearLiveIns(); 942 addLiveIns(*MBB, NewLiveIns); 943 } 944 } 945 946 // See if any of the blocks in MergePotentials (which all have SuccBB as a 947 // successor, or all have no successor if it is null) can be tail-merged. 948 // If there is a successor, any blocks in MergePotentials that are not 949 // tail-merged and are not immediately before Succ must have an unconditional 950 // branch to Succ added (but the predecessor/successor lists need no 951 // adjustment). The lone predecessor of Succ that falls through into Succ, 952 // if any, is given in PredBB. 953 // MinCommonTailLength - Except for the special cases below, tail-merge if 954 // there are at least this many instructions in common. 955 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 956 MachineBasicBlock *PredBB, 957 unsigned MinCommonTailLength) { 958 bool MadeChange = false; 959 960 LLVM_DEBUG( 961 dbgs() << "\nTryTailMergeBlocks: "; 962 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs() 963 << printMBBReference(*MergePotentials[i].getBlock()) 964 << (i == e - 1 ? "" : ", "); 965 dbgs() << "\n"; if (SuccBB) { 966 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; 967 if (PredBB) 968 dbgs() << " which has fall-through from " 969 << printMBBReference(*PredBB) << "\n"; 970 } dbgs() << "Looking for common tails of at least " 971 << MinCommonTailLength << " instruction" 972 << (MinCommonTailLength == 1 ? "" : "s") << '\n';); 973 974 // Sort by hash value so that blocks with identical end sequences sort 975 // together. 976 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 977 978 // Walk through equivalence sets looking for actual exact matches. 979 while (MergePotentials.size() > 1) { 980 unsigned CurHash = MergePotentials.back().getHash(); 981 982 // Build SameTails, identifying the set of blocks with this hash code 983 // and with the maximum number of instructions in common. 984 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 985 MinCommonTailLength, 986 SuccBB, PredBB); 987 988 // If we didn't find any pair that has at least MinCommonTailLength 989 // instructions in common, remove all blocks with this hash code and retry. 990 if (SameTails.empty()) { 991 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 992 continue; 993 } 994 995 // If one of the blocks is the entire common tail (and not the entry 996 // block, which we can't jump to), we can treat all blocks with this same 997 // tail at once. Use PredBB if that is one of the possibilities, as that 998 // will not introduce any extra branches. 999 MachineBasicBlock *EntryBB = 1000 &MergePotentials.front().getBlock()->getParent()->front(); 1001 unsigned commonTailIndex = SameTails.size(); 1002 // If there are two blocks, check to see if one can be made to fall through 1003 // into the other. 1004 if (SameTails.size() == 2 && 1005 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 1006 SameTails[1].tailIsWholeBlock()) 1007 commonTailIndex = 1; 1008 else if (SameTails.size() == 2 && 1009 SameTails[1].getBlock()->isLayoutSuccessor( 1010 SameTails[0].getBlock()) && 1011 SameTails[0].tailIsWholeBlock()) 1012 commonTailIndex = 0; 1013 else { 1014 // Otherwise just pick one, favoring the fall-through predecessor if 1015 // there is one. 1016 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 1017 MachineBasicBlock *MBB = SameTails[i].getBlock(); 1018 if (MBB == EntryBB && SameTails[i].tailIsWholeBlock()) 1019 continue; 1020 if (MBB == PredBB) { 1021 commonTailIndex = i; 1022 break; 1023 } 1024 if (SameTails[i].tailIsWholeBlock()) 1025 commonTailIndex = i; 1026 } 1027 } 1028 1029 if (commonTailIndex == SameTails.size() || 1030 (SameTails[commonTailIndex].getBlock() == PredBB && 1031 !SameTails[commonTailIndex].tailIsWholeBlock())) { 1032 // None of the blocks consist entirely of the common tail. 1033 // Split a block so that one does. 1034 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 1035 maxCommonTailLength, commonTailIndex)) { 1036 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 1037 continue; 1038 } 1039 } 1040 1041 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 1042 1043 // Recompute common tail MBB's edge weights and block frequency. 1044 setCommonTailEdgeWeights(*MBB); 1045 1046 // Merge debug locations, MMOs and undef flags across identical instructions 1047 // for common tail. 1048 mergeCommonTails(commonTailIndex); 1049 1050 // MBB is common tail. Adjust all other BB's to jump to this one. 1051 // Traversal must be forwards so erases work. 1052 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) 1053 << " for "); 1054 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 1055 if (commonTailIndex == i) 1056 continue; 1057 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) 1058 << (i == e - 1 ? "" : ", ")); 1059 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 1060 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); 1061 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 1062 MergePotentials.erase(SameTails[i].getMPIter()); 1063 } 1064 LLVM_DEBUG(dbgs() << "\n"); 1065 // We leave commonTailIndex in the worklist in case there are other blocks 1066 // that match it with a smaller number of instructions. 1067 MadeChange = true; 1068 } 1069 return MadeChange; 1070 } 1071 1072 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 1073 bool MadeChange = false; 1074 if (!EnableTailMerge) return MadeChange; 1075 1076 // First find blocks with no successors. 1077 // Block placement does not create new tail merging opportunities for these 1078 // blocks. 1079 if (!AfterBlockPlacement) { 1080 MergePotentials.clear(); 1081 for (MachineBasicBlock &MBB : MF) { 1082 if (MergePotentials.size() == TailMergeThreshold) 1083 break; 1084 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 1085 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 1086 } 1087 1088 // If this is a large problem, avoid visiting the same basic blocks 1089 // multiple times. 1090 if (MergePotentials.size() == TailMergeThreshold) 1091 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1092 TriedMerging.insert(MergePotentials[i].getBlock()); 1093 1094 // See if we can do any tail merging on those. 1095 if (MergePotentials.size() >= 2) 1096 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 1097 } 1098 1099 // Look at blocks (IBB) with multiple predecessors (PBB). 1100 // We change each predecessor to a canonical form, by 1101 // (1) temporarily removing any unconditional branch from the predecessor 1102 // to IBB, and 1103 // (2) alter conditional branches so they branch to the other block 1104 // not IBB; this may require adding back an unconditional branch to IBB 1105 // later, where there wasn't one coming in. E.g. 1106 // Bcc IBB 1107 // fallthrough to QBB 1108 // here becomes 1109 // Bncc QBB 1110 // with a conceptual B to IBB after that, which never actually exists. 1111 // With those changes, we see whether the predecessors' tails match, 1112 // and merge them if so. We change things out of canonical form and 1113 // back to the way they were later in the process. (OptimizeBranches 1114 // would undo some of this, but we can't use it, because we'd get into 1115 // a compile-time infinite loop repeatedly doing and undoing the same 1116 // transformations.) 1117 1118 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1119 I != E; ++I) { 1120 if (I->pred_size() < 2) continue; 1121 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1122 MachineBasicBlock *IBB = &*I; 1123 MachineBasicBlock *PredBB = &*std::prev(I); 1124 MergePotentials.clear(); 1125 MachineLoop *ML; 1126 1127 // Bail if merging after placement and IBB is the loop header because 1128 // -- If merging predecessors that belong to the same loop as IBB, the 1129 // common tail of merged predecessors may become the loop top if block 1130 // placement is called again and the predecessors may branch to this common 1131 // tail and require more branches. This can be relaxed if 1132 // MachineBlockPlacement::findBestLoopTop is more flexible. 1133 // --If merging predecessors that do not belong to the same loop as IBB, the 1134 // loop info of IBB's loop and the other loops may be affected. Calling the 1135 // block placement again may make big change to the layout and eliminate the 1136 // reason to do tail merging here. 1137 if (AfterBlockPlacement && MLI) { 1138 ML = MLI->getLoopFor(IBB); 1139 if (ML && IBB == ML->getHeader()) 1140 continue; 1141 } 1142 1143 for (MachineBasicBlock *PBB : I->predecessors()) { 1144 if (MergePotentials.size() == TailMergeThreshold) 1145 break; 1146 1147 if (TriedMerging.count(PBB)) 1148 continue; 1149 1150 // Skip blocks that loop to themselves, can't tail merge these. 1151 if (PBB == IBB) 1152 continue; 1153 1154 // Visit each predecessor only once. 1155 if (!UniquePreds.insert(PBB).second) 1156 continue; 1157 1158 // Skip blocks which may jump to a landing pad. Can't tail merge these. 1159 if (PBB->hasEHPadSuccessor()) 1160 continue; 1161 1162 // After block placement, only consider predecessors that belong to the 1163 // same loop as IBB. The reason is the same as above when skipping loop 1164 // header. 1165 if (AfterBlockPlacement && MLI) 1166 if (ML != MLI->getLoopFor(PBB)) 1167 continue; 1168 1169 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1170 SmallVector<MachineOperand, 4> Cond; 1171 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1172 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1173 // branch. 1174 SmallVector<MachineOperand, 4> NewCond(Cond); 1175 if (!Cond.empty() && TBB == IBB) { 1176 if (TII->reverseBranchCondition(NewCond)) 1177 continue; 1178 // This is the QBB case described above 1179 if (!FBB) { 1180 auto Next = ++PBB->getIterator(); 1181 if (Next != MF.end()) 1182 FBB = &*Next; 1183 } 1184 } 1185 1186 // Failing case: the only way IBB can be reached from PBB is via 1187 // exception handling. Happens for landing pads. Would be nice to have 1188 // a bit in the edge so we didn't have to do all this. 1189 if (IBB->isEHPad()) { 1190 MachineFunction::iterator IP = ++PBB->getIterator(); 1191 MachineBasicBlock *PredNextBB = nullptr; 1192 if (IP != MF.end()) 1193 PredNextBB = &*IP; 1194 if (!TBB) { 1195 if (IBB != PredNextBB) // fallthrough 1196 continue; 1197 } else if (FBB) { 1198 if (TBB != IBB && FBB != IBB) // cbr then ubr 1199 continue; 1200 } else if (Cond.empty()) { 1201 if (TBB != IBB) // ubr 1202 continue; 1203 } else { 1204 if (TBB != IBB && IBB != PredNextBB) // cbr 1205 continue; 1206 } 1207 } 1208 1209 // Remove the unconditional branch at the end, if any. 1210 if (TBB && (Cond.empty() || FBB)) { 1211 DebugLoc dl = PBB->findBranchDebugLoc(); 1212 TII->removeBranch(*PBB); 1213 if (!Cond.empty()) 1214 // reinsert conditional branch only, for now 1215 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1216 NewCond, dl); 1217 } 1218 1219 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1220 } 1221 } 1222 1223 // If this is a large problem, avoid visiting the same basic blocks multiple 1224 // times. 1225 if (MergePotentials.size() == TailMergeThreshold) 1226 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1227 TriedMerging.insert(MergePotentials[i].getBlock()); 1228 1229 if (MergePotentials.size() >= 2) 1230 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1231 1232 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1233 // result of removing blocks in TryTailMergeBlocks. 1234 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1235 if (MergePotentials.size() == 1 && 1236 MergePotentials.begin()->getBlock() != PredBB) 1237 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1238 } 1239 1240 return MadeChange; 1241 } 1242 1243 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1244 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1245 BlockFrequency AccumulatedMBBFreq; 1246 1247 // Aggregate edge frequency of successor edge j: 1248 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1249 // where bb is a basic block that is in SameTails. 1250 for (const auto &Src : SameTails) { 1251 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1252 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1253 AccumulatedMBBFreq += BlockFreq; 1254 1255 // It is not necessary to recompute edge weights if TailBB has less than two 1256 // successors. 1257 if (TailMBB.succ_size() <= 1) 1258 continue; 1259 1260 auto EdgeFreq = EdgeFreqLs.begin(); 1261 1262 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1263 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1264 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1265 } 1266 1267 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1268 1269 if (TailMBB.succ_size() <= 1) 1270 return; 1271 1272 auto SumEdgeFreq = 1273 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1274 .getFrequency(); 1275 auto EdgeFreq = EdgeFreqLs.begin(); 1276 1277 if (SumEdgeFreq > 0) { 1278 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1279 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1280 auto Prob = BranchProbability::getBranchProbability( 1281 EdgeFreq->getFrequency(), SumEdgeFreq); 1282 TailMBB.setSuccProbability(SuccI, Prob); 1283 } 1284 } 1285 } 1286 1287 //===----------------------------------------------------------------------===// 1288 // Branch Optimization 1289 //===----------------------------------------------------------------------===// 1290 1291 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1292 bool MadeChange = false; 1293 1294 // Make sure blocks are numbered in order 1295 MF.RenumberBlocks(); 1296 // Renumbering blocks alters EH scope membership, recalculate it. 1297 EHScopeMembership = getEHScopeMembership(MF); 1298 1299 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1300 I != E; ) { 1301 MachineBasicBlock *MBB = &*I++; 1302 MadeChange |= OptimizeBlock(MBB); 1303 1304 // If it is dead, remove it. 1305 if (MBB->pred_empty()) { 1306 RemoveDeadBlock(MBB); 1307 MadeChange = true; 1308 ++NumDeadBlocks; 1309 } 1310 } 1311 1312 return MadeChange; 1313 } 1314 1315 // Blocks should be considered empty if they contain only debug info; 1316 // else the debug info would affect codegen. 1317 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1318 return MBB->getFirstNonDebugInstr() == MBB->end(); 1319 } 1320 1321 // Blocks with only debug info and branches should be considered the same 1322 // as blocks with only branches. 1323 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1324 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1325 assert(I != MBB->end() && "empty block!"); 1326 return I->isBranch(); 1327 } 1328 1329 /// IsBetterFallthrough - Return true if it would be clearly better to 1330 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1331 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1332 /// result in infinite loops. 1333 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1334 MachineBasicBlock *MBB2) { 1335 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1336 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1337 // optimize branches that branch to either a return block or an assert block 1338 // into a fallthrough to the return. 1339 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1340 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1341 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1342 return false; 1343 1344 // If there is a clear successor ordering we make sure that one block 1345 // will fall through to the next 1346 if (MBB1->isSuccessor(MBB2)) return true; 1347 if (MBB2->isSuccessor(MBB1)) return false; 1348 1349 return MBB2I->isCall() && !MBB1I->isCall(); 1350 } 1351 1352 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1353 /// instructions on the block. 1354 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1355 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1356 if (I != MBB.end() && I->isBranch()) 1357 return I->getDebugLoc(); 1358 return DebugLoc(); 1359 } 1360 1361 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, 1362 MachineBasicBlock &MBB, 1363 MachineBasicBlock &PredMBB) { 1364 auto InsertBefore = PredMBB.getFirstTerminator(); 1365 for (MachineInstr &MI : MBB.instrs()) 1366 if (MI.isDebugValue()) { 1367 TII->duplicate(PredMBB, InsertBefore, MI); 1368 LLVM_DEBUG(dbgs() << "Copied debug value from empty block to pred: " 1369 << MI); 1370 } 1371 } 1372 1373 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, 1374 MachineBasicBlock &MBB, 1375 MachineBasicBlock &SuccMBB) { 1376 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); 1377 for (MachineInstr &MI : MBB.instrs()) 1378 if (MI.isDebugValue()) { 1379 TII->duplicate(SuccMBB, InsertBefore, MI); 1380 LLVM_DEBUG(dbgs() << "Copied debug value from empty block to succ: " 1381 << MI); 1382 } 1383 } 1384 1385 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such 1386 // a basic block is removed we would lose the debug information unless we have 1387 // copied the information to a predecessor/successor. 1388 // 1389 // TODO: This function only handles some simple cases. An alternative would be 1390 // to run a heavier analysis, such as the LiveDebugValues pass, before we do 1391 // branch folding. 1392 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, 1393 MachineBasicBlock &MBB) { 1394 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); 1395 // If this MBB is the only predecessor of a successor it is legal to copy 1396 // DBG_VALUE instructions to the beginning of the successor. 1397 for (MachineBasicBlock *SuccBB : MBB.successors()) 1398 if (SuccBB->pred_size() == 1) 1399 copyDebugInfoToSuccessor(TII, MBB, *SuccBB); 1400 // If this MBB is the only successor of a predecessor it is legal to copy the 1401 // DBG_VALUE instructions to the end of the predecessor (just before the 1402 // terminators, assuming that the terminator isn't affecting the DBG_VALUE). 1403 for (MachineBasicBlock *PredBB : MBB.predecessors()) 1404 if (PredBB->succ_size() == 1) 1405 copyDebugInfoToPredecessor(TII, MBB, *PredBB); 1406 } 1407 1408 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1409 bool MadeChange = false; 1410 MachineFunction &MF = *MBB->getParent(); 1411 ReoptimizeBlock: 1412 1413 MachineFunction::iterator FallThrough = MBB->getIterator(); 1414 ++FallThrough; 1415 1416 // Make sure MBB and FallThrough belong to the same EH scope. 1417 bool SameEHScope = true; 1418 if (!EHScopeMembership.empty() && FallThrough != MF.end()) { 1419 auto MBBEHScope = EHScopeMembership.find(MBB); 1420 assert(MBBEHScope != EHScopeMembership.end()); 1421 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); 1422 assert(FallThroughEHScope != EHScopeMembership.end()); 1423 SameEHScope = MBBEHScope->second == FallThroughEHScope->second; 1424 } 1425 1426 // If this block is empty, make everyone use its fall-through, not the block 1427 // explicitly. Landing pads should not do this since the landing-pad table 1428 // points to this block. Blocks with their addresses taken shouldn't be 1429 // optimized away. 1430 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1431 SameEHScope) { 1432 salvageDebugInfoFromEmptyBlock(TII, *MBB); 1433 // Dead block? Leave for cleanup later. 1434 if (MBB->pred_empty()) return MadeChange; 1435 1436 if (FallThrough == MF.end()) { 1437 // TODO: Simplify preds to not branch here if possible! 1438 } else if (FallThrough->isEHPad()) { 1439 // Don't rewrite to a landing pad fallthough. That could lead to the case 1440 // where a BB jumps to more than one landing pad. 1441 // TODO: Is it ever worth rewriting predecessors which don't already 1442 // jump to a landing pad, and so can safely jump to the fallthrough? 1443 } else if (MBB->isSuccessor(&*FallThrough)) { 1444 // Rewrite all predecessors of the old block to go to the fallthrough 1445 // instead. 1446 while (!MBB->pred_empty()) { 1447 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1448 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1449 } 1450 // If MBB was the target of a jump table, update jump tables to go to the 1451 // fallthrough instead. 1452 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1453 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1454 MadeChange = true; 1455 } 1456 return MadeChange; 1457 } 1458 1459 // Check to see if we can simplify the terminator of the block before this 1460 // one. 1461 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1462 1463 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1464 SmallVector<MachineOperand, 4> PriorCond; 1465 bool PriorUnAnalyzable = 1466 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1467 if (!PriorUnAnalyzable) { 1468 // If the CFG for the prior block has extra edges, remove them. 1469 MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB, 1470 !PriorCond.empty()); 1471 1472 // If the previous branch is conditional and both conditions go to the same 1473 // destination, remove the branch, replacing it with an unconditional one or 1474 // a fall-through. 1475 if (PriorTBB && PriorTBB == PriorFBB) { 1476 DebugLoc dl = getBranchDebugLoc(PrevBB); 1477 TII->removeBranch(PrevBB); 1478 PriorCond.clear(); 1479 if (PriorTBB != MBB) 1480 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1481 MadeChange = true; 1482 ++NumBranchOpts; 1483 goto ReoptimizeBlock; 1484 } 1485 1486 // If the previous block unconditionally falls through to this block and 1487 // this block has no other predecessors, move the contents of this block 1488 // into the prior block. This doesn't usually happen when SimplifyCFG 1489 // has been used, but it can happen if tail merging splits a fall-through 1490 // predecessor of a block. 1491 // This has to check PrevBB->succ_size() because EH edges are ignored by 1492 // AnalyzeBranch. 1493 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1494 PrevBB.succ_size() == 1 && 1495 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1496 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1497 << "From MBB: " << *MBB); 1498 // Remove redundant DBG_VALUEs first. 1499 if (PrevBB.begin() != PrevBB.end()) { 1500 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1501 --PrevBBIter; 1502 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1503 // Check if DBG_VALUE at the end of PrevBB is identical to the 1504 // DBG_VALUE at the beginning of MBB. 1505 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1506 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { 1507 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1508 break; 1509 MachineInstr &DuplicateDbg = *MBBIter; 1510 ++MBBIter; -- PrevBBIter; 1511 DuplicateDbg.eraseFromParent(); 1512 } 1513 } 1514 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1515 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1516 assert(PrevBB.succ_empty()); 1517 PrevBB.transferSuccessors(MBB); 1518 MadeChange = true; 1519 return MadeChange; 1520 } 1521 1522 // If the previous branch *only* branches to *this* block (conditional or 1523 // not) remove the branch. 1524 if (PriorTBB == MBB && !PriorFBB) { 1525 TII->removeBranch(PrevBB); 1526 MadeChange = true; 1527 ++NumBranchOpts; 1528 goto ReoptimizeBlock; 1529 } 1530 1531 // If the prior block branches somewhere else on the condition and here if 1532 // the condition is false, remove the uncond second branch. 1533 if (PriorFBB == MBB) { 1534 DebugLoc dl = getBranchDebugLoc(PrevBB); 1535 TII->removeBranch(PrevBB); 1536 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1537 MadeChange = true; 1538 ++NumBranchOpts; 1539 goto ReoptimizeBlock; 1540 } 1541 1542 // If the prior block branches here on true and somewhere else on false, and 1543 // if the branch condition is reversible, reverse the branch to create a 1544 // fall-through. 1545 if (PriorTBB == MBB) { 1546 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1547 if (!TII->reverseBranchCondition(NewPriorCond)) { 1548 DebugLoc dl = getBranchDebugLoc(PrevBB); 1549 TII->removeBranch(PrevBB); 1550 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1551 MadeChange = true; 1552 ++NumBranchOpts; 1553 goto ReoptimizeBlock; 1554 } 1555 } 1556 1557 // If this block has no successors (e.g. it is a return block or ends with 1558 // a call to a no-return function like abort or __cxa_throw) and if the pred 1559 // falls through into this block, and if it would otherwise fall through 1560 // into the block after this, move this block to the end of the function. 1561 // 1562 // We consider it more likely that execution will stay in the function (e.g. 1563 // due to loops) than it is to exit it. This asserts in loops etc, moving 1564 // the assert condition out of the loop body. 1565 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1566 MachineFunction::iterator(PriorTBB) == FallThrough && 1567 !MBB->canFallThrough()) { 1568 bool DoTransform = true; 1569 1570 // We have to be careful that the succs of PredBB aren't both no-successor 1571 // blocks. If neither have successors and if PredBB is the second from 1572 // last block in the function, we'd just keep swapping the two blocks for 1573 // last. Only do the swap if one is clearly better to fall through than 1574 // the other. 1575 if (FallThrough == --MF.end() && 1576 !IsBetterFallthrough(PriorTBB, MBB)) 1577 DoTransform = false; 1578 1579 if (DoTransform) { 1580 // Reverse the branch so we will fall through on the previous true cond. 1581 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1582 if (!TII->reverseBranchCondition(NewPriorCond)) { 1583 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1584 << "To make fallthrough to: " << *PriorTBB << "\n"); 1585 1586 DebugLoc dl = getBranchDebugLoc(PrevBB); 1587 TII->removeBranch(PrevBB); 1588 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1589 1590 // Move this block to the end of the function. 1591 MBB->moveAfter(&MF.back()); 1592 MadeChange = true; 1593 ++NumBranchOpts; 1594 return MadeChange; 1595 } 1596 } 1597 } 1598 } 1599 1600 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && 1601 MF.getFunction().optForSize()) { 1602 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1603 // direction, thereby defeating careful block placement and regressing 1604 // performance. Therefore, only consider this for optsize functions. 1605 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1606 if (TII->isUnconditionalTailCall(TailCall)) { 1607 MachineBasicBlock *Pred = *MBB->pred_begin(); 1608 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1609 SmallVector<MachineOperand, 4> PredCond; 1610 bool PredAnalyzable = 1611 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1612 1613 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && 1614 PredTBB != PredFBB) { 1615 // The predecessor has a conditional branch to this block which consists 1616 // of only a tail call. Try to fold the tail call into the conditional 1617 // branch. 1618 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1619 // TODO: It would be nice if analyzeBranch() could provide a pointer 1620 // to the branch instruction so replaceBranchWithTailCall() doesn't 1621 // have to search for it. 1622 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1623 ++NumTailCalls; 1624 Pred->removeSuccessor(MBB); 1625 MadeChange = true; 1626 return MadeChange; 1627 } 1628 } 1629 // If the predecessor is falling through to this block, we could reverse 1630 // the branch condition and fold the tail call into that. However, after 1631 // that we might have to re-arrange the CFG to fall through to the other 1632 // block and there is a high risk of regressing code size rather than 1633 // improving it. 1634 } 1635 } 1636 1637 // Analyze the branch in the current block. 1638 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1639 SmallVector<MachineOperand, 4> CurCond; 1640 bool CurUnAnalyzable = 1641 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1642 if (!CurUnAnalyzable) { 1643 // If the CFG for the prior block has extra edges, remove them. 1644 MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty()); 1645 1646 // If this is a two-way branch, and the FBB branches to this block, reverse 1647 // the condition so the single-basic-block loop is faster. Instead of: 1648 // Loop: xxx; jcc Out; jmp Loop 1649 // we want: 1650 // Loop: xxx; jncc Loop; jmp Out 1651 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1652 SmallVector<MachineOperand, 4> NewCond(CurCond); 1653 if (!TII->reverseBranchCondition(NewCond)) { 1654 DebugLoc dl = getBranchDebugLoc(*MBB); 1655 TII->removeBranch(*MBB); 1656 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1657 MadeChange = true; 1658 ++NumBranchOpts; 1659 goto ReoptimizeBlock; 1660 } 1661 } 1662 1663 // If this branch is the only thing in its block, see if we can forward 1664 // other blocks across it. 1665 if (CurTBB && CurCond.empty() && !CurFBB && 1666 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1667 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1668 DebugLoc dl = getBranchDebugLoc(*MBB); 1669 // This block may contain just an unconditional branch. Because there can 1670 // be 'non-branch terminators' in the block, try removing the branch and 1671 // then seeing if the block is empty. 1672 TII->removeBranch(*MBB); 1673 // If the only things remaining in the block are debug info, remove these 1674 // as well, so this will behave the same as an empty block in non-debug 1675 // mode. 1676 if (IsEmptyBlock(MBB)) { 1677 // Make the block empty, losing the debug info (we could probably 1678 // improve this in some cases.) 1679 MBB->erase(MBB->begin(), MBB->end()); 1680 } 1681 // If this block is just an unconditional branch to CurTBB, we can 1682 // usually completely eliminate the block. The only case we cannot 1683 // completely eliminate the block is when the block before this one 1684 // falls through into MBB and we can't understand the prior block's branch 1685 // condition. 1686 if (MBB->empty()) { 1687 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1688 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1689 !PrevBB.isSuccessor(MBB)) { 1690 // If the prior block falls through into us, turn it into an 1691 // explicit branch to us to make updates simpler. 1692 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1693 PriorTBB != MBB && PriorFBB != MBB) { 1694 if (!PriorTBB) { 1695 assert(PriorCond.empty() && !PriorFBB && 1696 "Bad branch analysis"); 1697 PriorTBB = MBB; 1698 } else { 1699 assert(!PriorFBB && "Machine CFG out of date!"); 1700 PriorFBB = MBB; 1701 } 1702 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1703 TII->removeBranch(PrevBB); 1704 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1705 } 1706 1707 // Iterate through all the predecessors, revectoring each in-turn. 1708 size_t PI = 0; 1709 bool DidChange = false; 1710 bool HasBranchToSelf = false; 1711 while(PI != MBB->pred_size()) { 1712 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1713 if (PMBB == MBB) { 1714 // If this block has an uncond branch to itself, leave it. 1715 ++PI; 1716 HasBranchToSelf = true; 1717 } else { 1718 DidChange = true; 1719 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1720 // If this change resulted in PMBB ending in a conditional 1721 // branch where both conditions go to the same destination, 1722 // change this to an unconditional branch (and fix the CFG). 1723 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1724 SmallVector<MachineOperand, 4> NewCurCond; 1725 bool NewCurUnAnalyzable = TII->analyzeBranch( 1726 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1727 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1728 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1729 TII->removeBranch(*PMBB); 1730 NewCurCond.clear(); 1731 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1732 MadeChange = true; 1733 ++NumBranchOpts; 1734 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false); 1735 } 1736 } 1737 } 1738 1739 // Change any jumptables to go to the new MBB. 1740 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1741 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1742 if (DidChange) { 1743 ++NumBranchOpts; 1744 MadeChange = true; 1745 if (!HasBranchToSelf) return MadeChange; 1746 } 1747 } 1748 } 1749 1750 // Add the branch back if the block is more than just an uncond branch. 1751 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1752 } 1753 } 1754 1755 // If the prior block doesn't fall through into this block, and if this 1756 // block doesn't fall through into some other block, see if we can find a 1757 // place to move this block where a fall-through will happen. 1758 if (!PrevBB.canFallThrough()) { 1759 // Now we know that there was no fall-through into this block, check to 1760 // see if it has a fall-through into its successor. 1761 bool CurFallsThru = MBB->canFallThrough(); 1762 1763 if (!MBB->isEHPad()) { 1764 // Check all the predecessors of this block. If one of them has no fall 1765 // throughs, move this block right after it. 1766 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1767 // Analyze the branch at the end of the pred. 1768 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1769 SmallVector<MachineOperand, 4> PredCond; 1770 if (PredBB != MBB && !PredBB->canFallThrough() && 1771 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1772 (!CurFallsThru || !CurTBB || !CurFBB) && 1773 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1774 // If the current block doesn't fall through, just move it. 1775 // If the current block can fall through and does not end with a 1776 // conditional branch, we need to append an unconditional jump to 1777 // the (current) next block. To avoid a possible compile-time 1778 // infinite loop, move blocks only backward in this case. 1779 // Also, if there are already 2 branches here, we cannot add a third; 1780 // this means we have the case 1781 // Bcc next 1782 // B elsewhere 1783 // next: 1784 if (CurFallsThru) { 1785 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1786 CurCond.clear(); 1787 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1788 } 1789 MBB->moveAfter(PredBB); 1790 MadeChange = true; 1791 goto ReoptimizeBlock; 1792 } 1793 } 1794 } 1795 1796 if (!CurFallsThru) { 1797 // Check all successors to see if we can move this block before it. 1798 for (MachineBasicBlock *SuccBB : MBB->successors()) { 1799 // Analyze the branch at the end of the block before the succ. 1800 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1801 1802 // If this block doesn't already fall-through to that successor, and if 1803 // the succ doesn't already have a block that can fall through into it, 1804 // and if the successor isn't an EH destination, we can arrange for the 1805 // fallthrough to happen. 1806 if (SuccBB != MBB && &*SuccPrev != MBB && 1807 !SuccPrev->canFallThrough() && !CurUnAnalyzable && 1808 !SuccBB->isEHPad()) { 1809 MBB->moveBefore(SuccBB); 1810 MadeChange = true; 1811 goto ReoptimizeBlock; 1812 } 1813 } 1814 1815 // Okay, there is no really great place to put this block. If, however, 1816 // the block before this one would be a fall-through if this block were 1817 // removed, move this block to the end of the function. There is no real 1818 // advantage in "falling through" to an EH block, so we don't want to 1819 // perform this transformation for that case. 1820 // 1821 // Also, Windows EH introduced the possibility of an arbitrary number of 1822 // successors to a given block. The analyzeBranch call does not consider 1823 // exception handling and so we can get in a state where a block 1824 // containing a call is followed by multiple EH blocks that would be 1825 // rotated infinitely at the end of the function if the transformation 1826 // below were performed for EH "FallThrough" blocks. Therefore, even if 1827 // that appears not to be happening anymore, we should assume that it is 1828 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1829 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1830 SmallVector<MachineOperand, 4> PrevCond; 1831 if (FallThrough != MF.end() && 1832 !FallThrough->isEHPad() && 1833 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1834 PrevBB.isSuccessor(&*FallThrough)) { 1835 MBB->moveAfter(&MF.back()); 1836 MadeChange = true; 1837 return MadeChange; 1838 } 1839 } 1840 } 1841 1842 return MadeChange; 1843 } 1844 1845 //===----------------------------------------------------------------------===// 1846 // Hoist Common Code 1847 //===----------------------------------------------------------------------===// 1848 1849 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1850 bool MadeChange = false; 1851 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1852 MachineBasicBlock *MBB = &*I++; 1853 MadeChange |= HoistCommonCodeInSuccs(MBB); 1854 } 1855 1856 return MadeChange; 1857 } 1858 1859 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1860 /// its 'true' successor. 1861 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1862 MachineBasicBlock *TrueBB) { 1863 for (MachineBasicBlock *SuccBB : BB->successors()) 1864 if (SuccBB != TrueBB) 1865 return SuccBB; 1866 return nullptr; 1867 } 1868 1869 template <class Container> 1870 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, 1871 Container &Set) { 1872 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1873 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1874 Set.insert(*AI); 1875 } else { 1876 Set.insert(Reg); 1877 } 1878 } 1879 1880 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1881 /// in successors to. The location is usually just before the terminator, 1882 /// however if the terminator is a conditional branch and its previous 1883 /// instruction is the flag setting instruction, the previous instruction is 1884 /// the preferred location. This function also gathers uses and defs of the 1885 /// instructions from the insertion point to the end of the block. The data is 1886 /// used by HoistCommonCodeInSuccs to ensure safety. 1887 static 1888 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1889 const TargetInstrInfo *TII, 1890 const TargetRegisterInfo *TRI, 1891 SmallSet<unsigned,4> &Uses, 1892 SmallSet<unsigned,4> &Defs) { 1893 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1894 if (!TII->isUnpredicatedTerminator(*Loc)) 1895 return MBB->end(); 1896 1897 for (const MachineOperand &MO : Loc->operands()) { 1898 if (!MO.isReg()) 1899 continue; 1900 unsigned Reg = MO.getReg(); 1901 if (!Reg) 1902 continue; 1903 if (MO.isUse()) { 1904 addRegAndItsAliases(Reg, TRI, Uses); 1905 } else { 1906 if (!MO.isDead()) 1907 // Don't try to hoist code in the rare case the terminator defines a 1908 // register that is later used. 1909 return MBB->end(); 1910 1911 // If the terminator defines a register, make sure we don't hoist 1912 // the instruction whose def might be clobbered by the terminator. 1913 addRegAndItsAliases(Reg, TRI, Defs); 1914 } 1915 } 1916 1917 if (Uses.empty()) 1918 return Loc; 1919 // If the terminator is the only instruction in the block and Uses is not 1920 // empty (or we would have returned above), we can still safely hoist 1921 // instructions just before the terminator as long as the Defs/Uses are not 1922 // violated (which is checked in HoistCommonCodeInSuccs). 1923 if (Loc == MBB->begin()) 1924 return Loc; 1925 1926 // The terminator is probably a conditional branch, try not to separate the 1927 // branch from condition setting instruction. 1928 MachineBasicBlock::iterator PI = 1929 skipDebugInstructionsBackward(std::prev(Loc), MBB->begin()); 1930 1931 bool IsDef = false; 1932 for (const MachineOperand &MO : PI->operands()) { 1933 // If PI has a regmask operand, it is probably a call. Separate away. 1934 if (MO.isRegMask()) 1935 return Loc; 1936 if (!MO.isReg() || MO.isUse()) 1937 continue; 1938 unsigned Reg = MO.getReg(); 1939 if (!Reg) 1940 continue; 1941 if (Uses.count(Reg)) { 1942 IsDef = true; 1943 break; 1944 } 1945 } 1946 if (!IsDef) 1947 // The condition setting instruction is not just before the conditional 1948 // branch. 1949 return Loc; 1950 1951 // Be conservative, don't insert instruction above something that may have 1952 // side-effects. And since it's potentially bad to separate flag setting 1953 // instruction from the conditional branch, just abort the optimization 1954 // completely. 1955 // Also avoid moving code above predicated instruction since it's hard to 1956 // reason about register liveness with predicated instruction. 1957 bool DontMoveAcrossStore = true; 1958 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1959 return MBB->end(); 1960 1961 // Find out what registers are live. Note this routine is ignoring other live 1962 // registers which are only used by instructions in successor blocks. 1963 for (const MachineOperand &MO : PI->operands()) { 1964 if (!MO.isReg()) 1965 continue; 1966 unsigned Reg = MO.getReg(); 1967 if (!Reg) 1968 continue; 1969 if (MO.isUse()) { 1970 addRegAndItsAliases(Reg, TRI, Uses); 1971 } else { 1972 if (Uses.erase(Reg)) { 1973 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1974 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1975 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1976 } 1977 } 1978 addRegAndItsAliases(Reg, TRI, Defs); 1979 } 1980 } 1981 1982 return PI; 1983 } 1984 1985 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1986 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1987 SmallVector<MachineOperand, 4> Cond; 1988 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1989 return false; 1990 1991 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1992 if (!FBB) 1993 // Malformed bcc? True and false blocks are the same? 1994 return false; 1995 1996 // Restrict the optimization to cases where MBB is the only predecessor, 1997 // it is an obvious win. 1998 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1999 return false; 2000 2001 // Find a suitable position to hoist the common instructions to. Also figure 2002 // out which registers are used or defined by instructions from the insertion 2003 // point to the end of the block. 2004 SmallSet<unsigned, 4> Uses, Defs; 2005 MachineBasicBlock::iterator Loc = 2006 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 2007 if (Loc == MBB->end()) 2008 return false; 2009 2010 bool HasDups = false; 2011 SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet; 2012 MachineBasicBlock::iterator TIB = TBB->begin(); 2013 MachineBasicBlock::iterator FIB = FBB->begin(); 2014 MachineBasicBlock::iterator TIE = TBB->end(); 2015 MachineBasicBlock::iterator FIE = FBB->end(); 2016 while (TIB != TIE && FIB != FIE) { 2017 // Skip dbg_value instructions. These do not count. 2018 TIB = skipDebugInstructionsForward(TIB, TIE); 2019 FIB = skipDebugInstructionsForward(FIB, FIE); 2020 if (TIB == TIE || FIB == FIE) 2021 break; 2022 2023 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 2024 break; 2025 2026 if (TII->isPredicated(*TIB)) 2027 // Hard to reason about register liveness with predicated instruction. 2028 break; 2029 2030 bool IsSafe = true; 2031 for (MachineOperand &MO : TIB->operands()) { 2032 // Don't attempt to hoist instructions with register masks. 2033 if (MO.isRegMask()) { 2034 IsSafe = false; 2035 break; 2036 } 2037 if (!MO.isReg()) 2038 continue; 2039 unsigned Reg = MO.getReg(); 2040 if (!Reg) 2041 continue; 2042 if (MO.isDef()) { 2043 if (Uses.count(Reg)) { 2044 // Avoid clobbering a register that's used by the instruction at 2045 // the point of insertion. 2046 IsSafe = false; 2047 break; 2048 } 2049 2050 if (Defs.count(Reg) && !MO.isDead()) { 2051 // Don't hoist the instruction if the def would be clobber by the 2052 // instruction at the point insertion. FIXME: This is overly 2053 // conservative. It should be possible to hoist the instructions 2054 // in BB2 in the following example: 2055 // BB1: 2056 // r1, eflag = op1 r2, r3 2057 // brcc eflag 2058 // 2059 // BB2: 2060 // r1 = op2, ... 2061 // = op3, killed r1 2062 IsSafe = false; 2063 break; 2064 } 2065 } else if (!ActiveDefsSet.count(Reg)) { 2066 if (Defs.count(Reg)) { 2067 // Use is defined by the instruction at the point of insertion. 2068 IsSafe = false; 2069 break; 2070 } 2071 2072 if (MO.isKill() && Uses.count(Reg)) 2073 // Kills a register that's read by the instruction at the point of 2074 // insertion. Remove the kill marker. 2075 MO.setIsKill(false); 2076 } 2077 } 2078 if (!IsSafe) 2079 break; 2080 2081 bool DontMoveAcrossStore = true; 2082 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 2083 break; 2084 2085 // Remove kills from ActiveDefsSet, these registers had short live ranges. 2086 for (const MachineOperand &MO : TIB->operands()) { 2087 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2088 continue; 2089 unsigned Reg = MO.getReg(); 2090 if (!Reg) 2091 continue; 2092 if (!AllDefsSet.count(Reg)) { 2093 continue; 2094 } 2095 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2096 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 2097 ActiveDefsSet.erase(*AI); 2098 } else { 2099 ActiveDefsSet.erase(Reg); 2100 } 2101 } 2102 2103 // Track local defs so we can update liveins. 2104 for (const MachineOperand &MO : TIB->operands()) { 2105 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 2106 continue; 2107 unsigned Reg = MO.getReg(); 2108 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg)) 2109 continue; 2110 addRegAndItsAliases(Reg, TRI, ActiveDefsSet); 2111 addRegAndItsAliases(Reg, TRI, AllDefsSet); 2112 } 2113 2114 HasDups = true; 2115 ++TIB; 2116 ++FIB; 2117 } 2118 2119 if (!HasDups) 2120 return false; 2121 2122 MBB->splice(Loc, TBB, TBB->begin(), TIB); 2123 FBB->erase(FBB->begin(), FIB); 2124 2125 if (UpdateLiveIns) { 2126 recomputeLiveIns(*TBB); 2127 recomputeLiveIns(*FBB); 2128 } 2129 2130 ++NumHoist; 2131 return true; 2132 } 2133