1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass forwards branches to unconditional branches to make them branch 10 // directly to the target block. This pass often results in dead MBB's, which 11 // it then removes. 12 // 13 // Note that this pass must be run after register allocation, it cannot handle 14 // SSA form. It also must handle virtual registers for targets that emit virtual 15 // ISA (e.g. NVPTX). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "BranchFolding.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/CodeGen/Analysis.h" 29 #include "llvm/CodeGen/LivePhysRegs.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/MachineSizeOpts.h" 43 #include "llvm/CodeGen/MBFIWrapper.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetOpcodes.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/LaneBitmask.h" 54 #include "llvm/MC/MCRegisterInfo.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetMachine.h" 63 #include <cassert> 64 #include <cstddef> 65 #include <iterator> 66 #include <numeric> 67 #include <vector> 68 69 using namespace llvm; 70 71 #define DEBUG_TYPE "branch-folder" 72 73 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 74 STATISTIC(NumBranchOpts, "Number of branches optimized"); 75 STATISTIC(NumTailMerge , "Number of block tails merged"); 76 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 77 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 78 79 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 80 cl::init(cl::BOU_UNSET), cl::Hidden); 81 82 // Throttle for huge numbers of predecessors (compile speed problems) 83 static cl::opt<unsigned> 84 TailMergeThreshold("tail-merge-threshold", 85 cl::desc("Max number of predecessors to consider tail merging"), 86 cl::init(150), cl::Hidden); 87 88 // Heuristic for tail merging (and, inversely, tail duplication). 89 // TODO: This should be replaced with a target query. 90 static cl::opt<unsigned> 91 TailMergeSize("tail-merge-size", 92 cl::desc("Min number of instructions to consider tail merging"), 93 cl::init(3), cl::Hidden); 94 95 namespace { 96 97 /// BranchFolderPass - Wrap branch folder in a machine function pass. 98 class BranchFolderPass : public MachineFunctionPass { 99 public: 100 static char ID; 101 102 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 103 104 bool runOnMachineFunction(MachineFunction &MF) override; 105 106 void getAnalysisUsage(AnalysisUsage &AU) const override { 107 AU.addRequired<MachineBlockFrequencyInfo>(); 108 AU.addRequired<MachineBranchProbabilityInfo>(); 109 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 110 AU.addRequired<TargetPassConfig>(); 111 MachineFunctionPass::getAnalysisUsage(AU); 112 } 113 }; 114 115 } // end anonymous namespace 116 117 char BranchFolderPass::ID = 0; 118 119 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 120 121 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, 122 "Control Flow Optimizer", false, false) 123 124 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 125 if (skipFunction(MF.getFunction())) 126 return false; 127 128 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 129 // TailMerge can create jump into if branches that make CFG irreducible for 130 // HW that requires structurized CFG. 131 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 132 PassConfig->getEnableTailMerge(); 133 MBFIWrapper MBBFreqInfo( 134 getAnalysis<MachineBlockFrequencyInfo>()); 135 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 136 getAnalysis<MachineBranchProbabilityInfo>(), 137 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 138 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 139 return Folder.OptimizeFunction( 140 MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(), 141 MMIWP ? &MMIWP->getMMI() : nullptr); 142 } 143 144 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, 145 MBFIWrapper &FreqInfo, 146 const MachineBranchProbabilityInfo &ProbInfo, 147 ProfileSummaryInfo *PSI, 148 unsigned MinTailLength) 149 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 150 MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) { 151 if (MinCommonTailLength == 0) 152 MinCommonTailLength = TailMergeSize; 153 switch (FlagEnableTailMerge) { 154 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; 155 case cl::BOU_TRUE: EnableTailMerge = true; break; 156 case cl::BOU_FALSE: EnableTailMerge = false; break; 157 } 158 } 159 160 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 161 assert(MBB->pred_empty() && "MBB must be dead!"); 162 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 163 164 MachineFunction *MF = MBB->getParent(); 165 // drop all successors. 166 while (!MBB->succ_empty()) 167 MBB->removeSuccessor(MBB->succ_end()-1); 168 169 // Avoid matching if this pointer gets reused. 170 TriedMerging.erase(MBB); 171 172 // Update call site info. 173 std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) { 174 if (MI.shouldUpdateCallSiteInfo()) 175 MF->eraseCallSiteInfo(&MI); 176 }); 177 // Remove the block. 178 MF->erase(MBB); 179 EHScopeMembership.erase(MBB); 180 if (MLI) 181 MLI->removeBlock(MBB); 182 } 183 184 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 185 const TargetInstrInfo *tii, 186 const TargetRegisterInfo *tri, 187 MachineModuleInfo *mmi, 188 MachineLoopInfo *mli, bool AfterPlacement) { 189 if (!tii) return false; 190 191 TriedMerging.clear(); 192 193 MachineRegisterInfo &MRI = MF.getRegInfo(); 194 AfterBlockPlacement = AfterPlacement; 195 TII = tii; 196 TRI = tri; 197 MMI = mmi; 198 MLI = mli; 199 this->MRI = &MRI; 200 201 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 202 if (!UpdateLiveIns) 203 MRI.invalidateLiveness(); 204 205 bool MadeChange = false; 206 207 // Recalculate EH scope membership. 208 EHScopeMembership = getEHScopeMembership(MF); 209 210 bool MadeChangeThisIteration = true; 211 while (MadeChangeThisIteration) { 212 MadeChangeThisIteration = TailMergeBlocks(MF); 213 // No need to clean up if tail merging does not change anything after the 214 // block placement. 215 if (!AfterBlockPlacement || MadeChangeThisIteration) 216 MadeChangeThisIteration |= OptimizeBranches(MF); 217 if (EnableHoistCommonCode) 218 MadeChangeThisIteration |= HoistCommonCode(MF); 219 MadeChange |= MadeChangeThisIteration; 220 } 221 222 // See if any jump tables have become dead as the code generator 223 // did its thing. 224 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 225 if (!JTI) 226 return MadeChange; 227 228 // Walk the function to find jump tables that are live. 229 BitVector JTIsLive(JTI->getJumpTables().size()); 230 for (const MachineBasicBlock &BB : MF) { 231 for (const MachineInstr &I : BB) 232 for (const MachineOperand &Op : I.operands()) { 233 if (!Op.isJTI()) continue; 234 235 // Remember that this JT is live. 236 JTIsLive.set(Op.getIndex()); 237 } 238 } 239 240 // Finally, remove dead jump tables. This happens when the 241 // indirect jump was unreachable (and thus deleted). 242 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 243 if (!JTIsLive.test(i)) { 244 JTI->RemoveJumpTable(i); 245 MadeChange = true; 246 } 247 248 return MadeChange; 249 } 250 251 //===----------------------------------------------------------------------===// 252 // Tail Merging of Blocks 253 //===----------------------------------------------------------------------===// 254 255 /// HashMachineInstr - Compute a hash value for MI and its operands. 256 static unsigned HashMachineInstr(const MachineInstr &MI) { 257 unsigned Hash = MI.getOpcode(); 258 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 259 const MachineOperand &Op = MI.getOperand(i); 260 261 // Merge in bits from the operand if easy. We can't use MachineOperand's 262 // hash_code here because it's not deterministic and we sort by hash value 263 // later. 264 unsigned OperandHash = 0; 265 switch (Op.getType()) { 266 case MachineOperand::MO_Register: 267 OperandHash = Op.getReg(); 268 break; 269 case MachineOperand::MO_Immediate: 270 OperandHash = Op.getImm(); 271 break; 272 case MachineOperand::MO_MachineBasicBlock: 273 OperandHash = Op.getMBB()->getNumber(); 274 break; 275 case MachineOperand::MO_FrameIndex: 276 case MachineOperand::MO_ConstantPoolIndex: 277 case MachineOperand::MO_JumpTableIndex: 278 OperandHash = Op.getIndex(); 279 break; 280 case MachineOperand::MO_GlobalAddress: 281 case MachineOperand::MO_ExternalSymbol: 282 // Global address / external symbol are too hard, don't bother, but do 283 // pull in the offset. 284 OperandHash = Op.getOffset(); 285 break; 286 default: 287 break; 288 } 289 290 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 291 } 292 return Hash; 293 } 294 295 /// HashEndOfMBB - Hash the last instruction in the MBB. 296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 297 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 298 if (I == MBB.end()) 299 return 0; 300 301 return HashMachineInstr(*I); 302 } 303 304 /// Whether MI should be counted as an instruction when calculating common tail. 305 static bool countsAsInstruction(const MachineInstr &MI) { 306 return !(MI.isDebugInstr() || MI.isCFIInstruction()); 307 } 308 309 /// Iterate backwards from the given iterator \p I, towards the beginning of the 310 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator 311 /// pointing to that MI. If no such MI is found, return the end iterator. 312 static MachineBasicBlock::iterator 313 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I, 314 MachineBasicBlock *MBB) { 315 while (I != MBB->begin()) { 316 --I; 317 if (countsAsInstruction(*I)) 318 return I; 319 } 320 return MBB->end(); 321 } 322 323 /// Given two machine basic blocks, return the number of instructions they 324 /// actually have in common together at their end. If a common tail is found (at 325 /// least by one instruction), then iterators for the first shared instruction 326 /// in each block are returned as well. 327 /// 328 /// Non-instructions according to countsAsInstruction are ignored. 329 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 330 MachineBasicBlock *MBB2, 331 MachineBasicBlock::iterator &I1, 332 MachineBasicBlock::iterator &I2) { 333 MachineBasicBlock::iterator MBBI1 = MBB1->end(); 334 MachineBasicBlock::iterator MBBI2 = MBB2->end(); 335 336 unsigned TailLen = 0; 337 while (true) { 338 MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1); 339 MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2); 340 if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end()) 341 break; 342 if (!MBBI1->isIdenticalTo(*MBBI2) || 343 // FIXME: This check is dubious. It's used to get around a problem where 344 // people incorrectly expect inline asm directives to remain in the same 345 // relative order. This is untenable because normal compiler 346 // optimizations (like this one) may reorder and/or merge these 347 // directives. 348 MBBI1->isInlineAsm()) { 349 break; 350 } 351 if (MBBI1->getFlag(MachineInstr::NoMerge) || 352 MBBI2->getFlag(MachineInstr::NoMerge)) 353 break; 354 ++TailLen; 355 I1 = MBBI1; 356 I2 = MBBI2; 357 } 358 359 return TailLen; 360 } 361 362 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 363 MachineBasicBlock &NewDest) { 364 if (UpdateLiveIns) { 365 // OldInst should always point to an instruction. 366 MachineBasicBlock &OldMBB = *OldInst->getParent(); 367 LiveRegs.clear(); 368 LiveRegs.addLiveOuts(OldMBB); 369 // Move backward to the place where will insert the jump. 370 MachineBasicBlock::iterator I = OldMBB.end(); 371 do { 372 --I; 373 LiveRegs.stepBackward(*I); 374 } while (I != OldInst); 375 376 // Merging the tails may have switched some undef operand to non-undef ones. 377 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the 378 // register. 379 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { 380 // We computed the liveins with computeLiveIn earlier and should only see 381 // full registers: 382 assert(P.LaneMask == LaneBitmask::getAll() && 383 "Can only handle full register."); 384 MCPhysReg Reg = P.PhysReg; 385 if (!LiveRegs.available(*MRI, Reg)) 386 continue; 387 DebugLoc DL; 388 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); 389 } 390 } 391 392 TII->ReplaceTailWithBranchTo(OldInst, &NewDest); 393 ++NumTailMerge; 394 } 395 396 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 397 MachineBasicBlock::iterator BBI1, 398 const BasicBlock *BB) { 399 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 400 return nullptr; 401 402 MachineFunction &MF = *CurMBB.getParent(); 403 404 // Create the fall-through block. 405 MachineFunction::iterator MBBI = CurMBB.getIterator(); 406 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); 407 CurMBB.getParent()->insert(++MBBI, NewMBB); 408 409 // Move all the successors of this block to the specified block. 410 NewMBB->transferSuccessors(&CurMBB); 411 412 // Add an edge from CurMBB to NewMBB for the fall-through. 413 CurMBB.addSuccessor(NewMBB); 414 415 // Splice the code over. 416 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 417 418 // NewMBB belongs to the same loop as CurMBB. 419 if (MLI) 420 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 421 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 422 423 // NewMBB inherits CurMBB's block frequency. 424 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 425 426 if (UpdateLiveIns) 427 computeAndAddLiveIns(LiveRegs, *NewMBB); 428 429 // Add the new block to the EH scope. 430 const auto &EHScopeI = EHScopeMembership.find(&CurMBB); 431 if (EHScopeI != EHScopeMembership.end()) { 432 auto n = EHScopeI->second; 433 EHScopeMembership[NewMBB] = n; 434 } 435 436 return NewMBB; 437 } 438 439 /// EstimateRuntime - Make a rough estimate for how long it will take to run 440 /// the specified code. 441 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 442 MachineBasicBlock::iterator E) { 443 unsigned Time = 0; 444 for (; I != E; ++I) { 445 if (!countsAsInstruction(*I)) 446 continue; 447 if (I->isCall()) 448 Time += 10; 449 else if (I->mayLoadOrStore()) 450 Time += 2; 451 else 452 ++Time; 453 } 454 return Time; 455 } 456 457 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 458 // branches temporarily for tail merging). In the case where CurMBB ends 459 // with a conditional branch to the next block, optimize by reversing the 460 // test and conditionally branching to SuccMBB instead. 461 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 462 const TargetInstrInfo *TII) { 463 MachineFunction *MF = CurMBB->getParent(); 464 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 465 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 466 SmallVector<MachineOperand, 4> Cond; 467 DebugLoc dl = CurMBB->findBranchDebugLoc(); 468 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 469 MachineBasicBlock *NextBB = &*I; 470 if (TBB == NextBB && !Cond.empty() && !FBB) { 471 if (!TII->reverseBranchCondition(Cond)) { 472 TII->removeBranch(*CurMBB); 473 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 474 return; 475 } 476 } 477 } 478 TII->insertBranch(*CurMBB, SuccBB, nullptr, 479 SmallVector<MachineOperand, 0>(), dl); 480 } 481 482 bool 483 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 484 if (getHash() < o.getHash()) 485 return true; 486 if (getHash() > o.getHash()) 487 return false; 488 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 489 return true; 490 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 491 return false; 492 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 493 // an object with itself. 494 #ifndef _GLIBCXX_DEBUG 495 llvm_unreachable("Predecessor appears twice"); 496 #else 497 return false; 498 #endif 499 } 500 501 /// CountTerminators - Count the number of terminators in the given 502 /// block and set I to the position of the first non-terminator, if there 503 /// is one, or MBB->end() otherwise. 504 static unsigned CountTerminators(MachineBasicBlock *MBB, 505 MachineBasicBlock::iterator &I) { 506 I = MBB->end(); 507 unsigned NumTerms = 0; 508 while (true) { 509 if (I == MBB->begin()) { 510 I = MBB->end(); 511 break; 512 } 513 --I; 514 if (!I->isTerminator()) break; 515 ++NumTerms; 516 } 517 return NumTerms; 518 } 519 520 /// A no successor, non-return block probably ends in unreachable and is cold. 521 /// Also consider a block that ends in an indirect branch to be a return block, 522 /// since many targets use plain indirect branches to return. 523 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 524 if (!MBB->succ_empty()) 525 return false; 526 if (MBB->empty()) 527 return true; 528 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 529 } 530 531 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 532 /// and decide if it would be profitable to merge those tails. Return the 533 /// length of the common tail and iterators to the first common instruction 534 /// in each block. 535 /// MBB1, MBB2 The blocks to check 536 /// MinCommonTailLength Minimum size of tail block to be merged. 537 /// CommonTailLen Out parameter to record the size of the shared tail between 538 /// MBB1 and MBB2 539 /// I1, I2 Iterator references that will be changed to point to the first 540 /// instruction in the common tail shared by MBB1,MBB2 541 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 542 /// relative to SuccBB 543 /// PredBB The layout predecessor of SuccBB, if any. 544 /// EHScopeMembership map from block to EH scope #. 545 /// AfterPlacement True if we are merging blocks after layout. Stricter 546 /// thresholds apply to prevent undoing tail-duplication. 547 static bool 548 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 549 unsigned MinCommonTailLength, unsigned &CommonTailLen, 550 MachineBasicBlock::iterator &I1, 551 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 552 MachineBasicBlock *PredBB, 553 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, 554 bool AfterPlacement, 555 MBFIWrapper &MBBFreqInfo, 556 ProfileSummaryInfo *PSI) { 557 // It is never profitable to tail-merge blocks from two different EH scopes. 558 if (!EHScopeMembership.empty()) { 559 auto EHScope1 = EHScopeMembership.find(MBB1); 560 assert(EHScope1 != EHScopeMembership.end()); 561 auto EHScope2 = EHScopeMembership.find(MBB2); 562 assert(EHScope2 != EHScopeMembership.end()); 563 if (EHScope1->second != EHScope2->second) 564 return false; 565 } 566 567 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 568 if (CommonTailLen == 0) 569 return false; 570 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) 571 << " and " << printMBBReference(*MBB2) << " is " 572 << CommonTailLen << '\n'); 573 574 // Move the iterators to the beginning of the MBB if we only got debug 575 // instructions before the tail. This is to avoid splitting a block when we 576 // only got debug instructions before the tail (to be invariant on -g). 577 if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end()) == I1) 578 I1 = MBB1->begin(); 579 if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end()) == I2) 580 I2 = MBB2->begin(); 581 582 bool FullBlockTail1 = I1 == MBB1->begin(); 583 bool FullBlockTail2 = I2 == MBB2->begin(); 584 585 // It's almost always profitable to merge any number of non-terminator 586 // instructions with the block that falls through into the common successor. 587 // This is true only for a single successor. For multiple successors, we are 588 // trading a conditional branch for an unconditional one. 589 // TODO: Re-visit successor size for non-layout tail merging. 590 if ((MBB1 == PredBB || MBB2 == PredBB) && 591 (!AfterPlacement || MBB1->succ_size() == 1)) { 592 MachineBasicBlock::iterator I; 593 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 594 if (CommonTailLen > NumTerms) 595 return true; 596 } 597 598 // If these are identical non-return blocks with no successors, merge them. 599 // Such blocks are typically cold calls to noreturn functions like abort, and 600 // are unlikely to become a fallthrough target after machine block placement. 601 // Tail merging these blocks is unlikely to create additional unconditional 602 // branches, and will reduce the size of this cold code. 603 if (FullBlockTail1 && FullBlockTail2 && 604 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 605 return true; 606 607 // If one of the blocks can be completely merged and happens to be in 608 // a position where the other could fall through into it, merge any number 609 // of instructions, because it can be done without a branch. 610 // TODO: If the blocks are not adjacent, move one of them so that they are? 611 if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2) 612 return true; 613 if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1) 614 return true; 615 616 // If both blocks are identical and end in a branch, merge them unless they 617 // both have a fallthrough predecessor and successor. 618 // We can only do this after block placement because it depends on whether 619 // there are fallthroughs, and we don't know until after layout. 620 if (AfterPlacement && FullBlockTail1 && FullBlockTail2) { 621 auto BothFallThrough = [](MachineBasicBlock *MBB) { 622 if (MBB->succ_size() != 0 && !MBB->canFallThrough()) 623 return false; 624 MachineFunction::iterator I(MBB); 625 MachineFunction *MF = MBB->getParent(); 626 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 627 }; 628 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 629 return true; 630 } 631 632 // If both blocks have an unconditional branch temporarily stripped out, 633 // count that as an additional common instruction for the following 634 // heuristics. This heuristic is only accurate for single-succ blocks, so to 635 // make sure that during layout merging and duplicating don't crash, we check 636 // for that when merging during layout. 637 unsigned EffectiveTailLen = CommonTailLen; 638 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 639 (MBB1->succ_size() == 1 || !AfterPlacement) && 640 !MBB1->back().isBarrier() && 641 !MBB2->back().isBarrier()) 642 ++EffectiveTailLen; 643 644 // Check if the common tail is long enough to be worthwhile. 645 if (EffectiveTailLen >= MinCommonTailLength) 646 return true; 647 648 // If we are optimizing for code size, 2 instructions in common is enough if 649 // we don't have to split a block. At worst we will be introducing 1 new 650 // branch instruction, which is likely to be smaller than the 2 651 // instructions that would be deleted in the merge. 652 MachineFunction *MF = MBB1->getParent(); 653 bool OptForSize = 654 MF->getFunction().hasOptSize() || 655 (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) && 656 llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo)); 657 return EffectiveTailLen >= 2 && OptForSize && 658 (FullBlockTail1 || FullBlockTail2); 659 } 660 661 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 662 unsigned MinCommonTailLength, 663 MachineBasicBlock *SuccBB, 664 MachineBasicBlock *PredBB) { 665 unsigned maxCommonTailLength = 0U; 666 SameTails.clear(); 667 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 668 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 669 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 670 B = MergePotentials.begin(); 671 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 672 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 673 unsigned CommonTailLen; 674 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 675 MinCommonTailLength, 676 CommonTailLen, TrialBBI1, TrialBBI2, 677 SuccBB, PredBB, 678 EHScopeMembership, 679 AfterBlockPlacement, MBBFreqInfo, PSI)) { 680 if (CommonTailLen > maxCommonTailLength) { 681 SameTails.clear(); 682 maxCommonTailLength = CommonTailLen; 683 HighestMPIter = CurMPIter; 684 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 685 } 686 if (HighestMPIter == CurMPIter && 687 CommonTailLen == maxCommonTailLength) 688 SameTails.push_back(SameTailElt(I, TrialBBI2)); 689 } 690 if (I == B) 691 break; 692 } 693 } 694 return maxCommonTailLength; 695 } 696 697 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 698 MachineBasicBlock *SuccBB, 699 MachineBasicBlock *PredBB) { 700 MPIterator CurMPIter, B; 701 for (CurMPIter = std::prev(MergePotentials.end()), 702 B = MergePotentials.begin(); 703 CurMPIter->getHash() == CurHash; --CurMPIter) { 704 // Put the unconditional branch back, if we need one. 705 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 706 if (SuccBB && CurMBB != PredBB) 707 FixTail(CurMBB, SuccBB, TII); 708 if (CurMPIter == B) 709 break; 710 } 711 if (CurMPIter->getHash() != CurHash) 712 CurMPIter++; 713 MergePotentials.erase(CurMPIter, MergePotentials.end()); 714 } 715 716 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 717 MachineBasicBlock *SuccBB, 718 unsigned maxCommonTailLength, 719 unsigned &commonTailIndex) { 720 commonTailIndex = 0; 721 unsigned TimeEstimate = ~0U; 722 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 723 // Use PredBB if possible; that doesn't require a new branch. 724 if (SameTails[i].getBlock() == PredBB) { 725 commonTailIndex = i; 726 break; 727 } 728 // Otherwise, make a (fairly bogus) choice based on estimate of 729 // how long it will take the various blocks to execute. 730 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 731 SameTails[i].getTailStartPos()); 732 if (t <= TimeEstimate) { 733 TimeEstimate = t; 734 commonTailIndex = i; 735 } 736 } 737 738 MachineBasicBlock::iterator BBI = 739 SameTails[commonTailIndex].getTailStartPos(); 740 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 741 742 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " 743 << maxCommonTailLength); 744 745 // If the split block unconditionally falls-thru to SuccBB, it will be 746 // merged. In control flow terms it should then take SuccBB's name. e.g. If 747 // SuccBB is an inner loop, the common tail is still part of the inner loop. 748 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 749 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 750 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 751 if (!newMBB) { 752 LLVM_DEBUG(dbgs() << "... failed!"); 753 return false; 754 } 755 756 SameTails[commonTailIndex].setBlock(newMBB); 757 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 758 759 // If we split PredBB, newMBB is the new predecessor. 760 if (PredBB == MBB) 761 PredBB = newMBB; 762 763 return true; 764 } 765 766 static void 767 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 768 MachineBasicBlock &MBBCommon) { 769 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 770 // Note CommonTailLen does not necessarily matches the size of 771 // the common BB nor all its instructions because of debug 772 // instructions differences. 773 unsigned CommonTailLen = 0; 774 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 775 ++CommonTailLen; 776 777 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 778 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 779 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 780 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 781 782 while (CommonTailLen--) { 783 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 784 (void)MBBIE; 785 786 if (!countsAsInstruction(*MBBI)) { 787 ++MBBI; 788 continue; 789 } 790 791 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) 792 ++MBBICommon; 793 794 assert(MBBICommon != MBBIECommon && 795 "Reached BB end within common tail length!"); 796 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 797 798 // Merge MMOs from memory operations in the common block. 799 if (MBBICommon->mayLoadOrStore()) 800 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); 801 // Drop undef flags if they aren't present in all merged instructions. 802 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 803 MachineOperand &MO = MBBICommon->getOperand(I); 804 if (MO.isReg() && MO.isUndef()) { 805 const MachineOperand &OtherMO = MBBI->getOperand(I); 806 if (!OtherMO.isUndef()) 807 MO.setIsUndef(false); 808 } 809 } 810 811 ++MBBI; 812 ++MBBICommon; 813 } 814 } 815 816 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { 817 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 818 819 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 820 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 821 if (i != commonTailIndex) { 822 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 823 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 824 } else { 825 assert(SameTails[i].getTailStartPos() == MBB->begin() && 826 "MBB is not a common tail only block"); 827 } 828 } 829 830 for (auto &MI : *MBB) { 831 if (!countsAsInstruction(MI)) 832 continue; 833 DebugLoc DL = MI.getDebugLoc(); 834 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 835 if (i == commonTailIndex) 836 continue; 837 838 auto &Pos = NextCommonInsts[i]; 839 assert(Pos != SameTails[i].getBlock()->end() && 840 "Reached BB end within common tail"); 841 while (!countsAsInstruction(*Pos)) { 842 ++Pos; 843 assert(Pos != SameTails[i].getBlock()->end() && 844 "Reached BB end within common tail"); 845 } 846 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 847 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 848 NextCommonInsts[i] = ++Pos; 849 } 850 MI.setDebugLoc(DL); 851 } 852 853 if (UpdateLiveIns) { 854 LivePhysRegs NewLiveIns(*TRI); 855 computeLiveIns(NewLiveIns, *MBB); 856 LiveRegs.init(*TRI); 857 858 // The flag merging may lead to some register uses no longer using the 859 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. 860 for (MachineBasicBlock *Pred : MBB->predecessors()) { 861 LiveRegs.clear(); 862 LiveRegs.addLiveOuts(*Pred); 863 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); 864 for (unsigned Reg : NewLiveIns) { 865 if (!LiveRegs.available(*MRI, Reg)) 866 continue; 867 DebugLoc DL; 868 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), 869 Reg); 870 } 871 } 872 873 MBB->clearLiveIns(); 874 addLiveIns(*MBB, NewLiveIns); 875 } 876 } 877 878 // See if any of the blocks in MergePotentials (which all have SuccBB as a 879 // successor, or all have no successor if it is null) can be tail-merged. 880 // If there is a successor, any blocks in MergePotentials that are not 881 // tail-merged and are not immediately before Succ must have an unconditional 882 // branch to Succ added (but the predecessor/successor lists need no 883 // adjustment). The lone predecessor of Succ that falls through into Succ, 884 // if any, is given in PredBB. 885 // MinCommonTailLength - Except for the special cases below, tail-merge if 886 // there are at least this many instructions in common. 887 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 888 MachineBasicBlock *PredBB, 889 unsigned MinCommonTailLength) { 890 bool MadeChange = false; 891 892 LLVM_DEBUG( 893 dbgs() << "\nTryTailMergeBlocks: "; 894 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs() 895 << printMBBReference(*MergePotentials[i].getBlock()) 896 << (i == e - 1 ? "" : ", "); 897 dbgs() << "\n"; if (SuccBB) { 898 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; 899 if (PredBB) 900 dbgs() << " which has fall-through from " 901 << printMBBReference(*PredBB) << "\n"; 902 } dbgs() << "Looking for common tails of at least " 903 << MinCommonTailLength << " instruction" 904 << (MinCommonTailLength == 1 ? "" : "s") << '\n';); 905 906 // Sort by hash value so that blocks with identical end sequences sort 907 // together. 908 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 909 910 // Walk through equivalence sets looking for actual exact matches. 911 while (MergePotentials.size() > 1) { 912 unsigned CurHash = MergePotentials.back().getHash(); 913 914 // Build SameTails, identifying the set of blocks with this hash code 915 // and with the maximum number of instructions in common. 916 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 917 MinCommonTailLength, 918 SuccBB, PredBB); 919 920 // If we didn't find any pair that has at least MinCommonTailLength 921 // instructions in common, remove all blocks with this hash code and retry. 922 if (SameTails.empty()) { 923 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 924 continue; 925 } 926 927 // If one of the blocks is the entire common tail (and is not the entry 928 // block/an EH pad, which we can't jump to), we can treat all blocks with 929 // this same tail at once. Use PredBB if that is one of the possibilities, 930 // as that will not introduce any extra branches. 931 MachineBasicBlock *EntryBB = 932 &MergePotentials.front().getBlock()->getParent()->front(); 933 unsigned commonTailIndex = SameTails.size(); 934 // If there are two blocks, check to see if one can be made to fall through 935 // into the other. 936 if (SameTails.size() == 2 && 937 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 938 SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad()) 939 commonTailIndex = 1; 940 else if (SameTails.size() == 2 && 941 SameTails[1].getBlock()->isLayoutSuccessor( 942 SameTails[0].getBlock()) && 943 SameTails[0].tailIsWholeBlock() && 944 !SameTails[0].getBlock()->isEHPad()) 945 commonTailIndex = 0; 946 else { 947 // Otherwise just pick one, favoring the fall-through predecessor if 948 // there is one. 949 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 950 MachineBasicBlock *MBB = SameTails[i].getBlock(); 951 if ((MBB == EntryBB || MBB->isEHPad()) && 952 SameTails[i].tailIsWholeBlock()) 953 continue; 954 if (MBB == PredBB) { 955 commonTailIndex = i; 956 break; 957 } 958 if (SameTails[i].tailIsWholeBlock()) 959 commonTailIndex = i; 960 } 961 } 962 963 if (commonTailIndex == SameTails.size() || 964 (SameTails[commonTailIndex].getBlock() == PredBB && 965 !SameTails[commonTailIndex].tailIsWholeBlock())) { 966 // None of the blocks consist entirely of the common tail. 967 // Split a block so that one does. 968 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 969 maxCommonTailLength, commonTailIndex)) { 970 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 971 continue; 972 } 973 } 974 975 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 976 977 // Recompute common tail MBB's edge weights and block frequency. 978 setCommonTailEdgeWeights(*MBB); 979 980 // Merge debug locations, MMOs and undef flags across identical instructions 981 // for common tail. 982 mergeCommonTails(commonTailIndex); 983 984 // MBB is common tail. Adjust all other BB's to jump to this one. 985 // Traversal must be forwards so erases work. 986 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) 987 << " for "); 988 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 989 if (commonTailIndex == i) 990 continue; 991 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) 992 << (i == e - 1 ? "" : ", ")); 993 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 994 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); 995 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 996 MergePotentials.erase(SameTails[i].getMPIter()); 997 } 998 LLVM_DEBUG(dbgs() << "\n"); 999 // We leave commonTailIndex in the worklist in case there are other blocks 1000 // that match it with a smaller number of instructions. 1001 MadeChange = true; 1002 } 1003 return MadeChange; 1004 } 1005 1006 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 1007 bool MadeChange = false; 1008 if (!EnableTailMerge) 1009 return MadeChange; 1010 1011 // First find blocks with no successors. 1012 // Block placement may create new tail merging opportunities for these blocks. 1013 MergePotentials.clear(); 1014 for (MachineBasicBlock &MBB : MF) { 1015 if (MergePotentials.size() == TailMergeThreshold) 1016 break; 1017 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 1018 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 1019 } 1020 1021 // If this is a large problem, avoid visiting the same basic blocks 1022 // multiple times. 1023 if (MergePotentials.size() == TailMergeThreshold) 1024 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1025 TriedMerging.insert(MergePotentials[i].getBlock()); 1026 1027 // See if we can do any tail merging on those. 1028 if (MergePotentials.size() >= 2) 1029 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 1030 1031 // Look at blocks (IBB) with multiple predecessors (PBB). 1032 // We change each predecessor to a canonical form, by 1033 // (1) temporarily removing any unconditional branch from the predecessor 1034 // to IBB, and 1035 // (2) alter conditional branches so they branch to the other block 1036 // not IBB; this may require adding back an unconditional branch to IBB 1037 // later, where there wasn't one coming in. E.g. 1038 // Bcc IBB 1039 // fallthrough to QBB 1040 // here becomes 1041 // Bncc QBB 1042 // with a conceptual B to IBB after that, which never actually exists. 1043 // With those changes, we see whether the predecessors' tails match, 1044 // and merge them if so. We change things out of canonical form and 1045 // back to the way they were later in the process. (OptimizeBranches 1046 // would undo some of this, but we can't use it, because we'd get into 1047 // a compile-time infinite loop repeatedly doing and undoing the same 1048 // transformations.) 1049 1050 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1051 I != E; ++I) { 1052 if (I->pred_size() < 2) continue; 1053 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1054 MachineBasicBlock *IBB = &*I; 1055 MachineBasicBlock *PredBB = &*std::prev(I); 1056 MergePotentials.clear(); 1057 MachineLoop *ML; 1058 1059 // Bail if merging after placement and IBB is the loop header because 1060 // -- If merging predecessors that belong to the same loop as IBB, the 1061 // common tail of merged predecessors may become the loop top if block 1062 // placement is called again and the predecessors may branch to this common 1063 // tail and require more branches. This can be relaxed if 1064 // MachineBlockPlacement::findBestLoopTop is more flexible. 1065 // --If merging predecessors that do not belong to the same loop as IBB, the 1066 // loop info of IBB's loop and the other loops may be affected. Calling the 1067 // block placement again may make big change to the layout and eliminate the 1068 // reason to do tail merging here. 1069 if (AfterBlockPlacement && MLI) { 1070 ML = MLI->getLoopFor(IBB); 1071 if (ML && IBB == ML->getHeader()) 1072 continue; 1073 } 1074 1075 for (MachineBasicBlock *PBB : I->predecessors()) { 1076 if (MergePotentials.size() == TailMergeThreshold) 1077 break; 1078 1079 if (TriedMerging.count(PBB)) 1080 continue; 1081 1082 // Skip blocks that loop to themselves, can't tail merge these. 1083 if (PBB == IBB) 1084 continue; 1085 1086 // Visit each predecessor only once. 1087 if (!UniquePreds.insert(PBB).second) 1088 continue; 1089 1090 // Skip blocks which may jump to a landing pad. Can't tail merge these. 1091 if (PBB->hasEHPadSuccessor()) 1092 continue; 1093 1094 // After block placement, only consider predecessors that belong to the 1095 // same loop as IBB. The reason is the same as above when skipping loop 1096 // header. 1097 if (AfterBlockPlacement && MLI) 1098 if (ML != MLI->getLoopFor(PBB)) 1099 continue; 1100 1101 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1102 SmallVector<MachineOperand, 4> Cond; 1103 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1104 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1105 // branch. 1106 SmallVector<MachineOperand, 4> NewCond(Cond); 1107 if (!Cond.empty() && TBB == IBB) { 1108 if (TII->reverseBranchCondition(NewCond)) 1109 continue; 1110 // This is the QBB case described above 1111 if (!FBB) { 1112 auto Next = ++PBB->getIterator(); 1113 if (Next != MF.end()) 1114 FBB = &*Next; 1115 } 1116 } 1117 1118 // Remove the unconditional branch at the end, if any. 1119 if (TBB && (Cond.empty() || FBB)) { 1120 DebugLoc dl = PBB->findBranchDebugLoc(); 1121 TII->removeBranch(*PBB); 1122 if (!Cond.empty()) 1123 // reinsert conditional branch only, for now 1124 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1125 NewCond, dl); 1126 } 1127 1128 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1129 } 1130 } 1131 1132 // If this is a large problem, avoid visiting the same basic blocks multiple 1133 // times. 1134 if (MergePotentials.size() == TailMergeThreshold) 1135 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1136 TriedMerging.insert(MergePotentials[i].getBlock()); 1137 1138 if (MergePotentials.size() >= 2) 1139 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1140 1141 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1142 // result of removing blocks in TryTailMergeBlocks. 1143 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1144 if (MergePotentials.size() == 1 && 1145 MergePotentials.begin()->getBlock() != PredBB) 1146 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1147 } 1148 1149 return MadeChange; 1150 } 1151 1152 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1153 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1154 BlockFrequency AccumulatedMBBFreq; 1155 1156 // Aggregate edge frequency of successor edge j: 1157 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1158 // where bb is a basic block that is in SameTails. 1159 for (const auto &Src : SameTails) { 1160 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1161 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1162 AccumulatedMBBFreq += BlockFreq; 1163 1164 // It is not necessary to recompute edge weights if TailBB has less than two 1165 // successors. 1166 if (TailMBB.succ_size() <= 1) 1167 continue; 1168 1169 auto EdgeFreq = EdgeFreqLs.begin(); 1170 1171 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1172 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1173 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1174 } 1175 1176 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1177 1178 if (TailMBB.succ_size() <= 1) 1179 return; 1180 1181 auto SumEdgeFreq = 1182 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1183 .getFrequency(); 1184 auto EdgeFreq = EdgeFreqLs.begin(); 1185 1186 if (SumEdgeFreq > 0) { 1187 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1188 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1189 auto Prob = BranchProbability::getBranchProbability( 1190 EdgeFreq->getFrequency(), SumEdgeFreq); 1191 TailMBB.setSuccProbability(SuccI, Prob); 1192 } 1193 } 1194 } 1195 1196 //===----------------------------------------------------------------------===// 1197 // Branch Optimization 1198 //===----------------------------------------------------------------------===// 1199 1200 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1201 bool MadeChange = false; 1202 1203 // Make sure blocks are numbered in order 1204 MF.RenumberBlocks(); 1205 // Renumbering blocks alters EH scope membership, recalculate it. 1206 EHScopeMembership = getEHScopeMembership(MF); 1207 1208 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1209 I != E; ) { 1210 MachineBasicBlock *MBB = &*I++; 1211 MadeChange |= OptimizeBlock(MBB); 1212 1213 // If it is dead, remove it. 1214 if (MBB->pred_empty()) { 1215 RemoveDeadBlock(MBB); 1216 MadeChange = true; 1217 ++NumDeadBlocks; 1218 } 1219 } 1220 1221 return MadeChange; 1222 } 1223 1224 // Blocks should be considered empty if they contain only debug info; 1225 // else the debug info would affect codegen. 1226 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1227 return MBB->getFirstNonDebugInstr() == MBB->end(); 1228 } 1229 1230 // Blocks with only debug info and branches should be considered the same 1231 // as blocks with only branches. 1232 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1233 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1234 assert(I != MBB->end() && "empty block!"); 1235 return I->isBranch(); 1236 } 1237 1238 /// IsBetterFallthrough - Return true if it would be clearly better to 1239 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1240 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1241 /// result in infinite loops. 1242 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1243 MachineBasicBlock *MBB2) { 1244 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock"); 1245 1246 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1247 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1248 // optimize branches that branch to either a return block or an assert block 1249 // into a fallthrough to the return. 1250 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1251 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1252 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1253 return false; 1254 1255 // If there is a clear successor ordering we make sure that one block 1256 // will fall through to the next 1257 if (MBB1->isSuccessor(MBB2)) return true; 1258 if (MBB2->isSuccessor(MBB1)) return false; 1259 1260 return MBB2I->isCall() && !MBB1I->isCall(); 1261 } 1262 1263 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1264 /// instructions on the block. 1265 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1266 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1267 if (I != MBB.end() && I->isBranch()) 1268 return I->getDebugLoc(); 1269 return DebugLoc(); 1270 } 1271 1272 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, 1273 MachineBasicBlock &MBB, 1274 MachineBasicBlock &PredMBB) { 1275 auto InsertBefore = PredMBB.getFirstTerminator(); 1276 for (MachineInstr &MI : MBB.instrs()) 1277 if (MI.isDebugInstr()) { 1278 TII->duplicate(PredMBB, InsertBefore, MI); 1279 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: " 1280 << MI); 1281 } 1282 } 1283 1284 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, 1285 MachineBasicBlock &MBB, 1286 MachineBasicBlock &SuccMBB) { 1287 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); 1288 for (MachineInstr &MI : MBB.instrs()) 1289 if (MI.isDebugInstr()) { 1290 TII->duplicate(SuccMBB, InsertBefore, MI); 1291 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: " 1292 << MI); 1293 } 1294 } 1295 1296 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such 1297 // a basic block is removed we would lose the debug information unless we have 1298 // copied the information to a predecessor/successor. 1299 // 1300 // TODO: This function only handles some simple cases. An alternative would be 1301 // to run a heavier analysis, such as the LiveDebugValues pass, before we do 1302 // branch folding. 1303 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, 1304 MachineBasicBlock &MBB) { 1305 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); 1306 // If this MBB is the only predecessor of a successor it is legal to copy 1307 // DBG_VALUE instructions to the beginning of the successor. 1308 for (MachineBasicBlock *SuccBB : MBB.successors()) 1309 if (SuccBB->pred_size() == 1) 1310 copyDebugInfoToSuccessor(TII, MBB, *SuccBB); 1311 // If this MBB is the only successor of a predecessor it is legal to copy the 1312 // DBG_VALUE instructions to the end of the predecessor (just before the 1313 // terminators, assuming that the terminator isn't affecting the DBG_VALUE). 1314 for (MachineBasicBlock *PredBB : MBB.predecessors()) 1315 if (PredBB->succ_size() == 1) 1316 copyDebugInfoToPredecessor(TII, MBB, *PredBB); 1317 } 1318 1319 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1320 bool MadeChange = false; 1321 MachineFunction &MF = *MBB->getParent(); 1322 ReoptimizeBlock: 1323 1324 MachineFunction::iterator FallThrough = MBB->getIterator(); 1325 ++FallThrough; 1326 1327 // Make sure MBB and FallThrough belong to the same EH scope. 1328 bool SameEHScope = true; 1329 if (!EHScopeMembership.empty() && FallThrough != MF.end()) { 1330 auto MBBEHScope = EHScopeMembership.find(MBB); 1331 assert(MBBEHScope != EHScopeMembership.end()); 1332 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); 1333 assert(FallThroughEHScope != EHScopeMembership.end()); 1334 SameEHScope = MBBEHScope->second == FallThroughEHScope->second; 1335 } 1336 1337 // Analyze the branch in the current block. As a side-effect, this may cause 1338 // the block to become empty. 1339 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1340 SmallVector<MachineOperand, 4> CurCond; 1341 bool CurUnAnalyzable = 1342 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1343 1344 // If this block is empty, make everyone use its fall-through, not the block 1345 // explicitly. Landing pads should not do this since the landing-pad table 1346 // points to this block. Blocks with their addresses taken shouldn't be 1347 // optimized away. 1348 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1349 SameEHScope) { 1350 salvageDebugInfoFromEmptyBlock(TII, *MBB); 1351 // Dead block? Leave for cleanup later. 1352 if (MBB->pred_empty()) return MadeChange; 1353 1354 if (FallThrough == MF.end()) { 1355 // TODO: Simplify preds to not branch here if possible! 1356 } else if (FallThrough->isEHPad()) { 1357 // Don't rewrite to a landing pad fallthough. That could lead to the case 1358 // where a BB jumps to more than one landing pad. 1359 // TODO: Is it ever worth rewriting predecessors which don't already 1360 // jump to a landing pad, and so can safely jump to the fallthrough? 1361 } else if (MBB->isSuccessor(&*FallThrough)) { 1362 // Rewrite all predecessors of the old block to go to the fallthrough 1363 // instead. 1364 while (!MBB->pred_empty()) { 1365 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1366 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1367 } 1368 // If MBB was the target of a jump table, update jump tables to go to the 1369 // fallthrough instead. 1370 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1371 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1372 MadeChange = true; 1373 } 1374 return MadeChange; 1375 } 1376 1377 // Check to see if we can simplify the terminator of the block before this 1378 // one. 1379 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1380 1381 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1382 SmallVector<MachineOperand, 4> PriorCond; 1383 bool PriorUnAnalyzable = 1384 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1385 if (!PriorUnAnalyzable) { 1386 // If the previous branch is conditional and both conditions go to the same 1387 // destination, remove the branch, replacing it with an unconditional one or 1388 // a fall-through. 1389 if (PriorTBB && PriorTBB == PriorFBB) { 1390 DebugLoc dl = getBranchDebugLoc(PrevBB); 1391 TII->removeBranch(PrevBB); 1392 PriorCond.clear(); 1393 if (PriorTBB != MBB) 1394 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1395 MadeChange = true; 1396 ++NumBranchOpts; 1397 goto ReoptimizeBlock; 1398 } 1399 1400 // If the previous block unconditionally falls through to this block and 1401 // this block has no other predecessors, move the contents of this block 1402 // into the prior block. This doesn't usually happen when SimplifyCFG 1403 // has been used, but it can happen if tail merging splits a fall-through 1404 // predecessor of a block. 1405 // This has to check PrevBB->succ_size() because EH edges are ignored by 1406 // analyzeBranch. 1407 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1408 PrevBB.succ_size() == 1 && 1409 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1410 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1411 << "From MBB: " << *MBB); 1412 // Remove redundant DBG_VALUEs first. 1413 if (PrevBB.begin() != PrevBB.end()) { 1414 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1415 --PrevBBIter; 1416 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1417 // Check if DBG_VALUE at the end of PrevBB is identical to the 1418 // DBG_VALUE at the beginning of MBB. 1419 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1420 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { 1421 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1422 break; 1423 MachineInstr &DuplicateDbg = *MBBIter; 1424 ++MBBIter; -- PrevBBIter; 1425 DuplicateDbg.eraseFromParent(); 1426 } 1427 } 1428 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1429 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1430 assert(PrevBB.succ_empty()); 1431 PrevBB.transferSuccessors(MBB); 1432 MadeChange = true; 1433 return MadeChange; 1434 } 1435 1436 // If the previous branch *only* branches to *this* block (conditional or 1437 // not) remove the branch. 1438 if (PriorTBB == MBB && !PriorFBB) { 1439 TII->removeBranch(PrevBB); 1440 MadeChange = true; 1441 ++NumBranchOpts; 1442 goto ReoptimizeBlock; 1443 } 1444 1445 // If the prior block branches somewhere else on the condition and here if 1446 // the condition is false, remove the uncond second branch. 1447 if (PriorFBB == MBB) { 1448 DebugLoc dl = getBranchDebugLoc(PrevBB); 1449 TII->removeBranch(PrevBB); 1450 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1451 MadeChange = true; 1452 ++NumBranchOpts; 1453 goto ReoptimizeBlock; 1454 } 1455 1456 // If the prior block branches here on true and somewhere else on false, and 1457 // if the branch condition is reversible, reverse the branch to create a 1458 // fall-through. 1459 if (PriorTBB == MBB) { 1460 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1461 if (!TII->reverseBranchCondition(NewPriorCond)) { 1462 DebugLoc dl = getBranchDebugLoc(PrevBB); 1463 TII->removeBranch(PrevBB); 1464 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1465 MadeChange = true; 1466 ++NumBranchOpts; 1467 goto ReoptimizeBlock; 1468 } 1469 } 1470 1471 // If this block has no successors (e.g. it is a return block or ends with 1472 // a call to a no-return function like abort or __cxa_throw) and if the pred 1473 // falls through into this block, and if it would otherwise fall through 1474 // into the block after this, move this block to the end of the function. 1475 // 1476 // We consider it more likely that execution will stay in the function (e.g. 1477 // due to loops) than it is to exit it. This asserts in loops etc, moving 1478 // the assert condition out of the loop body. 1479 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1480 MachineFunction::iterator(PriorTBB) == FallThrough && 1481 !MBB->canFallThrough()) { 1482 bool DoTransform = true; 1483 1484 // We have to be careful that the succs of PredBB aren't both no-successor 1485 // blocks. If neither have successors and if PredBB is the second from 1486 // last block in the function, we'd just keep swapping the two blocks for 1487 // last. Only do the swap if one is clearly better to fall through than 1488 // the other. 1489 if (FallThrough == --MF.end() && 1490 !IsBetterFallthrough(PriorTBB, MBB)) 1491 DoTransform = false; 1492 1493 if (DoTransform) { 1494 // Reverse the branch so we will fall through on the previous true cond. 1495 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1496 if (!TII->reverseBranchCondition(NewPriorCond)) { 1497 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1498 << "To make fallthrough to: " << *PriorTBB << "\n"); 1499 1500 DebugLoc dl = getBranchDebugLoc(PrevBB); 1501 TII->removeBranch(PrevBB); 1502 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1503 1504 // Move this block to the end of the function. 1505 MBB->moveAfter(&MF.back()); 1506 MadeChange = true; 1507 ++NumBranchOpts; 1508 return MadeChange; 1509 } 1510 } 1511 } 1512 } 1513 1514 bool OptForSize = 1515 MF.getFunction().hasOptSize() || 1516 llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo); 1517 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) { 1518 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1519 // direction, thereby defeating careful block placement and regressing 1520 // performance. Therefore, only consider this for optsize functions. 1521 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1522 if (TII->isUnconditionalTailCall(TailCall)) { 1523 MachineBasicBlock *Pred = *MBB->pred_begin(); 1524 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1525 SmallVector<MachineOperand, 4> PredCond; 1526 bool PredAnalyzable = 1527 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1528 1529 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && 1530 PredTBB != PredFBB) { 1531 // The predecessor has a conditional branch to this block which consists 1532 // of only a tail call. Try to fold the tail call into the conditional 1533 // branch. 1534 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1535 // TODO: It would be nice if analyzeBranch() could provide a pointer 1536 // to the branch instruction so replaceBranchWithTailCall() doesn't 1537 // have to search for it. 1538 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1539 ++NumTailCalls; 1540 Pred->removeSuccessor(MBB); 1541 MadeChange = true; 1542 return MadeChange; 1543 } 1544 } 1545 // If the predecessor is falling through to this block, we could reverse 1546 // the branch condition and fold the tail call into that. However, after 1547 // that we might have to re-arrange the CFG to fall through to the other 1548 // block and there is a high risk of regressing code size rather than 1549 // improving it. 1550 } 1551 } 1552 1553 if (!CurUnAnalyzable) { 1554 // If this is a two-way branch, and the FBB branches to this block, reverse 1555 // the condition so the single-basic-block loop is faster. Instead of: 1556 // Loop: xxx; jcc Out; jmp Loop 1557 // we want: 1558 // Loop: xxx; jncc Loop; jmp Out 1559 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1560 SmallVector<MachineOperand, 4> NewCond(CurCond); 1561 if (!TII->reverseBranchCondition(NewCond)) { 1562 DebugLoc dl = getBranchDebugLoc(*MBB); 1563 TII->removeBranch(*MBB); 1564 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1565 MadeChange = true; 1566 ++NumBranchOpts; 1567 goto ReoptimizeBlock; 1568 } 1569 } 1570 1571 // If this branch is the only thing in its block, see if we can forward 1572 // other blocks across it. 1573 if (CurTBB && CurCond.empty() && !CurFBB && 1574 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1575 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1576 DebugLoc dl = getBranchDebugLoc(*MBB); 1577 // This block may contain just an unconditional branch. Because there can 1578 // be 'non-branch terminators' in the block, try removing the branch and 1579 // then seeing if the block is empty. 1580 TII->removeBranch(*MBB); 1581 // If the only things remaining in the block are debug info, remove these 1582 // as well, so this will behave the same as an empty block in non-debug 1583 // mode. 1584 if (IsEmptyBlock(MBB)) { 1585 // Make the block empty, losing the debug info (we could probably 1586 // improve this in some cases.) 1587 MBB->erase(MBB->begin(), MBB->end()); 1588 } 1589 // If this block is just an unconditional branch to CurTBB, we can 1590 // usually completely eliminate the block. The only case we cannot 1591 // completely eliminate the block is when the block before this one 1592 // falls through into MBB and we can't understand the prior block's branch 1593 // condition. 1594 if (MBB->empty()) { 1595 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1596 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1597 !PrevBB.isSuccessor(MBB)) { 1598 // If the prior block falls through into us, turn it into an 1599 // explicit branch to us to make updates simpler. 1600 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1601 PriorTBB != MBB && PriorFBB != MBB) { 1602 if (!PriorTBB) { 1603 assert(PriorCond.empty() && !PriorFBB && 1604 "Bad branch analysis"); 1605 PriorTBB = MBB; 1606 } else { 1607 assert(!PriorFBB && "Machine CFG out of date!"); 1608 PriorFBB = MBB; 1609 } 1610 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1611 TII->removeBranch(PrevBB); 1612 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1613 } 1614 1615 // Iterate through all the predecessors, revectoring each in-turn. 1616 size_t PI = 0; 1617 bool DidChange = false; 1618 bool HasBranchToSelf = false; 1619 while(PI != MBB->pred_size()) { 1620 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1621 if (PMBB == MBB) { 1622 // If this block has an uncond branch to itself, leave it. 1623 ++PI; 1624 HasBranchToSelf = true; 1625 } else { 1626 DidChange = true; 1627 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1628 // If this change resulted in PMBB ending in a conditional 1629 // branch where both conditions go to the same destination, 1630 // change this to an unconditional branch. 1631 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1632 SmallVector<MachineOperand, 4> NewCurCond; 1633 bool NewCurUnAnalyzable = TII->analyzeBranch( 1634 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1635 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1636 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1637 TII->removeBranch(*PMBB); 1638 NewCurCond.clear(); 1639 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1640 MadeChange = true; 1641 ++NumBranchOpts; 1642 } 1643 } 1644 } 1645 1646 // Change any jumptables to go to the new MBB. 1647 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1648 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1649 if (DidChange) { 1650 ++NumBranchOpts; 1651 MadeChange = true; 1652 if (!HasBranchToSelf) return MadeChange; 1653 } 1654 } 1655 } 1656 1657 // Add the branch back if the block is more than just an uncond branch. 1658 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1659 } 1660 } 1661 1662 // If the prior block doesn't fall through into this block, and if this 1663 // block doesn't fall through into some other block, see if we can find a 1664 // place to move this block where a fall-through will happen. 1665 if (!PrevBB.canFallThrough()) { 1666 // Now we know that there was no fall-through into this block, check to 1667 // see if it has a fall-through into its successor. 1668 bool CurFallsThru = MBB->canFallThrough(); 1669 1670 if (!MBB->isEHPad()) { 1671 // Check all the predecessors of this block. If one of them has no fall 1672 // throughs, move this block right after it. 1673 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1674 // Analyze the branch at the end of the pred. 1675 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1676 SmallVector<MachineOperand, 4> PredCond; 1677 if (PredBB != MBB && !PredBB->canFallThrough() && 1678 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1679 (!CurFallsThru || !CurTBB || !CurFBB) && 1680 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1681 // If the current block doesn't fall through, just move it. 1682 // If the current block can fall through and does not end with a 1683 // conditional branch, we need to append an unconditional jump to 1684 // the (current) next block. To avoid a possible compile-time 1685 // infinite loop, move blocks only backward in this case. 1686 // Also, if there are already 2 branches here, we cannot add a third; 1687 // this means we have the case 1688 // Bcc next 1689 // B elsewhere 1690 // next: 1691 if (CurFallsThru) { 1692 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1693 CurCond.clear(); 1694 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1695 } 1696 MBB->moveAfter(PredBB); 1697 MadeChange = true; 1698 goto ReoptimizeBlock; 1699 } 1700 } 1701 } 1702 1703 if (!CurFallsThru) { 1704 // Check all successors to see if we can move this block before it. 1705 for (MachineBasicBlock *SuccBB : MBB->successors()) { 1706 // Analyze the branch at the end of the block before the succ. 1707 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1708 1709 // If this block doesn't already fall-through to that successor, and if 1710 // the succ doesn't already have a block that can fall through into it, 1711 // and if the successor isn't an EH destination, we can arrange for the 1712 // fallthrough to happen. 1713 if (SuccBB != MBB && &*SuccPrev != MBB && 1714 !SuccPrev->canFallThrough() && !CurUnAnalyzable && 1715 !SuccBB->isEHPad()) { 1716 MBB->moveBefore(SuccBB); 1717 MadeChange = true; 1718 goto ReoptimizeBlock; 1719 } 1720 } 1721 1722 // Okay, there is no really great place to put this block. If, however, 1723 // the block before this one would be a fall-through if this block were 1724 // removed, move this block to the end of the function. There is no real 1725 // advantage in "falling through" to an EH block, so we don't want to 1726 // perform this transformation for that case. 1727 // 1728 // Also, Windows EH introduced the possibility of an arbitrary number of 1729 // successors to a given block. The analyzeBranch call does not consider 1730 // exception handling and so we can get in a state where a block 1731 // containing a call is followed by multiple EH blocks that would be 1732 // rotated infinitely at the end of the function if the transformation 1733 // below were performed for EH "FallThrough" blocks. Therefore, even if 1734 // that appears not to be happening anymore, we should assume that it is 1735 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1736 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1737 SmallVector<MachineOperand, 4> PrevCond; 1738 if (FallThrough != MF.end() && 1739 !FallThrough->isEHPad() && 1740 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1741 PrevBB.isSuccessor(&*FallThrough)) { 1742 MBB->moveAfter(&MF.back()); 1743 MadeChange = true; 1744 return MadeChange; 1745 } 1746 } 1747 } 1748 1749 return MadeChange; 1750 } 1751 1752 //===----------------------------------------------------------------------===// 1753 // Hoist Common Code 1754 //===----------------------------------------------------------------------===// 1755 1756 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1757 bool MadeChange = false; 1758 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1759 MachineBasicBlock *MBB = &*I++; 1760 MadeChange |= HoistCommonCodeInSuccs(MBB); 1761 } 1762 1763 return MadeChange; 1764 } 1765 1766 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1767 /// its 'true' successor. 1768 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1769 MachineBasicBlock *TrueBB) { 1770 for (MachineBasicBlock *SuccBB : BB->successors()) 1771 if (SuccBB != TrueBB) 1772 return SuccBB; 1773 return nullptr; 1774 } 1775 1776 template <class Container> 1777 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, 1778 Container &Set) { 1779 if (Register::isPhysicalRegister(Reg)) { 1780 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1781 Set.insert(*AI); 1782 } else { 1783 Set.insert(Reg); 1784 } 1785 } 1786 1787 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1788 /// in successors to. The location is usually just before the terminator, 1789 /// however if the terminator is a conditional branch and its previous 1790 /// instruction is the flag setting instruction, the previous instruction is 1791 /// the preferred location. This function also gathers uses and defs of the 1792 /// instructions from the insertion point to the end of the block. The data is 1793 /// used by HoistCommonCodeInSuccs to ensure safety. 1794 static 1795 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1796 const TargetInstrInfo *TII, 1797 const TargetRegisterInfo *TRI, 1798 SmallSet<unsigned,4> &Uses, 1799 SmallSet<unsigned,4> &Defs) { 1800 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1801 if (!TII->isUnpredicatedTerminator(*Loc)) 1802 return MBB->end(); 1803 1804 for (const MachineOperand &MO : Loc->operands()) { 1805 if (!MO.isReg()) 1806 continue; 1807 Register Reg = MO.getReg(); 1808 if (!Reg) 1809 continue; 1810 if (MO.isUse()) { 1811 addRegAndItsAliases(Reg, TRI, Uses); 1812 } else { 1813 if (!MO.isDead()) 1814 // Don't try to hoist code in the rare case the terminator defines a 1815 // register that is later used. 1816 return MBB->end(); 1817 1818 // If the terminator defines a register, make sure we don't hoist 1819 // the instruction whose def might be clobbered by the terminator. 1820 addRegAndItsAliases(Reg, TRI, Defs); 1821 } 1822 } 1823 1824 if (Uses.empty()) 1825 return Loc; 1826 // If the terminator is the only instruction in the block and Uses is not 1827 // empty (or we would have returned above), we can still safely hoist 1828 // instructions just before the terminator as long as the Defs/Uses are not 1829 // violated (which is checked in HoistCommonCodeInSuccs). 1830 if (Loc == MBB->begin()) 1831 return Loc; 1832 1833 // The terminator is probably a conditional branch, try not to separate the 1834 // branch from condition setting instruction. 1835 MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin()); 1836 1837 bool IsDef = false; 1838 for (const MachineOperand &MO : PI->operands()) { 1839 // If PI has a regmask operand, it is probably a call. Separate away. 1840 if (MO.isRegMask()) 1841 return Loc; 1842 if (!MO.isReg() || MO.isUse()) 1843 continue; 1844 Register Reg = MO.getReg(); 1845 if (!Reg) 1846 continue; 1847 if (Uses.count(Reg)) { 1848 IsDef = true; 1849 break; 1850 } 1851 } 1852 if (!IsDef) 1853 // The condition setting instruction is not just before the conditional 1854 // branch. 1855 return Loc; 1856 1857 // Be conservative, don't insert instruction above something that may have 1858 // side-effects. And since it's potentially bad to separate flag setting 1859 // instruction from the conditional branch, just abort the optimization 1860 // completely. 1861 // Also avoid moving code above predicated instruction since it's hard to 1862 // reason about register liveness with predicated instruction. 1863 bool DontMoveAcrossStore = true; 1864 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1865 return MBB->end(); 1866 1867 // Find out what registers are live. Note this routine is ignoring other live 1868 // registers which are only used by instructions in successor blocks. 1869 for (const MachineOperand &MO : PI->operands()) { 1870 if (!MO.isReg()) 1871 continue; 1872 Register Reg = MO.getReg(); 1873 if (!Reg) 1874 continue; 1875 if (MO.isUse()) { 1876 addRegAndItsAliases(Reg, TRI, Uses); 1877 } else { 1878 if (Uses.erase(Reg)) { 1879 if (Register::isPhysicalRegister(Reg)) { 1880 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1881 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1882 } 1883 } 1884 addRegAndItsAliases(Reg, TRI, Defs); 1885 } 1886 } 1887 1888 return PI; 1889 } 1890 1891 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1892 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1893 SmallVector<MachineOperand, 4> Cond; 1894 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1895 return false; 1896 1897 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1898 if (!FBB) 1899 // Malformed bcc? True and false blocks are the same? 1900 return false; 1901 1902 // Restrict the optimization to cases where MBB is the only predecessor, 1903 // it is an obvious win. 1904 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1905 return false; 1906 1907 // Find a suitable position to hoist the common instructions to. Also figure 1908 // out which registers are used or defined by instructions from the insertion 1909 // point to the end of the block. 1910 SmallSet<unsigned, 4> Uses, Defs; 1911 MachineBasicBlock::iterator Loc = 1912 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1913 if (Loc == MBB->end()) 1914 return false; 1915 1916 bool HasDups = false; 1917 SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet; 1918 MachineBasicBlock::iterator TIB = TBB->begin(); 1919 MachineBasicBlock::iterator FIB = FBB->begin(); 1920 MachineBasicBlock::iterator TIE = TBB->end(); 1921 MachineBasicBlock::iterator FIE = FBB->end(); 1922 while (TIB != TIE && FIB != FIE) { 1923 // Skip dbg_value instructions. These do not count. 1924 TIB = skipDebugInstructionsForward(TIB, TIE); 1925 FIB = skipDebugInstructionsForward(FIB, FIE); 1926 if (TIB == TIE || FIB == FIE) 1927 break; 1928 1929 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 1930 break; 1931 1932 if (TII->isPredicated(*TIB)) 1933 // Hard to reason about register liveness with predicated instruction. 1934 break; 1935 1936 bool IsSafe = true; 1937 for (MachineOperand &MO : TIB->operands()) { 1938 // Don't attempt to hoist instructions with register masks. 1939 if (MO.isRegMask()) { 1940 IsSafe = false; 1941 break; 1942 } 1943 if (!MO.isReg()) 1944 continue; 1945 Register Reg = MO.getReg(); 1946 if (!Reg) 1947 continue; 1948 if (MO.isDef()) { 1949 if (Uses.count(Reg)) { 1950 // Avoid clobbering a register that's used by the instruction at 1951 // the point of insertion. 1952 IsSafe = false; 1953 break; 1954 } 1955 1956 if (Defs.count(Reg) && !MO.isDead()) { 1957 // Don't hoist the instruction if the def would be clobber by the 1958 // instruction at the point insertion. FIXME: This is overly 1959 // conservative. It should be possible to hoist the instructions 1960 // in BB2 in the following example: 1961 // BB1: 1962 // r1, eflag = op1 r2, r3 1963 // brcc eflag 1964 // 1965 // BB2: 1966 // r1 = op2, ... 1967 // = op3, killed r1 1968 IsSafe = false; 1969 break; 1970 } 1971 } else if (!ActiveDefsSet.count(Reg)) { 1972 if (Defs.count(Reg)) { 1973 // Use is defined by the instruction at the point of insertion. 1974 IsSafe = false; 1975 break; 1976 } 1977 1978 if (MO.isKill() && Uses.count(Reg)) 1979 // Kills a register that's read by the instruction at the point of 1980 // insertion. Remove the kill marker. 1981 MO.setIsKill(false); 1982 } 1983 } 1984 if (!IsSafe) 1985 break; 1986 1987 bool DontMoveAcrossStore = true; 1988 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 1989 break; 1990 1991 // Remove kills from ActiveDefsSet, these registers had short live ranges. 1992 for (const MachineOperand &MO : TIB->operands()) { 1993 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1994 continue; 1995 Register Reg = MO.getReg(); 1996 if (!Reg) 1997 continue; 1998 if (!AllDefsSet.count(Reg)) { 1999 continue; 2000 } 2001 if (Register::isPhysicalRegister(Reg)) { 2002 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 2003 ActiveDefsSet.erase(*AI); 2004 } else { 2005 ActiveDefsSet.erase(Reg); 2006 } 2007 } 2008 2009 // Track local defs so we can update liveins. 2010 for (const MachineOperand &MO : TIB->operands()) { 2011 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 2012 continue; 2013 Register Reg = MO.getReg(); 2014 if (!Reg || Register::isVirtualRegister(Reg)) 2015 continue; 2016 addRegAndItsAliases(Reg, TRI, ActiveDefsSet); 2017 addRegAndItsAliases(Reg, TRI, AllDefsSet); 2018 } 2019 2020 HasDups = true; 2021 ++TIB; 2022 ++FIB; 2023 } 2024 2025 if (!HasDups) 2026 return false; 2027 2028 MBB->splice(Loc, TBB, TBB->begin(), TIB); 2029 FBB->erase(FBB->begin(), FIB); 2030 2031 if (UpdateLiveIns) { 2032 recomputeLiveIns(*TBB); 2033 recomputeLiveIns(*FBB); 2034 } 2035 2036 ++NumHoist; 2037 return true; 2038 } 2039