1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass forwards branches to unconditional branches to make them branch 10 // directly to the target block. This pass often results in dead MBB's, which 11 // it then removes. 12 // 13 // Note that this pass must be run after register allocation, it cannot handle 14 // SSA form. It also must handle virtual registers for targets that emit virtual 15 // ISA (e.g. NVPTX). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "BranchFolding.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/ProfileSummaryInfo.h" 26 #include "llvm/CodeGen/Analysis.h" 27 #include "llvm/CodeGen/MBFIWrapper.h" 28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineLoopInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/MachineSizeOpts.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetOpcodes.h" 41 #include "llvm/CodeGen/TargetPassConfig.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/MC/LaneBitmask.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/BlockFrequency.h" 52 #include "llvm/Support/BranchProbability.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetMachine.h" 58 #include <cassert> 59 #include <cstddef> 60 #include <iterator> 61 #include <numeric> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "branch-folder" 66 67 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 68 STATISTIC(NumBranchOpts, "Number of branches optimized"); 69 STATISTIC(NumTailMerge , "Number of block tails merged"); 70 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 71 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 72 73 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 74 cl::init(cl::BOU_UNSET), cl::Hidden); 75 76 // Throttle for huge numbers of predecessors (compile speed problems) 77 static cl::opt<unsigned> 78 TailMergeThreshold("tail-merge-threshold", 79 cl::desc("Max number of predecessors to consider tail merging"), 80 cl::init(150), cl::Hidden); 81 82 // Heuristic for tail merging (and, inversely, tail duplication). 83 // TODO: This should be replaced with a target query. 84 static cl::opt<unsigned> 85 TailMergeSize("tail-merge-size", 86 cl::desc("Min number of instructions to consider tail merging"), 87 cl::init(3), cl::Hidden); 88 89 namespace { 90 91 /// BranchFolderPass - Wrap branch folder in a machine function pass. 92 class BranchFolderPass : public MachineFunctionPass { 93 public: 94 static char ID; 95 96 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 97 98 bool runOnMachineFunction(MachineFunction &MF) override; 99 100 void getAnalysisUsage(AnalysisUsage &AU) const override { 101 AU.addRequired<MachineBlockFrequencyInfo>(); 102 AU.addRequired<MachineBranchProbabilityInfo>(); 103 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 104 AU.addRequired<TargetPassConfig>(); 105 MachineFunctionPass::getAnalysisUsage(AU); 106 } 107 }; 108 109 } // end anonymous namespace 110 111 char BranchFolderPass::ID = 0; 112 113 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 114 115 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, 116 "Control Flow Optimizer", false, false) 117 118 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 119 if (skipFunction(MF.getFunction())) 120 return false; 121 122 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 123 // TailMerge can create jump into if branches that make CFG irreducible for 124 // HW that requires structurized CFG. 125 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 126 PassConfig->getEnableTailMerge(); 127 MBFIWrapper MBBFreqInfo( 128 getAnalysis<MachineBlockFrequencyInfo>()); 129 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 130 getAnalysis<MachineBranchProbabilityInfo>(), 131 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 132 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), 133 MF.getSubtarget().getRegisterInfo()); 134 } 135 136 BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist, 137 MBFIWrapper &FreqInfo, 138 const MachineBranchProbabilityInfo &ProbInfo, 139 ProfileSummaryInfo *PSI, unsigned MinTailLength) 140 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 141 MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) { 142 if (MinCommonTailLength == 0) 143 MinCommonTailLength = TailMergeSize; 144 switch (FlagEnableTailMerge) { 145 case cl::BOU_UNSET: 146 EnableTailMerge = DefaultEnableTailMerge; 147 break; 148 case cl::BOU_TRUE: EnableTailMerge = true; break; 149 case cl::BOU_FALSE: EnableTailMerge = false; break; 150 } 151 } 152 153 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 154 assert(MBB->pred_empty() && "MBB must be dead!"); 155 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 156 157 MachineFunction *MF = MBB->getParent(); 158 // drop all successors. 159 while (!MBB->succ_empty()) 160 MBB->removeSuccessor(MBB->succ_end()-1); 161 162 // Avoid matching if this pointer gets reused. 163 TriedMerging.erase(MBB); 164 165 // Update call site info. 166 for (const MachineInstr &MI : *MBB) 167 if (MI.shouldUpdateCallSiteInfo()) 168 MF->eraseCallSiteInfo(&MI); 169 170 // Remove the block. 171 MF->erase(MBB); 172 EHScopeMembership.erase(MBB); 173 if (MLI) 174 MLI->removeBlock(MBB); 175 } 176 177 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 178 const TargetInstrInfo *tii, 179 const TargetRegisterInfo *tri, 180 MachineLoopInfo *mli, bool AfterPlacement) { 181 if (!tii) return false; 182 183 TriedMerging.clear(); 184 185 MachineRegisterInfo &MRI = MF.getRegInfo(); 186 AfterBlockPlacement = AfterPlacement; 187 TII = tii; 188 TRI = tri; 189 MLI = mli; 190 this->MRI = &MRI; 191 192 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 193 if (!UpdateLiveIns) 194 MRI.invalidateLiveness(); 195 196 bool MadeChange = false; 197 198 // Recalculate EH scope membership. 199 EHScopeMembership = getEHScopeMembership(MF); 200 201 bool MadeChangeThisIteration = true; 202 while (MadeChangeThisIteration) { 203 MadeChangeThisIteration = TailMergeBlocks(MF); 204 // No need to clean up if tail merging does not change anything after the 205 // block placement. 206 if (!AfterBlockPlacement || MadeChangeThisIteration) 207 MadeChangeThisIteration |= OptimizeBranches(MF); 208 if (EnableHoistCommonCode) 209 MadeChangeThisIteration |= HoistCommonCode(MF); 210 MadeChange |= MadeChangeThisIteration; 211 } 212 213 // See if any jump tables have become dead as the code generator 214 // did its thing. 215 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 216 if (!JTI) 217 return MadeChange; 218 219 // Walk the function to find jump tables that are live. 220 BitVector JTIsLive(JTI->getJumpTables().size()); 221 for (const MachineBasicBlock &BB : MF) { 222 for (const MachineInstr &I : BB) 223 for (const MachineOperand &Op : I.operands()) { 224 if (!Op.isJTI()) continue; 225 226 // Remember that this JT is live. 227 JTIsLive.set(Op.getIndex()); 228 } 229 } 230 231 // Finally, remove dead jump tables. This happens when the 232 // indirect jump was unreachable (and thus deleted). 233 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 234 if (!JTIsLive.test(i)) { 235 JTI->RemoveJumpTable(i); 236 MadeChange = true; 237 } 238 239 return MadeChange; 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Tail Merging of Blocks 244 //===----------------------------------------------------------------------===// 245 246 /// HashMachineInstr - Compute a hash value for MI and its operands. 247 static unsigned HashMachineInstr(const MachineInstr &MI) { 248 unsigned Hash = MI.getOpcode(); 249 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 250 const MachineOperand &Op = MI.getOperand(i); 251 252 // Merge in bits from the operand if easy. We can't use MachineOperand's 253 // hash_code here because it's not deterministic and we sort by hash value 254 // later. 255 unsigned OperandHash = 0; 256 switch (Op.getType()) { 257 case MachineOperand::MO_Register: 258 OperandHash = Op.getReg(); 259 break; 260 case MachineOperand::MO_Immediate: 261 OperandHash = Op.getImm(); 262 break; 263 case MachineOperand::MO_MachineBasicBlock: 264 OperandHash = Op.getMBB()->getNumber(); 265 break; 266 case MachineOperand::MO_FrameIndex: 267 case MachineOperand::MO_ConstantPoolIndex: 268 case MachineOperand::MO_JumpTableIndex: 269 OperandHash = Op.getIndex(); 270 break; 271 case MachineOperand::MO_GlobalAddress: 272 case MachineOperand::MO_ExternalSymbol: 273 // Global address / external symbol are too hard, don't bother, but do 274 // pull in the offset. 275 OperandHash = Op.getOffset(); 276 break; 277 default: 278 break; 279 } 280 281 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 282 } 283 return Hash; 284 } 285 286 /// HashEndOfMBB - Hash the last instruction in the MBB. 287 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 288 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(false); 289 if (I == MBB.end()) 290 return 0; 291 292 return HashMachineInstr(*I); 293 } 294 295 /// Whether MI should be counted as an instruction when calculating common tail. 296 static bool countsAsInstruction(const MachineInstr &MI) { 297 return !(MI.isDebugInstr() || MI.isCFIInstruction()); 298 } 299 300 /// Iterate backwards from the given iterator \p I, towards the beginning of the 301 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator 302 /// pointing to that MI. If no such MI is found, return the end iterator. 303 static MachineBasicBlock::iterator 304 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I, 305 MachineBasicBlock *MBB) { 306 while (I != MBB->begin()) { 307 --I; 308 if (countsAsInstruction(*I)) 309 return I; 310 } 311 return MBB->end(); 312 } 313 314 /// Given two machine basic blocks, return the number of instructions they 315 /// actually have in common together at their end. If a common tail is found (at 316 /// least by one instruction), then iterators for the first shared instruction 317 /// in each block are returned as well. 318 /// 319 /// Non-instructions according to countsAsInstruction are ignored. 320 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 321 MachineBasicBlock *MBB2, 322 MachineBasicBlock::iterator &I1, 323 MachineBasicBlock::iterator &I2) { 324 MachineBasicBlock::iterator MBBI1 = MBB1->end(); 325 MachineBasicBlock::iterator MBBI2 = MBB2->end(); 326 327 unsigned TailLen = 0; 328 while (true) { 329 MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1); 330 MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2); 331 if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end()) 332 break; 333 if (!MBBI1->isIdenticalTo(*MBBI2) || 334 // FIXME: This check is dubious. It's used to get around a problem where 335 // people incorrectly expect inline asm directives to remain in the same 336 // relative order. This is untenable because normal compiler 337 // optimizations (like this one) may reorder and/or merge these 338 // directives. 339 MBBI1->isInlineAsm()) { 340 break; 341 } 342 if (MBBI1->getFlag(MachineInstr::NoMerge) || 343 MBBI2->getFlag(MachineInstr::NoMerge)) 344 break; 345 ++TailLen; 346 I1 = MBBI1; 347 I2 = MBBI2; 348 } 349 350 return TailLen; 351 } 352 353 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 354 MachineBasicBlock &NewDest) { 355 if (UpdateLiveIns) { 356 // OldInst should always point to an instruction. 357 MachineBasicBlock &OldMBB = *OldInst->getParent(); 358 LiveRegs.clear(); 359 LiveRegs.addLiveOuts(OldMBB); 360 // Move backward to the place where will insert the jump. 361 MachineBasicBlock::iterator I = OldMBB.end(); 362 do { 363 --I; 364 LiveRegs.stepBackward(*I); 365 } while (I != OldInst); 366 367 // Merging the tails may have switched some undef operand to non-undef ones. 368 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the 369 // register. 370 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { 371 // We computed the liveins with computeLiveIn earlier and should only see 372 // full registers: 373 assert(P.LaneMask == LaneBitmask::getAll() && 374 "Can only handle full register."); 375 MCPhysReg Reg = P.PhysReg; 376 if (!LiveRegs.available(*MRI, Reg)) 377 continue; 378 DebugLoc DL; 379 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); 380 } 381 } 382 383 TII->ReplaceTailWithBranchTo(OldInst, &NewDest); 384 ++NumTailMerge; 385 } 386 387 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 388 MachineBasicBlock::iterator BBI1, 389 const BasicBlock *BB) { 390 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 391 return nullptr; 392 393 MachineFunction &MF = *CurMBB.getParent(); 394 395 // Create the fall-through block. 396 MachineFunction::iterator MBBI = CurMBB.getIterator(); 397 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); 398 CurMBB.getParent()->insert(++MBBI, NewMBB); 399 400 // Move all the successors of this block to the specified block. 401 NewMBB->transferSuccessors(&CurMBB); 402 403 // Add an edge from CurMBB to NewMBB for the fall-through. 404 CurMBB.addSuccessor(NewMBB); 405 406 // Splice the code over. 407 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 408 409 // NewMBB belongs to the same loop as CurMBB. 410 if (MLI) 411 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 412 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 413 414 // NewMBB inherits CurMBB's block frequency. 415 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 416 417 if (UpdateLiveIns) 418 computeAndAddLiveIns(LiveRegs, *NewMBB); 419 420 // Add the new block to the EH scope. 421 const auto &EHScopeI = EHScopeMembership.find(&CurMBB); 422 if (EHScopeI != EHScopeMembership.end()) { 423 auto n = EHScopeI->second; 424 EHScopeMembership[NewMBB] = n; 425 } 426 427 return NewMBB; 428 } 429 430 /// EstimateRuntime - Make a rough estimate for how long it will take to run 431 /// the specified code. 432 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 433 MachineBasicBlock::iterator E) { 434 unsigned Time = 0; 435 for (; I != E; ++I) { 436 if (!countsAsInstruction(*I)) 437 continue; 438 if (I->isCall()) 439 Time += 10; 440 else if (I->mayLoadOrStore()) 441 Time += 2; 442 else 443 ++Time; 444 } 445 return Time; 446 } 447 448 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 449 // branches temporarily for tail merging). In the case where CurMBB ends 450 // with a conditional branch to the next block, optimize by reversing the 451 // test and conditionally branching to SuccMBB instead. 452 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 453 const TargetInstrInfo *TII) { 454 MachineFunction *MF = CurMBB->getParent(); 455 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 456 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 457 SmallVector<MachineOperand, 4> Cond; 458 DebugLoc dl = CurMBB->findBranchDebugLoc(); 459 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 460 MachineBasicBlock *NextBB = &*I; 461 if (TBB == NextBB && !Cond.empty() && !FBB) { 462 if (!TII->reverseBranchCondition(Cond)) { 463 TII->removeBranch(*CurMBB); 464 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 465 return; 466 } 467 } 468 } 469 TII->insertBranch(*CurMBB, SuccBB, nullptr, 470 SmallVector<MachineOperand, 0>(), dl); 471 } 472 473 bool 474 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 475 if (getHash() < o.getHash()) 476 return true; 477 if (getHash() > o.getHash()) 478 return false; 479 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 480 return true; 481 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 482 return false; 483 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 484 // an object with itself. 485 #ifndef _GLIBCXX_DEBUG 486 llvm_unreachable("Predecessor appears twice"); 487 #else 488 return false; 489 #endif 490 } 491 492 /// CountTerminators - Count the number of terminators in the given 493 /// block and set I to the position of the first non-terminator, if there 494 /// is one, or MBB->end() otherwise. 495 static unsigned CountTerminators(MachineBasicBlock *MBB, 496 MachineBasicBlock::iterator &I) { 497 I = MBB->end(); 498 unsigned NumTerms = 0; 499 while (true) { 500 if (I == MBB->begin()) { 501 I = MBB->end(); 502 break; 503 } 504 --I; 505 if (!I->isTerminator()) break; 506 ++NumTerms; 507 } 508 return NumTerms; 509 } 510 511 /// A no successor, non-return block probably ends in unreachable and is cold. 512 /// Also consider a block that ends in an indirect branch to be a return block, 513 /// since many targets use plain indirect branches to return. 514 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 515 if (!MBB->succ_empty()) 516 return false; 517 if (MBB->empty()) 518 return true; 519 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 520 } 521 522 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 523 /// and decide if it would be profitable to merge those tails. Return the 524 /// length of the common tail and iterators to the first common instruction 525 /// in each block. 526 /// MBB1, MBB2 The blocks to check 527 /// MinCommonTailLength Minimum size of tail block to be merged. 528 /// CommonTailLen Out parameter to record the size of the shared tail between 529 /// MBB1 and MBB2 530 /// I1, I2 Iterator references that will be changed to point to the first 531 /// instruction in the common tail shared by MBB1,MBB2 532 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 533 /// relative to SuccBB 534 /// PredBB The layout predecessor of SuccBB, if any. 535 /// EHScopeMembership map from block to EH scope #. 536 /// AfterPlacement True if we are merging blocks after layout. Stricter 537 /// thresholds apply to prevent undoing tail-duplication. 538 static bool 539 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 540 unsigned MinCommonTailLength, unsigned &CommonTailLen, 541 MachineBasicBlock::iterator &I1, 542 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 543 MachineBasicBlock *PredBB, 544 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, 545 bool AfterPlacement, 546 MBFIWrapper &MBBFreqInfo, 547 ProfileSummaryInfo *PSI) { 548 // It is never profitable to tail-merge blocks from two different EH scopes. 549 if (!EHScopeMembership.empty()) { 550 auto EHScope1 = EHScopeMembership.find(MBB1); 551 assert(EHScope1 != EHScopeMembership.end()); 552 auto EHScope2 = EHScopeMembership.find(MBB2); 553 assert(EHScope2 != EHScopeMembership.end()); 554 if (EHScope1->second != EHScope2->second) 555 return false; 556 } 557 558 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 559 if (CommonTailLen == 0) 560 return false; 561 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) 562 << " and " << printMBBReference(*MBB2) << " is " 563 << CommonTailLen << '\n'); 564 565 // Move the iterators to the beginning of the MBB if we only got debug 566 // instructions before the tail. This is to avoid splitting a block when we 567 // only got debug instructions before the tail (to be invariant on -g). 568 if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end(), false) == I1) 569 I1 = MBB1->begin(); 570 if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end(), false) == I2) 571 I2 = MBB2->begin(); 572 573 bool FullBlockTail1 = I1 == MBB1->begin(); 574 bool FullBlockTail2 = I2 == MBB2->begin(); 575 576 // It's almost always profitable to merge any number of non-terminator 577 // instructions with the block that falls through into the common successor. 578 // This is true only for a single successor. For multiple successors, we are 579 // trading a conditional branch for an unconditional one. 580 // TODO: Re-visit successor size for non-layout tail merging. 581 if ((MBB1 == PredBB || MBB2 == PredBB) && 582 (!AfterPlacement || MBB1->succ_size() == 1)) { 583 MachineBasicBlock::iterator I; 584 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 585 if (CommonTailLen > NumTerms) 586 return true; 587 } 588 589 // If these are identical non-return blocks with no successors, merge them. 590 // Such blocks are typically cold calls to noreturn functions like abort, and 591 // are unlikely to become a fallthrough target after machine block placement. 592 // Tail merging these blocks is unlikely to create additional unconditional 593 // branches, and will reduce the size of this cold code. 594 if (FullBlockTail1 && FullBlockTail2 && 595 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 596 return true; 597 598 // If one of the blocks can be completely merged and happens to be in 599 // a position where the other could fall through into it, merge any number 600 // of instructions, because it can be done without a branch. 601 // TODO: If the blocks are not adjacent, move one of them so that they are? 602 if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2) 603 return true; 604 if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1) 605 return true; 606 607 // If both blocks are identical and end in a branch, merge them unless they 608 // both have a fallthrough predecessor and successor. 609 // We can only do this after block placement because it depends on whether 610 // there are fallthroughs, and we don't know until after layout. 611 if (AfterPlacement && FullBlockTail1 && FullBlockTail2) { 612 auto BothFallThrough = [](MachineBasicBlock *MBB) { 613 if (!MBB->succ_empty() && !MBB->canFallThrough()) 614 return false; 615 MachineFunction::iterator I(MBB); 616 MachineFunction *MF = MBB->getParent(); 617 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 618 }; 619 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 620 return true; 621 } 622 623 // If both blocks have an unconditional branch temporarily stripped out, 624 // count that as an additional common instruction for the following 625 // heuristics. This heuristic is only accurate for single-succ blocks, so to 626 // make sure that during layout merging and duplicating don't crash, we check 627 // for that when merging during layout. 628 unsigned EffectiveTailLen = CommonTailLen; 629 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 630 (MBB1->succ_size() == 1 || !AfterPlacement) && 631 !MBB1->back().isBarrier() && 632 !MBB2->back().isBarrier()) 633 ++EffectiveTailLen; 634 635 // Check if the common tail is long enough to be worthwhile. 636 if (EffectiveTailLen >= MinCommonTailLength) 637 return true; 638 639 // If we are optimizing for code size, 2 instructions in common is enough if 640 // we don't have to split a block. At worst we will be introducing 1 new 641 // branch instruction, which is likely to be smaller than the 2 642 // instructions that would be deleted in the merge. 643 MachineFunction *MF = MBB1->getParent(); 644 bool OptForSize = 645 MF->getFunction().hasOptSize() || 646 (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) && 647 llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo)); 648 return EffectiveTailLen >= 2 && OptForSize && 649 (FullBlockTail1 || FullBlockTail2); 650 } 651 652 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 653 unsigned MinCommonTailLength, 654 MachineBasicBlock *SuccBB, 655 MachineBasicBlock *PredBB) { 656 unsigned maxCommonTailLength = 0U; 657 SameTails.clear(); 658 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 659 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 660 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 661 B = MergePotentials.begin(); 662 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 663 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 664 unsigned CommonTailLen; 665 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 666 MinCommonTailLength, 667 CommonTailLen, TrialBBI1, TrialBBI2, 668 SuccBB, PredBB, 669 EHScopeMembership, 670 AfterBlockPlacement, MBBFreqInfo, PSI)) { 671 if (CommonTailLen > maxCommonTailLength) { 672 SameTails.clear(); 673 maxCommonTailLength = CommonTailLen; 674 HighestMPIter = CurMPIter; 675 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 676 } 677 if (HighestMPIter == CurMPIter && 678 CommonTailLen == maxCommonTailLength) 679 SameTails.push_back(SameTailElt(I, TrialBBI2)); 680 } 681 if (I == B) 682 break; 683 } 684 } 685 return maxCommonTailLength; 686 } 687 688 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 689 MachineBasicBlock *SuccBB, 690 MachineBasicBlock *PredBB) { 691 MPIterator CurMPIter, B; 692 for (CurMPIter = std::prev(MergePotentials.end()), 693 B = MergePotentials.begin(); 694 CurMPIter->getHash() == CurHash; --CurMPIter) { 695 // Put the unconditional branch back, if we need one. 696 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 697 if (SuccBB && CurMBB != PredBB) 698 FixTail(CurMBB, SuccBB, TII); 699 if (CurMPIter == B) 700 break; 701 } 702 if (CurMPIter->getHash() != CurHash) 703 CurMPIter++; 704 MergePotentials.erase(CurMPIter, MergePotentials.end()); 705 } 706 707 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 708 MachineBasicBlock *SuccBB, 709 unsigned maxCommonTailLength, 710 unsigned &commonTailIndex) { 711 commonTailIndex = 0; 712 unsigned TimeEstimate = ~0U; 713 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 714 // Use PredBB if possible; that doesn't require a new branch. 715 if (SameTails[i].getBlock() == PredBB) { 716 commonTailIndex = i; 717 break; 718 } 719 // Otherwise, make a (fairly bogus) choice based on estimate of 720 // how long it will take the various blocks to execute. 721 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 722 SameTails[i].getTailStartPos()); 723 if (t <= TimeEstimate) { 724 TimeEstimate = t; 725 commonTailIndex = i; 726 } 727 } 728 729 MachineBasicBlock::iterator BBI = 730 SameTails[commonTailIndex].getTailStartPos(); 731 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 732 733 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " 734 << maxCommonTailLength); 735 736 // If the split block unconditionally falls-thru to SuccBB, it will be 737 // merged. In control flow terms it should then take SuccBB's name. e.g. If 738 // SuccBB is an inner loop, the common tail is still part of the inner loop. 739 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 740 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 741 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 742 if (!newMBB) { 743 LLVM_DEBUG(dbgs() << "... failed!"); 744 return false; 745 } 746 747 SameTails[commonTailIndex].setBlock(newMBB); 748 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 749 750 // If we split PredBB, newMBB is the new predecessor. 751 if (PredBB == MBB) 752 PredBB = newMBB; 753 754 return true; 755 } 756 757 static void 758 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 759 MachineBasicBlock &MBBCommon) { 760 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 761 // Note CommonTailLen does not necessarily matches the size of 762 // the common BB nor all its instructions because of debug 763 // instructions differences. 764 unsigned CommonTailLen = 0; 765 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 766 ++CommonTailLen; 767 768 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 769 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 770 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 771 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 772 773 while (CommonTailLen--) { 774 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 775 (void)MBBIE; 776 777 if (!countsAsInstruction(*MBBI)) { 778 ++MBBI; 779 continue; 780 } 781 782 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) 783 ++MBBICommon; 784 785 assert(MBBICommon != MBBIECommon && 786 "Reached BB end within common tail length!"); 787 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 788 789 // Merge MMOs from memory operations in the common block. 790 if (MBBICommon->mayLoadOrStore()) 791 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); 792 // Drop undef flags if they aren't present in all merged instructions. 793 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 794 MachineOperand &MO = MBBICommon->getOperand(I); 795 if (MO.isReg() && MO.isUndef()) { 796 const MachineOperand &OtherMO = MBBI->getOperand(I); 797 if (!OtherMO.isUndef()) 798 MO.setIsUndef(false); 799 } 800 } 801 802 ++MBBI; 803 ++MBBICommon; 804 } 805 } 806 807 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { 808 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 809 810 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 811 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 812 if (i != commonTailIndex) { 813 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 814 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 815 } else { 816 assert(SameTails[i].getTailStartPos() == MBB->begin() && 817 "MBB is not a common tail only block"); 818 } 819 } 820 821 for (auto &MI : *MBB) { 822 if (!countsAsInstruction(MI)) 823 continue; 824 DebugLoc DL = MI.getDebugLoc(); 825 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 826 if (i == commonTailIndex) 827 continue; 828 829 auto &Pos = NextCommonInsts[i]; 830 assert(Pos != SameTails[i].getBlock()->end() && 831 "Reached BB end within common tail"); 832 while (!countsAsInstruction(*Pos)) { 833 ++Pos; 834 assert(Pos != SameTails[i].getBlock()->end() && 835 "Reached BB end within common tail"); 836 } 837 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 838 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 839 NextCommonInsts[i] = ++Pos; 840 } 841 MI.setDebugLoc(DL); 842 } 843 844 if (UpdateLiveIns) { 845 LivePhysRegs NewLiveIns(*TRI); 846 computeLiveIns(NewLiveIns, *MBB); 847 LiveRegs.init(*TRI); 848 849 // The flag merging may lead to some register uses no longer using the 850 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. 851 for (MachineBasicBlock *Pred : MBB->predecessors()) { 852 LiveRegs.clear(); 853 LiveRegs.addLiveOuts(*Pred); 854 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); 855 for (Register Reg : NewLiveIns) { 856 if (!LiveRegs.available(*MRI, Reg)) 857 continue; 858 DebugLoc DL; 859 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), 860 Reg); 861 } 862 } 863 864 MBB->clearLiveIns(); 865 addLiveIns(*MBB, NewLiveIns); 866 } 867 } 868 869 // See if any of the blocks in MergePotentials (which all have SuccBB as a 870 // successor, or all have no successor if it is null) can be tail-merged. 871 // If there is a successor, any blocks in MergePotentials that are not 872 // tail-merged and are not immediately before Succ must have an unconditional 873 // branch to Succ added (but the predecessor/successor lists need no 874 // adjustment). The lone predecessor of Succ that falls through into Succ, 875 // if any, is given in PredBB. 876 // MinCommonTailLength - Except for the special cases below, tail-merge if 877 // there are at least this many instructions in common. 878 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 879 MachineBasicBlock *PredBB, 880 unsigned MinCommonTailLength) { 881 bool MadeChange = false; 882 883 LLVM_DEBUG( 884 dbgs() << "\nTryTailMergeBlocks: "; 885 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs() 886 << printMBBReference(*MergePotentials[i].getBlock()) 887 << (i == e - 1 ? "" : ", "); 888 dbgs() << "\n"; if (SuccBB) { 889 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; 890 if (PredBB) 891 dbgs() << " which has fall-through from " 892 << printMBBReference(*PredBB) << "\n"; 893 } dbgs() << "Looking for common tails of at least " 894 << MinCommonTailLength << " instruction" 895 << (MinCommonTailLength == 1 ? "" : "s") << '\n';); 896 897 // Sort by hash value so that blocks with identical end sequences sort 898 // together. 899 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 900 901 // Walk through equivalence sets looking for actual exact matches. 902 while (MergePotentials.size() > 1) { 903 unsigned CurHash = MergePotentials.back().getHash(); 904 905 // Build SameTails, identifying the set of blocks with this hash code 906 // and with the maximum number of instructions in common. 907 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 908 MinCommonTailLength, 909 SuccBB, PredBB); 910 911 // If we didn't find any pair that has at least MinCommonTailLength 912 // instructions in common, remove all blocks with this hash code and retry. 913 if (SameTails.empty()) { 914 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 915 continue; 916 } 917 918 // If one of the blocks is the entire common tail (and is not the entry 919 // block/an EH pad, which we can't jump to), we can treat all blocks with 920 // this same tail at once. Use PredBB if that is one of the possibilities, 921 // as that will not introduce any extra branches. 922 MachineBasicBlock *EntryBB = 923 &MergePotentials.front().getBlock()->getParent()->front(); 924 unsigned commonTailIndex = SameTails.size(); 925 // If there are two blocks, check to see if one can be made to fall through 926 // into the other. 927 if (SameTails.size() == 2 && 928 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 929 SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad()) 930 commonTailIndex = 1; 931 else if (SameTails.size() == 2 && 932 SameTails[1].getBlock()->isLayoutSuccessor( 933 SameTails[0].getBlock()) && 934 SameTails[0].tailIsWholeBlock() && 935 !SameTails[0].getBlock()->isEHPad()) 936 commonTailIndex = 0; 937 else { 938 // Otherwise just pick one, favoring the fall-through predecessor if 939 // there is one. 940 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 941 MachineBasicBlock *MBB = SameTails[i].getBlock(); 942 if ((MBB == EntryBB || MBB->isEHPad()) && 943 SameTails[i].tailIsWholeBlock()) 944 continue; 945 if (MBB == PredBB) { 946 commonTailIndex = i; 947 break; 948 } 949 if (SameTails[i].tailIsWholeBlock()) 950 commonTailIndex = i; 951 } 952 } 953 954 if (commonTailIndex == SameTails.size() || 955 (SameTails[commonTailIndex].getBlock() == PredBB && 956 !SameTails[commonTailIndex].tailIsWholeBlock())) { 957 // None of the blocks consist entirely of the common tail. 958 // Split a block so that one does. 959 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 960 maxCommonTailLength, commonTailIndex)) { 961 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 962 continue; 963 } 964 } 965 966 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 967 968 // Recompute common tail MBB's edge weights and block frequency. 969 setCommonTailEdgeWeights(*MBB); 970 971 // Merge debug locations, MMOs and undef flags across identical instructions 972 // for common tail. 973 mergeCommonTails(commonTailIndex); 974 975 // MBB is common tail. Adjust all other BB's to jump to this one. 976 // Traversal must be forwards so erases work. 977 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) 978 << " for "); 979 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 980 if (commonTailIndex == i) 981 continue; 982 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) 983 << (i == e - 1 ? "" : ", ")); 984 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 985 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); 986 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 987 MergePotentials.erase(SameTails[i].getMPIter()); 988 } 989 LLVM_DEBUG(dbgs() << "\n"); 990 // We leave commonTailIndex in the worklist in case there are other blocks 991 // that match it with a smaller number of instructions. 992 MadeChange = true; 993 } 994 return MadeChange; 995 } 996 997 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 998 bool MadeChange = false; 999 if (!EnableTailMerge) 1000 return MadeChange; 1001 1002 // First find blocks with no successors. 1003 // Block placement may create new tail merging opportunities for these blocks. 1004 MergePotentials.clear(); 1005 for (MachineBasicBlock &MBB : MF) { 1006 if (MergePotentials.size() == TailMergeThreshold) 1007 break; 1008 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 1009 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 1010 } 1011 1012 // If this is a large problem, avoid visiting the same basic blocks 1013 // multiple times. 1014 if (MergePotentials.size() == TailMergeThreshold) 1015 for (const MergePotentialsElt &Elt : MergePotentials) 1016 TriedMerging.insert(Elt.getBlock()); 1017 1018 // See if we can do any tail merging on those. 1019 if (MergePotentials.size() >= 2) 1020 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 1021 1022 // Look at blocks (IBB) with multiple predecessors (PBB). 1023 // We change each predecessor to a canonical form, by 1024 // (1) temporarily removing any unconditional branch from the predecessor 1025 // to IBB, and 1026 // (2) alter conditional branches so they branch to the other block 1027 // not IBB; this may require adding back an unconditional branch to IBB 1028 // later, where there wasn't one coming in. E.g. 1029 // Bcc IBB 1030 // fallthrough to QBB 1031 // here becomes 1032 // Bncc QBB 1033 // with a conceptual B to IBB after that, which never actually exists. 1034 // With those changes, we see whether the predecessors' tails match, 1035 // and merge them if so. We change things out of canonical form and 1036 // back to the way they were later in the process. (OptimizeBranches 1037 // would undo some of this, but we can't use it, because we'd get into 1038 // a compile-time infinite loop repeatedly doing and undoing the same 1039 // transformations.) 1040 1041 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1042 I != E; ++I) { 1043 if (I->pred_size() < 2) continue; 1044 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1045 MachineBasicBlock *IBB = &*I; 1046 MachineBasicBlock *PredBB = &*std::prev(I); 1047 MergePotentials.clear(); 1048 MachineLoop *ML; 1049 1050 // Bail if merging after placement and IBB is the loop header because 1051 // -- If merging predecessors that belong to the same loop as IBB, the 1052 // common tail of merged predecessors may become the loop top if block 1053 // placement is called again and the predecessors may branch to this common 1054 // tail and require more branches. This can be relaxed if 1055 // MachineBlockPlacement::findBestLoopTop is more flexible. 1056 // --If merging predecessors that do not belong to the same loop as IBB, the 1057 // loop info of IBB's loop and the other loops may be affected. Calling the 1058 // block placement again may make big change to the layout and eliminate the 1059 // reason to do tail merging here. 1060 if (AfterBlockPlacement && MLI) { 1061 ML = MLI->getLoopFor(IBB); 1062 if (ML && IBB == ML->getHeader()) 1063 continue; 1064 } 1065 1066 for (MachineBasicBlock *PBB : I->predecessors()) { 1067 if (MergePotentials.size() == TailMergeThreshold) 1068 break; 1069 1070 if (TriedMerging.count(PBB)) 1071 continue; 1072 1073 // Skip blocks that loop to themselves, can't tail merge these. 1074 if (PBB == IBB) 1075 continue; 1076 1077 // Visit each predecessor only once. 1078 if (!UniquePreds.insert(PBB).second) 1079 continue; 1080 1081 // Skip blocks which may jump to a landing pad or jump from an asm blob. 1082 // Can't tail merge these. 1083 if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr()) 1084 continue; 1085 1086 // After block placement, only consider predecessors that belong to the 1087 // same loop as IBB. The reason is the same as above when skipping loop 1088 // header. 1089 if (AfterBlockPlacement && MLI) 1090 if (ML != MLI->getLoopFor(PBB)) 1091 continue; 1092 1093 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1094 SmallVector<MachineOperand, 4> Cond; 1095 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1096 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1097 // branch. 1098 SmallVector<MachineOperand, 4> NewCond(Cond); 1099 if (!Cond.empty() && TBB == IBB) { 1100 if (TII->reverseBranchCondition(NewCond)) 1101 continue; 1102 // This is the QBB case described above 1103 if (!FBB) { 1104 auto Next = ++PBB->getIterator(); 1105 if (Next != MF.end()) 1106 FBB = &*Next; 1107 } 1108 } 1109 1110 // Remove the unconditional branch at the end, if any. 1111 if (TBB && (Cond.empty() || FBB)) { 1112 DebugLoc dl = PBB->findBranchDebugLoc(); 1113 TII->removeBranch(*PBB); 1114 if (!Cond.empty()) 1115 // reinsert conditional branch only, for now 1116 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1117 NewCond, dl); 1118 } 1119 1120 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1121 } 1122 } 1123 1124 // If this is a large problem, avoid visiting the same basic blocks multiple 1125 // times. 1126 if (MergePotentials.size() == TailMergeThreshold) 1127 for (MergePotentialsElt &Elt : MergePotentials) 1128 TriedMerging.insert(Elt.getBlock()); 1129 1130 if (MergePotentials.size() >= 2) 1131 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1132 1133 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1134 // result of removing blocks in TryTailMergeBlocks. 1135 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1136 if (MergePotentials.size() == 1 && 1137 MergePotentials.begin()->getBlock() != PredBB) 1138 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1139 } 1140 1141 return MadeChange; 1142 } 1143 1144 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1145 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1146 BlockFrequency AccumulatedMBBFreq; 1147 1148 // Aggregate edge frequency of successor edge j: 1149 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1150 // where bb is a basic block that is in SameTails. 1151 for (const auto &Src : SameTails) { 1152 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1153 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1154 AccumulatedMBBFreq += BlockFreq; 1155 1156 // It is not necessary to recompute edge weights if TailBB has less than two 1157 // successors. 1158 if (TailMBB.succ_size() <= 1) 1159 continue; 1160 1161 auto EdgeFreq = EdgeFreqLs.begin(); 1162 1163 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1164 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1165 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1166 } 1167 1168 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1169 1170 if (TailMBB.succ_size() <= 1) 1171 return; 1172 1173 auto SumEdgeFreq = 1174 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1175 .getFrequency(); 1176 auto EdgeFreq = EdgeFreqLs.begin(); 1177 1178 if (SumEdgeFreq > 0) { 1179 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1180 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1181 auto Prob = BranchProbability::getBranchProbability( 1182 EdgeFreq->getFrequency(), SumEdgeFreq); 1183 TailMBB.setSuccProbability(SuccI, Prob); 1184 } 1185 } 1186 } 1187 1188 //===----------------------------------------------------------------------===// 1189 // Branch Optimization 1190 //===----------------------------------------------------------------------===// 1191 1192 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1193 bool MadeChange = false; 1194 1195 // Make sure blocks are numbered in order 1196 MF.RenumberBlocks(); 1197 // Renumbering blocks alters EH scope membership, recalculate it. 1198 EHScopeMembership = getEHScopeMembership(MF); 1199 1200 for (MachineBasicBlock &MBB : 1201 llvm::make_early_inc_range(llvm::drop_begin(MF))) { 1202 MadeChange |= OptimizeBlock(&MBB); 1203 1204 // If it is dead, remove it. 1205 if (MBB.pred_empty()) { 1206 RemoveDeadBlock(&MBB); 1207 MadeChange = true; 1208 ++NumDeadBlocks; 1209 } 1210 } 1211 1212 return MadeChange; 1213 } 1214 1215 // Blocks should be considered empty if they contain only debug info; 1216 // else the debug info would affect codegen. 1217 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1218 return MBB->getFirstNonDebugInstr(true) == MBB->end(); 1219 } 1220 1221 // Blocks with only debug info and branches should be considered the same 1222 // as blocks with only branches. 1223 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1224 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1225 assert(I != MBB->end() && "empty block!"); 1226 return I->isBranch(); 1227 } 1228 1229 /// IsBetterFallthrough - Return true if it would be clearly better to 1230 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1231 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1232 /// result in infinite loops. 1233 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1234 MachineBasicBlock *MBB2) { 1235 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock"); 1236 1237 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1238 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1239 // optimize branches that branch to either a return block or an assert block 1240 // into a fallthrough to the return. 1241 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1242 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1243 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1244 return false; 1245 1246 // If there is a clear successor ordering we make sure that one block 1247 // will fall through to the next 1248 if (MBB1->isSuccessor(MBB2)) return true; 1249 if (MBB2->isSuccessor(MBB1)) return false; 1250 1251 return MBB2I->isCall() && !MBB1I->isCall(); 1252 } 1253 1254 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1255 /// instructions on the block. 1256 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1257 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1258 if (I != MBB.end() && I->isBranch()) 1259 return I->getDebugLoc(); 1260 return DebugLoc(); 1261 } 1262 1263 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, 1264 MachineBasicBlock &MBB, 1265 MachineBasicBlock &PredMBB) { 1266 auto InsertBefore = PredMBB.getFirstTerminator(); 1267 for (MachineInstr &MI : MBB.instrs()) 1268 if (MI.isDebugInstr()) { 1269 TII->duplicate(PredMBB, InsertBefore, MI); 1270 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: " 1271 << MI); 1272 } 1273 } 1274 1275 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, 1276 MachineBasicBlock &MBB, 1277 MachineBasicBlock &SuccMBB) { 1278 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); 1279 for (MachineInstr &MI : MBB.instrs()) 1280 if (MI.isDebugInstr()) { 1281 TII->duplicate(SuccMBB, InsertBefore, MI); 1282 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: " 1283 << MI); 1284 } 1285 } 1286 1287 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such 1288 // a basic block is removed we would lose the debug information unless we have 1289 // copied the information to a predecessor/successor. 1290 // 1291 // TODO: This function only handles some simple cases. An alternative would be 1292 // to run a heavier analysis, such as the LiveDebugValues pass, before we do 1293 // branch folding. 1294 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, 1295 MachineBasicBlock &MBB) { 1296 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); 1297 // If this MBB is the only predecessor of a successor it is legal to copy 1298 // DBG_VALUE instructions to the beginning of the successor. 1299 for (MachineBasicBlock *SuccBB : MBB.successors()) 1300 if (SuccBB->pred_size() == 1) 1301 copyDebugInfoToSuccessor(TII, MBB, *SuccBB); 1302 // If this MBB is the only successor of a predecessor it is legal to copy the 1303 // DBG_VALUE instructions to the end of the predecessor (just before the 1304 // terminators, assuming that the terminator isn't affecting the DBG_VALUE). 1305 for (MachineBasicBlock *PredBB : MBB.predecessors()) 1306 if (PredBB->succ_size() == 1) 1307 copyDebugInfoToPredecessor(TII, MBB, *PredBB); 1308 } 1309 1310 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1311 bool MadeChange = false; 1312 MachineFunction &MF = *MBB->getParent(); 1313 ReoptimizeBlock: 1314 1315 MachineFunction::iterator FallThrough = MBB->getIterator(); 1316 ++FallThrough; 1317 1318 // Make sure MBB and FallThrough belong to the same EH scope. 1319 bool SameEHScope = true; 1320 if (!EHScopeMembership.empty() && FallThrough != MF.end()) { 1321 auto MBBEHScope = EHScopeMembership.find(MBB); 1322 assert(MBBEHScope != EHScopeMembership.end()); 1323 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); 1324 assert(FallThroughEHScope != EHScopeMembership.end()); 1325 SameEHScope = MBBEHScope->second == FallThroughEHScope->second; 1326 } 1327 1328 // Analyze the branch in the current block. As a side-effect, this may cause 1329 // the block to become empty. 1330 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1331 SmallVector<MachineOperand, 4> CurCond; 1332 bool CurUnAnalyzable = 1333 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1334 1335 // If this block is empty, make everyone use its fall-through, not the block 1336 // explicitly. Landing pads should not do this since the landing-pad table 1337 // points to this block. Blocks with their addresses taken shouldn't be 1338 // optimized away. 1339 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1340 SameEHScope) { 1341 salvageDebugInfoFromEmptyBlock(TII, *MBB); 1342 // Dead block? Leave for cleanup later. 1343 if (MBB->pred_empty()) return MadeChange; 1344 1345 if (FallThrough == MF.end()) { 1346 // TODO: Simplify preds to not branch here if possible! 1347 } else if (FallThrough->isEHPad()) { 1348 // Don't rewrite to a landing pad fallthough. That could lead to the case 1349 // where a BB jumps to more than one landing pad. 1350 // TODO: Is it ever worth rewriting predecessors which don't already 1351 // jump to a landing pad, and so can safely jump to the fallthrough? 1352 } else if (MBB->isSuccessor(&*FallThrough)) { 1353 // Rewrite all predecessors of the old block to go to the fallthrough 1354 // instead. 1355 while (!MBB->pred_empty()) { 1356 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1357 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1358 } 1359 // If MBB was the target of a jump table, update jump tables to go to the 1360 // fallthrough instead. 1361 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1362 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1363 MadeChange = true; 1364 } 1365 return MadeChange; 1366 } 1367 1368 // Check to see if we can simplify the terminator of the block before this 1369 // one. 1370 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1371 1372 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1373 SmallVector<MachineOperand, 4> PriorCond; 1374 bool PriorUnAnalyzable = 1375 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1376 if (!PriorUnAnalyzable) { 1377 // If the previous branch is conditional and both conditions go to the same 1378 // destination, remove the branch, replacing it with an unconditional one or 1379 // a fall-through. 1380 if (PriorTBB && PriorTBB == PriorFBB) { 1381 DebugLoc dl = getBranchDebugLoc(PrevBB); 1382 TII->removeBranch(PrevBB); 1383 PriorCond.clear(); 1384 if (PriorTBB != MBB) 1385 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1386 MadeChange = true; 1387 ++NumBranchOpts; 1388 goto ReoptimizeBlock; 1389 } 1390 1391 // If the previous block unconditionally falls through to this block and 1392 // this block has no other predecessors, move the contents of this block 1393 // into the prior block. This doesn't usually happen when SimplifyCFG 1394 // has been used, but it can happen if tail merging splits a fall-through 1395 // predecessor of a block. 1396 // This has to check PrevBB->succ_size() because EH edges are ignored by 1397 // analyzeBranch. 1398 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1399 PrevBB.succ_size() == 1 && 1400 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1401 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1402 << "From MBB: " << *MBB); 1403 // Remove redundant DBG_VALUEs first. 1404 if (!PrevBB.empty()) { 1405 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1406 --PrevBBIter; 1407 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1408 // Check if DBG_VALUE at the end of PrevBB is identical to the 1409 // DBG_VALUE at the beginning of MBB. 1410 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1411 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { 1412 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1413 break; 1414 MachineInstr &DuplicateDbg = *MBBIter; 1415 ++MBBIter; -- PrevBBIter; 1416 DuplicateDbg.eraseFromParent(); 1417 } 1418 } 1419 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1420 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1421 assert(PrevBB.succ_empty()); 1422 PrevBB.transferSuccessors(MBB); 1423 MadeChange = true; 1424 return MadeChange; 1425 } 1426 1427 // If the previous branch *only* branches to *this* block (conditional or 1428 // not) remove the branch. 1429 if (PriorTBB == MBB && !PriorFBB) { 1430 TII->removeBranch(PrevBB); 1431 MadeChange = true; 1432 ++NumBranchOpts; 1433 goto ReoptimizeBlock; 1434 } 1435 1436 // If the prior block branches somewhere else on the condition and here if 1437 // the condition is false, remove the uncond second branch. 1438 if (PriorFBB == MBB) { 1439 DebugLoc dl = getBranchDebugLoc(PrevBB); 1440 TII->removeBranch(PrevBB); 1441 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1442 MadeChange = true; 1443 ++NumBranchOpts; 1444 goto ReoptimizeBlock; 1445 } 1446 1447 // If the prior block branches here on true and somewhere else on false, and 1448 // if the branch condition is reversible, reverse the branch to create a 1449 // fall-through. 1450 if (PriorTBB == MBB) { 1451 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1452 if (!TII->reverseBranchCondition(NewPriorCond)) { 1453 DebugLoc dl = getBranchDebugLoc(PrevBB); 1454 TII->removeBranch(PrevBB); 1455 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1456 MadeChange = true; 1457 ++NumBranchOpts; 1458 goto ReoptimizeBlock; 1459 } 1460 } 1461 1462 // If this block has no successors (e.g. it is a return block or ends with 1463 // a call to a no-return function like abort or __cxa_throw) and if the pred 1464 // falls through into this block, and if it would otherwise fall through 1465 // into the block after this, move this block to the end of the function. 1466 // 1467 // We consider it more likely that execution will stay in the function (e.g. 1468 // due to loops) than it is to exit it. This asserts in loops etc, moving 1469 // the assert condition out of the loop body. 1470 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1471 MachineFunction::iterator(PriorTBB) == FallThrough && 1472 !MBB->canFallThrough()) { 1473 bool DoTransform = true; 1474 1475 // We have to be careful that the succs of PredBB aren't both no-successor 1476 // blocks. If neither have successors and if PredBB is the second from 1477 // last block in the function, we'd just keep swapping the two blocks for 1478 // last. Only do the swap if one is clearly better to fall through than 1479 // the other. 1480 if (FallThrough == --MF.end() && 1481 !IsBetterFallthrough(PriorTBB, MBB)) 1482 DoTransform = false; 1483 1484 if (DoTransform) { 1485 // Reverse the branch so we will fall through on the previous true cond. 1486 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1487 if (!TII->reverseBranchCondition(NewPriorCond)) { 1488 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1489 << "To make fallthrough to: " << *PriorTBB << "\n"); 1490 1491 DebugLoc dl = getBranchDebugLoc(PrevBB); 1492 TII->removeBranch(PrevBB); 1493 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1494 1495 // Move this block to the end of the function. 1496 MBB->moveAfter(&MF.back()); 1497 MadeChange = true; 1498 ++NumBranchOpts; 1499 return MadeChange; 1500 } 1501 } 1502 } 1503 } 1504 1505 bool OptForSize = 1506 MF.getFunction().hasOptSize() || 1507 llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo); 1508 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) { 1509 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1510 // direction, thereby defeating careful block placement and regressing 1511 // performance. Therefore, only consider this for optsize functions. 1512 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1513 if (TII->isUnconditionalTailCall(TailCall)) { 1514 MachineBasicBlock *Pred = *MBB->pred_begin(); 1515 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1516 SmallVector<MachineOperand, 4> PredCond; 1517 bool PredAnalyzable = 1518 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1519 1520 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && 1521 PredTBB != PredFBB) { 1522 // The predecessor has a conditional branch to this block which consists 1523 // of only a tail call. Try to fold the tail call into the conditional 1524 // branch. 1525 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1526 // TODO: It would be nice if analyzeBranch() could provide a pointer 1527 // to the branch instruction so replaceBranchWithTailCall() doesn't 1528 // have to search for it. 1529 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1530 ++NumTailCalls; 1531 Pred->removeSuccessor(MBB); 1532 MadeChange = true; 1533 return MadeChange; 1534 } 1535 } 1536 // If the predecessor is falling through to this block, we could reverse 1537 // the branch condition and fold the tail call into that. However, after 1538 // that we might have to re-arrange the CFG to fall through to the other 1539 // block and there is a high risk of regressing code size rather than 1540 // improving it. 1541 } 1542 } 1543 1544 if (!CurUnAnalyzable) { 1545 // If this is a two-way branch, and the FBB branches to this block, reverse 1546 // the condition so the single-basic-block loop is faster. Instead of: 1547 // Loop: xxx; jcc Out; jmp Loop 1548 // we want: 1549 // Loop: xxx; jncc Loop; jmp Out 1550 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1551 SmallVector<MachineOperand, 4> NewCond(CurCond); 1552 if (!TII->reverseBranchCondition(NewCond)) { 1553 DebugLoc dl = getBranchDebugLoc(*MBB); 1554 TII->removeBranch(*MBB); 1555 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1556 MadeChange = true; 1557 ++NumBranchOpts; 1558 goto ReoptimizeBlock; 1559 } 1560 } 1561 1562 // If this branch is the only thing in its block, see if we can forward 1563 // other blocks across it. 1564 if (CurTBB && CurCond.empty() && !CurFBB && 1565 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1566 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1567 DebugLoc dl = getBranchDebugLoc(*MBB); 1568 // This block may contain just an unconditional branch. Because there can 1569 // be 'non-branch terminators' in the block, try removing the branch and 1570 // then seeing if the block is empty. 1571 TII->removeBranch(*MBB); 1572 // If the only things remaining in the block are debug info, remove these 1573 // as well, so this will behave the same as an empty block in non-debug 1574 // mode. 1575 if (IsEmptyBlock(MBB)) { 1576 // Make the block empty, losing the debug info (we could probably 1577 // improve this in some cases.) 1578 MBB->erase(MBB->begin(), MBB->end()); 1579 } 1580 // If this block is just an unconditional branch to CurTBB, we can 1581 // usually completely eliminate the block. The only case we cannot 1582 // completely eliminate the block is when the block before this one 1583 // falls through into MBB and we can't understand the prior block's branch 1584 // condition. 1585 if (MBB->empty()) { 1586 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1587 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1588 !PrevBB.isSuccessor(MBB)) { 1589 // If the prior block falls through into us, turn it into an 1590 // explicit branch to us to make updates simpler. 1591 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1592 PriorTBB != MBB && PriorFBB != MBB) { 1593 if (!PriorTBB) { 1594 assert(PriorCond.empty() && !PriorFBB && 1595 "Bad branch analysis"); 1596 PriorTBB = MBB; 1597 } else { 1598 assert(!PriorFBB && "Machine CFG out of date!"); 1599 PriorFBB = MBB; 1600 } 1601 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1602 TII->removeBranch(PrevBB); 1603 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1604 } 1605 1606 // Iterate through all the predecessors, revectoring each in-turn. 1607 size_t PI = 0; 1608 bool DidChange = false; 1609 bool HasBranchToSelf = false; 1610 while(PI != MBB->pred_size()) { 1611 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1612 if (PMBB == MBB) { 1613 // If this block has an uncond branch to itself, leave it. 1614 ++PI; 1615 HasBranchToSelf = true; 1616 } else { 1617 DidChange = true; 1618 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1619 // If this change resulted in PMBB ending in a conditional 1620 // branch where both conditions go to the same destination, 1621 // change this to an unconditional branch. 1622 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1623 SmallVector<MachineOperand, 4> NewCurCond; 1624 bool NewCurUnAnalyzable = TII->analyzeBranch( 1625 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1626 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1627 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1628 TII->removeBranch(*PMBB); 1629 NewCurCond.clear(); 1630 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1631 MadeChange = true; 1632 ++NumBranchOpts; 1633 } 1634 } 1635 } 1636 1637 // Change any jumptables to go to the new MBB. 1638 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1639 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1640 if (DidChange) { 1641 ++NumBranchOpts; 1642 MadeChange = true; 1643 if (!HasBranchToSelf) return MadeChange; 1644 } 1645 } 1646 } 1647 1648 // Add the branch back if the block is more than just an uncond branch. 1649 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1650 } 1651 } 1652 1653 // If the prior block doesn't fall through into this block, and if this 1654 // block doesn't fall through into some other block, see if we can find a 1655 // place to move this block where a fall-through will happen. 1656 if (!PrevBB.canFallThrough()) { 1657 // Now we know that there was no fall-through into this block, check to 1658 // see if it has a fall-through into its successor. 1659 bool CurFallsThru = MBB->canFallThrough(); 1660 1661 if (!MBB->isEHPad()) { 1662 // Check all the predecessors of this block. If one of them has no fall 1663 // throughs, and analyzeBranch thinks it _could_ fallthrough to this 1664 // block, move this block right after it. 1665 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1666 // Analyze the branch at the end of the pred. 1667 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1668 SmallVector<MachineOperand, 4> PredCond; 1669 if (PredBB != MBB && !PredBB->canFallThrough() && 1670 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1671 (PredTBB == MBB || PredFBB == MBB) && 1672 (!CurFallsThru || !CurTBB || !CurFBB) && 1673 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1674 // If the current block doesn't fall through, just move it. 1675 // If the current block can fall through and does not end with a 1676 // conditional branch, we need to append an unconditional jump to 1677 // the (current) next block. To avoid a possible compile-time 1678 // infinite loop, move blocks only backward in this case. 1679 // Also, if there are already 2 branches here, we cannot add a third; 1680 // this means we have the case 1681 // Bcc next 1682 // B elsewhere 1683 // next: 1684 if (CurFallsThru) { 1685 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1686 CurCond.clear(); 1687 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1688 } 1689 MBB->moveAfter(PredBB); 1690 MadeChange = true; 1691 goto ReoptimizeBlock; 1692 } 1693 } 1694 } 1695 1696 if (!CurFallsThru) { 1697 // Check analyzable branch-successors to see if we can move this block 1698 // before one. 1699 if (!CurUnAnalyzable) { 1700 for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) { 1701 if (!SuccBB) 1702 continue; 1703 // Analyze the branch at the end of the block before the succ. 1704 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1705 1706 // If this block doesn't already fall-through to that successor, and 1707 // if the succ doesn't already have a block that can fall through into 1708 // it, we can arrange for the fallthrough to happen. 1709 if (SuccBB != MBB && &*SuccPrev != MBB && 1710 !SuccPrev->canFallThrough()) { 1711 MBB->moveBefore(SuccBB); 1712 MadeChange = true; 1713 goto ReoptimizeBlock; 1714 } 1715 } 1716 } 1717 1718 // Okay, there is no really great place to put this block. If, however, 1719 // the block before this one would be a fall-through if this block were 1720 // removed, move this block to the end of the function. There is no real 1721 // advantage in "falling through" to an EH block, so we don't want to 1722 // perform this transformation for that case. 1723 // 1724 // Also, Windows EH introduced the possibility of an arbitrary number of 1725 // successors to a given block. The analyzeBranch call does not consider 1726 // exception handling and so we can get in a state where a block 1727 // containing a call is followed by multiple EH blocks that would be 1728 // rotated infinitely at the end of the function if the transformation 1729 // below were performed for EH "FallThrough" blocks. Therefore, even if 1730 // that appears not to be happening anymore, we should assume that it is 1731 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1732 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1733 SmallVector<MachineOperand, 4> PrevCond; 1734 if (FallThrough != MF.end() && 1735 !FallThrough->isEHPad() && 1736 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1737 PrevBB.isSuccessor(&*FallThrough)) { 1738 MBB->moveAfter(&MF.back()); 1739 MadeChange = true; 1740 return MadeChange; 1741 } 1742 } 1743 } 1744 1745 return MadeChange; 1746 } 1747 1748 //===----------------------------------------------------------------------===// 1749 // Hoist Common Code 1750 //===----------------------------------------------------------------------===// 1751 1752 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1753 bool MadeChange = false; 1754 for (MachineBasicBlock &MBB : llvm::make_early_inc_range(MF)) 1755 MadeChange |= HoistCommonCodeInSuccs(&MBB); 1756 1757 return MadeChange; 1758 } 1759 1760 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1761 /// its 'true' successor. 1762 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1763 MachineBasicBlock *TrueBB) { 1764 for (MachineBasicBlock *SuccBB : BB->successors()) 1765 if (SuccBB != TrueBB) 1766 return SuccBB; 1767 return nullptr; 1768 } 1769 1770 template <class Container> 1771 static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI, 1772 Container &Set) { 1773 if (Reg.isPhysical()) { 1774 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1775 Set.insert(*AI); 1776 } else { 1777 Set.insert(Reg); 1778 } 1779 } 1780 1781 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1782 /// in successors to. The location is usually just before the terminator, 1783 /// however if the terminator is a conditional branch and its previous 1784 /// instruction is the flag setting instruction, the previous instruction is 1785 /// the preferred location. This function also gathers uses and defs of the 1786 /// instructions from the insertion point to the end of the block. The data is 1787 /// used by HoistCommonCodeInSuccs to ensure safety. 1788 static 1789 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1790 const TargetInstrInfo *TII, 1791 const TargetRegisterInfo *TRI, 1792 SmallSet<Register, 4> &Uses, 1793 SmallSet<Register, 4> &Defs) { 1794 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1795 if (!TII->isUnpredicatedTerminator(*Loc)) 1796 return MBB->end(); 1797 1798 for (const MachineOperand &MO : Loc->operands()) { 1799 if (!MO.isReg()) 1800 continue; 1801 Register Reg = MO.getReg(); 1802 if (!Reg) 1803 continue; 1804 if (MO.isUse()) { 1805 addRegAndItsAliases(Reg, TRI, Uses); 1806 } else { 1807 if (!MO.isDead()) 1808 // Don't try to hoist code in the rare case the terminator defines a 1809 // register that is later used. 1810 return MBB->end(); 1811 1812 // If the terminator defines a register, make sure we don't hoist 1813 // the instruction whose def might be clobbered by the terminator. 1814 addRegAndItsAliases(Reg, TRI, Defs); 1815 } 1816 } 1817 1818 if (Uses.empty()) 1819 return Loc; 1820 // If the terminator is the only instruction in the block and Uses is not 1821 // empty (or we would have returned above), we can still safely hoist 1822 // instructions just before the terminator as long as the Defs/Uses are not 1823 // violated (which is checked in HoistCommonCodeInSuccs). 1824 if (Loc == MBB->begin()) 1825 return Loc; 1826 1827 // The terminator is probably a conditional branch, try not to separate the 1828 // branch from condition setting instruction. 1829 MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin()); 1830 1831 bool IsDef = false; 1832 for (const MachineOperand &MO : PI->operands()) { 1833 // If PI has a regmask operand, it is probably a call. Separate away. 1834 if (MO.isRegMask()) 1835 return Loc; 1836 if (!MO.isReg() || MO.isUse()) 1837 continue; 1838 Register Reg = MO.getReg(); 1839 if (!Reg) 1840 continue; 1841 if (Uses.count(Reg)) { 1842 IsDef = true; 1843 break; 1844 } 1845 } 1846 if (!IsDef) 1847 // The condition setting instruction is not just before the conditional 1848 // branch. 1849 return Loc; 1850 1851 // Be conservative, don't insert instruction above something that may have 1852 // side-effects. And since it's potentially bad to separate flag setting 1853 // instruction from the conditional branch, just abort the optimization 1854 // completely. 1855 // Also avoid moving code above predicated instruction since it's hard to 1856 // reason about register liveness with predicated instruction. 1857 bool DontMoveAcrossStore = true; 1858 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1859 return MBB->end(); 1860 1861 // Find out what registers are live. Note this routine is ignoring other live 1862 // registers which are only used by instructions in successor blocks. 1863 for (const MachineOperand &MO : PI->operands()) { 1864 if (!MO.isReg()) 1865 continue; 1866 Register Reg = MO.getReg(); 1867 if (!Reg) 1868 continue; 1869 if (MO.isUse()) { 1870 addRegAndItsAliases(Reg, TRI, Uses); 1871 } else { 1872 if (Uses.erase(Reg)) { 1873 if (Register::isPhysicalRegister(Reg)) { 1874 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1875 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1876 } 1877 } 1878 addRegAndItsAliases(Reg, TRI, Defs); 1879 } 1880 } 1881 1882 return PI; 1883 } 1884 1885 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1886 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1887 SmallVector<MachineOperand, 4> Cond; 1888 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1889 return false; 1890 1891 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1892 if (!FBB) 1893 // Malformed bcc? True and false blocks are the same? 1894 return false; 1895 1896 // Restrict the optimization to cases where MBB is the only predecessor, 1897 // it is an obvious win. 1898 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1899 return false; 1900 1901 // Find a suitable position to hoist the common instructions to. Also figure 1902 // out which registers are used or defined by instructions from the insertion 1903 // point to the end of the block. 1904 SmallSet<Register, 4> Uses, Defs; 1905 MachineBasicBlock::iterator Loc = 1906 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1907 if (Loc == MBB->end()) 1908 return false; 1909 1910 bool HasDups = false; 1911 SmallSet<Register, 4> ActiveDefsSet, AllDefsSet; 1912 MachineBasicBlock::iterator TIB = TBB->begin(); 1913 MachineBasicBlock::iterator FIB = FBB->begin(); 1914 MachineBasicBlock::iterator TIE = TBB->end(); 1915 MachineBasicBlock::iterator FIE = FBB->end(); 1916 while (TIB != TIE && FIB != FIE) { 1917 // Skip dbg_value instructions. These do not count. 1918 TIB = skipDebugInstructionsForward(TIB, TIE, false); 1919 FIB = skipDebugInstructionsForward(FIB, FIE, false); 1920 if (TIB == TIE || FIB == FIE) 1921 break; 1922 1923 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 1924 break; 1925 1926 if (TII->isPredicated(*TIB)) 1927 // Hard to reason about register liveness with predicated instruction. 1928 break; 1929 1930 bool IsSafe = true; 1931 for (MachineOperand &MO : TIB->operands()) { 1932 // Don't attempt to hoist instructions with register masks. 1933 if (MO.isRegMask()) { 1934 IsSafe = false; 1935 break; 1936 } 1937 if (!MO.isReg()) 1938 continue; 1939 Register Reg = MO.getReg(); 1940 if (!Reg) 1941 continue; 1942 if (MO.isDef()) { 1943 if (Uses.count(Reg)) { 1944 // Avoid clobbering a register that's used by the instruction at 1945 // the point of insertion. 1946 IsSafe = false; 1947 break; 1948 } 1949 1950 if (Defs.count(Reg) && !MO.isDead()) { 1951 // Don't hoist the instruction if the def would be clobber by the 1952 // instruction at the point insertion. FIXME: This is overly 1953 // conservative. It should be possible to hoist the instructions 1954 // in BB2 in the following example: 1955 // BB1: 1956 // r1, eflag = op1 r2, r3 1957 // brcc eflag 1958 // 1959 // BB2: 1960 // r1 = op2, ... 1961 // = op3, killed r1 1962 IsSafe = false; 1963 break; 1964 } 1965 } else if (!ActiveDefsSet.count(Reg)) { 1966 if (Defs.count(Reg)) { 1967 // Use is defined by the instruction at the point of insertion. 1968 IsSafe = false; 1969 break; 1970 } 1971 1972 if (MO.isKill() && Uses.count(Reg)) 1973 // Kills a register that's read by the instruction at the point of 1974 // insertion. Remove the kill marker. 1975 MO.setIsKill(false); 1976 } 1977 } 1978 if (!IsSafe) 1979 break; 1980 1981 bool DontMoveAcrossStore = true; 1982 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 1983 break; 1984 1985 // Remove kills from ActiveDefsSet, these registers had short live ranges. 1986 for (const MachineOperand &MO : TIB->operands()) { 1987 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1988 continue; 1989 Register Reg = MO.getReg(); 1990 if (!Reg) 1991 continue; 1992 if (!AllDefsSet.count(Reg)) { 1993 continue; 1994 } 1995 if (Reg.isPhysical()) { 1996 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1997 ActiveDefsSet.erase(*AI); 1998 } else { 1999 ActiveDefsSet.erase(Reg); 2000 } 2001 } 2002 2003 // Track local defs so we can update liveins. 2004 for (const MachineOperand &MO : TIB->operands()) { 2005 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 2006 continue; 2007 Register Reg = MO.getReg(); 2008 if (!Reg || Reg.isVirtual()) 2009 continue; 2010 addRegAndItsAliases(Reg, TRI, ActiveDefsSet); 2011 addRegAndItsAliases(Reg, TRI, AllDefsSet); 2012 } 2013 2014 HasDups = true; 2015 ++TIB; 2016 ++FIB; 2017 } 2018 2019 if (!HasDups) 2020 return false; 2021 2022 MBB->splice(Loc, TBB, TBB->begin(), TIB); 2023 FBB->erase(FBB->begin(), FIB); 2024 2025 if (UpdateLiveIns) { 2026 recomputeLiveIns(*TBB); 2027 recomputeLiveIns(*FBB); 2028 } 2029 2030 ++NumHoist; 2031 return true; 2032 } 2033