1 //===-- BranchFolding.cpp - Fold machine code branch instructions ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass forwards branches to unconditional branches to make them branch 11 // directly to the target block. This pass often results in dead MBB's, which 12 // it then removes. 13 // 14 // Note that this pass must be run after register allocation, it cannot handle 15 // SSA form. It also must handle virtual registers for targets that emit virtual 16 // ISA (e.g. NVPTX). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "BranchFolding.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetInstrInfo.h" 42 #include "llvm/Target/TargetRegisterInfo.h" 43 #include "llvm/Target/TargetSubtargetInfo.h" 44 #include <algorithm> 45 using namespace llvm; 46 47 #define DEBUG_TYPE "branchfolding" 48 49 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 50 STATISTIC(NumBranchOpts, "Number of branches optimized"); 51 STATISTIC(NumTailMerge , "Number of block tails merged"); 52 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 53 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 54 55 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 56 cl::init(cl::BOU_UNSET), cl::Hidden); 57 58 // Throttle for huge numbers of predecessors (compile speed problems) 59 static cl::opt<unsigned> 60 TailMergeThreshold("tail-merge-threshold", 61 cl::desc("Max number of predecessors to consider tail merging"), 62 cl::init(150), cl::Hidden); 63 64 // Heuristic for tail merging (and, inversely, tail duplication). 65 // TODO: This should be replaced with a target query. 66 static cl::opt<unsigned> 67 TailMergeSize("tail-merge-size", 68 cl::desc("Min number of instructions to consider tail merging"), 69 cl::init(3), cl::Hidden); 70 71 namespace { 72 /// BranchFolderPass - Wrap branch folder in a machine function pass. 73 class BranchFolderPass : public MachineFunctionPass { 74 public: 75 static char ID; 76 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 77 78 bool runOnMachineFunction(MachineFunction &MF) override; 79 80 void getAnalysisUsage(AnalysisUsage &AU) const override { 81 AU.addRequired<MachineBlockFrequencyInfo>(); 82 AU.addRequired<MachineBranchProbabilityInfo>(); 83 AU.addRequired<TargetPassConfig>(); 84 MachineFunctionPass::getAnalysisUsage(AU); 85 } 86 }; 87 } 88 89 char BranchFolderPass::ID = 0; 90 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 91 92 INITIALIZE_PASS(BranchFolderPass, "branch-folder", 93 "Control Flow Optimizer", false, false) 94 95 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 96 if (skipFunction(*MF.getFunction())) 97 return false; 98 99 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 100 // TailMerge can create jump into if branches that make CFG irreducible for 101 // HW that requires structurized CFG. 102 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 103 PassConfig->getEnableTailMerge(); 104 BranchFolder::MBFIWrapper MBBFreqInfo( 105 getAnalysis<MachineBlockFrequencyInfo>()); 106 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 107 getAnalysis<MachineBranchProbabilityInfo>()); 108 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), 109 MF.getSubtarget().getRegisterInfo(), 110 getAnalysisIfAvailable<MachineModuleInfo>()); 111 } 112 113 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, 114 MBFIWrapper &FreqInfo, 115 const MachineBranchProbabilityInfo &ProbInfo, 116 unsigned MinTailLength) 117 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 118 MBBFreqInfo(FreqInfo), MBPI(ProbInfo) { 119 if (MinCommonTailLength == 0) 120 MinCommonTailLength = TailMergeSize; 121 switch (FlagEnableTailMerge) { 122 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; 123 case cl::BOU_TRUE: EnableTailMerge = true; break; 124 case cl::BOU_FALSE: EnableTailMerge = false; break; 125 } 126 } 127 128 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 129 assert(MBB->pred_empty() && "MBB must be dead!"); 130 DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 131 132 MachineFunction *MF = MBB->getParent(); 133 // drop all successors. 134 while (!MBB->succ_empty()) 135 MBB->removeSuccessor(MBB->succ_end()-1); 136 137 // Avoid matching if this pointer gets reused. 138 TriedMerging.erase(MBB); 139 140 // Remove the block. 141 MF->erase(MBB); 142 FuncletMembership.erase(MBB); 143 if (MLI) 144 MLI->removeBlock(MBB); 145 } 146 147 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 148 const TargetInstrInfo *tii, 149 const TargetRegisterInfo *tri, 150 MachineModuleInfo *mmi, 151 MachineLoopInfo *mli, bool AfterPlacement) { 152 if (!tii) return false; 153 154 TriedMerging.clear(); 155 156 AfterBlockPlacement = AfterPlacement; 157 TII = tii; 158 TRI = tri; 159 MMI = mmi; 160 MLI = mli; 161 162 MachineRegisterInfo &MRI = MF.getRegInfo(); 163 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 164 if (!UpdateLiveIns) 165 MRI.invalidateLiveness(); 166 167 // Fix CFG. The later algorithms expect it to be right. 168 bool MadeChange = false; 169 for (MachineBasicBlock &MBB : MF) { 170 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 171 SmallVector<MachineOperand, 4> Cond; 172 if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true)) 173 MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 174 } 175 176 // Recalculate funclet membership. 177 FuncletMembership = getFuncletMembership(MF); 178 179 bool MadeChangeThisIteration = true; 180 while (MadeChangeThisIteration) { 181 MadeChangeThisIteration = TailMergeBlocks(MF); 182 // No need to clean up if tail merging does not change anything after the 183 // block placement. 184 if (!AfterBlockPlacement || MadeChangeThisIteration) 185 MadeChangeThisIteration |= OptimizeBranches(MF); 186 if (EnableHoistCommonCode) 187 MadeChangeThisIteration |= HoistCommonCode(MF); 188 MadeChange |= MadeChangeThisIteration; 189 } 190 191 // See if any jump tables have become dead as the code generator 192 // did its thing. 193 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 194 if (!JTI) 195 return MadeChange; 196 197 // Walk the function to find jump tables that are live. 198 BitVector JTIsLive(JTI->getJumpTables().size()); 199 for (const MachineBasicBlock &BB : MF) { 200 for (const MachineInstr &I : BB) 201 for (const MachineOperand &Op : I.operands()) { 202 if (!Op.isJTI()) continue; 203 204 // Remember that this JT is live. 205 JTIsLive.set(Op.getIndex()); 206 } 207 } 208 209 // Finally, remove dead jump tables. This happens when the 210 // indirect jump was unreachable (and thus deleted). 211 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 212 if (!JTIsLive.test(i)) { 213 JTI->RemoveJumpTable(i); 214 MadeChange = true; 215 } 216 217 return MadeChange; 218 } 219 220 //===----------------------------------------------------------------------===// 221 // Tail Merging of Blocks 222 //===----------------------------------------------------------------------===// 223 224 /// HashMachineInstr - Compute a hash value for MI and its operands. 225 static unsigned HashMachineInstr(const MachineInstr &MI) { 226 unsigned Hash = MI.getOpcode(); 227 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 228 const MachineOperand &Op = MI.getOperand(i); 229 230 // Merge in bits from the operand if easy. We can't use MachineOperand's 231 // hash_code here because it's not deterministic and we sort by hash value 232 // later. 233 unsigned OperandHash = 0; 234 switch (Op.getType()) { 235 case MachineOperand::MO_Register: 236 OperandHash = Op.getReg(); 237 break; 238 case MachineOperand::MO_Immediate: 239 OperandHash = Op.getImm(); 240 break; 241 case MachineOperand::MO_MachineBasicBlock: 242 OperandHash = Op.getMBB()->getNumber(); 243 break; 244 case MachineOperand::MO_FrameIndex: 245 case MachineOperand::MO_ConstantPoolIndex: 246 case MachineOperand::MO_JumpTableIndex: 247 OperandHash = Op.getIndex(); 248 break; 249 case MachineOperand::MO_GlobalAddress: 250 case MachineOperand::MO_ExternalSymbol: 251 // Global address / external symbol are too hard, don't bother, but do 252 // pull in the offset. 253 OperandHash = Op.getOffset(); 254 break; 255 default: 256 break; 257 } 258 259 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 260 } 261 return Hash; 262 } 263 264 /// HashEndOfMBB - Hash the last instruction in the MBB. 265 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 266 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 267 if (I == MBB.end()) 268 return 0; 269 270 return HashMachineInstr(*I); 271 } 272 273 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number 274 /// of instructions they actually have in common together at their end. Return 275 /// iterators for the first shared instruction in each block. 276 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 277 MachineBasicBlock *MBB2, 278 MachineBasicBlock::iterator &I1, 279 MachineBasicBlock::iterator &I2) { 280 I1 = MBB1->end(); 281 I2 = MBB2->end(); 282 283 unsigned TailLen = 0; 284 while (I1 != MBB1->begin() && I2 != MBB2->begin()) { 285 --I1; --I2; 286 // Skip debugging pseudos; necessary to avoid changing the code. 287 while (I1->isDebugValue()) { 288 if (I1==MBB1->begin()) { 289 while (I2->isDebugValue()) { 290 if (I2==MBB2->begin()) 291 // I1==DBG at begin; I2==DBG at begin 292 return TailLen; 293 --I2; 294 } 295 ++I2; 296 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin 297 return TailLen; 298 } 299 --I1; 300 } 301 // I1==first (untested) non-DBG preceding known match 302 while (I2->isDebugValue()) { 303 if (I2==MBB2->begin()) { 304 ++I1; 305 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin 306 return TailLen; 307 } 308 --I2; 309 } 310 // I1, I2==first (untested) non-DBGs preceding known match 311 if (!I1->isIdenticalTo(*I2) || 312 // FIXME: This check is dubious. It's used to get around a problem where 313 // people incorrectly expect inline asm directives to remain in the same 314 // relative order. This is untenable because normal compiler 315 // optimizations (like this one) may reorder and/or merge these 316 // directives. 317 I1->isInlineAsm()) { 318 ++I1; ++I2; 319 break; 320 } 321 ++TailLen; 322 } 323 // Back past possible debugging pseudos at beginning of block. This matters 324 // when one block differs from the other only by whether debugging pseudos 325 // are present at the beginning. (This way, the various checks later for 326 // I1==MBB1->begin() work as expected.) 327 if (I1 == MBB1->begin() && I2 != MBB2->begin()) { 328 --I2; 329 while (I2->isDebugValue()) { 330 if (I2 == MBB2->begin()) 331 return TailLen; 332 --I2; 333 } 334 ++I2; 335 } 336 if (I2 == MBB2->begin() && I1 != MBB1->begin()) { 337 --I1; 338 while (I1->isDebugValue()) { 339 if (I1 == MBB1->begin()) 340 return TailLen; 341 --I1; 342 } 343 ++I1; 344 } 345 return TailLen; 346 } 347 348 void BranchFolder::ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 349 MachineBasicBlock *NewDest) { 350 TII->ReplaceTailWithBranchTo(OldInst, NewDest); 351 352 if (UpdateLiveIns) { 353 NewDest->clearLiveIns(); 354 computeLiveIns(LiveRegs, *TRI, *NewDest); 355 } 356 357 ++NumTailMerge; 358 } 359 360 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 361 MachineBasicBlock::iterator BBI1, 362 const BasicBlock *BB) { 363 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 364 return nullptr; 365 366 MachineFunction &MF = *CurMBB.getParent(); 367 368 // Create the fall-through block. 369 MachineFunction::iterator MBBI = CurMBB.getIterator(); 370 MachineBasicBlock *NewMBB =MF.CreateMachineBasicBlock(BB); 371 CurMBB.getParent()->insert(++MBBI, NewMBB); 372 373 // Move all the successors of this block to the specified block. 374 NewMBB->transferSuccessors(&CurMBB); 375 376 // Add an edge from CurMBB to NewMBB for the fall-through. 377 CurMBB.addSuccessor(NewMBB); 378 379 // Splice the code over. 380 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 381 382 // NewMBB belongs to the same loop as CurMBB. 383 if (MLI) 384 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 385 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 386 387 // NewMBB inherits CurMBB's block frequency. 388 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 389 390 if (UpdateLiveIns) 391 computeLiveIns(LiveRegs, *TRI, *NewMBB); 392 393 // Add the new block to the funclet. 394 const auto &FuncletI = FuncletMembership.find(&CurMBB); 395 if (FuncletI != FuncletMembership.end()) { 396 auto n = FuncletI->second; 397 FuncletMembership[NewMBB] = n; 398 } 399 400 return NewMBB; 401 } 402 403 /// EstimateRuntime - Make a rough estimate for how long it will take to run 404 /// the specified code. 405 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 406 MachineBasicBlock::iterator E) { 407 unsigned Time = 0; 408 for (; I != E; ++I) { 409 if (I->isDebugValue()) 410 continue; 411 if (I->isCall()) 412 Time += 10; 413 else if (I->mayLoad() || I->mayStore()) 414 Time += 2; 415 else 416 ++Time; 417 } 418 return Time; 419 } 420 421 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 422 // branches temporarily for tail merging). In the case where CurMBB ends 423 // with a conditional branch to the next block, optimize by reversing the 424 // test and conditionally branching to SuccMBB instead. 425 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 426 const TargetInstrInfo *TII) { 427 MachineFunction *MF = CurMBB->getParent(); 428 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 429 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 430 SmallVector<MachineOperand, 4> Cond; 431 DebugLoc dl = CurMBB->findBranchDebugLoc(); 432 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 433 MachineBasicBlock *NextBB = &*I; 434 if (TBB == NextBB && !Cond.empty() && !FBB) { 435 if (!TII->reverseBranchCondition(Cond)) { 436 TII->removeBranch(*CurMBB); 437 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 438 return; 439 } 440 } 441 } 442 TII->insertBranch(*CurMBB, SuccBB, nullptr, 443 SmallVector<MachineOperand, 0>(), dl); 444 } 445 446 bool 447 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 448 if (getHash() < o.getHash()) 449 return true; 450 if (getHash() > o.getHash()) 451 return false; 452 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 453 return true; 454 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 455 return false; 456 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 457 // an object with itself. 458 #ifndef _GLIBCXX_DEBUG 459 llvm_unreachable("Predecessor appears twice"); 460 #else 461 return false; 462 #endif 463 } 464 465 BlockFrequency 466 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const { 467 auto I = MergedBBFreq.find(MBB); 468 469 if (I != MergedBBFreq.end()) 470 return I->second; 471 472 return MBFI.getBlockFreq(MBB); 473 } 474 475 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB, 476 BlockFrequency F) { 477 MergedBBFreq[MBB] = F; 478 } 479 480 raw_ostream & 481 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 482 const MachineBasicBlock *MBB) const { 483 return MBFI.printBlockFreq(OS, getBlockFreq(MBB)); 484 } 485 486 raw_ostream & 487 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 488 const BlockFrequency Freq) const { 489 return MBFI.printBlockFreq(OS, Freq); 490 } 491 492 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) { 493 MBFI.view(Name, isSimple); 494 } 495 496 uint64_t 497 BranchFolder::MBFIWrapper::getEntryFreq() const { 498 return MBFI.getEntryFreq(); 499 } 500 501 /// CountTerminators - Count the number of terminators in the given 502 /// block and set I to the position of the first non-terminator, if there 503 /// is one, or MBB->end() otherwise. 504 static unsigned CountTerminators(MachineBasicBlock *MBB, 505 MachineBasicBlock::iterator &I) { 506 I = MBB->end(); 507 unsigned NumTerms = 0; 508 for (;;) { 509 if (I == MBB->begin()) { 510 I = MBB->end(); 511 break; 512 } 513 --I; 514 if (!I->isTerminator()) break; 515 ++NumTerms; 516 } 517 return NumTerms; 518 } 519 520 /// A no successor, non-return block probably ends in unreachable and is cold. 521 /// Also consider a block that ends in an indirect branch to be a return block, 522 /// since many targets use plain indirect branches to return. 523 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 524 if (!MBB->succ_empty()) 525 return false; 526 if (MBB->empty()) 527 return true; 528 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 529 } 530 531 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 532 /// and decide if it would be profitable to merge those tails. Return the 533 /// length of the common tail and iterators to the first common instruction 534 /// in each block. 535 /// MBB1, MBB2 The blocks to check 536 /// MinCommonTailLength Minimum size of tail block to be merged. 537 /// CommonTailLen Out parameter to record the size of the shared tail between 538 /// MBB1 and MBB2 539 /// I1, I2 Iterator references that will be changed to point to the first 540 /// instruction in the common tail shared by MBB1,MBB2 541 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 542 /// relative to SuccBB 543 /// PredBB The layout predecessor of SuccBB, if any. 544 /// FuncletMembership map from block to funclet #. 545 /// AfterPlacement True if we are merging blocks after layout. Stricter 546 /// thresholds apply to prevent undoing tail-duplication. 547 static bool 548 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 549 unsigned MinCommonTailLength, unsigned &CommonTailLen, 550 MachineBasicBlock::iterator &I1, 551 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 552 MachineBasicBlock *PredBB, 553 DenseMap<const MachineBasicBlock *, int> &FuncletMembership, 554 bool AfterPlacement) { 555 // It is never profitable to tail-merge blocks from two different funclets. 556 if (!FuncletMembership.empty()) { 557 auto Funclet1 = FuncletMembership.find(MBB1); 558 assert(Funclet1 != FuncletMembership.end()); 559 auto Funclet2 = FuncletMembership.find(MBB2); 560 assert(Funclet2 != FuncletMembership.end()); 561 if (Funclet1->second != Funclet2->second) 562 return false; 563 } 564 565 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 566 if (CommonTailLen == 0) 567 return false; 568 DEBUG(dbgs() << "Common tail length of BB#" << MBB1->getNumber() 569 << " and BB#" << MBB2->getNumber() << " is " << CommonTailLen 570 << '\n'); 571 572 // It's almost always profitable to merge any number of non-terminator 573 // instructions with the block that falls through into the common successor. 574 // This is true only for a single successor. For multiple successors, we are 575 // trading a conditional branch for an unconditional one. 576 // TODO: Re-visit successor size for non-layout tail merging. 577 if ((MBB1 == PredBB || MBB2 == PredBB) && 578 (!AfterPlacement || MBB1->succ_size() == 1)) { 579 MachineBasicBlock::iterator I; 580 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 581 if (CommonTailLen > NumTerms) 582 return true; 583 } 584 585 // If these are identical non-return blocks with no successors, merge them. 586 // Such blocks are typically cold calls to noreturn functions like abort, and 587 // are unlikely to become a fallthrough target after machine block placement. 588 // Tail merging these blocks is unlikely to create additional unconditional 589 // branches, and will reduce the size of this cold code. 590 if (I1 == MBB1->begin() && I2 == MBB2->begin() && 591 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 592 return true; 593 594 // If one of the blocks can be completely merged and happens to be in 595 // a position where the other could fall through into it, merge any number 596 // of instructions, because it can be done without a branch. 597 // TODO: If the blocks are not adjacent, move one of them so that they are? 598 if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin()) 599 return true; 600 if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin()) 601 return true; 602 603 // If both blocks are identical and end in a branch, merge them unless they 604 // both have a fallthrough predecessor and successor. 605 // We can only do this after block placement because it depends on whether 606 // there are fallthroughs, and we don't know until after layout. 607 if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) { 608 auto BothFallThrough = [](MachineBasicBlock *MBB) { 609 if (MBB->succ_size() != 0 && !MBB->canFallThrough()) 610 return false; 611 MachineFunction::iterator I(MBB); 612 MachineFunction *MF = MBB->getParent(); 613 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 614 }; 615 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 616 return true; 617 } 618 619 // If both blocks have an unconditional branch temporarily stripped out, 620 // count that as an additional common instruction for the following 621 // heuristics. This heuristic is only accurate for single-succ blocks, so to 622 // make sure that during layout merging and duplicating don't crash, we check 623 // for that when merging during layout. 624 unsigned EffectiveTailLen = CommonTailLen; 625 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 626 (MBB1->succ_size() == 1 || !AfterPlacement) && 627 !MBB1->back().isBarrier() && 628 !MBB2->back().isBarrier()) 629 ++EffectiveTailLen; 630 631 // Check if the common tail is long enough to be worthwhile. 632 if (EffectiveTailLen >= MinCommonTailLength) 633 return true; 634 635 // If we are optimizing for code size, 2 instructions in common is enough if 636 // we don't have to split a block. At worst we will be introducing 1 new 637 // branch instruction, which is likely to be smaller than the 2 638 // instructions that would be deleted in the merge. 639 MachineFunction *MF = MBB1->getParent(); 640 return EffectiveTailLen >= 2 && MF->getFunction()->optForSize() && 641 (I1 == MBB1->begin() || I2 == MBB2->begin()); 642 } 643 644 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 645 unsigned MinCommonTailLength, 646 MachineBasicBlock *SuccBB, 647 MachineBasicBlock *PredBB) { 648 unsigned maxCommonTailLength = 0U; 649 SameTails.clear(); 650 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 651 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 652 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 653 B = MergePotentials.begin(); 654 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 655 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 656 unsigned CommonTailLen; 657 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 658 MinCommonTailLength, 659 CommonTailLen, TrialBBI1, TrialBBI2, 660 SuccBB, PredBB, 661 FuncletMembership, 662 AfterBlockPlacement)) { 663 if (CommonTailLen > maxCommonTailLength) { 664 SameTails.clear(); 665 maxCommonTailLength = CommonTailLen; 666 HighestMPIter = CurMPIter; 667 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 668 } 669 if (HighestMPIter == CurMPIter && 670 CommonTailLen == maxCommonTailLength) 671 SameTails.push_back(SameTailElt(I, TrialBBI2)); 672 } 673 if (I == B) 674 break; 675 } 676 } 677 return maxCommonTailLength; 678 } 679 680 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 681 MachineBasicBlock *SuccBB, 682 MachineBasicBlock *PredBB) { 683 MPIterator CurMPIter, B; 684 for (CurMPIter = std::prev(MergePotentials.end()), 685 B = MergePotentials.begin(); 686 CurMPIter->getHash() == CurHash; --CurMPIter) { 687 // Put the unconditional branch back, if we need one. 688 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 689 if (SuccBB && CurMBB != PredBB) 690 FixTail(CurMBB, SuccBB, TII); 691 if (CurMPIter == B) 692 break; 693 } 694 if (CurMPIter->getHash() != CurHash) 695 CurMPIter++; 696 MergePotentials.erase(CurMPIter, MergePotentials.end()); 697 } 698 699 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 700 MachineBasicBlock *SuccBB, 701 unsigned maxCommonTailLength, 702 unsigned &commonTailIndex) { 703 commonTailIndex = 0; 704 unsigned TimeEstimate = ~0U; 705 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 706 // Use PredBB if possible; that doesn't require a new branch. 707 if (SameTails[i].getBlock() == PredBB) { 708 commonTailIndex = i; 709 break; 710 } 711 // Otherwise, make a (fairly bogus) choice based on estimate of 712 // how long it will take the various blocks to execute. 713 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 714 SameTails[i].getTailStartPos()); 715 if (t <= TimeEstimate) { 716 TimeEstimate = t; 717 commonTailIndex = i; 718 } 719 } 720 721 MachineBasicBlock::iterator BBI = 722 SameTails[commonTailIndex].getTailStartPos(); 723 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 724 725 DEBUG(dbgs() << "\nSplitting BB#" << MBB->getNumber() << ", size " 726 << maxCommonTailLength); 727 728 // If the split block unconditionally falls-thru to SuccBB, it will be 729 // merged. In control flow terms it should then take SuccBB's name. e.g. If 730 // SuccBB is an inner loop, the common tail is still part of the inner loop. 731 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 732 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 733 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 734 if (!newMBB) { 735 DEBUG(dbgs() << "... failed!"); 736 return false; 737 } 738 739 SameTails[commonTailIndex].setBlock(newMBB); 740 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 741 742 // If we split PredBB, newMBB is the new predecessor. 743 if (PredBB == MBB) 744 PredBB = newMBB; 745 746 return true; 747 } 748 749 void BranchFolder::MergeCommonTailDebugLocs(unsigned commonTailIndex) { 750 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 751 752 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 753 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 754 if (i != commonTailIndex) 755 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 756 else { 757 assert(SameTails[i].getTailStartPos() == MBB->begin() && 758 "MBB is not a common tail only block"); 759 } 760 } 761 762 for (auto &MI : *MBB) { 763 if (MI.isDebugValue()) 764 continue; 765 DebugLoc DL = MI.getDebugLoc(); 766 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 767 if (i == commonTailIndex) 768 continue; 769 770 auto &Pos = NextCommonInsts[i]; 771 assert(Pos != SameTails[i].getBlock()->end() && 772 "Reached BB end within common tail"); 773 while (Pos->isDebugValue()) { 774 ++Pos; 775 assert(Pos != SameTails[i].getBlock()->end() && 776 "Reached BB end within common tail"); 777 } 778 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 779 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 780 NextCommonInsts[i] = ++Pos; 781 } 782 MI.setDebugLoc(DL); 783 } 784 } 785 786 static void 787 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 788 MachineBasicBlock &MBBCommon) { 789 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 790 // Note CommonTailLen does not necessarily matches the size of 791 // the common BB nor all its instructions because of debug 792 // instructions differences. 793 unsigned CommonTailLen = 0; 794 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 795 ++CommonTailLen; 796 797 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 798 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 799 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 800 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 801 802 while (CommonTailLen--) { 803 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 804 (void)MBBIE; 805 806 if (MBBI->isDebugValue()) { 807 ++MBBI; 808 continue; 809 } 810 811 while ((MBBICommon != MBBIECommon) && MBBICommon->isDebugValue()) 812 ++MBBICommon; 813 814 assert(MBBICommon != MBBIECommon && 815 "Reached BB end within common tail length!"); 816 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 817 818 // Merge MMOs from memory operations in the common block. 819 if (MBBICommon->mayLoad() || MBBICommon->mayStore()) 820 MBBICommon->setMemRefs(MBBICommon->mergeMemRefsWith(*MBBI)); 821 // Drop undef flags if they aren't present in all merged instructions. 822 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 823 MachineOperand &MO = MBBICommon->getOperand(I); 824 if (MO.isReg() && MO.isUndef()) { 825 const MachineOperand &OtherMO = MBBI->getOperand(I); 826 if (!OtherMO.isUndef()) 827 MO.setIsUndef(false); 828 } 829 } 830 831 ++MBBI; 832 ++MBBICommon; 833 } 834 } 835 836 // See if any of the blocks in MergePotentials (which all have SuccBB as a 837 // successor, or all have no successor if it is null) can be tail-merged. 838 // If there is a successor, any blocks in MergePotentials that are not 839 // tail-merged and are not immediately before Succ must have an unconditional 840 // branch to Succ added (but the predecessor/successor lists need no 841 // adjustment). The lone predecessor of Succ that falls through into Succ, 842 // if any, is given in PredBB. 843 // MinCommonTailLength - Except for the special cases below, tail-merge if 844 // there are at least this many instructions in common. 845 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 846 MachineBasicBlock *PredBB, 847 unsigned MinCommonTailLength) { 848 bool MadeChange = false; 849 850 DEBUG(dbgs() << "\nTryTailMergeBlocks: "; 851 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 852 dbgs() << "BB#" << MergePotentials[i].getBlock()->getNumber() 853 << (i == e-1 ? "" : ", "); 854 dbgs() << "\n"; 855 if (SuccBB) { 856 dbgs() << " with successor BB#" << SuccBB->getNumber() << '\n'; 857 if (PredBB) 858 dbgs() << " which has fall-through from BB#" 859 << PredBB->getNumber() << "\n"; 860 } 861 dbgs() << "Looking for common tails of at least " 862 << MinCommonTailLength << " instruction" 863 << (MinCommonTailLength == 1 ? "" : "s") << '\n'; 864 ); 865 866 // Sort by hash value so that blocks with identical end sequences sort 867 // together. 868 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 869 870 // Walk through equivalence sets looking for actual exact matches. 871 while (MergePotentials.size() > 1) { 872 unsigned CurHash = MergePotentials.back().getHash(); 873 874 // Build SameTails, identifying the set of blocks with this hash code 875 // and with the maximum number of instructions in common. 876 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 877 MinCommonTailLength, 878 SuccBB, PredBB); 879 880 // If we didn't find any pair that has at least MinCommonTailLength 881 // instructions in common, remove all blocks with this hash code and retry. 882 if (SameTails.empty()) { 883 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 884 continue; 885 } 886 887 // If one of the blocks is the entire common tail (and not the entry 888 // block, which we can't jump to), we can treat all blocks with this same 889 // tail at once. Use PredBB if that is one of the possibilities, as that 890 // will not introduce any extra branches. 891 MachineBasicBlock *EntryBB = 892 &MergePotentials.front().getBlock()->getParent()->front(); 893 unsigned commonTailIndex = SameTails.size(); 894 // If there are two blocks, check to see if one can be made to fall through 895 // into the other. 896 if (SameTails.size() == 2 && 897 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 898 SameTails[1].tailIsWholeBlock()) 899 commonTailIndex = 1; 900 else if (SameTails.size() == 2 && 901 SameTails[1].getBlock()->isLayoutSuccessor( 902 SameTails[0].getBlock()) && 903 SameTails[0].tailIsWholeBlock()) 904 commonTailIndex = 0; 905 else { 906 // Otherwise just pick one, favoring the fall-through predecessor if 907 // there is one. 908 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 909 MachineBasicBlock *MBB = SameTails[i].getBlock(); 910 if (MBB == EntryBB && SameTails[i].tailIsWholeBlock()) 911 continue; 912 if (MBB == PredBB) { 913 commonTailIndex = i; 914 break; 915 } 916 if (SameTails[i].tailIsWholeBlock()) 917 commonTailIndex = i; 918 } 919 } 920 921 if (commonTailIndex == SameTails.size() || 922 (SameTails[commonTailIndex].getBlock() == PredBB && 923 !SameTails[commonTailIndex].tailIsWholeBlock())) { 924 // None of the blocks consist entirely of the common tail. 925 // Split a block so that one does. 926 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 927 maxCommonTailLength, commonTailIndex)) { 928 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 929 continue; 930 } 931 } 932 933 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 934 935 // Recompute common tail MBB's edge weights and block frequency. 936 setCommonTailEdgeWeights(*MBB); 937 938 // Merge debug locations across identical instructions for common tail. 939 MergeCommonTailDebugLocs(commonTailIndex); 940 941 // MBB is common tail. Adjust all other BB's to jump to this one. 942 // Traversal must be forwards so erases work. 943 DEBUG(dbgs() << "\nUsing common tail in BB#" << MBB->getNumber() 944 << " for "); 945 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 946 if (commonTailIndex == i) 947 continue; 948 DEBUG(dbgs() << "BB#" << SameTails[i].getBlock()->getNumber() 949 << (i == e-1 ? "" : ", ")); 950 // Merge operations (MMOs, undef flags) 951 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 952 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 953 ReplaceTailWithBranchTo(SameTails[i].getTailStartPos(), MBB); 954 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 955 MergePotentials.erase(SameTails[i].getMPIter()); 956 } 957 DEBUG(dbgs() << "\n"); 958 // We leave commonTailIndex in the worklist in case there are other blocks 959 // that match it with a smaller number of instructions. 960 MadeChange = true; 961 } 962 return MadeChange; 963 } 964 965 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 966 bool MadeChange = false; 967 if (!EnableTailMerge) return MadeChange; 968 969 // First find blocks with no successors. 970 // Block placement does not create new tail merging opportunities for these 971 // blocks. 972 if (!AfterBlockPlacement) { 973 MergePotentials.clear(); 974 for (MachineBasicBlock &MBB : MF) { 975 if (MergePotentials.size() == TailMergeThreshold) 976 break; 977 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 978 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 979 } 980 981 // If this is a large problem, avoid visiting the same basic blocks 982 // multiple times. 983 if (MergePotentials.size() == TailMergeThreshold) 984 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 985 TriedMerging.insert(MergePotentials[i].getBlock()); 986 987 // See if we can do any tail merging on those. 988 if (MergePotentials.size() >= 2) 989 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 990 } 991 992 // Look at blocks (IBB) with multiple predecessors (PBB). 993 // We change each predecessor to a canonical form, by 994 // (1) temporarily removing any unconditional branch from the predecessor 995 // to IBB, and 996 // (2) alter conditional branches so they branch to the other block 997 // not IBB; this may require adding back an unconditional branch to IBB 998 // later, where there wasn't one coming in. E.g. 999 // Bcc IBB 1000 // fallthrough to QBB 1001 // here becomes 1002 // Bncc QBB 1003 // with a conceptual B to IBB after that, which never actually exists. 1004 // With those changes, we see whether the predecessors' tails match, 1005 // and merge them if so. We change things out of canonical form and 1006 // back to the way they were later in the process. (OptimizeBranches 1007 // would undo some of this, but we can't use it, because we'd get into 1008 // a compile-time infinite loop repeatedly doing and undoing the same 1009 // transformations.) 1010 1011 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1012 I != E; ++I) { 1013 if (I->pred_size() < 2) continue; 1014 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1015 MachineBasicBlock *IBB = &*I; 1016 MachineBasicBlock *PredBB = &*std::prev(I); 1017 MergePotentials.clear(); 1018 MachineLoop *ML; 1019 1020 // Bail if merging after placement and IBB is the loop header because 1021 // -- If merging predecessors that belong to the same loop as IBB, the 1022 // common tail of merged predecessors may become the loop top if block 1023 // placement is called again and the predecessors may branch to this common 1024 // tail and require more branches. This can be relaxed if 1025 // MachineBlockPlacement::findBestLoopTop is more flexible. 1026 // --If merging predecessors that do not belong to the same loop as IBB, the 1027 // loop info of IBB's loop and the other loops may be affected. Calling the 1028 // block placement again may make big change to the layout and eliminate the 1029 // reason to do tail merging here. 1030 if (AfterBlockPlacement && MLI) { 1031 ML = MLI->getLoopFor(IBB); 1032 if (ML && IBB == ML->getHeader()) 1033 continue; 1034 } 1035 1036 for (MachineBasicBlock *PBB : I->predecessors()) { 1037 if (MergePotentials.size() == TailMergeThreshold) 1038 break; 1039 1040 if (TriedMerging.count(PBB)) 1041 continue; 1042 1043 // Skip blocks that loop to themselves, can't tail merge these. 1044 if (PBB == IBB) 1045 continue; 1046 1047 // Visit each predecessor only once. 1048 if (!UniquePreds.insert(PBB).second) 1049 continue; 1050 1051 // Skip blocks which may jump to a landing pad. Can't tail merge these. 1052 if (PBB->hasEHPadSuccessor()) 1053 continue; 1054 1055 // After block placement, only consider predecessors that belong to the 1056 // same loop as IBB. The reason is the same as above when skipping loop 1057 // header. 1058 if (AfterBlockPlacement && MLI) 1059 if (ML != MLI->getLoopFor(PBB)) 1060 continue; 1061 1062 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1063 SmallVector<MachineOperand, 4> Cond; 1064 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1065 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1066 // branch. 1067 SmallVector<MachineOperand, 4> NewCond(Cond); 1068 if (!Cond.empty() && TBB == IBB) { 1069 if (TII->reverseBranchCondition(NewCond)) 1070 continue; 1071 // This is the QBB case described above 1072 if (!FBB) { 1073 auto Next = ++PBB->getIterator(); 1074 if (Next != MF.end()) 1075 FBB = &*Next; 1076 } 1077 } 1078 1079 // Failing case: the only way IBB can be reached from PBB is via 1080 // exception handling. Happens for landing pads. Would be nice to have 1081 // a bit in the edge so we didn't have to do all this. 1082 if (IBB->isEHPad()) { 1083 MachineFunction::iterator IP = ++PBB->getIterator(); 1084 MachineBasicBlock *PredNextBB = nullptr; 1085 if (IP != MF.end()) 1086 PredNextBB = &*IP; 1087 if (!TBB) { 1088 if (IBB != PredNextBB) // fallthrough 1089 continue; 1090 } else if (FBB) { 1091 if (TBB != IBB && FBB != IBB) // cbr then ubr 1092 continue; 1093 } else if (Cond.empty()) { 1094 if (TBB != IBB) // ubr 1095 continue; 1096 } else { 1097 if (TBB != IBB && IBB != PredNextBB) // cbr 1098 continue; 1099 } 1100 } 1101 1102 // Remove the unconditional branch at the end, if any. 1103 if (TBB && (Cond.empty() || FBB)) { 1104 DebugLoc dl = PBB->findBranchDebugLoc(); 1105 TII->removeBranch(*PBB); 1106 if (!Cond.empty()) 1107 // reinsert conditional branch only, for now 1108 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1109 NewCond, dl); 1110 } 1111 1112 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1113 } 1114 } 1115 1116 // If this is a large problem, avoid visiting the same basic blocks multiple 1117 // times. 1118 if (MergePotentials.size() == TailMergeThreshold) 1119 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1120 TriedMerging.insert(MergePotentials[i].getBlock()); 1121 1122 if (MergePotentials.size() >= 2) 1123 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1124 1125 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1126 // result of removing blocks in TryTailMergeBlocks. 1127 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1128 if (MergePotentials.size() == 1 && 1129 MergePotentials.begin()->getBlock() != PredBB) 1130 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1131 } 1132 1133 return MadeChange; 1134 } 1135 1136 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1137 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1138 BlockFrequency AccumulatedMBBFreq; 1139 1140 // Aggregate edge frequency of successor edge j: 1141 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1142 // where bb is a basic block that is in SameTails. 1143 for (const auto &Src : SameTails) { 1144 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1145 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1146 AccumulatedMBBFreq += BlockFreq; 1147 1148 // It is not necessary to recompute edge weights if TailBB has less than two 1149 // successors. 1150 if (TailMBB.succ_size() <= 1) 1151 continue; 1152 1153 auto EdgeFreq = EdgeFreqLs.begin(); 1154 1155 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1156 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1157 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1158 } 1159 1160 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1161 1162 if (TailMBB.succ_size() <= 1) 1163 return; 1164 1165 auto SumEdgeFreq = 1166 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1167 .getFrequency(); 1168 auto EdgeFreq = EdgeFreqLs.begin(); 1169 1170 if (SumEdgeFreq > 0) { 1171 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1172 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1173 auto Prob = BranchProbability::getBranchProbability( 1174 EdgeFreq->getFrequency(), SumEdgeFreq); 1175 TailMBB.setSuccProbability(SuccI, Prob); 1176 } 1177 } 1178 } 1179 1180 //===----------------------------------------------------------------------===// 1181 // Branch Optimization 1182 //===----------------------------------------------------------------------===// 1183 1184 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1185 bool MadeChange = false; 1186 1187 // Make sure blocks are numbered in order 1188 MF.RenumberBlocks(); 1189 // Renumbering blocks alters funclet membership, recalculate it. 1190 FuncletMembership = getFuncletMembership(MF); 1191 1192 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1193 I != E; ) { 1194 MachineBasicBlock *MBB = &*I++; 1195 MadeChange |= OptimizeBlock(MBB); 1196 1197 // If it is dead, remove it. 1198 if (MBB->pred_empty()) { 1199 RemoveDeadBlock(MBB); 1200 MadeChange = true; 1201 ++NumDeadBlocks; 1202 } 1203 } 1204 1205 return MadeChange; 1206 } 1207 1208 // Blocks should be considered empty if they contain only debug info; 1209 // else the debug info would affect codegen. 1210 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1211 return MBB->getFirstNonDebugInstr() == MBB->end(); 1212 } 1213 1214 // Blocks with only debug info and branches should be considered the same 1215 // as blocks with only branches. 1216 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1217 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1218 assert(I != MBB->end() && "empty block!"); 1219 return I->isBranch(); 1220 } 1221 1222 /// IsBetterFallthrough - Return true if it would be clearly better to 1223 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1224 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1225 /// result in infinite loops. 1226 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1227 MachineBasicBlock *MBB2) { 1228 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1229 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1230 // optimize branches that branch to either a return block or an assert block 1231 // into a fallthrough to the return. 1232 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1233 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1234 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1235 return false; 1236 1237 // If there is a clear successor ordering we make sure that one block 1238 // will fall through to the next 1239 if (MBB1->isSuccessor(MBB2)) return true; 1240 if (MBB2->isSuccessor(MBB1)) return false; 1241 1242 return MBB2I->isCall() && !MBB1I->isCall(); 1243 } 1244 1245 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1246 /// instructions on the block. 1247 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1248 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1249 if (I != MBB.end() && I->isBranch()) 1250 return I->getDebugLoc(); 1251 return DebugLoc(); 1252 } 1253 1254 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1255 bool MadeChange = false; 1256 MachineFunction &MF = *MBB->getParent(); 1257 ReoptimizeBlock: 1258 1259 MachineFunction::iterator FallThrough = MBB->getIterator(); 1260 ++FallThrough; 1261 1262 // Make sure MBB and FallThrough belong to the same funclet. 1263 bool SameFunclet = true; 1264 if (!FuncletMembership.empty() && FallThrough != MF.end()) { 1265 auto MBBFunclet = FuncletMembership.find(MBB); 1266 assert(MBBFunclet != FuncletMembership.end()); 1267 auto FallThroughFunclet = FuncletMembership.find(&*FallThrough); 1268 assert(FallThroughFunclet != FuncletMembership.end()); 1269 SameFunclet = MBBFunclet->second == FallThroughFunclet->second; 1270 } 1271 1272 // If this block is empty, make everyone use its fall-through, not the block 1273 // explicitly. Landing pads should not do this since the landing-pad table 1274 // points to this block. Blocks with their addresses taken shouldn't be 1275 // optimized away. 1276 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1277 SameFunclet) { 1278 // Dead block? Leave for cleanup later. 1279 if (MBB->pred_empty()) return MadeChange; 1280 1281 if (FallThrough == MF.end()) { 1282 // TODO: Simplify preds to not branch here if possible! 1283 } else if (FallThrough->isEHPad()) { 1284 // Don't rewrite to a landing pad fallthough. That could lead to the case 1285 // where a BB jumps to more than one landing pad. 1286 // TODO: Is it ever worth rewriting predecessors which don't already 1287 // jump to a landing pad, and so can safely jump to the fallthrough? 1288 } else if (MBB->isSuccessor(&*FallThrough)) { 1289 // Rewrite all predecessors of the old block to go to the fallthrough 1290 // instead. 1291 while (!MBB->pred_empty()) { 1292 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1293 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1294 } 1295 // If MBB was the target of a jump table, update jump tables to go to the 1296 // fallthrough instead. 1297 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1298 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1299 MadeChange = true; 1300 } 1301 return MadeChange; 1302 } 1303 1304 // Check to see if we can simplify the terminator of the block before this 1305 // one. 1306 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1307 1308 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1309 SmallVector<MachineOperand, 4> PriorCond; 1310 bool PriorUnAnalyzable = 1311 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1312 if (!PriorUnAnalyzable) { 1313 // If the CFG for the prior block has extra edges, remove them. 1314 MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB, 1315 !PriorCond.empty()); 1316 1317 // If the previous branch is conditional and both conditions go to the same 1318 // destination, remove the branch, replacing it with an unconditional one or 1319 // a fall-through. 1320 if (PriorTBB && PriorTBB == PriorFBB) { 1321 DebugLoc dl = getBranchDebugLoc(PrevBB); 1322 TII->removeBranch(PrevBB); 1323 PriorCond.clear(); 1324 if (PriorTBB != MBB) 1325 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1326 MadeChange = true; 1327 ++NumBranchOpts; 1328 goto ReoptimizeBlock; 1329 } 1330 1331 // If the previous block unconditionally falls through to this block and 1332 // this block has no other predecessors, move the contents of this block 1333 // into the prior block. This doesn't usually happen when SimplifyCFG 1334 // has been used, but it can happen if tail merging splits a fall-through 1335 // predecessor of a block. 1336 // This has to check PrevBB->succ_size() because EH edges are ignored by 1337 // AnalyzeBranch. 1338 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1339 PrevBB.succ_size() == 1 && 1340 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1341 DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1342 << "From MBB: " << *MBB); 1343 // Remove redundant DBG_VALUEs first. 1344 if (PrevBB.begin() != PrevBB.end()) { 1345 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1346 --PrevBBIter; 1347 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1348 // Check if DBG_VALUE at the end of PrevBB is identical to the 1349 // DBG_VALUE at the beginning of MBB. 1350 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1351 && PrevBBIter->isDebugValue() && MBBIter->isDebugValue()) { 1352 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1353 break; 1354 MachineInstr &DuplicateDbg = *MBBIter; 1355 ++MBBIter; -- PrevBBIter; 1356 DuplicateDbg.eraseFromParent(); 1357 } 1358 } 1359 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1360 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1361 assert(PrevBB.succ_empty()); 1362 PrevBB.transferSuccessors(MBB); 1363 MadeChange = true; 1364 return MadeChange; 1365 } 1366 1367 // If the previous branch *only* branches to *this* block (conditional or 1368 // not) remove the branch. 1369 if (PriorTBB == MBB && !PriorFBB) { 1370 TII->removeBranch(PrevBB); 1371 MadeChange = true; 1372 ++NumBranchOpts; 1373 goto ReoptimizeBlock; 1374 } 1375 1376 // If the prior block branches somewhere else on the condition and here if 1377 // the condition is false, remove the uncond second branch. 1378 if (PriorFBB == MBB) { 1379 DebugLoc dl = getBranchDebugLoc(PrevBB); 1380 TII->removeBranch(PrevBB); 1381 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1382 MadeChange = true; 1383 ++NumBranchOpts; 1384 goto ReoptimizeBlock; 1385 } 1386 1387 // If the prior block branches here on true and somewhere else on false, and 1388 // if the branch condition is reversible, reverse the branch to create a 1389 // fall-through. 1390 if (PriorTBB == MBB) { 1391 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1392 if (!TII->reverseBranchCondition(NewPriorCond)) { 1393 DebugLoc dl = getBranchDebugLoc(PrevBB); 1394 TII->removeBranch(PrevBB); 1395 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1396 MadeChange = true; 1397 ++NumBranchOpts; 1398 goto ReoptimizeBlock; 1399 } 1400 } 1401 1402 // If this block has no successors (e.g. it is a return block or ends with 1403 // a call to a no-return function like abort or __cxa_throw) and if the pred 1404 // falls through into this block, and if it would otherwise fall through 1405 // into the block after this, move this block to the end of the function. 1406 // 1407 // We consider it more likely that execution will stay in the function (e.g. 1408 // due to loops) than it is to exit it. This asserts in loops etc, moving 1409 // the assert condition out of the loop body. 1410 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1411 MachineFunction::iterator(PriorTBB) == FallThrough && 1412 !MBB->canFallThrough()) { 1413 bool DoTransform = true; 1414 1415 // We have to be careful that the succs of PredBB aren't both no-successor 1416 // blocks. If neither have successors and if PredBB is the second from 1417 // last block in the function, we'd just keep swapping the two blocks for 1418 // last. Only do the swap if one is clearly better to fall through than 1419 // the other. 1420 if (FallThrough == --MF.end() && 1421 !IsBetterFallthrough(PriorTBB, MBB)) 1422 DoTransform = false; 1423 1424 if (DoTransform) { 1425 // Reverse the branch so we will fall through on the previous true cond. 1426 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1427 if (!TII->reverseBranchCondition(NewPriorCond)) { 1428 DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1429 << "To make fallthrough to: " << *PriorTBB << "\n"); 1430 1431 DebugLoc dl = getBranchDebugLoc(PrevBB); 1432 TII->removeBranch(PrevBB); 1433 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1434 1435 // Move this block to the end of the function. 1436 MBB->moveAfter(&MF.back()); 1437 MadeChange = true; 1438 ++NumBranchOpts; 1439 return MadeChange; 1440 } 1441 } 1442 } 1443 } 1444 1445 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && 1446 MF.getFunction()->optForSize()) { 1447 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1448 // direction, thereby defeating careful block placement and regressing 1449 // performance. Therefore, only consider this for optsize functions. 1450 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1451 if (TII->isUnconditionalTailCall(TailCall)) { 1452 MachineBasicBlock *Pred = *MBB->pred_begin(); 1453 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1454 SmallVector<MachineOperand, 4> PredCond; 1455 bool PredAnalyzable = 1456 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1457 1458 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB) { 1459 // The predecessor has a conditional branch to this block which consists 1460 // of only a tail call. Try to fold the tail call into the conditional 1461 // branch. 1462 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1463 // TODO: It would be nice if analyzeBranch() could provide a pointer 1464 // to the branch insturction so replaceBranchWithTailCall() doesn't 1465 // have to search for it. 1466 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1467 ++NumTailCalls; 1468 Pred->removeSuccessor(MBB); 1469 MadeChange = true; 1470 return MadeChange; 1471 } 1472 } 1473 // If the predecessor is falling through to this block, we could reverse 1474 // the branch condition and fold the tail call into that. However, after 1475 // that we might have to re-arrange the CFG to fall through to the other 1476 // block and there is a high risk of regressing code size rather than 1477 // improving it. 1478 } 1479 } 1480 1481 // Analyze the branch in the current block. 1482 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1483 SmallVector<MachineOperand, 4> CurCond; 1484 bool CurUnAnalyzable = 1485 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1486 if (!CurUnAnalyzable) { 1487 // If the CFG for the prior block has extra edges, remove them. 1488 MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty()); 1489 1490 // If this is a two-way branch, and the FBB branches to this block, reverse 1491 // the condition so the single-basic-block loop is faster. Instead of: 1492 // Loop: xxx; jcc Out; jmp Loop 1493 // we want: 1494 // Loop: xxx; jncc Loop; jmp Out 1495 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1496 SmallVector<MachineOperand, 4> NewCond(CurCond); 1497 if (!TII->reverseBranchCondition(NewCond)) { 1498 DebugLoc dl = getBranchDebugLoc(*MBB); 1499 TII->removeBranch(*MBB); 1500 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1501 MadeChange = true; 1502 ++NumBranchOpts; 1503 goto ReoptimizeBlock; 1504 } 1505 } 1506 1507 // If this branch is the only thing in its block, see if we can forward 1508 // other blocks across it. 1509 if (CurTBB && CurCond.empty() && !CurFBB && 1510 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1511 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1512 DebugLoc dl = getBranchDebugLoc(*MBB); 1513 // This block may contain just an unconditional branch. Because there can 1514 // be 'non-branch terminators' in the block, try removing the branch and 1515 // then seeing if the block is empty. 1516 TII->removeBranch(*MBB); 1517 // If the only things remaining in the block are debug info, remove these 1518 // as well, so this will behave the same as an empty block in non-debug 1519 // mode. 1520 if (IsEmptyBlock(MBB)) { 1521 // Make the block empty, losing the debug info (we could probably 1522 // improve this in some cases.) 1523 MBB->erase(MBB->begin(), MBB->end()); 1524 } 1525 // If this block is just an unconditional branch to CurTBB, we can 1526 // usually completely eliminate the block. The only case we cannot 1527 // completely eliminate the block is when the block before this one 1528 // falls through into MBB and we can't understand the prior block's branch 1529 // condition. 1530 if (MBB->empty()) { 1531 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1532 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1533 !PrevBB.isSuccessor(MBB)) { 1534 // If the prior block falls through into us, turn it into an 1535 // explicit branch to us to make updates simpler. 1536 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1537 PriorTBB != MBB && PriorFBB != MBB) { 1538 if (!PriorTBB) { 1539 assert(PriorCond.empty() && !PriorFBB && 1540 "Bad branch analysis"); 1541 PriorTBB = MBB; 1542 } else { 1543 assert(!PriorFBB && "Machine CFG out of date!"); 1544 PriorFBB = MBB; 1545 } 1546 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1547 TII->removeBranch(PrevBB); 1548 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1549 } 1550 1551 // Iterate through all the predecessors, revectoring each in-turn. 1552 size_t PI = 0; 1553 bool DidChange = false; 1554 bool HasBranchToSelf = false; 1555 while(PI != MBB->pred_size()) { 1556 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1557 if (PMBB == MBB) { 1558 // If this block has an uncond branch to itself, leave it. 1559 ++PI; 1560 HasBranchToSelf = true; 1561 } else { 1562 DidChange = true; 1563 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1564 // If this change resulted in PMBB ending in a conditional 1565 // branch where both conditions go to the same destination, 1566 // change this to an unconditional branch (and fix the CFG). 1567 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1568 SmallVector<MachineOperand, 4> NewCurCond; 1569 bool NewCurUnAnalyzable = TII->analyzeBranch( 1570 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1571 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1572 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1573 TII->removeBranch(*PMBB); 1574 NewCurCond.clear(); 1575 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1576 MadeChange = true; 1577 ++NumBranchOpts; 1578 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false); 1579 } 1580 } 1581 } 1582 1583 // Change any jumptables to go to the new MBB. 1584 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1585 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1586 if (DidChange) { 1587 ++NumBranchOpts; 1588 MadeChange = true; 1589 if (!HasBranchToSelf) return MadeChange; 1590 } 1591 } 1592 } 1593 1594 // Add the branch back if the block is more than just an uncond branch. 1595 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1596 } 1597 } 1598 1599 // If the prior block doesn't fall through into this block, and if this 1600 // block doesn't fall through into some other block, see if we can find a 1601 // place to move this block where a fall-through will happen. 1602 if (!PrevBB.canFallThrough()) { 1603 1604 // Now we know that there was no fall-through into this block, check to 1605 // see if it has a fall-through into its successor. 1606 bool CurFallsThru = MBB->canFallThrough(); 1607 1608 if (!MBB->isEHPad()) { 1609 // Check all the predecessors of this block. If one of them has no fall 1610 // throughs, move this block right after it. 1611 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1612 // Analyze the branch at the end of the pred. 1613 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1614 SmallVector<MachineOperand, 4> PredCond; 1615 if (PredBB != MBB && !PredBB->canFallThrough() && 1616 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1617 (!CurFallsThru || !CurTBB || !CurFBB) && 1618 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1619 // If the current block doesn't fall through, just move it. 1620 // If the current block can fall through and does not end with a 1621 // conditional branch, we need to append an unconditional jump to 1622 // the (current) next block. To avoid a possible compile-time 1623 // infinite loop, move blocks only backward in this case. 1624 // Also, if there are already 2 branches here, we cannot add a third; 1625 // this means we have the case 1626 // Bcc next 1627 // B elsewhere 1628 // next: 1629 if (CurFallsThru) { 1630 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1631 CurCond.clear(); 1632 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1633 } 1634 MBB->moveAfter(PredBB); 1635 MadeChange = true; 1636 goto ReoptimizeBlock; 1637 } 1638 } 1639 } 1640 1641 if (!CurFallsThru) { 1642 // Check all successors to see if we can move this block before it. 1643 for (MachineBasicBlock *SuccBB : MBB->successors()) { 1644 // Analyze the branch at the end of the block before the succ. 1645 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1646 1647 // If this block doesn't already fall-through to that successor, and if 1648 // the succ doesn't already have a block that can fall through into it, 1649 // and if the successor isn't an EH destination, we can arrange for the 1650 // fallthrough to happen. 1651 if (SuccBB != MBB && &*SuccPrev != MBB && 1652 !SuccPrev->canFallThrough() && !CurUnAnalyzable && 1653 !SuccBB->isEHPad()) { 1654 MBB->moveBefore(SuccBB); 1655 MadeChange = true; 1656 goto ReoptimizeBlock; 1657 } 1658 } 1659 1660 // Okay, there is no really great place to put this block. If, however, 1661 // the block before this one would be a fall-through if this block were 1662 // removed, move this block to the end of the function. There is no real 1663 // advantage in "falling through" to an EH block, so we don't want to 1664 // perform this transformation for that case. 1665 // 1666 // Also, Windows EH introduced the possibility of an arbitrary number of 1667 // successors to a given block. The analyzeBranch call does not consider 1668 // exception handling and so we can get in a state where a block 1669 // containing a call is followed by multiple EH blocks that would be 1670 // rotated infinitely at the end of the function if the transformation 1671 // below were performed for EH "FallThrough" blocks. Therefore, even if 1672 // that appears not to be happening anymore, we should assume that it is 1673 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1674 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1675 SmallVector<MachineOperand, 4> PrevCond; 1676 if (FallThrough != MF.end() && 1677 !FallThrough->isEHPad() && 1678 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1679 PrevBB.isSuccessor(&*FallThrough)) { 1680 MBB->moveAfter(&MF.back()); 1681 MadeChange = true; 1682 return MadeChange; 1683 } 1684 } 1685 } 1686 1687 return MadeChange; 1688 } 1689 1690 //===----------------------------------------------------------------------===// 1691 // Hoist Common Code 1692 //===----------------------------------------------------------------------===// 1693 1694 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1695 bool MadeChange = false; 1696 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1697 MachineBasicBlock *MBB = &*I++; 1698 MadeChange |= HoistCommonCodeInSuccs(MBB); 1699 } 1700 1701 return MadeChange; 1702 } 1703 1704 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1705 /// its 'true' successor. 1706 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1707 MachineBasicBlock *TrueBB) { 1708 for (MachineBasicBlock *SuccBB : BB->successors()) 1709 if (SuccBB != TrueBB) 1710 return SuccBB; 1711 return nullptr; 1712 } 1713 1714 template <class Container> 1715 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, 1716 Container &Set) { 1717 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1718 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1719 Set.insert(*AI); 1720 } else { 1721 Set.insert(Reg); 1722 } 1723 } 1724 1725 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1726 /// in successors to. The location is usually just before the terminator, 1727 /// however if the terminator is a conditional branch and its previous 1728 /// instruction is the flag setting instruction, the previous instruction is 1729 /// the preferred location. This function also gathers uses and defs of the 1730 /// instructions from the insertion point to the end of the block. The data is 1731 /// used by HoistCommonCodeInSuccs to ensure safety. 1732 static 1733 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1734 const TargetInstrInfo *TII, 1735 const TargetRegisterInfo *TRI, 1736 SmallSet<unsigned,4> &Uses, 1737 SmallSet<unsigned,4> &Defs) { 1738 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1739 if (!TII->isUnpredicatedTerminator(*Loc)) 1740 return MBB->end(); 1741 1742 for (const MachineOperand &MO : Loc->operands()) { 1743 if (!MO.isReg()) 1744 continue; 1745 unsigned Reg = MO.getReg(); 1746 if (!Reg) 1747 continue; 1748 if (MO.isUse()) { 1749 addRegAndItsAliases(Reg, TRI, Uses); 1750 } else { 1751 if (!MO.isDead()) 1752 // Don't try to hoist code in the rare case the terminator defines a 1753 // register that is later used. 1754 return MBB->end(); 1755 1756 // If the terminator defines a register, make sure we don't hoist 1757 // the instruction whose def might be clobbered by the terminator. 1758 addRegAndItsAliases(Reg, TRI, Defs); 1759 } 1760 } 1761 1762 if (Uses.empty()) 1763 return Loc; 1764 if (Loc == MBB->begin()) 1765 return MBB->end(); 1766 1767 // The terminator is probably a conditional branch, try not to separate the 1768 // branch from condition setting instruction. 1769 MachineBasicBlock::iterator PI = 1770 skipDebugInstructionsBackward(std::prev(Loc), MBB->begin()); 1771 1772 bool IsDef = false; 1773 for (const MachineOperand &MO : PI->operands()) { 1774 // If PI has a regmask operand, it is probably a call. Separate away. 1775 if (MO.isRegMask()) 1776 return Loc; 1777 if (!MO.isReg() || MO.isUse()) 1778 continue; 1779 unsigned Reg = MO.getReg(); 1780 if (!Reg) 1781 continue; 1782 if (Uses.count(Reg)) { 1783 IsDef = true; 1784 break; 1785 } 1786 } 1787 if (!IsDef) 1788 // The condition setting instruction is not just before the conditional 1789 // branch. 1790 return Loc; 1791 1792 // Be conservative, don't insert instruction above something that may have 1793 // side-effects. And since it's potentially bad to separate flag setting 1794 // instruction from the conditional branch, just abort the optimization 1795 // completely. 1796 // Also avoid moving code above predicated instruction since it's hard to 1797 // reason about register liveness with predicated instruction. 1798 bool DontMoveAcrossStore = true; 1799 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1800 return MBB->end(); 1801 1802 1803 // Find out what registers are live. Note this routine is ignoring other live 1804 // registers which are only used by instructions in successor blocks. 1805 for (const MachineOperand &MO : PI->operands()) { 1806 if (!MO.isReg()) 1807 continue; 1808 unsigned Reg = MO.getReg(); 1809 if (!Reg) 1810 continue; 1811 if (MO.isUse()) { 1812 addRegAndItsAliases(Reg, TRI, Uses); 1813 } else { 1814 if (Uses.erase(Reg)) { 1815 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1816 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1817 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1818 } 1819 } 1820 addRegAndItsAliases(Reg, TRI, Defs); 1821 } 1822 } 1823 1824 return PI; 1825 } 1826 1827 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1828 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1829 SmallVector<MachineOperand, 4> Cond; 1830 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1831 return false; 1832 1833 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1834 if (!FBB) 1835 // Malformed bcc? True and false blocks are the same? 1836 return false; 1837 1838 // Restrict the optimization to cases where MBB is the only predecessor, 1839 // it is an obvious win. 1840 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1841 return false; 1842 1843 // Find a suitable position to hoist the common instructions to. Also figure 1844 // out which registers are used or defined by instructions from the insertion 1845 // point to the end of the block. 1846 SmallSet<unsigned, 4> Uses, Defs; 1847 MachineBasicBlock::iterator Loc = 1848 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1849 if (Loc == MBB->end()) 1850 return false; 1851 1852 bool HasDups = false; 1853 SmallVector<unsigned, 4> LocalDefs; 1854 SmallSet<unsigned, 4> LocalDefsSet; 1855 MachineBasicBlock::iterator TIB = TBB->begin(); 1856 MachineBasicBlock::iterator FIB = FBB->begin(); 1857 MachineBasicBlock::iterator TIE = TBB->end(); 1858 MachineBasicBlock::iterator FIE = FBB->end(); 1859 while (TIB != TIE && FIB != FIE) { 1860 // Skip dbg_value instructions. These do not count. 1861 TIB = skipDebugInstructionsForward(TIB, TIE); 1862 FIB = skipDebugInstructionsForward(FIB, FIE); 1863 if (TIB == TIE || FIB == FIE) 1864 break; 1865 1866 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 1867 break; 1868 1869 if (TII->isPredicated(*TIB)) 1870 // Hard to reason about register liveness with predicated instruction. 1871 break; 1872 1873 bool IsSafe = true; 1874 for (MachineOperand &MO : TIB->operands()) { 1875 // Don't attempt to hoist instructions with register masks. 1876 if (MO.isRegMask()) { 1877 IsSafe = false; 1878 break; 1879 } 1880 if (!MO.isReg()) 1881 continue; 1882 unsigned Reg = MO.getReg(); 1883 if (!Reg) 1884 continue; 1885 if (MO.isDef()) { 1886 if (Uses.count(Reg)) { 1887 // Avoid clobbering a register that's used by the instruction at 1888 // the point of insertion. 1889 IsSafe = false; 1890 break; 1891 } 1892 1893 if (Defs.count(Reg) && !MO.isDead()) { 1894 // Don't hoist the instruction if the def would be clobber by the 1895 // instruction at the point insertion. FIXME: This is overly 1896 // conservative. It should be possible to hoist the instructions 1897 // in BB2 in the following example: 1898 // BB1: 1899 // r1, eflag = op1 r2, r3 1900 // brcc eflag 1901 // 1902 // BB2: 1903 // r1 = op2, ... 1904 // = op3, r1<kill> 1905 IsSafe = false; 1906 break; 1907 } 1908 } else if (!LocalDefsSet.count(Reg)) { 1909 if (Defs.count(Reg)) { 1910 // Use is defined by the instruction at the point of insertion. 1911 IsSafe = false; 1912 break; 1913 } 1914 1915 if (MO.isKill() && Uses.count(Reg)) 1916 // Kills a register that's read by the instruction at the point of 1917 // insertion. Remove the kill marker. 1918 MO.setIsKill(false); 1919 } 1920 } 1921 if (!IsSafe) 1922 break; 1923 1924 bool DontMoveAcrossStore = true; 1925 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 1926 break; 1927 1928 // Remove kills from LocalDefsSet, these registers had short live ranges. 1929 for (const MachineOperand &MO : TIB->operands()) { 1930 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1931 continue; 1932 unsigned Reg = MO.getReg(); 1933 if (!Reg || !LocalDefsSet.count(Reg)) 1934 continue; 1935 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1936 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1937 LocalDefsSet.erase(*AI); 1938 } else { 1939 LocalDefsSet.erase(Reg); 1940 } 1941 } 1942 1943 // Track local defs so we can update liveins. 1944 for (const MachineOperand &MO : TIB->operands()) { 1945 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1946 continue; 1947 unsigned Reg = MO.getReg(); 1948 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg)) 1949 continue; 1950 LocalDefs.push_back(Reg); 1951 addRegAndItsAliases(Reg, TRI, LocalDefsSet); 1952 } 1953 1954 HasDups = true; 1955 ++TIB; 1956 ++FIB; 1957 } 1958 1959 if (!HasDups) 1960 return false; 1961 1962 MBB->splice(Loc, TBB, TBB->begin(), TIB); 1963 FBB->erase(FBB->begin(), FIB); 1964 1965 // Update livein's. 1966 bool AddedLiveIns = false; 1967 for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) { 1968 unsigned Def = LocalDefs[i]; 1969 if (LocalDefsSet.count(Def)) { 1970 TBB->addLiveIn(Def); 1971 FBB->addLiveIn(Def); 1972 AddedLiveIns = true; 1973 } 1974 } 1975 1976 if (AddedLiveIns) { 1977 TBB->sortUniqueLiveIns(); 1978 FBB->sortUniqueLiveIns(); 1979 } 1980 1981 ++NumHoist; 1982 return true; 1983 } 1984