1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block.  This pass often results in dead MBB's, which
11 // it then removes.
12 //
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/CodeGen/Analysis.h"
29 #include "llvm/CodeGen/LivePhysRegs.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineModuleInfo.h"
40 #include "llvm/CodeGen/MachineOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/MachineSizeOpts.h"
43 #include "llvm/CodeGen/MBFIWrapper.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/MC/MCRegisterInfo.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetMachine.h"
63 #include <cassert>
64 #include <cstddef>
65 #include <iterator>
66 #include <numeric>
67 #include <vector>
68 
69 using namespace llvm;
70 
71 #define DEBUG_TYPE "branch-folder"
72 
73 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
74 STATISTIC(NumBranchOpts, "Number of branches optimized");
75 STATISTIC(NumTailMerge , "Number of block tails merged");
76 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
77 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
78 
79 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
80                               cl::init(cl::BOU_UNSET), cl::Hidden);
81 
82 // Throttle for huge numbers of predecessors (compile speed problems)
83 static cl::opt<unsigned>
84 TailMergeThreshold("tail-merge-threshold",
85           cl::desc("Max number of predecessors to consider tail merging"),
86           cl::init(150), cl::Hidden);
87 
88 // Heuristic for tail merging (and, inversely, tail duplication).
89 // TODO: This should be replaced with a target query.
90 static cl::opt<unsigned>
91 TailMergeSize("tail-merge-size",
92               cl::desc("Min number of instructions to consider tail merging"),
93               cl::init(3), cl::Hidden);
94 
95 namespace {
96 
97   /// BranchFolderPass - Wrap branch folder in a machine function pass.
98   class BranchFolderPass : public MachineFunctionPass {
99   public:
100     static char ID;
101 
102     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
103 
104     bool runOnMachineFunction(MachineFunction &MF) override;
105 
106     void getAnalysisUsage(AnalysisUsage &AU) const override {
107       AU.addRequired<MachineBlockFrequencyInfo>();
108       AU.addRequired<MachineBranchProbabilityInfo>();
109       AU.addRequired<ProfileSummaryInfoWrapperPass>();
110       AU.addRequired<TargetPassConfig>();
111       MachineFunctionPass::getAnalysisUsage(AU);
112     }
113   };
114 
115 } // end anonymous namespace
116 
117 char BranchFolderPass::ID = 0;
118 
119 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
120 
121 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
122                 "Control Flow Optimizer", false, false)
123 
124 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
125   if (skipFunction(MF.getFunction()))
126     return false;
127 
128   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
129   // TailMerge can create jump into if branches that make CFG irreducible for
130   // HW that requires structurized CFG.
131   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
132                          PassConfig->getEnableTailMerge();
133   MBFIWrapper MBBFreqInfo(
134       getAnalysis<MachineBlockFrequencyInfo>());
135   BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
136                       getAnalysis<MachineBranchProbabilityInfo>(),
137                       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
138   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
139   return Folder.OptimizeFunction(
140       MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(),
141       MMIWP ? &MMIWP->getMMI() : nullptr);
142 }
143 
144 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
145                            MBFIWrapper &FreqInfo,
146                            const MachineBranchProbabilityInfo &ProbInfo,
147                            ProfileSummaryInfo *PSI,
148                            unsigned MinTailLength)
149     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
150       MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
151   if (MinCommonTailLength == 0)
152     MinCommonTailLength = TailMergeSize;
153   switch (FlagEnableTailMerge) {
154   case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
155   case cl::BOU_TRUE: EnableTailMerge = true; break;
156   case cl::BOU_FALSE: EnableTailMerge = false; break;
157   }
158 }
159 
160 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
161   assert(MBB->pred_empty() && "MBB must be dead!");
162   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
163 
164   MachineFunction *MF = MBB->getParent();
165   // drop all successors.
166   while (!MBB->succ_empty())
167     MBB->removeSuccessor(MBB->succ_end()-1);
168 
169   // Avoid matching if this pointer gets reused.
170   TriedMerging.erase(MBB);
171 
172   // Update call site info.
173   std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
174     if (MI.shouldUpdateCallSiteInfo())
175       MF->eraseCallSiteInfo(&MI);
176   });
177   // Remove the block.
178   MF->erase(MBB);
179   EHScopeMembership.erase(MBB);
180   if (MLI)
181     MLI->removeBlock(MBB);
182 }
183 
184 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
185                                     const TargetInstrInfo *tii,
186                                     const TargetRegisterInfo *tri,
187                                     MachineModuleInfo *mmi,
188                                     MachineLoopInfo *mli, bool AfterPlacement) {
189   if (!tii) return false;
190 
191   TriedMerging.clear();
192 
193   MachineRegisterInfo &MRI = MF.getRegInfo();
194   AfterBlockPlacement = AfterPlacement;
195   TII = tii;
196   TRI = tri;
197   MMI = mmi;
198   MLI = mli;
199   this->MRI = &MRI;
200 
201   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
202   if (!UpdateLiveIns)
203     MRI.invalidateLiveness();
204 
205   // Fix CFG.  The later algorithms expect it to be right.
206   bool MadeChange = false;
207   for (MachineBasicBlock &MBB : MF) {
208     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
209     SmallVector<MachineOperand, 4> Cond;
210     if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
211       MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
212   }
213 
214   // Recalculate EH scope membership.
215   EHScopeMembership = getEHScopeMembership(MF);
216 
217   bool MadeChangeThisIteration = true;
218   while (MadeChangeThisIteration) {
219     MadeChangeThisIteration    = TailMergeBlocks(MF);
220     // No need to clean up if tail merging does not change anything after the
221     // block placement.
222     if (!AfterBlockPlacement || MadeChangeThisIteration)
223       MadeChangeThisIteration |= OptimizeBranches(MF);
224     if (EnableHoistCommonCode)
225       MadeChangeThisIteration |= HoistCommonCode(MF);
226     MadeChange |= MadeChangeThisIteration;
227   }
228 
229   // See if any jump tables have become dead as the code generator
230   // did its thing.
231   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
232   if (!JTI)
233     return MadeChange;
234 
235   // Walk the function to find jump tables that are live.
236   BitVector JTIsLive(JTI->getJumpTables().size());
237   for (const MachineBasicBlock &BB : MF) {
238     for (const MachineInstr &I : BB)
239       for (const MachineOperand &Op : I.operands()) {
240         if (!Op.isJTI()) continue;
241 
242         // Remember that this JT is live.
243         JTIsLive.set(Op.getIndex());
244       }
245   }
246 
247   // Finally, remove dead jump tables.  This happens when the
248   // indirect jump was unreachable (and thus deleted).
249   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
250     if (!JTIsLive.test(i)) {
251       JTI->RemoveJumpTable(i);
252       MadeChange = true;
253     }
254 
255   return MadeChange;
256 }
257 
258 //===----------------------------------------------------------------------===//
259 //  Tail Merging of Blocks
260 //===----------------------------------------------------------------------===//
261 
262 /// HashMachineInstr - Compute a hash value for MI and its operands.
263 static unsigned HashMachineInstr(const MachineInstr &MI) {
264   unsigned Hash = MI.getOpcode();
265   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
266     const MachineOperand &Op = MI.getOperand(i);
267 
268     // Merge in bits from the operand if easy. We can't use MachineOperand's
269     // hash_code here because it's not deterministic and we sort by hash value
270     // later.
271     unsigned OperandHash = 0;
272     switch (Op.getType()) {
273     case MachineOperand::MO_Register:
274       OperandHash = Op.getReg();
275       break;
276     case MachineOperand::MO_Immediate:
277       OperandHash = Op.getImm();
278       break;
279     case MachineOperand::MO_MachineBasicBlock:
280       OperandHash = Op.getMBB()->getNumber();
281       break;
282     case MachineOperand::MO_FrameIndex:
283     case MachineOperand::MO_ConstantPoolIndex:
284     case MachineOperand::MO_JumpTableIndex:
285       OperandHash = Op.getIndex();
286       break;
287     case MachineOperand::MO_GlobalAddress:
288     case MachineOperand::MO_ExternalSymbol:
289       // Global address / external symbol are too hard, don't bother, but do
290       // pull in the offset.
291       OperandHash = Op.getOffset();
292       break;
293     default:
294       break;
295     }
296 
297     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
298   }
299   return Hash;
300 }
301 
302 /// HashEndOfMBB - Hash the last instruction in the MBB.
303 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
304   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
305   if (I == MBB.end())
306     return 0;
307 
308   return HashMachineInstr(*I);
309 }
310 
311 /// Whether MI should be counted as an instruction when calculating common tail.
312 static bool countsAsInstruction(const MachineInstr &MI) {
313   return !(MI.isDebugInstr() || MI.isCFIInstruction());
314 }
315 
316 /// Iterate backwards from the given iterator \p I, towards the beginning of the
317 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
318 /// pointing to that MI. If no such MI is found, return the end iterator.
319 static MachineBasicBlock::iterator
320 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
321                                 MachineBasicBlock *MBB) {
322   while (I != MBB->begin()) {
323     --I;
324     if (countsAsInstruction(*I))
325       return I;
326   }
327   return MBB->end();
328 }
329 
330 /// Given two machine basic blocks, return the number of instructions they
331 /// actually have in common together at their end. If a common tail is found (at
332 /// least by one instruction), then iterators for the first shared instruction
333 /// in each block are returned as well.
334 ///
335 /// Non-instructions according to countsAsInstruction are ignored.
336 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
337                                         MachineBasicBlock *MBB2,
338                                         MachineBasicBlock::iterator &I1,
339                                         MachineBasicBlock::iterator &I2) {
340   MachineBasicBlock::iterator MBBI1 = MBB1->end();
341   MachineBasicBlock::iterator MBBI2 = MBB2->end();
342 
343   unsigned TailLen = 0;
344   while (true) {
345     MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
346     MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
347     if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
348       break;
349     if (!MBBI1->isIdenticalTo(*MBBI2) ||
350         // FIXME: This check is dubious. It's used to get around a problem where
351         // people incorrectly expect inline asm directives to remain in the same
352         // relative order. This is untenable because normal compiler
353         // optimizations (like this one) may reorder and/or merge these
354         // directives.
355         MBBI1->isInlineAsm()) {
356       break;
357     }
358     ++TailLen;
359     I1 = MBBI1;
360     I2 = MBBI2;
361   }
362 
363   return TailLen;
364 }
365 
366 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
367                                            MachineBasicBlock &NewDest) {
368   if (UpdateLiveIns) {
369     // OldInst should always point to an instruction.
370     MachineBasicBlock &OldMBB = *OldInst->getParent();
371     LiveRegs.clear();
372     LiveRegs.addLiveOuts(OldMBB);
373     // Move backward to the place where will insert the jump.
374     MachineBasicBlock::iterator I = OldMBB.end();
375     do {
376       --I;
377       LiveRegs.stepBackward(*I);
378     } while (I != OldInst);
379 
380     // Merging the tails may have switched some undef operand to non-undef ones.
381     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
382     // register.
383     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
384       // We computed the liveins with computeLiveIn earlier and should only see
385       // full registers:
386       assert(P.LaneMask == LaneBitmask::getAll() &&
387              "Can only handle full register.");
388       MCPhysReg Reg = P.PhysReg;
389       if (!LiveRegs.available(*MRI, Reg))
390         continue;
391       DebugLoc DL;
392       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
393     }
394   }
395 
396   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
397   ++NumTailMerge;
398 }
399 
400 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
401                                             MachineBasicBlock::iterator BBI1,
402                                             const BasicBlock *BB) {
403   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
404     return nullptr;
405 
406   MachineFunction &MF = *CurMBB.getParent();
407 
408   // Create the fall-through block.
409   MachineFunction::iterator MBBI = CurMBB.getIterator();
410   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
411   CurMBB.getParent()->insert(++MBBI, NewMBB);
412 
413   // Move all the successors of this block to the specified block.
414   NewMBB->transferSuccessors(&CurMBB);
415 
416   // Add an edge from CurMBB to NewMBB for the fall-through.
417   CurMBB.addSuccessor(NewMBB);
418 
419   // Splice the code over.
420   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
421 
422   // NewMBB belongs to the same loop as CurMBB.
423   if (MLI)
424     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
425       ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
426 
427   // NewMBB inherits CurMBB's block frequency.
428   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
429 
430   if (UpdateLiveIns)
431     computeAndAddLiveIns(LiveRegs, *NewMBB);
432 
433   // Add the new block to the EH scope.
434   const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
435   if (EHScopeI != EHScopeMembership.end()) {
436     auto n = EHScopeI->second;
437     EHScopeMembership[NewMBB] = n;
438   }
439 
440   return NewMBB;
441 }
442 
443 /// EstimateRuntime - Make a rough estimate for how long it will take to run
444 /// the specified code.
445 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
446                                 MachineBasicBlock::iterator E) {
447   unsigned Time = 0;
448   for (; I != E; ++I) {
449     if (!countsAsInstruction(*I))
450       continue;
451     if (I->isCall())
452       Time += 10;
453     else if (I->mayLoadOrStore())
454       Time += 2;
455     else
456       ++Time;
457   }
458   return Time;
459 }
460 
461 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
462 // branches temporarily for tail merging).  In the case where CurMBB ends
463 // with a conditional branch to the next block, optimize by reversing the
464 // test and conditionally branching to SuccMBB instead.
465 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
466                     const TargetInstrInfo *TII) {
467   MachineFunction *MF = CurMBB->getParent();
468   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
469   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
470   SmallVector<MachineOperand, 4> Cond;
471   DebugLoc dl = CurMBB->findBranchDebugLoc();
472   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
473     MachineBasicBlock *NextBB = &*I;
474     if (TBB == NextBB && !Cond.empty() && !FBB) {
475       if (!TII->reverseBranchCondition(Cond)) {
476         TII->removeBranch(*CurMBB);
477         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
478         return;
479       }
480     }
481   }
482   TII->insertBranch(*CurMBB, SuccBB, nullptr,
483                     SmallVector<MachineOperand, 0>(), dl);
484 }
485 
486 bool
487 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
488   if (getHash() < o.getHash())
489     return true;
490   if (getHash() > o.getHash())
491     return false;
492   if (getBlock()->getNumber() < o.getBlock()->getNumber())
493     return true;
494   if (getBlock()->getNumber() > o.getBlock()->getNumber())
495     return false;
496   // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
497   // an object with itself.
498 #ifndef _GLIBCXX_DEBUG
499   llvm_unreachable("Predecessor appears twice");
500 #else
501   return false;
502 #endif
503 }
504 
505 /// CountTerminators - Count the number of terminators in the given
506 /// block and set I to the position of the first non-terminator, if there
507 /// is one, or MBB->end() otherwise.
508 static unsigned CountTerminators(MachineBasicBlock *MBB,
509                                  MachineBasicBlock::iterator &I) {
510   I = MBB->end();
511   unsigned NumTerms = 0;
512   while (true) {
513     if (I == MBB->begin()) {
514       I = MBB->end();
515       break;
516     }
517     --I;
518     if (!I->isTerminator()) break;
519     ++NumTerms;
520   }
521   return NumTerms;
522 }
523 
524 /// A no successor, non-return block probably ends in unreachable and is cold.
525 /// Also consider a block that ends in an indirect branch to be a return block,
526 /// since many targets use plain indirect branches to return.
527 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
528   if (!MBB->succ_empty())
529     return false;
530   if (MBB->empty())
531     return true;
532   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
533 }
534 
535 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
536 /// and decide if it would be profitable to merge those tails.  Return the
537 /// length of the common tail and iterators to the first common instruction
538 /// in each block.
539 /// MBB1, MBB2      The blocks to check
540 /// MinCommonTailLength  Minimum size of tail block to be merged.
541 /// CommonTailLen   Out parameter to record the size of the shared tail between
542 ///                 MBB1 and MBB2
543 /// I1, I2          Iterator references that will be changed to point to the first
544 ///                 instruction in the common tail shared by MBB1,MBB2
545 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
546 ///                 relative to SuccBB
547 /// PredBB          The layout predecessor of SuccBB, if any.
548 /// EHScopeMembership  map from block to EH scope #.
549 /// AfterPlacement  True if we are merging blocks after layout. Stricter
550 ///                 thresholds apply to prevent undoing tail-duplication.
551 static bool
552 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
553                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
554                   MachineBasicBlock::iterator &I1,
555                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
556                   MachineBasicBlock *PredBB,
557                   DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
558                   bool AfterPlacement,
559                   MBFIWrapper &MBBFreqInfo,
560                   ProfileSummaryInfo *PSI) {
561   // It is never profitable to tail-merge blocks from two different EH scopes.
562   if (!EHScopeMembership.empty()) {
563     auto EHScope1 = EHScopeMembership.find(MBB1);
564     assert(EHScope1 != EHScopeMembership.end());
565     auto EHScope2 = EHScopeMembership.find(MBB2);
566     assert(EHScope2 != EHScopeMembership.end());
567     if (EHScope1->second != EHScope2->second)
568       return false;
569   }
570 
571   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
572   if (CommonTailLen == 0)
573     return false;
574   LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
575                     << " and " << printMBBReference(*MBB2) << " is "
576                     << CommonTailLen << '\n');
577 
578   // Move the iterators to the beginning of the MBB if we only got debug
579   // instructions before the tail. This is to avoid splitting a block when we
580   // only got debug instructions before the tail (to be invariant on -g).
581   if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end()) == I1)
582     I1 = MBB1->begin();
583   if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end()) == I2)
584     I2 = MBB2->begin();
585 
586   bool FullBlockTail1 = I1 == MBB1->begin();
587   bool FullBlockTail2 = I2 == MBB2->begin();
588 
589   // It's almost always profitable to merge any number of non-terminator
590   // instructions with the block that falls through into the common successor.
591   // This is true only for a single successor. For multiple successors, we are
592   // trading a conditional branch for an unconditional one.
593   // TODO: Re-visit successor size for non-layout tail merging.
594   if ((MBB1 == PredBB || MBB2 == PredBB) &&
595       (!AfterPlacement || MBB1->succ_size() == 1)) {
596     MachineBasicBlock::iterator I;
597     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
598     if (CommonTailLen > NumTerms)
599       return true;
600   }
601 
602   // If these are identical non-return blocks with no successors, merge them.
603   // Such blocks are typically cold calls to noreturn functions like abort, and
604   // are unlikely to become a fallthrough target after machine block placement.
605   // Tail merging these blocks is unlikely to create additional unconditional
606   // branches, and will reduce the size of this cold code.
607   if (FullBlockTail1 && FullBlockTail2 &&
608       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
609     return true;
610 
611   // If one of the blocks can be completely merged and happens to be in
612   // a position where the other could fall through into it, merge any number
613   // of instructions, because it can be done without a branch.
614   // TODO: If the blocks are not adjacent, move one of them so that they are?
615   if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
616     return true;
617   if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
618     return true;
619 
620   // If both blocks are identical and end in a branch, merge them unless they
621   // both have a fallthrough predecessor and successor.
622   // We can only do this after block placement because it depends on whether
623   // there are fallthroughs, and we don't know until after layout.
624   if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
625     auto BothFallThrough = [](MachineBasicBlock *MBB) {
626       if (MBB->succ_size() != 0 && !MBB->canFallThrough())
627         return false;
628       MachineFunction::iterator I(MBB);
629       MachineFunction *MF = MBB->getParent();
630       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
631     };
632     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
633       return true;
634   }
635 
636   // If both blocks have an unconditional branch temporarily stripped out,
637   // count that as an additional common instruction for the following
638   // heuristics. This heuristic is only accurate for single-succ blocks, so to
639   // make sure that during layout merging and duplicating don't crash, we check
640   // for that when merging during layout.
641   unsigned EffectiveTailLen = CommonTailLen;
642   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
643       (MBB1->succ_size() == 1 || !AfterPlacement) &&
644       !MBB1->back().isBarrier() &&
645       !MBB2->back().isBarrier())
646     ++EffectiveTailLen;
647 
648   // Check if the common tail is long enough to be worthwhile.
649   if (EffectiveTailLen >= MinCommonTailLength)
650     return true;
651 
652   // If we are optimizing for code size, 2 instructions in common is enough if
653   // we don't have to split a block.  At worst we will be introducing 1 new
654   // branch instruction, which is likely to be smaller than the 2
655   // instructions that would be deleted in the merge.
656   MachineFunction *MF = MBB1->getParent();
657   bool OptForSize =
658       MF->getFunction().hasOptSize() ||
659       (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
660        llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo));
661   return EffectiveTailLen >= 2 && OptForSize &&
662          (FullBlockTail1 || FullBlockTail2);
663 }
664 
665 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
666                                         unsigned MinCommonTailLength,
667                                         MachineBasicBlock *SuccBB,
668                                         MachineBasicBlock *PredBB) {
669   unsigned maxCommonTailLength = 0U;
670   SameTails.clear();
671   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
672   MPIterator HighestMPIter = std::prev(MergePotentials.end());
673   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
674                   B = MergePotentials.begin();
675        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
676     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
677       unsigned CommonTailLen;
678       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
679                             MinCommonTailLength,
680                             CommonTailLen, TrialBBI1, TrialBBI2,
681                             SuccBB, PredBB,
682                             EHScopeMembership,
683                             AfterBlockPlacement, MBBFreqInfo, PSI)) {
684         if (CommonTailLen > maxCommonTailLength) {
685           SameTails.clear();
686           maxCommonTailLength = CommonTailLen;
687           HighestMPIter = CurMPIter;
688           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
689         }
690         if (HighestMPIter == CurMPIter &&
691             CommonTailLen == maxCommonTailLength)
692           SameTails.push_back(SameTailElt(I, TrialBBI2));
693       }
694       if (I == B)
695         break;
696     }
697   }
698   return maxCommonTailLength;
699 }
700 
701 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
702                                         MachineBasicBlock *SuccBB,
703                                         MachineBasicBlock *PredBB) {
704   MPIterator CurMPIter, B;
705   for (CurMPIter = std::prev(MergePotentials.end()),
706       B = MergePotentials.begin();
707        CurMPIter->getHash() == CurHash; --CurMPIter) {
708     // Put the unconditional branch back, if we need one.
709     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
710     if (SuccBB && CurMBB != PredBB)
711       FixTail(CurMBB, SuccBB, TII);
712     if (CurMPIter == B)
713       break;
714   }
715   if (CurMPIter->getHash() != CurHash)
716     CurMPIter++;
717   MergePotentials.erase(CurMPIter, MergePotentials.end());
718 }
719 
720 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
721                                              MachineBasicBlock *SuccBB,
722                                              unsigned maxCommonTailLength,
723                                              unsigned &commonTailIndex) {
724   commonTailIndex = 0;
725   unsigned TimeEstimate = ~0U;
726   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
727     // Use PredBB if possible; that doesn't require a new branch.
728     if (SameTails[i].getBlock() == PredBB) {
729       commonTailIndex = i;
730       break;
731     }
732     // Otherwise, make a (fairly bogus) choice based on estimate of
733     // how long it will take the various blocks to execute.
734     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
735                                  SameTails[i].getTailStartPos());
736     if (t <= TimeEstimate) {
737       TimeEstimate = t;
738       commonTailIndex = i;
739     }
740   }
741 
742   MachineBasicBlock::iterator BBI =
743     SameTails[commonTailIndex].getTailStartPos();
744   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
745 
746   LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
747                     << maxCommonTailLength);
748 
749   // If the split block unconditionally falls-thru to SuccBB, it will be
750   // merged. In control flow terms it should then take SuccBB's name. e.g. If
751   // SuccBB is an inner loop, the common tail is still part of the inner loop.
752   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
753     SuccBB->getBasicBlock() : MBB->getBasicBlock();
754   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
755   if (!newMBB) {
756     LLVM_DEBUG(dbgs() << "... failed!");
757     return false;
758   }
759 
760   SameTails[commonTailIndex].setBlock(newMBB);
761   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
762 
763   // If we split PredBB, newMBB is the new predecessor.
764   if (PredBB == MBB)
765     PredBB = newMBB;
766 
767   return true;
768 }
769 
770 static void
771 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
772                 MachineBasicBlock &MBBCommon) {
773   MachineBasicBlock *MBB = MBBIStartPos->getParent();
774   // Note CommonTailLen does not necessarily matches the size of
775   // the common BB nor all its instructions because of debug
776   // instructions differences.
777   unsigned CommonTailLen = 0;
778   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
779     ++CommonTailLen;
780 
781   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
782   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
783   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
784   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
785 
786   while (CommonTailLen--) {
787     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
788     (void)MBBIE;
789 
790     if (!countsAsInstruction(*MBBI)) {
791       ++MBBI;
792       continue;
793     }
794 
795     while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
796       ++MBBICommon;
797 
798     assert(MBBICommon != MBBIECommon &&
799            "Reached BB end within common tail length!");
800     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
801 
802     // Merge MMOs from memory operations in the common block.
803     if (MBBICommon->mayLoadOrStore())
804       MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
805     // Drop undef flags if they aren't present in all merged instructions.
806     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
807       MachineOperand &MO = MBBICommon->getOperand(I);
808       if (MO.isReg() && MO.isUndef()) {
809         const MachineOperand &OtherMO = MBBI->getOperand(I);
810         if (!OtherMO.isUndef())
811           MO.setIsUndef(false);
812       }
813     }
814 
815     ++MBBI;
816     ++MBBICommon;
817   }
818 }
819 
820 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
821   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
822 
823   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
824   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
825     if (i != commonTailIndex) {
826       NextCommonInsts[i] = SameTails[i].getTailStartPos();
827       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
828     } else {
829       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
830           "MBB is not a common tail only block");
831     }
832   }
833 
834   for (auto &MI : *MBB) {
835     if (!countsAsInstruction(MI))
836       continue;
837     DebugLoc DL = MI.getDebugLoc();
838     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
839       if (i == commonTailIndex)
840         continue;
841 
842       auto &Pos = NextCommonInsts[i];
843       assert(Pos != SameTails[i].getBlock()->end() &&
844           "Reached BB end within common tail");
845       while (!countsAsInstruction(*Pos)) {
846         ++Pos;
847         assert(Pos != SameTails[i].getBlock()->end() &&
848             "Reached BB end within common tail");
849       }
850       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
851       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
852       NextCommonInsts[i] = ++Pos;
853     }
854     MI.setDebugLoc(DL);
855   }
856 
857   if (UpdateLiveIns) {
858     LivePhysRegs NewLiveIns(*TRI);
859     computeLiveIns(NewLiveIns, *MBB);
860     LiveRegs.init(*TRI);
861 
862     // The flag merging may lead to some register uses no longer using the
863     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
864     for (MachineBasicBlock *Pred : MBB->predecessors()) {
865       LiveRegs.clear();
866       LiveRegs.addLiveOuts(*Pred);
867       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
868       for (unsigned Reg : NewLiveIns) {
869         if (!LiveRegs.available(*MRI, Reg))
870           continue;
871         DebugLoc DL;
872         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
873                 Reg);
874       }
875     }
876 
877     MBB->clearLiveIns();
878     addLiveIns(*MBB, NewLiveIns);
879   }
880 }
881 
882 // See if any of the blocks in MergePotentials (which all have SuccBB as a
883 // successor, or all have no successor if it is null) can be tail-merged.
884 // If there is a successor, any blocks in MergePotentials that are not
885 // tail-merged and are not immediately before Succ must have an unconditional
886 // branch to Succ added (but the predecessor/successor lists need no
887 // adjustment). The lone predecessor of Succ that falls through into Succ,
888 // if any, is given in PredBB.
889 // MinCommonTailLength - Except for the special cases below, tail-merge if
890 // there are at least this many instructions in common.
891 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
892                                       MachineBasicBlock *PredBB,
893                                       unsigned MinCommonTailLength) {
894   bool MadeChange = false;
895 
896   LLVM_DEBUG(
897       dbgs() << "\nTryTailMergeBlocks: ";
898       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
899       << printMBBReference(*MergePotentials[i].getBlock())
900       << (i == e - 1 ? "" : ", ");
901       dbgs() << "\n"; if (SuccBB) {
902         dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
903         if (PredBB)
904           dbgs() << "  which has fall-through from "
905                  << printMBBReference(*PredBB) << "\n";
906       } dbgs() << "Looking for common tails of at least "
907                << MinCommonTailLength << " instruction"
908                << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
909 
910   // Sort by hash value so that blocks with identical end sequences sort
911   // together.
912   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
913 
914   // Walk through equivalence sets looking for actual exact matches.
915   while (MergePotentials.size() > 1) {
916     unsigned CurHash = MergePotentials.back().getHash();
917 
918     // Build SameTails, identifying the set of blocks with this hash code
919     // and with the maximum number of instructions in common.
920     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
921                                                     MinCommonTailLength,
922                                                     SuccBB, PredBB);
923 
924     // If we didn't find any pair that has at least MinCommonTailLength
925     // instructions in common, remove all blocks with this hash code and retry.
926     if (SameTails.empty()) {
927       RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
928       continue;
929     }
930 
931     // If one of the blocks is the entire common tail (and not the entry
932     // block, which we can't jump to), we can treat all blocks with this same
933     // tail at once.  Use PredBB if that is one of the possibilities, as that
934     // will not introduce any extra branches.
935     MachineBasicBlock *EntryBB =
936         &MergePotentials.front().getBlock()->getParent()->front();
937     unsigned commonTailIndex = SameTails.size();
938     // If there are two blocks, check to see if one can be made to fall through
939     // into the other.
940     if (SameTails.size() == 2 &&
941         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
942         SameTails[1].tailIsWholeBlock())
943       commonTailIndex = 1;
944     else if (SameTails.size() == 2 &&
945              SameTails[1].getBlock()->isLayoutSuccessor(
946                                                      SameTails[0].getBlock()) &&
947              SameTails[0].tailIsWholeBlock())
948       commonTailIndex = 0;
949     else {
950       // Otherwise just pick one, favoring the fall-through predecessor if
951       // there is one.
952       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
953         MachineBasicBlock *MBB = SameTails[i].getBlock();
954         if (MBB == EntryBB && SameTails[i].tailIsWholeBlock())
955           continue;
956         if (MBB == PredBB) {
957           commonTailIndex = i;
958           break;
959         }
960         if (SameTails[i].tailIsWholeBlock())
961           commonTailIndex = i;
962       }
963     }
964 
965     if (commonTailIndex == SameTails.size() ||
966         (SameTails[commonTailIndex].getBlock() == PredBB &&
967          !SameTails[commonTailIndex].tailIsWholeBlock())) {
968       // None of the blocks consist entirely of the common tail.
969       // Split a block so that one does.
970       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
971                                      maxCommonTailLength, commonTailIndex)) {
972         RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
973         continue;
974       }
975     }
976 
977     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
978 
979     // Recompute common tail MBB's edge weights and block frequency.
980     setCommonTailEdgeWeights(*MBB);
981 
982     // Merge debug locations, MMOs and undef flags across identical instructions
983     // for common tail.
984     mergeCommonTails(commonTailIndex);
985 
986     // MBB is common tail.  Adjust all other BB's to jump to this one.
987     // Traversal must be forwards so erases work.
988     LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
989                       << " for ");
990     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
991       if (commonTailIndex == i)
992         continue;
993       LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
994                         << (i == e - 1 ? "" : ", "));
995       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
996       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
997       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
998       MergePotentials.erase(SameTails[i].getMPIter());
999     }
1000     LLVM_DEBUG(dbgs() << "\n");
1001     // We leave commonTailIndex in the worklist in case there are other blocks
1002     // that match it with a smaller number of instructions.
1003     MadeChange = true;
1004   }
1005   return MadeChange;
1006 }
1007 
1008 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1009   bool MadeChange = false;
1010   if (!EnableTailMerge)
1011     return MadeChange;
1012 
1013   // First find blocks with no successors.
1014   // Block placement may create new tail merging opportunities for these blocks.
1015   MergePotentials.clear();
1016   for (MachineBasicBlock &MBB : MF) {
1017     if (MergePotentials.size() == TailMergeThreshold)
1018       break;
1019     if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1020       MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1021   }
1022 
1023   // If this is a large problem, avoid visiting the same basic blocks
1024   // multiple times.
1025   if (MergePotentials.size() == TailMergeThreshold)
1026     for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1027       TriedMerging.insert(MergePotentials[i].getBlock());
1028 
1029   // See if we can do any tail merging on those.
1030   if (MergePotentials.size() >= 2)
1031     MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1032 
1033   // Look at blocks (IBB) with multiple predecessors (PBB).
1034   // We change each predecessor to a canonical form, by
1035   // (1) temporarily removing any unconditional branch from the predecessor
1036   // to IBB, and
1037   // (2) alter conditional branches so they branch to the other block
1038   // not IBB; this may require adding back an unconditional branch to IBB
1039   // later, where there wasn't one coming in.  E.g.
1040   //   Bcc IBB
1041   //   fallthrough to QBB
1042   // here becomes
1043   //   Bncc QBB
1044   // with a conceptual B to IBB after that, which never actually exists.
1045   // With those changes, we see whether the predecessors' tails match,
1046   // and merge them if so.  We change things out of canonical form and
1047   // back to the way they were later in the process.  (OptimizeBranches
1048   // would undo some of this, but we can't use it, because we'd get into
1049   // a compile-time infinite loop repeatedly doing and undoing the same
1050   // transformations.)
1051 
1052   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1053        I != E; ++I) {
1054     if (I->pred_size() < 2) continue;
1055     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1056     MachineBasicBlock *IBB = &*I;
1057     MachineBasicBlock *PredBB = &*std::prev(I);
1058     MergePotentials.clear();
1059     MachineLoop *ML;
1060 
1061     // Bail if merging after placement and IBB is the loop header because
1062     // -- If merging predecessors that belong to the same loop as IBB, the
1063     // common tail of merged predecessors may become the loop top if block
1064     // placement is called again and the predecessors may branch to this common
1065     // tail and require more branches. This can be relaxed if
1066     // MachineBlockPlacement::findBestLoopTop is more flexible.
1067     // --If merging predecessors that do not belong to the same loop as IBB, the
1068     // loop info of IBB's loop and the other loops may be affected. Calling the
1069     // block placement again may make big change to the layout and eliminate the
1070     // reason to do tail merging here.
1071     if (AfterBlockPlacement && MLI) {
1072       ML = MLI->getLoopFor(IBB);
1073       if (ML && IBB == ML->getHeader())
1074         continue;
1075     }
1076 
1077     for (MachineBasicBlock *PBB : I->predecessors()) {
1078       if (MergePotentials.size() == TailMergeThreshold)
1079         break;
1080 
1081       if (TriedMerging.count(PBB))
1082         continue;
1083 
1084       // Skip blocks that loop to themselves, can't tail merge these.
1085       if (PBB == IBB)
1086         continue;
1087 
1088       // Visit each predecessor only once.
1089       if (!UniquePreds.insert(PBB).second)
1090         continue;
1091 
1092       // Skip blocks which may jump to a landing pad. Can't tail merge these.
1093       if (PBB->hasEHPadSuccessor())
1094         continue;
1095 
1096       // After block placement, only consider predecessors that belong to the
1097       // same loop as IBB.  The reason is the same as above when skipping loop
1098       // header.
1099       if (AfterBlockPlacement && MLI)
1100         if (ML != MLI->getLoopFor(PBB))
1101           continue;
1102 
1103       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1104       SmallVector<MachineOperand, 4> Cond;
1105       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1106         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1107         // branch.
1108         SmallVector<MachineOperand, 4> NewCond(Cond);
1109         if (!Cond.empty() && TBB == IBB) {
1110           if (TII->reverseBranchCondition(NewCond))
1111             continue;
1112           // This is the QBB case described above
1113           if (!FBB) {
1114             auto Next = ++PBB->getIterator();
1115             if (Next != MF.end())
1116               FBB = &*Next;
1117           }
1118         }
1119 
1120         // Remove the unconditional branch at the end, if any.
1121         if (TBB && (Cond.empty() || FBB)) {
1122           DebugLoc dl = PBB->findBranchDebugLoc();
1123           TII->removeBranch(*PBB);
1124           if (!Cond.empty())
1125             // reinsert conditional branch only, for now
1126             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1127                               NewCond, dl);
1128         }
1129 
1130         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1131       }
1132     }
1133 
1134     // If this is a large problem, avoid visiting the same basic blocks multiple
1135     // times.
1136     if (MergePotentials.size() == TailMergeThreshold)
1137       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1138         TriedMerging.insert(MergePotentials[i].getBlock());
1139 
1140     if (MergePotentials.size() >= 2)
1141       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1142 
1143     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1144     // result of removing blocks in TryTailMergeBlocks.
1145     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1146     if (MergePotentials.size() == 1 &&
1147         MergePotentials.begin()->getBlock() != PredBB)
1148       FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1149   }
1150 
1151   return MadeChange;
1152 }
1153 
1154 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1155   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1156   BlockFrequency AccumulatedMBBFreq;
1157 
1158   // Aggregate edge frequency of successor edge j:
1159   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1160   //  where bb is a basic block that is in SameTails.
1161   for (const auto &Src : SameTails) {
1162     const MachineBasicBlock *SrcMBB = Src.getBlock();
1163     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1164     AccumulatedMBBFreq += BlockFreq;
1165 
1166     // It is not necessary to recompute edge weights if TailBB has less than two
1167     // successors.
1168     if (TailMBB.succ_size() <= 1)
1169       continue;
1170 
1171     auto EdgeFreq = EdgeFreqLs.begin();
1172 
1173     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1174          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1175       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1176   }
1177 
1178   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1179 
1180   if (TailMBB.succ_size() <= 1)
1181     return;
1182 
1183   auto SumEdgeFreq =
1184       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1185           .getFrequency();
1186   auto EdgeFreq = EdgeFreqLs.begin();
1187 
1188   if (SumEdgeFreq > 0) {
1189     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1190          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1191       auto Prob = BranchProbability::getBranchProbability(
1192           EdgeFreq->getFrequency(), SumEdgeFreq);
1193       TailMBB.setSuccProbability(SuccI, Prob);
1194     }
1195   }
1196 }
1197 
1198 //===----------------------------------------------------------------------===//
1199 //  Branch Optimization
1200 //===----------------------------------------------------------------------===//
1201 
1202 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1203   bool MadeChange = false;
1204 
1205   // Make sure blocks are numbered in order
1206   MF.RenumberBlocks();
1207   // Renumbering blocks alters EH scope membership, recalculate it.
1208   EHScopeMembership = getEHScopeMembership(MF);
1209 
1210   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1211        I != E; ) {
1212     MachineBasicBlock *MBB = &*I++;
1213     MadeChange |= OptimizeBlock(MBB);
1214 
1215     // If it is dead, remove it.
1216     if (MBB->pred_empty()) {
1217       RemoveDeadBlock(MBB);
1218       MadeChange = true;
1219       ++NumDeadBlocks;
1220     }
1221   }
1222 
1223   return MadeChange;
1224 }
1225 
1226 // Blocks should be considered empty if they contain only debug info;
1227 // else the debug info would affect codegen.
1228 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1229   return MBB->getFirstNonDebugInstr() == MBB->end();
1230 }
1231 
1232 // Blocks with only debug info and branches should be considered the same
1233 // as blocks with only branches.
1234 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1235   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1236   assert(I != MBB->end() && "empty block!");
1237   return I->isBranch();
1238 }
1239 
1240 /// IsBetterFallthrough - Return true if it would be clearly better to
1241 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1242 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1243 /// result in infinite loops.
1244 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1245                                 MachineBasicBlock *MBB2) {
1246   assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1247 
1248   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1249   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1250   // optimize branches that branch to either a return block or an assert block
1251   // into a fallthrough to the return.
1252   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1253   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1254   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1255     return false;
1256 
1257   // If there is a clear successor ordering we make sure that one block
1258   // will fall through to the next
1259   if (MBB1->isSuccessor(MBB2)) return true;
1260   if (MBB2->isSuccessor(MBB1)) return false;
1261 
1262   return MBB2I->isCall() && !MBB1I->isCall();
1263 }
1264 
1265 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1266 /// instructions on the block.
1267 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1268   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1269   if (I != MBB.end() && I->isBranch())
1270     return I->getDebugLoc();
1271   return DebugLoc();
1272 }
1273 
1274 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1275                                        MachineBasicBlock &MBB,
1276                                        MachineBasicBlock &PredMBB) {
1277   auto InsertBefore = PredMBB.getFirstTerminator();
1278   for (MachineInstr &MI : MBB.instrs())
1279     if (MI.isDebugInstr()) {
1280       TII->duplicate(PredMBB, InsertBefore, MI);
1281       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1282                         << MI);
1283     }
1284 }
1285 
1286 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1287                                      MachineBasicBlock &MBB,
1288                                      MachineBasicBlock &SuccMBB) {
1289   auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1290   for (MachineInstr &MI : MBB.instrs())
1291     if (MI.isDebugInstr()) {
1292       TII->duplicate(SuccMBB, InsertBefore, MI);
1293       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1294                         << MI);
1295     }
1296 }
1297 
1298 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1299 // a basic block is removed we would lose the debug information unless we have
1300 // copied the information to a predecessor/successor.
1301 //
1302 // TODO: This function only handles some simple cases. An alternative would be
1303 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1304 // branch folding.
1305 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1306                                            MachineBasicBlock &MBB) {
1307   assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1308   // If this MBB is the only predecessor of a successor it is legal to copy
1309   // DBG_VALUE instructions to the beginning of the successor.
1310   for (MachineBasicBlock *SuccBB : MBB.successors())
1311     if (SuccBB->pred_size() == 1)
1312       copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1313   // If this MBB is the only successor of a predecessor it is legal to copy the
1314   // DBG_VALUE instructions to the end of the predecessor (just before the
1315   // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1316   for (MachineBasicBlock *PredBB : MBB.predecessors())
1317     if (PredBB->succ_size() == 1)
1318       copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1319 }
1320 
1321 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1322   bool MadeChange = false;
1323   MachineFunction &MF = *MBB->getParent();
1324 ReoptimizeBlock:
1325 
1326   MachineFunction::iterator FallThrough = MBB->getIterator();
1327   ++FallThrough;
1328 
1329   // Make sure MBB and FallThrough belong to the same EH scope.
1330   bool SameEHScope = true;
1331   if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1332     auto MBBEHScope = EHScopeMembership.find(MBB);
1333     assert(MBBEHScope != EHScopeMembership.end());
1334     auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1335     assert(FallThroughEHScope != EHScopeMembership.end());
1336     SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1337   }
1338 
1339   // If this block is empty, make everyone use its fall-through, not the block
1340   // explicitly.  Landing pads should not do this since the landing-pad table
1341   // points to this block.  Blocks with their addresses taken shouldn't be
1342   // optimized away.
1343   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1344       SameEHScope) {
1345     salvageDebugInfoFromEmptyBlock(TII, *MBB);
1346     // Dead block?  Leave for cleanup later.
1347     if (MBB->pred_empty()) return MadeChange;
1348 
1349     if (FallThrough == MF.end()) {
1350       // TODO: Simplify preds to not branch here if possible!
1351     } else if (FallThrough->isEHPad()) {
1352       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1353       // where a BB jumps to more than one landing pad.
1354       // TODO: Is it ever worth rewriting predecessors which don't already
1355       // jump to a landing pad, and so can safely jump to the fallthrough?
1356     } else if (MBB->isSuccessor(&*FallThrough)) {
1357       // Rewrite all predecessors of the old block to go to the fallthrough
1358       // instead.
1359       while (!MBB->pred_empty()) {
1360         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1361         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1362       }
1363       // If MBB was the target of a jump table, update jump tables to go to the
1364       // fallthrough instead.
1365       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1366         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1367       MadeChange = true;
1368     }
1369     return MadeChange;
1370   }
1371 
1372   // Check to see if we can simplify the terminator of the block before this
1373   // one.
1374   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1375 
1376   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1377   SmallVector<MachineOperand, 4> PriorCond;
1378   bool PriorUnAnalyzable =
1379       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1380   if (!PriorUnAnalyzable) {
1381     // If the CFG for the prior block has extra edges, remove them.
1382     MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
1383                                               !PriorCond.empty());
1384 
1385     // If the previous branch is conditional and both conditions go to the same
1386     // destination, remove the branch, replacing it with an unconditional one or
1387     // a fall-through.
1388     if (PriorTBB && PriorTBB == PriorFBB) {
1389       DebugLoc dl = getBranchDebugLoc(PrevBB);
1390       TII->removeBranch(PrevBB);
1391       PriorCond.clear();
1392       if (PriorTBB != MBB)
1393         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1394       MadeChange = true;
1395       ++NumBranchOpts;
1396       goto ReoptimizeBlock;
1397     }
1398 
1399     // If the previous block unconditionally falls through to this block and
1400     // this block has no other predecessors, move the contents of this block
1401     // into the prior block. This doesn't usually happen when SimplifyCFG
1402     // has been used, but it can happen if tail merging splits a fall-through
1403     // predecessor of a block.
1404     // This has to check PrevBB->succ_size() because EH edges are ignored by
1405     // analyzeBranch.
1406     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1407         PrevBB.succ_size() == 1 &&
1408         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1409       LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1410                         << "From MBB: " << *MBB);
1411       // Remove redundant DBG_VALUEs first.
1412       if (PrevBB.begin() != PrevBB.end()) {
1413         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1414         --PrevBBIter;
1415         MachineBasicBlock::iterator MBBIter = MBB->begin();
1416         // Check if DBG_VALUE at the end of PrevBB is identical to the
1417         // DBG_VALUE at the beginning of MBB.
1418         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1419                && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1420           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1421             break;
1422           MachineInstr &DuplicateDbg = *MBBIter;
1423           ++MBBIter; -- PrevBBIter;
1424           DuplicateDbg.eraseFromParent();
1425         }
1426       }
1427       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1428       PrevBB.removeSuccessor(PrevBB.succ_begin());
1429       assert(PrevBB.succ_empty());
1430       PrevBB.transferSuccessors(MBB);
1431       MadeChange = true;
1432       return MadeChange;
1433     }
1434 
1435     // If the previous branch *only* branches to *this* block (conditional or
1436     // not) remove the branch.
1437     if (PriorTBB == MBB && !PriorFBB) {
1438       TII->removeBranch(PrevBB);
1439       MadeChange = true;
1440       ++NumBranchOpts;
1441       goto ReoptimizeBlock;
1442     }
1443 
1444     // If the prior block branches somewhere else on the condition and here if
1445     // the condition is false, remove the uncond second branch.
1446     if (PriorFBB == MBB) {
1447       DebugLoc dl = getBranchDebugLoc(PrevBB);
1448       TII->removeBranch(PrevBB);
1449       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1450       MadeChange = true;
1451       ++NumBranchOpts;
1452       goto ReoptimizeBlock;
1453     }
1454 
1455     // If the prior block branches here on true and somewhere else on false, and
1456     // if the branch condition is reversible, reverse the branch to create a
1457     // fall-through.
1458     if (PriorTBB == MBB) {
1459       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1460       if (!TII->reverseBranchCondition(NewPriorCond)) {
1461         DebugLoc dl = getBranchDebugLoc(PrevBB);
1462         TII->removeBranch(PrevBB);
1463         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1464         MadeChange = true;
1465         ++NumBranchOpts;
1466         goto ReoptimizeBlock;
1467       }
1468     }
1469 
1470     // If this block has no successors (e.g. it is a return block or ends with
1471     // a call to a no-return function like abort or __cxa_throw) and if the pred
1472     // falls through into this block, and if it would otherwise fall through
1473     // into the block after this, move this block to the end of the function.
1474     //
1475     // We consider it more likely that execution will stay in the function (e.g.
1476     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1477     // the assert condition out of the loop body.
1478     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1479         MachineFunction::iterator(PriorTBB) == FallThrough &&
1480         !MBB->canFallThrough()) {
1481       bool DoTransform = true;
1482 
1483       // We have to be careful that the succs of PredBB aren't both no-successor
1484       // blocks.  If neither have successors and if PredBB is the second from
1485       // last block in the function, we'd just keep swapping the two blocks for
1486       // last.  Only do the swap if one is clearly better to fall through than
1487       // the other.
1488       if (FallThrough == --MF.end() &&
1489           !IsBetterFallthrough(PriorTBB, MBB))
1490         DoTransform = false;
1491 
1492       if (DoTransform) {
1493         // Reverse the branch so we will fall through on the previous true cond.
1494         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1495         if (!TII->reverseBranchCondition(NewPriorCond)) {
1496           LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1497                             << "To make fallthrough to: " << *PriorTBB << "\n");
1498 
1499           DebugLoc dl = getBranchDebugLoc(PrevBB);
1500           TII->removeBranch(PrevBB);
1501           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1502 
1503           // Move this block to the end of the function.
1504           MBB->moveAfter(&MF.back());
1505           MadeChange = true;
1506           ++NumBranchOpts;
1507           return MadeChange;
1508         }
1509       }
1510     }
1511   }
1512 
1513   bool OptForSize =
1514       MF.getFunction().hasOptSize() ||
1515       llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo);
1516   if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) {
1517     // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1518     // direction, thereby defeating careful block placement and regressing
1519     // performance. Therefore, only consider this for optsize functions.
1520     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1521     if (TII->isUnconditionalTailCall(TailCall)) {
1522       MachineBasicBlock *Pred = *MBB->pred_begin();
1523       MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1524       SmallVector<MachineOperand, 4> PredCond;
1525       bool PredAnalyzable =
1526           !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1527 
1528       if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1529           PredTBB != PredFBB) {
1530         // The predecessor has a conditional branch to this block which consists
1531         // of only a tail call. Try to fold the tail call into the conditional
1532         // branch.
1533         if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1534           // TODO: It would be nice if analyzeBranch() could provide a pointer
1535           // to the branch instruction so replaceBranchWithTailCall() doesn't
1536           // have to search for it.
1537           TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1538           ++NumTailCalls;
1539           Pred->removeSuccessor(MBB);
1540           MadeChange = true;
1541           return MadeChange;
1542         }
1543       }
1544       // If the predecessor is falling through to this block, we could reverse
1545       // the branch condition and fold the tail call into that. However, after
1546       // that we might have to re-arrange the CFG to fall through to the other
1547       // block and there is a high risk of regressing code size rather than
1548       // improving it.
1549     }
1550   }
1551 
1552   // Analyze the branch in the current block.
1553   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1554   SmallVector<MachineOperand, 4> CurCond;
1555   bool CurUnAnalyzable =
1556       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1557   if (!CurUnAnalyzable) {
1558     // If the CFG for the prior block has extra edges, remove them.
1559     MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());
1560 
1561     // If this is a two-way branch, and the FBB branches to this block, reverse
1562     // the condition so the single-basic-block loop is faster.  Instead of:
1563     //    Loop: xxx; jcc Out; jmp Loop
1564     // we want:
1565     //    Loop: xxx; jncc Loop; jmp Out
1566     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1567       SmallVector<MachineOperand, 4> NewCond(CurCond);
1568       if (!TII->reverseBranchCondition(NewCond)) {
1569         DebugLoc dl = getBranchDebugLoc(*MBB);
1570         TII->removeBranch(*MBB);
1571         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1572         MadeChange = true;
1573         ++NumBranchOpts;
1574         goto ReoptimizeBlock;
1575       }
1576     }
1577 
1578     // If this branch is the only thing in its block, see if we can forward
1579     // other blocks across it.
1580     if (CurTBB && CurCond.empty() && !CurFBB &&
1581         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1582         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1583       DebugLoc dl = getBranchDebugLoc(*MBB);
1584       // This block may contain just an unconditional branch.  Because there can
1585       // be 'non-branch terminators' in the block, try removing the branch and
1586       // then seeing if the block is empty.
1587       TII->removeBranch(*MBB);
1588       // If the only things remaining in the block are debug info, remove these
1589       // as well, so this will behave the same as an empty block in non-debug
1590       // mode.
1591       if (IsEmptyBlock(MBB)) {
1592         // Make the block empty, losing the debug info (we could probably
1593         // improve this in some cases.)
1594         MBB->erase(MBB->begin(), MBB->end());
1595       }
1596       // If this block is just an unconditional branch to CurTBB, we can
1597       // usually completely eliminate the block.  The only case we cannot
1598       // completely eliminate the block is when the block before this one
1599       // falls through into MBB and we can't understand the prior block's branch
1600       // condition.
1601       if (MBB->empty()) {
1602         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1603         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1604             !PrevBB.isSuccessor(MBB)) {
1605           // If the prior block falls through into us, turn it into an
1606           // explicit branch to us to make updates simpler.
1607           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1608               PriorTBB != MBB && PriorFBB != MBB) {
1609             if (!PriorTBB) {
1610               assert(PriorCond.empty() && !PriorFBB &&
1611                      "Bad branch analysis");
1612               PriorTBB = MBB;
1613             } else {
1614               assert(!PriorFBB && "Machine CFG out of date!");
1615               PriorFBB = MBB;
1616             }
1617             DebugLoc pdl = getBranchDebugLoc(PrevBB);
1618             TII->removeBranch(PrevBB);
1619             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1620           }
1621 
1622           // Iterate through all the predecessors, revectoring each in-turn.
1623           size_t PI = 0;
1624           bool DidChange = false;
1625           bool HasBranchToSelf = false;
1626           while(PI != MBB->pred_size()) {
1627             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1628             if (PMBB == MBB) {
1629               // If this block has an uncond branch to itself, leave it.
1630               ++PI;
1631               HasBranchToSelf = true;
1632             } else {
1633               DidChange = true;
1634               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1635               // If this change resulted in PMBB ending in a conditional
1636               // branch where both conditions go to the same destination,
1637               // change this to an unconditional branch (and fix the CFG).
1638               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1639               SmallVector<MachineOperand, 4> NewCurCond;
1640               bool NewCurUnAnalyzable = TII->analyzeBranch(
1641                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1642               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1643                 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1644                 TII->removeBranch(*PMBB);
1645                 NewCurCond.clear();
1646                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1647                 MadeChange = true;
1648                 ++NumBranchOpts;
1649                 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
1650               }
1651             }
1652           }
1653 
1654           // Change any jumptables to go to the new MBB.
1655           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1656             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1657           if (DidChange) {
1658             ++NumBranchOpts;
1659             MadeChange = true;
1660             if (!HasBranchToSelf) return MadeChange;
1661           }
1662         }
1663       }
1664 
1665       // Add the branch back if the block is more than just an uncond branch.
1666       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1667     }
1668   }
1669 
1670   // If the prior block doesn't fall through into this block, and if this
1671   // block doesn't fall through into some other block, see if we can find a
1672   // place to move this block where a fall-through will happen.
1673   if (!PrevBB.canFallThrough()) {
1674     // Now we know that there was no fall-through into this block, check to
1675     // see if it has a fall-through into its successor.
1676     bool CurFallsThru = MBB->canFallThrough();
1677 
1678     if (!MBB->isEHPad()) {
1679       // Check all the predecessors of this block.  If one of them has no fall
1680       // throughs, move this block right after it.
1681       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1682         // Analyze the branch at the end of the pred.
1683         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1684         SmallVector<MachineOperand, 4> PredCond;
1685         if (PredBB != MBB && !PredBB->canFallThrough() &&
1686             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1687             (!CurFallsThru || !CurTBB || !CurFBB) &&
1688             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1689           // If the current block doesn't fall through, just move it.
1690           // If the current block can fall through and does not end with a
1691           // conditional branch, we need to append an unconditional jump to
1692           // the (current) next block.  To avoid a possible compile-time
1693           // infinite loop, move blocks only backward in this case.
1694           // Also, if there are already 2 branches here, we cannot add a third;
1695           // this means we have the case
1696           // Bcc next
1697           // B elsewhere
1698           // next:
1699           if (CurFallsThru) {
1700             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1701             CurCond.clear();
1702             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1703           }
1704           MBB->moveAfter(PredBB);
1705           MadeChange = true;
1706           goto ReoptimizeBlock;
1707         }
1708       }
1709     }
1710 
1711     if (!CurFallsThru) {
1712       // Check all successors to see if we can move this block before it.
1713       for (MachineBasicBlock *SuccBB : MBB->successors()) {
1714         // Analyze the branch at the end of the block before the succ.
1715         MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1716 
1717         // If this block doesn't already fall-through to that successor, and if
1718         // the succ doesn't already have a block that can fall through into it,
1719         // and if the successor isn't an EH destination, we can arrange for the
1720         // fallthrough to happen.
1721         if (SuccBB != MBB && &*SuccPrev != MBB &&
1722             !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
1723             !SuccBB->isEHPad()) {
1724           MBB->moveBefore(SuccBB);
1725           MadeChange = true;
1726           goto ReoptimizeBlock;
1727         }
1728       }
1729 
1730       // Okay, there is no really great place to put this block.  If, however,
1731       // the block before this one would be a fall-through if this block were
1732       // removed, move this block to the end of the function. There is no real
1733       // advantage in "falling through" to an EH block, so we don't want to
1734       // perform this transformation for that case.
1735       //
1736       // Also, Windows EH introduced the possibility of an arbitrary number of
1737       // successors to a given block.  The analyzeBranch call does not consider
1738       // exception handling and so we can get in a state where a block
1739       // containing a call is followed by multiple EH blocks that would be
1740       // rotated infinitely at the end of the function if the transformation
1741       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1742       // that appears not to be happening anymore, we should assume that it is
1743       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1744       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1745       SmallVector<MachineOperand, 4> PrevCond;
1746       if (FallThrough != MF.end() &&
1747           !FallThrough->isEHPad() &&
1748           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1749           PrevBB.isSuccessor(&*FallThrough)) {
1750         MBB->moveAfter(&MF.back());
1751         MadeChange = true;
1752         return MadeChange;
1753       }
1754     }
1755   }
1756 
1757   return MadeChange;
1758 }
1759 
1760 //===----------------------------------------------------------------------===//
1761 //  Hoist Common Code
1762 //===----------------------------------------------------------------------===//
1763 
1764 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1765   bool MadeChange = false;
1766   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1767     MachineBasicBlock *MBB = &*I++;
1768     MadeChange |= HoistCommonCodeInSuccs(MBB);
1769   }
1770 
1771   return MadeChange;
1772 }
1773 
1774 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1775 /// its 'true' successor.
1776 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1777                                          MachineBasicBlock *TrueBB) {
1778   for (MachineBasicBlock *SuccBB : BB->successors())
1779     if (SuccBB != TrueBB)
1780       return SuccBB;
1781   return nullptr;
1782 }
1783 
1784 template <class Container>
1785 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
1786                                 Container &Set) {
1787   if (Register::isPhysicalRegister(Reg)) {
1788     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1789       Set.insert(*AI);
1790   } else {
1791     Set.insert(Reg);
1792   }
1793 }
1794 
1795 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1796 /// in successors to. The location is usually just before the terminator,
1797 /// however if the terminator is a conditional branch and its previous
1798 /// instruction is the flag setting instruction, the previous instruction is
1799 /// the preferred location. This function also gathers uses and defs of the
1800 /// instructions from the insertion point to the end of the block. The data is
1801 /// used by HoistCommonCodeInSuccs to ensure safety.
1802 static
1803 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1804                                                   const TargetInstrInfo *TII,
1805                                                   const TargetRegisterInfo *TRI,
1806                                                   SmallSet<unsigned,4> &Uses,
1807                                                   SmallSet<unsigned,4> &Defs) {
1808   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1809   if (!TII->isUnpredicatedTerminator(*Loc))
1810     return MBB->end();
1811 
1812   for (const MachineOperand &MO : Loc->operands()) {
1813     if (!MO.isReg())
1814       continue;
1815     Register Reg = MO.getReg();
1816     if (!Reg)
1817       continue;
1818     if (MO.isUse()) {
1819       addRegAndItsAliases(Reg, TRI, Uses);
1820     } else {
1821       if (!MO.isDead())
1822         // Don't try to hoist code in the rare case the terminator defines a
1823         // register that is later used.
1824         return MBB->end();
1825 
1826       // If the terminator defines a register, make sure we don't hoist
1827       // the instruction whose def might be clobbered by the terminator.
1828       addRegAndItsAliases(Reg, TRI, Defs);
1829     }
1830   }
1831 
1832   if (Uses.empty())
1833     return Loc;
1834   // If the terminator is the only instruction in the block and Uses is not
1835   // empty (or we would have returned above), we can still safely hoist
1836   // instructions just before the terminator as long as the Defs/Uses are not
1837   // violated (which is checked in HoistCommonCodeInSuccs).
1838   if (Loc == MBB->begin())
1839     return Loc;
1840 
1841   // The terminator is probably a conditional branch, try not to separate the
1842   // branch from condition setting instruction.
1843   MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin());
1844 
1845   bool IsDef = false;
1846   for (const MachineOperand &MO : PI->operands()) {
1847     // If PI has a regmask operand, it is probably a call. Separate away.
1848     if (MO.isRegMask())
1849       return Loc;
1850     if (!MO.isReg() || MO.isUse())
1851       continue;
1852     Register Reg = MO.getReg();
1853     if (!Reg)
1854       continue;
1855     if (Uses.count(Reg)) {
1856       IsDef = true;
1857       break;
1858     }
1859   }
1860   if (!IsDef)
1861     // The condition setting instruction is not just before the conditional
1862     // branch.
1863     return Loc;
1864 
1865   // Be conservative, don't insert instruction above something that may have
1866   // side-effects. And since it's potentially bad to separate flag setting
1867   // instruction from the conditional branch, just abort the optimization
1868   // completely.
1869   // Also avoid moving code above predicated instruction since it's hard to
1870   // reason about register liveness with predicated instruction.
1871   bool DontMoveAcrossStore = true;
1872   if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1873     return MBB->end();
1874 
1875   // Find out what registers are live. Note this routine is ignoring other live
1876   // registers which are only used by instructions in successor blocks.
1877   for (const MachineOperand &MO : PI->operands()) {
1878     if (!MO.isReg())
1879       continue;
1880     Register Reg = MO.getReg();
1881     if (!Reg)
1882       continue;
1883     if (MO.isUse()) {
1884       addRegAndItsAliases(Reg, TRI, Uses);
1885     } else {
1886       if (Uses.erase(Reg)) {
1887         if (Register::isPhysicalRegister(Reg)) {
1888           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1889             Uses.erase(*SubRegs); // Use sub-registers to be conservative
1890         }
1891       }
1892       addRegAndItsAliases(Reg, TRI, Defs);
1893     }
1894   }
1895 
1896   return PI;
1897 }
1898 
1899 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1900   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1901   SmallVector<MachineOperand, 4> Cond;
1902   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1903     return false;
1904 
1905   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1906   if (!FBB)
1907     // Malformed bcc? True and false blocks are the same?
1908     return false;
1909 
1910   // Restrict the optimization to cases where MBB is the only predecessor,
1911   // it is an obvious win.
1912   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1913     return false;
1914 
1915   // Find a suitable position to hoist the common instructions to. Also figure
1916   // out which registers are used or defined by instructions from the insertion
1917   // point to the end of the block.
1918   SmallSet<unsigned, 4> Uses, Defs;
1919   MachineBasicBlock::iterator Loc =
1920     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1921   if (Loc == MBB->end())
1922     return false;
1923 
1924   bool HasDups = false;
1925   SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
1926   MachineBasicBlock::iterator TIB = TBB->begin();
1927   MachineBasicBlock::iterator FIB = FBB->begin();
1928   MachineBasicBlock::iterator TIE = TBB->end();
1929   MachineBasicBlock::iterator FIE = FBB->end();
1930   while (TIB != TIE && FIB != FIE) {
1931     // Skip dbg_value instructions. These do not count.
1932     TIB = skipDebugInstructionsForward(TIB, TIE);
1933     FIB = skipDebugInstructionsForward(FIB, FIE);
1934     if (TIB == TIE || FIB == FIE)
1935       break;
1936 
1937     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1938       break;
1939 
1940     if (TII->isPredicated(*TIB))
1941       // Hard to reason about register liveness with predicated instruction.
1942       break;
1943 
1944     bool IsSafe = true;
1945     for (MachineOperand &MO : TIB->operands()) {
1946       // Don't attempt to hoist instructions with register masks.
1947       if (MO.isRegMask()) {
1948         IsSafe = false;
1949         break;
1950       }
1951       if (!MO.isReg())
1952         continue;
1953       Register Reg = MO.getReg();
1954       if (!Reg)
1955         continue;
1956       if (MO.isDef()) {
1957         if (Uses.count(Reg)) {
1958           // Avoid clobbering a register that's used by the instruction at
1959           // the point of insertion.
1960           IsSafe = false;
1961           break;
1962         }
1963 
1964         if (Defs.count(Reg) && !MO.isDead()) {
1965           // Don't hoist the instruction if the def would be clobber by the
1966           // instruction at the point insertion. FIXME: This is overly
1967           // conservative. It should be possible to hoist the instructions
1968           // in BB2 in the following example:
1969           // BB1:
1970           // r1, eflag = op1 r2, r3
1971           // brcc eflag
1972           //
1973           // BB2:
1974           // r1 = op2, ...
1975           //    = op3, killed r1
1976           IsSafe = false;
1977           break;
1978         }
1979       } else if (!ActiveDefsSet.count(Reg)) {
1980         if (Defs.count(Reg)) {
1981           // Use is defined by the instruction at the point of insertion.
1982           IsSafe = false;
1983           break;
1984         }
1985 
1986         if (MO.isKill() && Uses.count(Reg))
1987           // Kills a register that's read by the instruction at the point of
1988           // insertion. Remove the kill marker.
1989           MO.setIsKill(false);
1990       }
1991     }
1992     if (!IsSafe)
1993       break;
1994 
1995     bool DontMoveAcrossStore = true;
1996     if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
1997       break;
1998 
1999     // Remove kills from ActiveDefsSet, these registers had short live ranges.
2000     for (const MachineOperand &MO : TIB->operands()) {
2001       if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2002         continue;
2003       Register Reg = MO.getReg();
2004       if (!Reg)
2005         continue;
2006       if (!AllDefsSet.count(Reg)) {
2007         continue;
2008       }
2009       if (Register::isPhysicalRegister(Reg)) {
2010         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2011           ActiveDefsSet.erase(*AI);
2012       } else {
2013         ActiveDefsSet.erase(Reg);
2014       }
2015     }
2016 
2017     // Track local defs so we can update liveins.
2018     for (const MachineOperand &MO : TIB->operands()) {
2019       if (!MO.isReg() || !MO.isDef() || MO.isDead())
2020         continue;
2021       Register Reg = MO.getReg();
2022       if (!Reg || Register::isVirtualRegister(Reg))
2023         continue;
2024       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2025       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2026     }
2027 
2028     HasDups = true;
2029     ++TIB;
2030     ++FIB;
2031   }
2032 
2033   if (!HasDups)
2034     return false;
2035 
2036   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2037   FBB->erase(FBB->begin(), FIB);
2038 
2039   if (UpdateLiveIns) {
2040     recomputeLiveIns(*TBB);
2041     recomputeLiveIns(*FBB);
2042   }
2043 
2044   ++NumHoist;
2045   return true;
2046 }
2047