1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block.  This pass often results in dead MBB's, which
11 // it then removes.
12 //
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/CodeGen/Analysis.h"
29 #include "llvm/CodeGen/LivePhysRegs.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineModuleInfo.h"
40 #include "llvm/CodeGen/MachineOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/MachineSizeOpts.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetOpcodes.h"
45 #include "llvm/CodeGen/TargetPassConfig.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/MC/LaneBitmask.h"
53 #include "llvm/MC/MCRegisterInfo.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/BlockFrequency.h"
56 #include "llvm/Support/BranchProbability.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetMachine.h"
62 #include <cassert>
63 #include <cstddef>
64 #include <iterator>
65 #include <numeric>
66 #include <vector>
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "branch-folder"
71 
72 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
73 STATISTIC(NumBranchOpts, "Number of branches optimized");
74 STATISTIC(NumTailMerge , "Number of block tails merged");
75 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
76 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
77 
78 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
79                               cl::init(cl::BOU_UNSET), cl::Hidden);
80 
81 // Throttle for huge numbers of predecessors (compile speed problems)
82 static cl::opt<unsigned>
83 TailMergeThreshold("tail-merge-threshold",
84           cl::desc("Max number of predecessors to consider tail merging"),
85           cl::init(150), cl::Hidden);
86 
87 // Heuristic for tail merging (and, inversely, tail duplication).
88 // TODO: This should be replaced with a target query.
89 static cl::opt<unsigned>
90 TailMergeSize("tail-merge-size",
91               cl::desc("Min number of instructions to consider tail merging"),
92               cl::init(3), cl::Hidden);
93 
94 namespace {
95 
96   /// BranchFolderPass - Wrap branch folder in a machine function pass.
97   class BranchFolderPass : public MachineFunctionPass {
98   public:
99     static char ID;
100 
101     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
102 
103     bool runOnMachineFunction(MachineFunction &MF) override;
104 
105     void getAnalysisUsage(AnalysisUsage &AU) const override {
106       AU.addRequired<MachineBlockFrequencyInfo>();
107       AU.addRequired<MachineBranchProbabilityInfo>();
108       AU.addRequired<ProfileSummaryInfoWrapperPass>();
109       AU.addRequired<TargetPassConfig>();
110       MachineFunctionPass::getAnalysisUsage(AU);
111     }
112   };
113 
114 } // end anonymous namespace
115 
116 char BranchFolderPass::ID = 0;
117 
118 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
119 
120 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
121                 "Control Flow Optimizer", false, false)
122 
123 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
124   if (skipFunction(MF.getFunction()))
125     return false;
126 
127   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
128   // TailMerge can create jump into if branches that make CFG irreducible for
129   // HW that requires structurized CFG.
130   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
131                          PassConfig->getEnableTailMerge();
132   MBFIWrapper MBBFreqInfo(
133       getAnalysis<MachineBlockFrequencyInfo>());
134   BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
135                       getAnalysis<MachineBranchProbabilityInfo>(),
136                       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
137   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
138   return Folder.OptimizeFunction(
139       MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(),
140       MMIWP ? &MMIWP->getMMI() : nullptr);
141 }
142 
143 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
144                            MBFIWrapper &FreqInfo,
145                            const MachineBranchProbabilityInfo &ProbInfo,
146                            ProfileSummaryInfo *PSI,
147                            unsigned MinTailLength)
148     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
149       MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
150   if (MinCommonTailLength == 0)
151     MinCommonTailLength = TailMergeSize;
152   switch (FlagEnableTailMerge) {
153   case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
154   case cl::BOU_TRUE: EnableTailMerge = true; break;
155   case cl::BOU_FALSE: EnableTailMerge = false; break;
156   }
157 }
158 
159 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
160   assert(MBB->pred_empty() && "MBB must be dead!");
161   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
162 
163   MachineFunction *MF = MBB->getParent();
164   // drop all successors.
165   while (!MBB->succ_empty())
166     MBB->removeSuccessor(MBB->succ_end()-1);
167 
168   // Avoid matching if this pointer gets reused.
169   TriedMerging.erase(MBB);
170 
171   // Update call site info.
172   std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
173     if (MI.isCandidateForCallSiteEntry())
174       MF->eraseCallSiteInfo(&MI);
175   });
176   // Remove the block.
177   MF->erase(MBB);
178   EHScopeMembership.erase(MBB);
179   if (MLI)
180     MLI->removeBlock(MBB);
181 }
182 
183 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
184                                     const TargetInstrInfo *tii,
185                                     const TargetRegisterInfo *tri,
186                                     MachineModuleInfo *mmi,
187                                     MachineLoopInfo *mli, bool AfterPlacement) {
188   if (!tii) return false;
189 
190   TriedMerging.clear();
191 
192   MachineRegisterInfo &MRI = MF.getRegInfo();
193   AfterBlockPlacement = AfterPlacement;
194   TII = tii;
195   TRI = tri;
196   MMI = mmi;
197   MLI = mli;
198   this->MRI = &MRI;
199 
200   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
201   if (!UpdateLiveIns)
202     MRI.invalidateLiveness();
203 
204   // Fix CFG.  The later algorithms expect it to be right.
205   bool MadeChange = false;
206   for (MachineBasicBlock &MBB : MF) {
207     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
208     SmallVector<MachineOperand, 4> Cond;
209     if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
210       MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
211   }
212 
213   // Recalculate EH scope membership.
214   EHScopeMembership = getEHScopeMembership(MF);
215 
216   bool MadeChangeThisIteration = true;
217   while (MadeChangeThisIteration) {
218     MadeChangeThisIteration    = TailMergeBlocks(MF);
219     // No need to clean up if tail merging does not change anything after the
220     // block placement.
221     if (!AfterBlockPlacement || MadeChangeThisIteration)
222       MadeChangeThisIteration |= OptimizeBranches(MF);
223     if (EnableHoistCommonCode)
224       MadeChangeThisIteration |= HoistCommonCode(MF);
225     MadeChange |= MadeChangeThisIteration;
226   }
227 
228   // See if any jump tables have become dead as the code generator
229   // did its thing.
230   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
231   if (!JTI)
232     return MadeChange;
233 
234   // Walk the function to find jump tables that are live.
235   BitVector JTIsLive(JTI->getJumpTables().size());
236   for (const MachineBasicBlock &BB : MF) {
237     for (const MachineInstr &I : BB)
238       for (const MachineOperand &Op : I.operands()) {
239         if (!Op.isJTI()) continue;
240 
241         // Remember that this JT is live.
242         JTIsLive.set(Op.getIndex());
243       }
244   }
245 
246   // Finally, remove dead jump tables.  This happens when the
247   // indirect jump was unreachable (and thus deleted).
248   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
249     if (!JTIsLive.test(i)) {
250       JTI->RemoveJumpTable(i);
251       MadeChange = true;
252     }
253 
254   return MadeChange;
255 }
256 
257 //===----------------------------------------------------------------------===//
258 //  Tail Merging of Blocks
259 //===----------------------------------------------------------------------===//
260 
261 /// HashMachineInstr - Compute a hash value for MI and its operands.
262 static unsigned HashMachineInstr(const MachineInstr &MI) {
263   unsigned Hash = MI.getOpcode();
264   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
265     const MachineOperand &Op = MI.getOperand(i);
266 
267     // Merge in bits from the operand if easy. We can't use MachineOperand's
268     // hash_code here because it's not deterministic and we sort by hash value
269     // later.
270     unsigned OperandHash = 0;
271     switch (Op.getType()) {
272     case MachineOperand::MO_Register:
273       OperandHash = Op.getReg();
274       break;
275     case MachineOperand::MO_Immediate:
276       OperandHash = Op.getImm();
277       break;
278     case MachineOperand::MO_MachineBasicBlock:
279       OperandHash = Op.getMBB()->getNumber();
280       break;
281     case MachineOperand::MO_FrameIndex:
282     case MachineOperand::MO_ConstantPoolIndex:
283     case MachineOperand::MO_JumpTableIndex:
284       OperandHash = Op.getIndex();
285       break;
286     case MachineOperand::MO_GlobalAddress:
287     case MachineOperand::MO_ExternalSymbol:
288       // Global address / external symbol are too hard, don't bother, but do
289       // pull in the offset.
290       OperandHash = Op.getOffset();
291       break;
292     default:
293       break;
294     }
295 
296     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
297   }
298   return Hash;
299 }
300 
301 /// HashEndOfMBB - Hash the last instruction in the MBB.
302 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
303   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
304   if (I == MBB.end())
305     return 0;
306 
307   return HashMachineInstr(*I);
308 }
309 
310 /// Whether MI should be counted as an instruction when calculating common tail.
311 static bool countsAsInstruction(const MachineInstr &MI) {
312   return !(MI.isDebugInstr() || MI.isCFIInstruction());
313 }
314 
315 /// Iterate backwards from the given iterator \p I, towards the beginning of the
316 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
317 /// pointing to that MI. If no such MI is found, return the end iterator.
318 static MachineBasicBlock::iterator
319 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
320                                 MachineBasicBlock *MBB) {
321   while (I != MBB->begin()) {
322     --I;
323     if (countsAsInstruction(*I))
324       return I;
325   }
326   return MBB->end();
327 }
328 
329 /// Given two machine basic blocks, return the number of instructions they
330 /// actually have in common together at their end. If a common tail is found (at
331 /// least by one instruction), then iterators for the first shared instruction
332 /// in each block are returned as well.
333 ///
334 /// Non-instructions according to countsAsInstruction are ignored.
335 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
336                                         MachineBasicBlock *MBB2,
337                                         MachineBasicBlock::iterator &I1,
338                                         MachineBasicBlock::iterator &I2) {
339   MachineBasicBlock::iterator MBBI1 = MBB1->end();
340   MachineBasicBlock::iterator MBBI2 = MBB2->end();
341 
342   unsigned TailLen = 0;
343   while (true) {
344     MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
345     MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
346     if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
347       break;
348     if (!MBBI1->isIdenticalTo(*MBBI2) ||
349         // FIXME: This check is dubious. It's used to get around a problem where
350         // people incorrectly expect inline asm directives to remain in the same
351         // relative order. This is untenable because normal compiler
352         // optimizations (like this one) may reorder and/or merge these
353         // directives.
354         MBBI1->isInlineAsm()) {
355       break;
356     }
357     ++TailLen;
358     I1 = MBBI1;
359     I2 = MBBI2;
360   }
361 
362   return TailLen;
363 }
364 
365 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
366                                            MachineBasicBlock &NewDest) {
367   if (UpdateLiveIns) {
368     // OldInst should always point to an instruction.
369     MachineBasicBlock &OldMBB = *OldInst->getParent();
370     LiveRegs.clear();
371     LiveRegs.addLiveOuts(OldMBB);
372     // Move backward to the place where will insert the jump.
373     MachineBasicBlock::iterator I = OldMBB.end();
374     do {
375       --I;
376       LiveRegs.stepBackward(*I);
377     } while (I != OldInst);
378 
379     // Merging the tails may have switched some undef operand to non-undef ones.
380     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
381     // register.
382     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
383       // We computed the liveins with computeLiveIn earlier and should only see
384       // full registers:
385       assert(P.LaneMask == LaneBitmask::getAll() &&
386              "Can only handle full register.");
387       MCPhysReg Reg = P.PhysReg;
388       if (!LiveRegs.available(*MRI, Reg))
389         continue;
390       DebugLoc DL;
391       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
392     }
393   }
394 
395   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
396   ++NumTailMerge;
397 }
398 
399 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
400                                             MachineBasicBlock::iterator BBI1,
401                                             const BasicBlock *BB) {
402   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
403     return nullptr;
404 
405   MachineFunction &MF = *CurMBB.getParent();
406 
407   // Create the fall-through block.
408   MachineFunction::iterator MBBI = CurMBB.getIterator();
409   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
410   CurMBB.getParent()->insert(++MBBI, NewMBB);
411 
412   // Move all the successors of this block to the specified block.
413   NewMBB->transferSuccessors(&CurMBB);
414 
415   // Add an edge from CurMBB to NewMBB for the fall-through.
416   CurMBB.addSuccessor(NewMBB);
417 
418   // Splice the code over.
419   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
420 
421   // NewMBB belongs to the same loop as CurMBB.
422   if (MLI)
423     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
424       ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
425 
426   // NewMBB inherits CurMBB's block frequency.
427   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
428 
429   if (UpdateLiveIns)
430     computeAndAddLiveIns(LiveRegs, *NewMBB);
431 
432   // Add the new block to the EH scope.
433   const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
434   if (EHScopeI != EHScopeMembership.end()) {
435     auto n = EHScopeI->second;
436     EHScopeMembership[NewMBB] = n;
437   }
438 
439   return NewMBB;
440 }
441 
442 /// EstimateRuntime - Make a rough estimate for how long it will take to run
443 /// the specified code.
444 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
445                                 MachineBasicBlock::iterator E) {
446   unsigned Time = 0;
447   for (; I != E; ++I) {
448     if (!countsAsInstruction(*I))
449       continue;
450     if (I->isCall())
451       Time += 10;
452     else if (I->mayLoadOrStore())
453       Time += 2;
454     else
455       ++Time;
456   }
457   return Time;
458 }
459 
460 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
461 // branches temporarily for tail merging).  In the case where CurMBB ends
462 // with a conditional branch to the next block, optimize by reversing the
463 // test and conditionally branching to SuccMBB instead.
464 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
465                     const TargetInstrInfo *TII) {
466   MachineFunction *MF = CurMBB->getParent();
467   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
468   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
469   SmallVector<MachineOperand, 4> Cond;
470   DebugLoc dl = CurMBB->findBranchDebugLoc();
471   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
472     MachineBasicBlock *NextBB = &*I;
473     if (TBB == NextBB && !Cond.empty() && !FBB) {
474       if (!TII->reverseBranchCondition(Cond)) {
475         TII->removeBranch(*CurMBB);
476         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
477         return;
478       }
479     }
480   }
481   TII->insertBranch(*CurMBB, SuccBB, nullptr,
482                     SmallVector<MachineOperand, 0>(), dl);
483 }
484 
485 bool
486 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
487   if (getHash() < o.getHash())
488     return true;
489   if (getHash() > o.getHash())
490     return false;
491   if (getBlock()->getNumber() < o.getBlock()->getNumber())
492     return true;
493   if (getBlock()->getNumber() > o.getBlock()->getNumber())
494     return false;
495   // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
496   // an object with itself.
497 #ifndef _GLIBCXX_DEBUG
498   llvm_unreachable("Predecessor appears twice");
499 #else
500   return false;
501 #endif
502 }
503 
504 /// CountTerminators - Count the number of terminators in the given
505 /// block and set I to the position of the first non-terminator, if there
506 /// is one, or MBB->end() otherwise.
507 static unsigned CountTerminators(MachineBasicBlock *MBB,
508                                  MachineBasicBlock::iterator &I) {
509   I = MBB->end();
510   unsigned NumTerms = 0;
511   while (true) {
512     if (I == MBB->begin()) {
513       I = MBB->end();
514       break;
515     }
516     --I;
517     if (!I->isTerminator()) break;
518     ++NumTerms;
519   }
520   return NumTerms;
521 }
522 
523 /// A no successor, non-return block probably ends in unreachable and is cold.
524 /// Also consider a block that ends in an indirect branch to be a return block,
525 /// since many targets use plain indirect branches to return.
526 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
527   if (!MBB->succ_empty())
528     return false;
529   if (MBB->empty())
530     return true;
531   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
532 }
533 
534 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
535 /// and decide if it would be profitable to merge those tails.  Return the
536 /// length of the common tail and iterators to the first common instruction
537 /// in each block.
538 /// MBB1, MBB2      The blocks to check
539 /// MinCommonTailLength  Minimum size of tail block to be merged.
540 /// CommonTailLen   Out parameter to record the size of the shared tail between
541 ///                 MBB1 and MBB2
542 /// I1, I2          Iterator references that will be changed to point to the first
543 ///                 instruction in the common tail shared by MBB1,MBB2
544 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
545 ///                 relative to SuccBB
546 /// PredBB          The layout predecessor of SuccBB, if any.
547 /// EHScopeMembership  map from block to EH scope #.
548 /// AfterPlacement  True if we are merging blocks after layout. Stricter
549 ///                 thresholds apply to prevent undoing tail-duplication.
550 static bool
551 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
552                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
553                   MachineBasicBlock::iterator &I1,
554                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
555                   MachineBasicBlock *PredBB,
556                   DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
557                   bool AfterPlacement,
558                   MBFIWrapper &MBBFreqInfo,
559                   ProfileSummaryInfo *PSI) {
560   // It is never profitable to tail-merge blocks from two different EH scopes.
561   if (!EHScopeMembership.empty()) {
562     auto EHScope1 = EHScopeMembership.find(MBB1);
563     assert(EHScope1 != EHScopeMembership.end());
564     auto EHScope2 = EHScopeMembership.find(MBB2);
565     assert(EHScope2 != EHScopeMembership.end());
566     if (EHScope1->second != EHScope2->second)
567       return false;
568   }
569 
570   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
571   if (CommonTailLen == 0)
572     return false;
573   LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
574                     << " and " << printMBBReference(*MBB2) << " is "
575                     << CommonTailLen << '\n');
576 
577   // Move the iterators to the beginning of the MBB if we only got debug
578   // instructions before the tail. This is to avoid splitting a block when we
579   // only got debug instructions before the tail (to be invariant on -g).
580   if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end()) == I1)
581     I1 = MBB1->begin();
582   if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end()) == I2)
583     I2 = MBB2->begin();
584 
585   bool FullBlockTail1 = I1 == MBB1->begin();
586   bool FullBlockTail2 = I2 == MBB2->begin();
587 
588   // It's almost always profitable to merge any number of non-terminator
589   // instructions with the block that falls through into the common successor.
590   // This is true only for a single successor. For multiple successors, we are
591   // trading a conditional branch for an unconditional one.
592   // TODO: Re-visit successor size for non-layout tail merging.
593   if ((MBB1 == PredBB || MBB2 == PredBB) &&
594       (!AfterPlacement || MBB1->succ_size() == 1)) {
595     MachineBasicBlock::iterator I;
596     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
597     if (CommonTailLen > NumTerms)
598       return true;
599   }
600 
601   // If these are identical non-return blocks with no successors, merge them.
602   // Such blocks are typically cold calls to noreturn functions like abort, and
603   // are unlikely to become a fallthrough target after machine block placement.
604   // Tail merging these blocks is unlikely to create additional unconditional
605   // branches, and will reduce the size of this cold code.
606   if (FullBlockTail1 && FullBlockTail2 &&
607       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
608     return true;
609 
610   // If one of the blocks can be completely merged and happens to be in
611   // a position where the other could fall through into it, merge any number
612   // of instructions, because it can be done without a branch.
613   // TODO: If the blocks are not adjacent, move one of them so that they are?
614   if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
615     return true;
616   if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
617     return true;
618 
619   // If both blocks are identical and end in a branch, merge them unless they
620   // both have a fallthrough predecessor and successor.
621   // We can only do this after block placement because it depends on whether
622   // there are fallthroughs, and we don't know until after layout.
623   if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
624     auto BothFallThrough = [](MachineBasicBlock *MBB) {
625       if (MBB->succ_size() != 0 && !MBB->canFallThrough())
626         return false;
627       MachineFunction::iterator I(MBB);
628       MachineFunction *MF = MBB->getParent();
629       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
630     };
631     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
632       return true;
633   }
634 
635   // If both blocks have an unconditional branch temporarily stripped out,
636   // count that as an additional common instruction for the following
637   // heuristics. This heuristic is only accurate for single-succ blocks, so to
638   // make sure that during layout merging and duplicating don't crash, we check
639   // for that when merging during layout.
640   unsigned EffectiveTailLen = CommonTailLen;
641   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
642       (MBB1->succ_size() == 1 || !AfterPlacement) &&
643       !MBB1->back().isBarrier() &&
644       !MBB2->back().isBarrier())
645     ++EffectiveTailLen;
646 
647   // Check if the common tail is long enough to be worthwhile.
648   if (EffectiveTailLen >= MinCommonTailLength)
649     return true;
650 
651   // If we are optimizing for code size, 2 instructions in common is enough if
652   // we don't have to split a block.  At worst we will be introducing 1 new
653   // branch instruction, which is likely to be smaller than the 2
654   // instructions that would be deleted in the merge.
655   MachineFunction *MF = MBB1->getParent();
656   bool OptForSize =
657       MF->getFunction().hasOptSize() ||
658       (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
659        llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo));
660   return EffectiveTailLen >= 2 && OptForSize &&
661          (FullBlockTail1 || FullBlockTail2);
662 }
663 
664 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
665                                         unsigned MinCommonTailLength,
666                                         MachineBasicBlock *SuccBB,
667                                         MachineBasicBlock *PredBB) {
668   unsigned maxCommonTailLength = 0U;
669   SameTails.clear();
670   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
671   MPIterator HighestMPIter = std::prev(MergePotentials.end());
672   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
673                   B = MergePotentials.begin();
674        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
675     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
676       unsigned CommonTailLen;
677       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
678                             MinCommonTailLength,
679                             CommonTailLen, TrialBBI1, TrialBBI2,
680                             SuccBB, PredBB,
681                             EHScopeMembership,
682                             AfterBlockPlacement, MBBFreqInfo, PSI)) {
683         if (CommonTailLen > maxCommonTailLength) {
684           SameTails.clear();
685           maxCommonTailLength = CommonTailLen;
686           HighestMPIter = CurMPIter;
687           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
688         }
689         if (HighestMPIter == CurMPIter &&
690             CommonTailLen == maxCommonTailLength)
691           SameTails.push_back(SameTailElt(I, TrialBBI2));
692       }
693       if (I == B)
694         break;
695     }
696   }
697   return maxCommonTailLength;
698 }
699 
700 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
701                                         MachineBasicBlock *SuccBB,
702                                         MachineBasicBlock *PredBB) {
703   MPIterator CurMPIter, B;
704   for (CurMPIter = std::prev(MergePotentials.end()),
705       B = MergePotentials.begin();
706        CurMPIter->getHash() == CurHash; --CurMPIter) {
707     // Put the unconditional branch back, if we need one.
708     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
709     if (SuccBB && CurMBB != PredBB)
710       FixTail(CurMBB, SuccBB, TII);
711     if (CurMPIter == B)
712       break;
713   }
714   if (CurMPIter->getHash() != CurHash)
715     CurMPIter++;
716   MergePotentials.erase(CurMPIter, MergePotentials.end());
717 }
718 
719 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
720                                              MachineBasicBlock *SuccBB,
721                                              unsigned maxCommonTailLength,
722                                              unsigned &commonTailIndex) {
723   commonTailIndex = 0;
724   unsigned TimeEstimate = ~0U;
725   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
726     // Use PredBB if possible; that doesn't require a new branch.
727     if (SameTails[i].getBlock() == PredBB) {
728       commonTailIndex = i;
729       break;
730     }
731     // Otherwise, make a (fairly bogus) choice based on estimate of
732     // how long it will take the various blocks to execute.
733     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
734                                  SameTails[i].getTailStartPos());
735     if (t <= TimeEstimate) {
736       TimeEstimate = t;
737       commonTailIndex = i;
738     }
739   }
740 
741   MachineBasicBlock::iterator BBI =
742     SameTails[commonTailIndex].getTailStartPos();
743   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
744 
745   LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
746                     << maxCommonTailLength);
747 
748   // If the split block unconditionally falls-thru to SuccBB, it will be
749   // merged. In control flow terms it should then take SuccBB's name. e.g. If
750   // SuccBB is an inner loop, the common tail is still part of the inner loop.
751   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
752     SuccBB->getBasicBlock() : MBB->getBasicBlock();
753   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
754   if (!newMBB) {
755     LLVM_DEBUG(dbgs() << "... failed!");
756     return false;
757   }
758 
759   SameTails[commonTailIndex].setBlock(newMBB);
760   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
761 
762   // If we split PredBB, newMBB is the new predecessor.
763   if (PredBB == MBB)
764     PredBB = newMBB;
765 
766   return true;
767 }
768 
769 static void
770 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
771                 MachineBasicBlock &MBBCommon) {
772   MachineBasicBlock *MBB = MBBIStartPos->getParent();
773   // Note CommonTailLen does not necessarily matches the size of
774   // the common BB nor all its instructions because of debug
775   // instructions differences.
776   unsigned CommonTailLen = 0;
777   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
778     ++CommonTailLen;
779 
780   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
781   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
782   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
783   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
784 
785   while (CommonTailLen--) {
786     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
787     (void)MBBIE;
788 
789     if (!countsAsInstruction(*MBBI)) {
790       ++MBBI;
791       continue;
792     }
793 
794     while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
795       ++MBBICommon;
796 
797     assert(MBBICommon != MBBIECommon &&
798            "Reached BB end within common tail length!");
799     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
800 
801     // Merge MMOs from memory operations in the common block.
802     if (MBBICommon->mayLoadOrStore())
803       MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
804     // Drop undef flags if they aren't present in all merged instructions.
805     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
806       MachineOperand &MO = MBBICommon->getOperand(I);
807       if (MO.isReg() && MO.isUndef()) {
808         const MachineOperand &OtherMO = MBBI->getOperand(I);
809         if (!OtherMO.isUndef())
810           MO.setIsUndef(false);
811       }
812     }
813 
814     ++MBBI;
815     ++MBBICommon;
816   }
817 }
818 
819 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
820   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
821 
822   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
823   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
824     if (i != commonTailIndex) {
825       NextCommonInsts[i] = SameTails[i].getTailStartPos();
826       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
827     } else {
828       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
829           "MBB is not a common tail only block");
830     }
831   }
832 
833   for (auto &MI : *MBB) {
834     if (!countsAsInstruction(MI))
835       continue;
836     DebugLoc DL = MI.getDebugLoc();
837     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
838       if (i == commonTailIndex)
839         continue;
840 
841       auto &Pos = NextCommonInsts[i];
842       assert(Pos != SameTails[i].getBlock()->end() &&
843           "Reached BB end within common tail");
844       while (!countsAsInstruction(*Pos)) {
845         ++Pos;
846         assert(Pos != SameTails[i].getBlock()->end() &&
847             "Reached BB end within common tail");
848       }
849       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
850       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
851       NextCommonInsts[i] = ++Pos;
852     }
853     MI.setDebugLoc(DL);
854   }
855 
856   if (UpdateLiveIns) {
857     LivePhysRegs NewLiveIns(*TRI);
858     computeLiveIns(NewLiveIns, *MBB);
859     LiveRegs.init(*TRI);
860 
861     // The flag merging may lead to some register uses no longer using the
862     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
863     for (MachineBasicBlock *Pred : MBB->predecessors()) {
864       LiveRegs.clear();
865       LiveRegs.addLiveOuts(*Pred);
866       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
867       for (unsigned Reg : NewLiveIns) {
868         if (!LiveRegs.available(*MRI, Reg))
869           continue;
870         DebugLoc DL;
871         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
872                 Reg);
873       }
874     }
875 
876     MBB->clearLiveIns();
877     addLiveIns(*MBB, NewLiveIns);
878   }
879 }
880 
881 // See if any of the blocks in MergePotentials (which all have SuccBB as a
882 // successor, or all have no successor if it is null) can be tail-merged.
883 // If there is a successor, any blocks in MergePotentials that are not
884 // tail-merged and are not immediately before Succ must have an unconditional
885 // branch to Succ added (but the predecessor/successor lists need no
886 // adjustment). The lone predecessor of Succ that falls through into Succ,
887 // if any, is given in PredBB.
888 // MinCommonTailLength - Except for the special cases below, tail-merge if
889 // there are at least this many instructions in common.
890 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
891                                       MachineBasicBlock *PredBB,
892                                       unsigned MinCommonTailLength) {
893   bool MadeChange = false;
894 
895   LLVM_DEBUG(
896       dbgs() << "\nTryTailMergeBlocks: ";
897       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
898       << printMBBReference(*MergePotentials[i].getBlock())
899       << (i == e - 1 ? "" : ", ");
900       dbgs() << "\n"; if (SuccBB) {
901         dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
902         if (PredBB)
903           dbgs() << "  which has fall-through from "
904                  << printMBBReference(*PredBB) << "\n";
905       } dbgs() << "Looking for common tails of at least "
906                << MinCommonTailLength << " instruction"
907                << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
908 
909   // Sort by hash value so that blocks with identical end sequences sort
910   // together.
911   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
912 
913   // Walk through equivalence sets looking for actual exact matches.
914   while (MergePotentials.size() > 1) {
915     unsigned CurHash = MergePotentials.back().getHash();
916 
917     // Build SameTails, identifying the set of blocks with this hash code
918     // and with the maximum number of instructions in common.
919     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
920                                                     MinCommonTailLength,
921                                                     SuccBB, PredBB);
922 
923     // If we didn't find any pair that has at least MinCommonTailLength
924     // instructions in common, remove all blocks with this hash code and retry.
925     if (SameTails.empty()) {
926       RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
927       continue;
928     }
929 
930     // If one of the blocks is the entire common tail (and not the entry
931     // block, which we can't jump to), we can treat all blocks with this same
932     // tail at once.  Use PredBB if that is one of the possibilities, as that
933     // will not introduce any extra branches.
934     MachineBasicBlock *EntryBB =
935         &MergePotentials.front().getBlock()->getParent()->front();
936     unsigned commonTailIndex = SameTails.size();
937     // If there are two blocks, check to see if one can be made to fall through
938     // into the other.
939     if (SameTails.size() == 2 &&
940         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
941         SameTails[1].tailIsWholeBlock())
942       commonTailIndex = 1;
943     else if (SameTails.size() == 2 &&
944              SameTails[1].getBlock()->isLayoutSuccessor(
945                                                      SameTails[0].getBlock()) &&
946              SameTails[0].tailIsWholeBlock())
947       commonTailIndex = 0;
948     else {
949       // Otherwise just pick one, favoring the fall-through predecessor if
950       // there is one.
951       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
952         MachineBasicBlock *MBB = SameTails[i].getBlock();
953         if (MBB == EntryBB && SameTails[i].tailIsWholeBlock())
954           continue;
955         if (MBB == PredBB) {
956           commonTailIndex = i;
957           break;
958         }
959         if (SameTails[i].tailIsWholeBlock())
960           commonTailIndex = i;
961       }
962     }
963 
964     if (commonTailIndex == SameTails.size() ||
965         (SameTails[commonTailIndex].getBlock() == PredBB &&
966          !SameTails[commonTailIndex].tailIsWholeBlock())) {
967       // None of the blocks consist entirely of the common tail.
968       // Split a block so that one does.
969       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
970                                      maxCommonTailLength, commonTailIndex)) {
971         RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
972         continue;
973       }
974     }
975 
976     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
977 
978     // Recompute common tail MBB's edge weights and block frequency.
979     setCommonTailEdgeWeights(*MBB);
980 
981     // Merge debug locations, MMOs and undef flags across identical instructions
982     // for common tail.
983     mergeCommonTails(commonTailIndex);
984 
985     // MBB is common tail.  Adjust all other BB's to jump to this one.
986     // Traversal must be forwards so erases work.
987     LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
988                       << " for ");
989     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
990       if (commonTailIndex == i)
991         continue;
992       LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
993                         << (i == e - 1 ? "" : ", "));
994       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
995       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
996       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
997       MergePotentials.erase(SameTails[i].getMPIter());
998     }
999     LLVM_DEBUG(dbgs() << "\n");
1000     // We leave commonTailIndex in the worklist in case there are other blocks
1001     // that match it with a smaller number of instructions.
1002     MadeChange = true;
1003   }
1004   return MadeChange;
1005 }
1006 
1007 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1008   bool MadeChange = false;
1009   if (!EnableTailMerge)
1010     return MadeChange;
1011 
1012   // First find blocks with no successors.
1013   // Block placement may create new tail merging opportunities for these blocks.
1014   MergePotentials.clear();
1015   for (MachineBasicBlock &MBB : MF) {
1016     if (MergePotentials.size() == TailMergeThreshold)
1017       break;
1018     if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1019       MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1020   }
1021 
1022   // If this is a large problem, avoid visiting the same basic blocks
1023   // multiple times.
1024   if (MergePotentials.size() == TailMergeThreshold)
1025     for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1026       TriedMerging.insert(MergePotentials[i].getBlock());
1027 
1028   // See if we can do any tail merging on those.
1029   if (MergePotentials.size() >= 2)
1030     MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1031 
1032   // Look at blocks (IBB) with multiple predecessors (PBB).
1033   // We change each predecessor to a canonical form, by
1034   // (1) temporarily removing any unconditional branch from the predecessor
1035   // to IBB, and
1036   // (2) alter conditional branches so they branch to the other block
1037   // not IBB; this may require adding back an unconditional branch to IBB
1038   // later, where there wasn't one coming in.  E.g.
1039   //   Bcc IBB
1040   //   fallthrough to QBB
1041   // here becomes
1042   //   Bncc QBB
1043   // with a conceptual B to IBB after that, which never actually exists.
1044   // With those changes, we see whether the predecessors' tails match,
1045   // and merge them if so.  We change things out of canonical form and
1046   // back to the way they were later in the process.  (OptimizeBranches
1047   // would undo some of this, but we can't use it, because we'd get into
1048   // a compile-time infinite loop repeatedly doing and undoing the same
1049   // transformations.)
1050 
1051   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1052        I != E; ++I) {
1053     if (I->pred_size() < 2) continue;
1054     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1055     MachineBasicBlock *IBB = &*I;
1056     MachineBasicBlock *PredBB = &*std::prev(I);
1057     MergePotentials.clear();
1058     MachineLoop *ML;
1059 
1060     // Bail if merging after placement and IBB is the loop header because
1061     // -- If merging predecessors that belong to the same loop as IBB, the
1062     // common tail of merged predecessors may become the loop top if block
1063     // placement is called again and the predecessors may branch to this common
1064     // tail and require more branches. This can be relaxed if
1065     // MachineBlockPlacement::findBestLoopTop is more flexible.
1066     // --If merging predecessors that do not belong to the same loop as IBB, the
1067     // loop info of IBB's loop and the other loops may be affected. Calling the
1068     // block placement again may make big change to the layout and eliminate the
1069     // reason to do tail merging here.
1070     if (AfterBlockPlacement && MLI) {
1071       ML = MLI->getLoopFor(IBB);
1072       if (ML && IBB == ML->getHeader())
1073         continue;
1074     }
1075 
1076     for (MachineBasicBlock *PBB : I->predecessors()) {
1077       if (MergePotentials.size() == TailMergeThreshold)
1078         break;
1079 
1080       if (TriedMerging.count(PBB))
1081         continue;
1082 
1083       // Skip blocks that loop to themselves, can't tail merge these.
1084       if (PBB == IBB)
1085         continue;
1086 
1087       // Visit each predecessor only once.
1088       if (!UniquePreds.insert(PBB).second)
1089         continue;
1090 
1091       // Skip blocks which may jump to a landing pad. Can't tail merge these.
1092       if (PBB->hasEHPadSuccessor())
1093         continue;
1094 
1095       // After block placement, only consider predecessors that belong to the
1096       // same loop as IBB.  The reason is the same as above when skipping loop
1097       // header.
1098       if (AfterBlockPlacement && MLI)
1099         if (ML != MLI->getLoopFor(PBB))
1100           continue;
1101 
1102       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1103       SmallVector<MachineOperand, 4> Cond;
1104       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1105         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1106         // branch.
1107         SmallVector<MachineOperand, 4> NewCond(Cond);
1108         if (!Cond.empty() && TBB == IBB) {
1109           if (TII->reverseBranchCondition(NewCond))
1110             continue;
1111           // This is the QBB case described above
1112           if (!FBB) {
1113             auto Next = ++PBB->getIterator();
1114             if (Next != MF.end())
1115               FBB = &*Next;
1116           }
1117         }
1118 
1119         // Remove the unconditional branch at the end, if any.
1120         if (TBB && (Cond.empty() || FBB)) {
1121           DebugLoc dl = PBB->findBranchDebugLoc();
1122           TII->removeBranch(*PBB);
1123           if (!Cond.empty())
1124             // reinsert conditional branch only, for now
1125             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1126                               NewCond, dl);
1127         }
1128 
1129         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1130       }
1131     }
1132 
1133     // If this is a large problem, avoid visiting the same basic blocks multiple
1134     // times.
1135     if (MergePotentials.size() == TailMergeThreshold)
1136       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1137         TriedMerging.insert(MergePotentials[i].getBlock());
1138 
1139     if (MergePotentials.size() >= 2)
1140       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1141 
1142     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1143     // result of removing blocks in TryTailMergeBlocks.
1144     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1145     if (MergePotentials.size() == 1 &&
1146         MergePotentials.begin()->getBlock() != PredBB)
1147       FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1148   }
1149 
1150   return MadeChange;
1151 }
1152 
1153 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1154   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1155   BlockFrequency AccumulatedMBBFreq;
1156 
1157   // Aggregate edge frequency of successor edge j:
1158   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1159   //  where bb is a basic block that is in SameTails.
1160   for (const auto &Src : SameTails) {
1161     const MachineBasicBlock *SrcMBB = Src.getBlock();
1162     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1163     AccumulatedMBBFreq += BlockFreq;
1164 
1165     // It is not necessary to recompute edge weights if TailBB has less than two
1166     // successors.
1167     if (TailMBB.succ_size() <= 1)
1168       continue;
1169 
1170     auto EdgeFreq = EdgeFreqLs.begin();
1171 
1172     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1173          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1174       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1175   }
1176 
1177   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1178 
1179   if (TailMBB.succ_size() <= 1)
1180     return;
1181 
1182   auto SumEdgeFreq =
1183       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1184           .getFrequency();
1185   auto EdgeFreq = EdgeFreqLs.begin();
1186 
1187   if (SumEdgeFreq > 0) {
1188     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1189          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1190       auto Prob = BranchProbability::getBranchProbability(
1191           EdgeFreq->getFrequency(), SumEdgeFreq);
1192       TailMBB.setSuccProbability(SuccI, Prob);
1193     }
1194   }
1195 }
1196 
1197 //===----------------------------------------------------------------------===//
1198 //  Branch Optimization
1199 //===----------------------------------------------------------------------===//
1200 
1201 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1202   bool MadeChange = false;
1203 
1204   // Make sure blocks are numbered in order
1205   MF.RenumberBlocks();
1206   // Renumbering blocks alters EH scope membership, recalculate it.
1207   EHScopeMembership = getEHScopeMembership(MF);
1208 
1209   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1210        I != E; ) {
1211     MachineBasicBlock *MBB = &*I++;
1212     MadeChange |= OptimizeBlock(MBB);
1213 
1214     // If it is dead, remove it.
1215     if (MBB->pred_empty()) {
1216       RemoveDeadBlock(MBB);
1217       MadeChange = true;
1218       ++NumDeadBlocks;
1219     }
1220   }
1221 
1222   return MadeChange;
1223 }
1224 
1225 // Blocks should be considered empty if they contain only debug info;
1226 // else the debug info would affect codegen.
1227 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1228   return MBB->getFirstNonDebugInstr() == MBB->end();
1229 }
1230 
1231 // Blocks with only debug info and branches should be considered the same
1232 // as blocks with only branches.
1233 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1234   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1235   assert(I != MBB->end() && "empty block!");
1236   return I->isBranch();
1237 }
1238 
1239 /// IsBetterFallthrough - Return true if it would be clearly better to
1240 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1241 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1242 /// result in infinite loops.
1243 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1244                                 MachineBasicBlock *MBB2) {
1245   assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1246 
1247   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1248   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1249   // optimize branches that branch to either a return block or an assert block
1250   // into a fallthrough to the return.
1251   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1252   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1253   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1254     return false;
1255 
1256   // If there is a clear successor ordering we make sure that one block
1257   // will fall through to the next
1258   if (MBB1->isSuccessor(MBB2)) return true;
1259   if (MBB2->isSuccessor(MBB1)) return false;
1260 
1261   return MBB2I->isCall() && !MBB1I->isCall();
1262 }
1263 
1264 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1265 /// instructions on the block.
1266 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1267   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1268   if (I != MBB.end() && I->isBranch())
1269     return I->getDebugLoc();
1270   return DebugLoc();
1271 }
1272 
1273 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1274                                        MachineBasicBlock &MBB,
1275                                        MachineBasicBlock &PredMBB) {
1276   auto InsertBefore = PredMBB.getFirstTerminator();
1277   for (MachineInstr &MI : MBB.instrs())
1278     if (MI.isDebugInstr()) {
1279       TII->duplicate(PredMBB, InsertBefore, MI);
1280       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1281                         << MI);
1282     }
1283 }
1284 
1285 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1286                                      MachineBasicBlock &MBB,
1287                                      MachineBasicBlock &SuccMBB) {
1288   auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1289   for (MachineInstr &MI : MBB.instrs())
1290     if (MI.isDebugInstr()) {
1291       TII->duplicate(SuccMBB, InsertBefore, MI);
1292       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1293                         << MI);
1294     }
1295 }
1296 
1297 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1298 // a basic block is removed we would lose the debug information unless we have
1299 // copied the information to a predecessor/successor.
1300 //
1301 // TODO: This function only handles some simple cases. An alternative would be
1302 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1303 // branch folding.
1304 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1305                                            MachineBasicBlock &MBB) {
1306   assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1307   // If this MBB is the only predecessor of a successor it is legal to copy
1308   // DBG_VALUE instructions to the beginning of the successor.
1309   for (MachineBasicBlock *SuccBB : MBB.successors())
1310     if (SuccBB->pred_size() == 1)
1311       copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1312   // If this MBB is the only successor of a predecessor it is legal to copy the
1313   // DBG_VALUE instructions to the end of the predecessor (just before the
1314   // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1315   for (MachineBasicBlock *PredBB : MBB.predecessors())
1316     if (PredBB->succ_size() == 1)
1317       copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1318 }
1319 
1320 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1321   bool MadeChange = false;
1322   MachineFunction &MF = *MBB->getParent();
1323 ReoptimizeBlock:
1324 
1325   MachineFunction::iterator FallThrough = MBB->getIterator();
1326   ++FallThrough;
1327 
1328   // Make sure MBB and FallThrough belong to the same EH scope.
1329   bool SameEHScope = true;
1330   if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1331     auto MBBEHScope = EHScopeMembership.find(MBB);
1332     assert(MBBEHScope != EHScopeMembership.end());
1333     auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1334     assert(FallThroughEHScope != EHScopeMembership.end());
1335     SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1336   }
1337 
1338   // If this block is empty, make everyone use its fall-through, not the block
1339   // explicitly.  Landing pads should not do this since the landing-pad table
1340   // points to this block.  Blocks with their addresses taken shouldn't be
1341   // optimized away.
1342   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1343       SameEHScope) {
1344     salvageDebugInfoFromEmptyBlock(TII, *MBB);
1345     // Dead block?  Leave for cleanup later.
1346     if (MBB->pred_empty()) return MadeChange;
1347 
1348     if (FallThrough == MF.end()) {
1349       // TODO: Simplify preds to not branch here if possible!
1350     } else if (FallThrough->isEHPad()) {
1351       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1352       // where a BB jumps to more than one landing pad.
1353       // TODO: Is it ever worth rewriting predecessors which don't already
1354       // jump to a landing pad, and so can safely jump to the fallthrough?
1355     } else if (MBB->isSuccessor(&*FallThrough)) {
1356       // Rewrite all predecessors of the old block to go to the fallthrough
1357       // instead.
1358       while (!MBB->pred_empty()) {
1359         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1360         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1361       }
1362       // If MBB was the target of a jump table, update jump tables to go to the
1363       // fallthrough instead.
1364       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1365         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1366       MadeChange = true;
1367     }
1368     return MadeChange;
1369   }
1370 
1371   // Check to see if we can simplify the terminator of the block before this
1372   // one.
1373   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1374 
1375   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1376   SmallVector<MachineOperand, 4> PriorCond;
1377   bool PriorUnAnalyzable =
1378       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1379   if (!PriorUnAnalyzable) {
1380     // If the CFG for the prior block has extra edges, remove them.
1381     MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
1382                                               !PriorCond.empty());
1383 
1384     // If the previous branch is conditional and both conditions go to the same
1385     // destination, remove the branch, replacing it with an unconditional one or
1386     // a fall-through.
1387     if (PriorTBB && PriorTBB == PriorFBB) {
1388       DebugLoc dl = getBranchDebugLoc(PrevBB);
1389       TII->removeBranch(PrevBB);
1390       PriorCond.clear();
1391       if (PriorTBB != MBB)
1392         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1393       MadeChange = true;
1394       ++NumBranchOpts;
1395       goto ReoptimizeBlock;
1396     }
1397 
1398     // If the previous block unconditionally falls through to this block and
1399     // this block has no other predecessors, move the contents of this block
1400     // into the prior block. This doesn't usually happen when SimplifyCFG
1401     // has been used, but it can happen if tail merging splits a fall-through
1402     // predecessor of a block.
1403     // This has to check PrevBB->succ_size() because EH edges are ignored by
1404     // analyzeBranch.
1405     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1406         PrevBB.succ_size() == 1 &&
1407         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1408       LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1409                         << "From MBB: " << *MBB);
1410       // Remove redundant DBG_VALUEs first.
1411       if (PrevBB.begin() != PrevBB.end()) {
1412         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1413         --PrevBBIter;
1414         MachineBasicBlock::iterator MBBIter = MBB->begin();
1415         // Check if DBG_VALUE at the end of PrevBB is identical to the
1416         // DBG_VALUE at the beginning of MBB.
1417         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1418                && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1419           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1420             break;
1421           MachineInstr &DuplicateDbg = *MBBIter;
1422           ++MBBIter; -- PrevBBIter;
1423           DuplicateDbg.eraseFromParent();
1424         }
1425       }
1426       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1427       PrevBB.removeSuccessor(PrevBB.succ_begin());
1428       assert(PrevBB.succ_empty());
1429       PrevBB.transferSuccessors(MBB);
1430       MadeChange = true;
1431       return MadeChange;
1432     }
1433 
1434     // If the previous branch *only* branches to *this* block (conditional or
1435     // not) remove the branch.
1436     if (PriorTBB == MBB && !PriorFBB) {
1437       TII->removeBranch(PrevBB);
1438       MadeChange = true;
1439       ++NumBranchOpts;
1440       goto ReoptimizeBlock;
1441     }
1442 
1443     // If the prior block branches somewhere else on the condition and here if
1444     // the condition is false, remove the uncond second branch.
1445     if (PriorFBB == MBB) {
1446       DebugLoc dl = getBranchDebugLoc(PrevBB);
1447       TII->removeBranch(PrevBB);
1448       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1449       MadeChange = true;
1450       ++NumBranchOpts;
1451       goto ReoptimizeBlock;
1452     }
1453 
1454     // If the prior block branches here on true and somewhere else on false, and
1455     // if the branch condition is reversible, reverse the branch to create a
1456     // fall-through.
1457     if (PriorTBB == MBB) {
1458       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1459       if (!TII->reverseBranchCondition(NewPriorCond)) {
1460         DebugLoc dl = getBranchDebugLoc(PrevBB);
1461         TII->removeBranch(PrevBB);
1462         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1463         MadeChange = true;
1464         ++NumBranchOpts;
1465         goto ReoptimizeBlock;
1466       }
1467     }
1468 
1469     // If this block has no successors (e.g. it is a return block or ends with
1470     // a call to a no-return function like abort or __cxa_throw) and if the pred
1471     // falls through into this block, and if it would otherwise fall through
1472     // into the block after this, move this block to the end of the function.
1473     //
1474     // We consider it more likely that execution will stay in the function (e.g.
1475     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1476     // the assert condition out of the loop body.
1477     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1478         MachineFunction::iterator(PriorTBB) == FallThrough &&
1479         !MBB->canFallThrough()) {
1480       bool DoTransform = true;
1481 
1482       // We have to be careful that the succs of PredBB aren't both no-successor
1483       // blocks.  If neither have successors and if PredBB is the second from
1484       // last block in the function, we'd just keep swapping the two blocks for
1485       // last.  Only do the swap if one is clearly better to fall through than
1486       // the other.
1487       if (FallThrough == --MF.end() &&
1488           !IsBetterFallthrough(PriorTBB, MBB))
1489         DoTransform = false;
1490 
1491       if (DoTransform) {
1492         // Reverse the branch so we will fall through on the previous true cond.
1493         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1494         if (!TII->reverseBranchCondition(NewPriorCond)) {
1495           LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1496                             << "To make fallthrough to: " << *PriorTBB << "\n");
1497 
1498           DebugLoc dl = getBranchDebugLoc(PrevBB);
1499           TII->removeBranch(PrevBB);
1500           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1501 
1502           // Move this block to the end of the function.
1503           MBB->moveAfter(&MF.back());
1504           MadeChange = true;
1505           ++NumBranchOpts;
1506           return MadeChange;
1507         }
1508       }
1509     }
1510   }
1511 
1512   bool OptForSize =
1513       MF.getFunction().hasOptSize() ||
1514       llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo);
1515   if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) {
1516     // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1517     // direction, thereby defeating careful block placement and regressing
1518     // performance. Therefore, only consider this for optsize functions.
1519     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1520     if (TII->isUnconditionalTailCall(TailCall)) {
1521       MachineBasicBlock *Pred = *MBB->pred_begin();
1522       MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1523       SmallVector<MachineOperand, 4> PredCond;
1524       bool PredAnalyzable =
1525           !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1526 
1527       if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1528           PredTBB != PredFBB) {
1529         // The predecessor has a conditional branch to this block which consists
1530         // of only a tail call. Try to fold the tail call into the conditional
1531         // branch.
1532         if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1533           // TODO: It would be nice if analyzeBranch() could provide a pointer
1534           // to the branch instruction so replaceBranchWithTailCall() doesn't
1535           // have to search for it.
1536           TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1537           ++NumTailCalls;
1538           Pred->removeSuccessor(MBB);
1539           MadeChange = true;
1540           return MadeChange;
1541         }
1542       }
1543       // If the predecessor is falling through to this block, we could reverse
1544       // the branch condition and fold the tail call into that. However, after
1545       // that we might have to re-arrange the CFG to fall through to the other
1546       // block and there is a high risk of regressing code size rather than
1547       // improving it.
1548     }
1549   }
1550 
1551   // Analyze the branch in the current block.
1552   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1553   SmallVector<MachineOperand, 4> CurCond;
1554   bool CurUnAnalyzable =
1555       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1556   if (!CurUnAnalyzable) {
1557     // If the CFG for the prior block has extra edges, remove them.
1558     MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());
1559 
1560     // If this is a two-way branch, and the FBB branches to this block, reverse
1561     // the condition so the single-basic-block loop is faster.  Instead of:
1562     //    Loop: xxx; jcc Out; jmp Loop
1563     // we want:
1564     //    Loop: xxx; jncc Loop; jmp Out
1565     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1566       SmallVector<MachineOperand, 4> NewCond(CurCond);
1567       if (!TII->reverseBranchCondition(NewCond)) {
1568         DebugLoc dl = getBranchDebugLoc(*MBB);
1569         TII->removeBranch(*MBB);
1570         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1571         MadeChange = true;
1572         ++NumBranchOpts;
1573         goto ReoptimizeBlock;
1574       }
1575     }
1576 
1577     // If this branch is the only thing in its block, see if we can forward
1578     // other blocks across it.
1579     if (CurTBB && CurCond.empty() && !CurFBB &&
1580         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1581         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1582       DebugLoc dl = getBranchDebugLoc(*MBB);
1583       // This block may contain just an unconditional branch.  Because there can
1584       // be 'non-branch terminators' in the block, try removing the branch and
1585       // then seeing if the block is empty.
1586       TII->removeBranch(*MBB);
1587       // If the only things remaining in the block are debug info, remove these
1588       // as well, so this will behave the same as an empty block in non-debug
1589       // mode.
1590       if (IsEmptyBlock(MBB)) {
1591         // Make the block empty, losing the debug info (we could probably
1592         // improve this in some cases.)
1593         MBB->erase(MBB->begin(), MBB->end());
1594       }
1595       // If this block is just an unconditional branch to CurTBB, we can
1596       // usually completely eliminate the block.  The only case we cannot
1597       // completely eliminate the block is when the block before this one
1598       // falls through into MBB and we can't understand the prior block's branch
1599       // condition.
1600       if (MBB->empty()) {
1601         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1602         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1603             !PrevBB.isSuccessor(MBB)) {
1604           // If the prior block falls through into us, turn it into an
1605           // explicit branch to us to make updates simpler.
1606           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1607               PriorTBB != MBB && PriorFBB != MBB) {
1608             if (!PriorTBB) {
1609               assert(PriorCond.empty() && !PriorFBB &&
1610                      "Bad branch analysis");
1611               PriorTBB = MBB;
1612             } else {
1613               assert(!PriorFBB && "Machine CFG out of date!");
1614               PriorFBB = MBB;
1615             }
1616             DebugLoc pdl = getBranchDebugLoc(PrevBB);
1617             TII->removeBranch(PrevBB);
1618             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1619           }
1620 
1621           // Iterate through all the predecessors, revectoring each in-turn.
1622           size_t PI = 0;
1623           bool DidChange = false;
1624           bool HasBranchToSelf = false;
1625           while(PI != MBB->pred_size()) {
1626             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1627             if (PMBB == MBB) {
1628               // If this block has an uncond branch to itself, leave it.
1629               ++PI;
1630               HasBranchToSelf = true;
1631             } else {
1632               DidChange = true;
1633               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1634               // If this change resulted in PMBB ending in a conditional
1635               // branch where both conditions go to the same destination,
1636               // change this to an unconditional branch (and fix the CFG).
1637               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1638               SmallVector<MachineOperand, 4> NewCurCond;
1639               bool NewCurUnAnalyzable = TII->analyzeBranch(
1640                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1641               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1642                 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1643                 TII->removeBranch(*PMBB);
1644                 NewCurCond.clear();
1645                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1646                 MadeChange = true;
1647                 ++NumBranchOpts;
1648                 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
1649               }
1650             }
1651           }
1652 
1653           // Change any jumptables to go to the new MBB.
1654           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1655             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1656           if (DidChange) {
1657             ++NumBranchOpts;
1658             MadeChange = true;
1659             if (!HasBranchToSelf) return MadeChange;
1660           }
1661         }
1662       }
1663 
1664       // Add the branch back if the block is more than just an uncond branch.
1665       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1666     }
1667   }
1668 
1669   // If the prior block doesn't fall through into this block, and if this
1670   // block doesn't fall through into some other block, see if we can find a
1671   // place to move this block where a fall-through will happen.
1672   if (!PrevBB.canFallThrough()) {
1673     // Now we know that there was no fall-through into this block, check to
1674     // see if it has a fall-through into its successor.
1675     bool CurFallsThru = MBB->canFallThrough();
1676 
1677     if (!MBB->isEHPad()) {
1678       // Check all the predecessors of this block.  If one of them has no fall
1679       // throughs, move this block right after it.
1680       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1681         // Analyze the branch at the end of the pred.
1682         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1683         SmallVector<MachineOperand, 4> PredCond;
1684         if (PredBB != MBB && !PredBB->canFallThrough() &&
1685             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1686             (!CurFallsThru || !CurTBB || !CurFBB) &&
1687             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1688           // If the current block doesn't fall through, just move it.
1689           // If the current block can fall through and does not end with a
1690           // conditional branch, we need to append an unconditional jump to
1691           // the (current) next block.  To avoid a possible compile-time
1692           // infinite loop, move blocks only backward in this case.
1693           // Also, if there are already 2 branches here, we cannot add a third;
1694           // this means we have the case
1695           // Bcc next
1696           // B elsewhere
1697           // next:
1698           if (CurFallsThru) {
1699             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1700             CurCond.clear();
1701             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1702           }
1703           MBB->moveAfter(PredBB);
1704           MadeChange = true;
1705           goto ReoptimizeBlock;
1706         }
1707       }
1708     }
1709 
1710     if (!CurFallsThru) {
1711       // Check all successors to see if we can move this block before it.
1712       for (MachineBasicBlock *SuccBB : MBB->successors()) {
1713         // Analyze the branch at the end of the block before the succ.
1714         MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1715 
1716         // If this block doesn't already fall-through to that successor, and if
1717         // the succ doesn't already have a block that can fall through into it,
1718         // and if the successor isn't an EH destination, we can arrange for the
1719         // fallthrough to happen.
1720         if (SuccBB != MBB && &*SuccPrev != MBB &&
1721             !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
1722             !SuccBB->isEHPad()) {
1723           MBB->moveBefore(SuccBB);
1724           MadeChange = true;
1725           goto ReoptimizeBlock;
1726         }
1727       }
1728 
1729       // Okay, there is no really great place to put this block.  If, however,
1730       // the block before this one would be a fall-through if this block were
1731       // removed, move this block to the end of the function. There is no real
1732       // advantage in "falling through" to an EH block, so we don't want to
1733       // perform this transformation for that case.
1734       //
1735       // Also, Windows EH introduced the possibility of an arbitrary number of
1736       // successors to a given block.  The analyzeBranch call does not consider
1737       // exception handling and so we can get in a state where a block
1738       // containing a call is followed by multiple EH blocks that would be
1739       // rotated infinitely at the end of the function if the transformation
1740       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1741       // that appears not to be happening anymore, we should assume that it is
1742       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1743       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1744       SmallVector<MachineOperand, 4> PrevCond;
1745       if (FallThrough != MF.end() &&
1746           !FallThrough->isEHPad() &&
1747           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1748           PrevBB.isSuccessor(&*FallThrough)) {
1749         MBB->moveAfter(&MF.back());
1750         MadeChange = true;
1751         return MadeChange;
1752       }
1753     }
1754   }
1755 
1756   return MadeChange;
1757 }
1758 
1759 //===----------------------------------------------------------------------===//
1760 //  Hoist Common Code
1761 //===----------------------------------------------------------------------===//
1762 
1763 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1764   bool MadeChange = false;
1765   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1766     MachineBasicBlock *MBB = &*I++;
1767     MadeChange |= HoistCommonCodeInSuccs(MBB);
1768   }
1769 
1770   return MadeChange;
1771 }
1772 
1773 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1774 /// its 'true' successor.
1775 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1776                                          MachineBasicBlock *TrueBB) {
1777   for (MachineBasicBlock *SuccBB : BB->successors())
1778     if (SuccBB != TrueBB)
1779       return SuccBB;
1780   return nullptr;
1781 }
1782 
1783 template <class Container>
1784 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
1785                                 Container &Set) {
1786   if (Register::isPhysicalRegister(Reg)) {
1787     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1788       Set.insert(*AI);
1789   } else {
1790     Set.insert(Reg);
1791   }
1792 }
1793 
1794 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1795 /// in successors to. The location is usually just before the terminator,
1796 /// however if the terminator is a conditional branch and its previous
1797 /// instruction is the flag setting instruction, the previous instruction is
1798 /// the preferred location. This function also gathers uses and defs of the
1799 /// instructions from the insertion point to the end of the block. The data is
1800 /// used by HoistCommonCodeInSuccs to ensure safety.
1801 static
1802 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1803                                                   const TargetInstrInfo *TII,
1804                                                   const TargetRegisterInfo *TRI,
1805                                                   SmallSet<unsigned,4> &Uses,
1806                                                   SmallSet<unsigned,4> &Defs) {
1807   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1808   if (!TII->isUnpredicatedTerminator(*Loc))
1809     return MBB->end();
1810 
1811   for (const MachineOperand &MO : Loc->operands()) {
1812     if (!MO.isReg())
1813       continue;
1814     Register Reg = MO.getReg();
1815     if (!Reg)
1816       continue;
1817     if (MO.isUse()) {
1818       addRegAndItsAliases(Reg, TRI, Uses);
1819     } else {
1820       if (!MO.isDead())
1821         // Don't try to hoist code in the rare case the terminator defines a
1822         // register that is later used.
1823         return MBB->end();
1824 
1825       // If the terminator defines a register, make sure we don't hoist
1826       // the instruction whose def might be clobbered by the terminator.
1827       addRegAndItsAliases(Reg, TRI, Defs);
1828     }
1829   }
1830 
1831   if (Uses.empty())
1832     return Loc;
1833   // If the terminator is the only instruction in the block and Uses is not
1834   // empty (or we would have returned above), we can still safely hoist
1835   // instructions just before the terminator as long as the Defs/Uses are not
1836   // violated (which is checked in HoistCommonCodeInSuccs).
1837   if (Loc == MBB->begin())
1838     return Loc;
1839 
1840   // The terminator is probably a conditional branch, try not to separate the
1841   // branch from condition setting instruction.
1842   MachineBasicBlock::iterator PI =
1843     skipDebugInstructionsBackward(std::prev(Loc), MBB->begin());
1844 
1845   bool IsDef = false;
1846   for (const MachineOperand &MO : PI->operands()) {
1847     // If PI has a regmask operand, it is probably a call. Separate away.
1848     if (MO.isRegMask())
1849       return Loc;
1850     if (!MO.isReg() || MO.isUse())
1851       continue;
1852     Register Reg = MO.getReg();
1853     if (!Reg)
1854       continue;
1855     if (Uses.count(Reg)) {
1856       IsDef = true;
1857       break;
1858     }
1859   }
1860   if (!IsDef)
1861     // The condition setting instruction is not just before the conditional
1862     // branch.
1863     return Loc;
1864 
1865   // Be conservative, don't insert instruction above something that may have
1866   // side-effects. And since it's potentially bad to separate flag setting
1867   // instruction from the conditional branch, just abort the optimization
1868   // completely.
1869   // Also avoid moving code above predicated instruction since it's hard to
1870   // reason about register liveness with predicated instruction.
1871   bool DontMoveAcrossStore = true;
1872   if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1873     return MBB->end();
1874 
1875   // Find out what registers are live. Note this routine is ignoring other live
1876   // registers which are only used by instructions in successor blocks.
1877   for (const MachineOperand &MO : PI->operands()) {
1878     if (!MO.isReg())
1879       continue;
1880     Register Reg = MO.getReg();
1881     if (!Reg)
1882       continue;
1883     if (MO.isUse()) {
1884       addRegAndItsAliases(Reg, TRI, Uses);
1885     } else {
1886       if (Uses.erase(Reg)) {
1887         if (Register::isPhysicalRegister(Reg)) {
1888           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1889             Uses.erase(*SubRegs); // Use sub-registers to be conservative
1890         }
1891       }
1892       addRegAndItsAliases(Reg, TRI, Defs);
1893     }
1894   }
1895 
1896   return PI;
1897 }
1898 
1899 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1900   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1901   SmallVector<MachineOperand, 4> Cond;
1902   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1903     return false;
1904 
1905   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1906   if (!FBB)
1907     // Malformed bcc? True and false blocks are the same?
1908     return false;
1909 
1910   // Restrict the optimization to cases where MBB is the only predecessor,
1911   // it is an obvious win.
1912   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1913     return false;
1914 
1915   // Find a suitable position to hoist the common instructions to. Also figure
1916   // out which registers are used or defined by instructions from the insertion
1917   // point to the end of the block.
1918   SmallSet<unsigned, 4> Uses, Defs;
1919   MachineBasicBlock::iterator Loc =
1920     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1921   if (Loc == MBB->end())
1922     return false;
1923 
1924   bool HasDups = false;
1925   SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
1926   MachineBasicBlock::iterator TIB = TBB->begin();
1927   MachineBasicBlock::iterator FIB = FBB->begin();
1928   MachineBasicBlock::iterator TIE = TBB->end();
1929   MachineBasicBlock::iterator FIE = FBB->end();
1930   while (TIB != TIE && FIB != FIE) {
1931     // Skip dbg_value instructions. These do not count.
1932     TIB = skipDebugInstructionsForward(TIB, TIE);
1933     FIB = skipDebugInstructionsForward(FIB, FIE);
1934     if (TIB == TIE || FIB == FIE)
1935       break;
1936 
1937     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1938       break;
1939 
1940     if (TII->isPredicated(*TIB))
1941       // Hard to reason about register liveness with predicated instruction.
1942       break;
1943 
1944     bool IsSafe = true;
1945     for (MachineOperand &MO : TIB->operands()) {
1946       // Don't attempt to hoist instructions with register masks.
1947       if (MO.isRegMask()) {
1948         IsSafe = false;
1949         break;
1950       }
1951       if (!MO.isReg())
1952         continue;
1953       Register Reg = MO.getReg();
1954       if (!Reg)
1955         continue;
1956       if (MO.isDef()) {
1957         if (Uses.count(Reg)) {
1958           // Avoid clobbering a register that's used by the instruction at
1959           // the point of insertion.
1960           IsSafe = false;
1961           break;
1962         }
1963 
1964         if (Defs.count(Reg) && !MO.isDead()) {
1965           // Don't hoist the instruction if the def would be clobber by the
1966           // instruction at the point insertion. FIXME: This is overly
1967           // conservative. It should be possible to hoist the instructions
1968           // in BB2 in the following example:
1969           // BB1:
1970           // r1, eflag = op1 r2, r3
1971           // brcc eflag
1972           //
1973           // BB2:
1974           // r1 = op2, ...
1975           //    = op3, killed r1
1976           IsSafe = false;
1977           break;
1978         }
1979       } else if (!ActiveDefsSet.count(Reg)) {
1980         if (Defs.count(Reg)) {
1981           // Use is defined by the instruction at the point of insertion.
1982           IsSafe = false;
1983           break;
1984         }
1985 
1986         if (MO.isKill() && Uses.count(Reg))
1987           // Kills a register that's read by the instruction at the point of
1988           // insertion. Remove the kill marker.
1989           MO.setIsKill(false);
1990       }
1991     }
1992     if (!IsSafe)
1993       break;
1994 
1995     bool DontMoveAcrossStore = true;
1996     if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
1997       break;
1998 
1999     // Remove kills from ActiveDefsSet, these registers had short live ranges.
2000     for (const MachineOperand &MO : TIB->operands()) {
2001       if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2002         continue;
2003       Register Reg = MO.getReg();
2004       if (!Reg)
2005         continue;
2006       if (!AllDefsSet.count(Reg)) {
2007         continue;
2008       }
2009       if (Register::isPhysicalRegister(Reg)) {
2010         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2011           ActiveDefsSet.erase(*AI);
2012       } else {
2013         ActiveDefsSet.erase(Reg);
2014       }
2015     }
2016 
2017     // Track local defs so we can update liveins.
2018     for (const MachineOperand &MO : TIB->operands()) {
2019       if (!MO.isReg() || !MO.isDef() || MO.isDead())
2020         continue;
2021       Register Reg = MO.getReg();
2022       if (!Reg || Register::isVirtualRegister(Reg))
2023         continue;
2024       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2025       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2026     }
2027 
2028     HasDups = true;
2029     ++TIB;
2030     ++FIB;
2031   }
2032 
2033   if (!HasDups)
2034     return false;
2035 
2036   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2037   FBB->erase(FBB->begin(), FIB);
2038 
2039   if (UpdateLiveIns) {
2040     recomputeLiveIns(*TBB);
2041     recomputeLiveIns(*FBB);
2042   }
2043 
2044   ++NumHoist;
2045   return true;
2046 }
2047