1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass forwards branches to unconditional branches to make them branch
11 // directly to the target block.  This pass often results in dead MBB's, which
12 // it then removes.
13 //
14 // Note that this pass must be run after register allocation, it cannot handle
15 // SSA form. It also must handle virtual registers for targets that emit virtual
16 // ISA (e.g. NVPTX).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "BranchFolding.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/MachineModuleInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/MC/MCRegisterInfo.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/BlockFrequency.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetRegisterInfo.h"
55 #include "llvm/Target/TargetSubtargetInfo.h"
56 #include <cassert>
57 #include <cstddef>
58 #include <iterator>
59 #include <numeric>
60 #include <vector>
61 
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "branch-folder"
65 
66 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
67 STATISTIC(NumBranchOpts, "Number of branches optimized");
68 STATISTIC(NumTailMerge , "Number of block tails merged");
69 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
70 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
71 
72 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
73                               cl::init(cl::BOU_UNSET), cl::Hidden);
74 
75 // Throttle for huge numbers of predecessors (compile speed problems)
76 static cl::opt<unsigned>
77 TailMergeThreshold("tail-merge-threshold",
78           cl::desc("Max number of predecessors to consider tail merging"),
79           cl::init(150), cl::Hidden);
80 
81 // Heuristic for tail merging (and, inversely, tail duplication).
82 // TODO: This should be replaced with a target query.
83 static cl::opt<unsigned>
84 TailMergeSize("tail-merge-size",
85           cl::desc("Min number of instructions to consider tail merging"),
86                               cl::init(3), cl::Hidden);
87 
88 namespace {
89 
90   /// BranchFolderPass - Wrap branch folder in a machine function pass.
91   class BranchFolderPass : public MachineFunctionPass {
92   public:
93     static char ID;
94 
95     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
96 
97     bool runOnMachineFunction(MachineFunction &MF) override;
98 
99     void getAnalysisUsage(AnalysisUsage &AU) const override {
100       AU.addRequired<MachineBlockFrequencyInfo>();
101       AU.addRequired<MachineBranchProbabilityInfo>();
102       AU.addRequired<TargetPassConfig>();
103       MachineFunctionPass::getAnalysisUsage(AU);
104     }
105   };
106 
107 } // end anonymous namespace
108 
109 char BranchFolderPass::ID = 0;
110 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
111 
112 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
113                 "Control Flow Optimizer", false, false)
114 
115 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
116   if (skipFunction(*MF.getFunction()))
117     return false;
118 
119   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
120   // TailMerge can create jump into if branches that make CFG irreducible for
121   // HW that requires structurized CFG.
122   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
123                          PassConfig->getEnableTailMerge();
124   BranchFolder::MBFIWrapper MBBFreqInfo(
125       getAnalysis<MachineBlockFrequencyInfo>());
126   BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
127                       getAnalysis<MachineBranchProbabilityInfo>());
128   return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
129                                  MF.getSubtarget().getRegisterInfo(),
130                                  getAnalysisIfAvailable<MachineModuleInfo>());
131 }
132 
133 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
134                            MBFIWrapper &FreqInfo,
135                            const MachineBranchProbabilityInfo &ProbInfo,
136                            unsigned MinTailLength)
137     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
138       MBBFreqInfo(FreqInfo), MBPI(ProbInfo) {
139   if (MinCommonTailLength == 0)
140     MinCommonTailLength = TailMergeSize;
141   switch (FlagEnableTailMerge) {
142   case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
143   case cl::BOU_TRUE: EnableTailMerge = true; break;
144   case cl::BOU_FALSE: EnableTailMerge = false; break;
145   }
146 }
147 
148 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
149   assert(MBB->pred_empty() && "MBB must be dead!");
150   DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
151 
152   MachineFunction *MF = MBB->getParent();
153   // drop all successors.
154   while (!MBB->succ_empty())
155     MBB->removeSuccessor(MBB->succ_end()-1);
156 
157   // Avoid matching if this pointer gets reused.
158   TriedMerging.erase(MBB);
159 
160   // Remove the block.
161   MF->erase(MBB);
162   FuncletMembership.erase(MBB);
163   if (MLI)
164     MLI->removeBlock(MBB);
165 }
166 
167 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
168                                     const TargetInstrInfo *tii,
169                                     const TargetRegisterInfo *tri,
170                                     MachineModuleInfo *mmi,
171                                     MachineLoopInfo *mli, bool AfterPlacement) {
172   if (!tii) return false;
173 
174   TriedMerging.clear();
175 
176   MachineRegisterInfo &MRI = MF.getRegInfo();
177   AfterBlockPlacement = AfterPlacement;
178   TII = tii;
179   TRI = tri;
180   MMI = mmi;
181   MLI = mli;
182   this->MRI = &MRI;
183 
184   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
185   if (!UpdateLiveIns)
186     MRI.invalidateLiveness();
187 
188   // Fix CFG.  The later algorithms expect it to be right.
189   bool MadeChange = false;
190   for (MachineBasicBlock &MBB : MF) {
191     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
192     SmallVector<MachineOperand, 4> Cond;
193     if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
194       MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
195   }
196 
197   // Recalculate funclet membership.
198   FuncletMembership = getFuncletMembership(MF);
199 
200   bool MadeChangeThisIteration = true;
201   while (MadeChangeThisIteration) {
202     MadeChangeThisIteration    = TailMergeBlocks(MF);
203     // No need to clean up if tail merging does not change anything after the
204     // block placement.
205     if (!AfterBlockPlacement || MadeChangeThisIteration)
206       MadeChangeThisIteration |= OptimizeBranches(MF);
207     if (EnableHoistCommonCode)
208       MadeChangeThisIteration |= HoistCommonCode(MF);
209     MadeChange |= MadeChangeThisIteration;
210   }
211 
212   // See if any jump tables have become dead as the code generator
213   // did its thing.
214   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
215   if (!JTI)
216     return MadeChange;
217 
218   // Walk the function to find jump tables that are live.
219   BitVector JTIsLive(JTI->getJumpTables().size());
220   for (const MachineBasicBlock &BB : MF) {
221     for (const MachineInstr &I : BB)
222       for (const MachineOperand &Op : I.operands()) {
223         if (!Op.isJTI()) continue;
224 
225         // Remember that this JT is live.
226         JTIsLive.set(Op.getIndex());
227       }
228   }
229 
230   // Finally, remove dead jump tables.  This happens when the
231   // indirect jump was unreachable (and thus deleted).
232   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
233     if (!JTIsLive.test(i)) {
234       JTI->RemoveJumpTable(i);
235       MadeChange = true;
236     }
237 
238   return MadeChange;
239 }
240 
241 //===----------------------------------------------------------------------===//
242 //  Tail Merging of Blocks
243 //===----------------------------------------------------------------------===//
244 
245 /// HashMachineInstr - Compute a hash value for MI and its operands.
246 static unsigned HashMachineInstr(const MachineInstr &MI) {
247   unsigned Hash = MI.getOpcode();
248   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
249     const MachineOperand &Op = MI.getOperand(i);
250 
251     // Merge in bits from the operand if easy. We can't use MachineOperand's
252     // hash_code here because it's not deterministic and we sort by hash value
253     // later.
254     unsigned OperandHash = 0;
255     switch (Op.getType()) {
256     case MachineOperand::MO_Register:
257       OperandHash = Op.getReg();
258       break;
259     case MachineOperand::MO_Immediate:
260       OperandHash = Op.getImm();
261       break;
262     case MachineOperand::MO_MachineBasicBlock:
263       OperandHash = Op.getMBB()->getNumber();
264       break;
265     case MachineOperand::MO_FrameIndex:
266     case MachineOperand::MO_ConstantPoolIndex:
267     case MachineOperand::MO_JumpTableIndex:
268       OperandHash = Op.getIndex();
269       break;
270     case MachineOperand::MO_GlobalAddress:
271     case MachineOperand::MO_ExternalSymbol:
272       // Global address / external symbol are too hard, don't bother, but do
273       // pull in the offset.
274       OperandHash = Op.getOffset();
275       break;
276     default:
277       break;
278     }
279 
280     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
281   }
282   return Hash;
283 }
284 
285 /// HashEndOfMBB - Hash the last instruction in the MBB.
286 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
287   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
288   if (I == MBB.end())
289     return 0;
290 
291   return HashMachineInstr(*I);
292 }
293 
294 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number
295 /// of instructions they actually have in common together at their end.  Return
296 /// iterators for the first shared instruction in each block.
297 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
298                                         MachineBasicBlock *MBB2,
299                                         MachineBasicBlock::iterator &I1,
300                                         MachineBasicBlock::iterator &I2) {
301   I1 = MBB1->end();
302   I2 = MBB2->end();
303 
304   unsigned TailLen = 0;
305   while (I1 != MBB1->begin() && I2 != MBB2->begin()) {
306     --I1; --I2;
307     // Skip debugging pseudos; necessary to avoid changing the code.
308     while (I1->isDebugValue()) {
309       if (I1==MBB1->begin()) {
310         while (I2->isDebugValue()) {
311           if (I2==MBB2->begin())
312             // I1==DBG at begin; I2==DBG at begin
313             return TailLen;
314           --I2;
315         }
316         ++I2;
317         // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin
318         return TailLen;
319       }
320       --I1;
321     }
322     // I1==first (untested) non-DBG preceding known match
323     while (I2->isDebugValue()) {
324       if (I2==MBB2->begin()) {
325         ++I1;
326         // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin
327         return TailLen;
328       }
329       --I2;
330     }
331     // I1, I2==first (untested) non-DBGs preceding known match
332     if (!I1->isIdenticalTo(*I2) ||
333         // FIXME: This check is dubious. It's used to get around a problem where
334         // people incorrectly expect inline asm directives to remain in the same
335         // relative order. This is untenable because normal compiler
336         // optimizations (like this one) may reorder and/or merge these
337         // directives.
338         I1->isInlineAsm()) {
339       ++I1; ++I2;
340       break;
341     }
342     ++TailLen;
343   }
344   // Back past possible debugging pseudos at beginning of block.  This matters
345   // when one block differs from the other only by whether debugging pseudos
346   // are present at the beginning. (This way, the various checks later for
347   // I1==MBB1->begin() work as expected.)
348   if (I1 == MBB1->begin() && I2 != MBB2->begin()) {
349     --I2;
350     while (I2->isDebugValue()) {
351       if (I2 == MBB2->begin())
352         return TailLen;
353       --I2;
354     }
355     ++I2;
356   }
357   if (I2 == MBB2->begin() && I1 != MBB1->begin()) {
358     --I1;
359     while (I1->isDebugValue()) {
360       if (I1 == MBB1->begin())
361         return TailLen;
362       --I1;
363     }
364     ++I1;
365   }
366   return TailLen;
367 }
368 
369 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
370                                            MachineBasicBlock &NewDest) {
371   if (UpdateLiveIns) {
372     // OldInst should always point to an instruction.
373     MachineBasicBlock &OldMBB = *OldInst->getParent();
374     LiveRegs.clear();
375     LiveRegs.addLiveOuts(OldMBB);
376     // Move backward to the place where will insert the jump.
377     MachineBasicBlock::iterator I = OldMBB.end();
378     do {
379       --I;
380       LiveRegs.stepBackward(*I);
381     } while (I != OldInst);
382 
383     // Merging the tails may have switched some undef operand to non-undef ones.
384     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
385     // register.
386     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
387       // We computed the liveins with computeLiveIn earlier and should only see
388       // full registers:
389       assert(P.LaneMask == LaneBitmask::getAll() &&
390              "Can only handle full register.");
391       MCPhysReg Reg = P.PhysReg;
392       if (!LiveRegs.available(*MRI, Reg))
393         continue;
394       DebugLoc DL;
395       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
396     }
397   }
398 
399   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
400   ++NumTailMerge;
401 }
402 
403 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
404                                             MachineBasicBlock::iterator BBI1,
405                                             const BasicBlock *BB) {
406   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
407     return nullptr;
408 
409   MachineFunction &MF = *CurMBB.getParent();
410 
411   // Create the fall-through block.
412   MachineFunction::iterator MBBI = CurMBB.getIterator();
413   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
414   CurMBB.getParent()->insert(++MBBI, NewMBB);
415 
416   // Move all the successors of this block to the specified block.
417   NewMBB->transferSuccessors(&CurMBB);
418 
419   // Add an edge from CurMBB to NewMBB for the fall-through.
420   CurMBB.addSuccessor(NewMBB);
421 
422   // Splice the code over.
423   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
424 
425   // NewMBB belongs to the same loop as CurMBB.
426   if (MLI)
427     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
428       ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
429 
430   // NewMBB inherits CurMBB's block frequency.
431   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
432 
433   if (UpdateLiveIns)
434     computeAndAddLiveIns(LiveRegs, *NewMBB);
435 
436   // Add the new block to the funclet.
437   const auto &FuncletI = FuncletMembership.find(&CurMBB);
438   if (FuncletI != FuncletMembership.end()) {
439     auto n = FuncletI->second;
440     FuncletMembership[NewMBB] = n;
441   }
442 
443   return NewMBB;
444 }
445 
446 /// EstimateRuntime - Make a rough estimate for how long it will take to run
447 /// the specified code.
448 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
449                                 MachineBasicBlock::iterator E) {
450   unsigned Time = 0;
451   for (; I != E; ++I) {
452     if (I->isDebugValue())
453       continue;
454     if (I->isCall())
455       Time += 10;
456     else if (I->mayLoad() || I->mayStore())
457       Time += 2;
458     else
459       ++Time;
460   }
461   return Time;
462 }
463 
464 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
465 // branches temporarily for tail merging).  In the case where CurMBB ends
466 // with a conditional branch to the next block, optimize by reversing the
467 // test and conditionally branching to SuccMBB instead.
468 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
469                     const TargetInstrInfo *TII) {
470   MachineFunction *MF = CurMBB->getParent();
471   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
472   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
473   SmallVector<MachineOperand, 4> Cond;
474   DebugLoc dl = CurMBB->findBranchDebugLoc();
475   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
476     MachineBasicBlock *NextBB = &*I;
477     if (TBB == NextBB && !Cond.empty() && !FBB) {
478       if (!TII->reverseBranchCondition(Cond)) {
479         TII->removeBranch(*CurMBB);
480         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
481         return;
482       }
483     }
484   }
485   TII->insertBranch(*CurMBB, SuccBB, nullptr,
486                     SmallVector<MachineOperand, 0>(), dl);
487 }
488 
489 bool
490 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
491   if (getHash() < o.getHash())
492     return true;
493   if (getHash() > o.getHash())
494     return false;
495   if (getBlock()->getNumber() < o.getBlock()->getNumber())
496     return true;
497   if (getBlock()->getNumber() > o.getBlock()->getNumber())
498     return false;
499   // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
500   // an object with itself.
501 #ifndef _GLIBCXX_DEBUG
502   llvm_unreachable("Predecessor appears twice");
503 #else
504   return false;
505 #endif
506 }
507 
508 BlockFrequency
509 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const {
510   auto I = MergedBBFreq.find(MBB);
511 
512   if (I != MergedBBFreq.end())
513     return I->second;
514 
515   return MBFI.getBlockFreq(MBB);
516 }
517 
518 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB,
519                                              BlockFrequency F) {
520   MergedBBFreq[MBB] = F;
521 }
522 
523 raw_ostream &
524 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
525                                           const MachineBasicBlock *MBB) const {
526   return MBFI.printBlockFreq(OS, getBlockFreq(MBB));
527 }
528 
529 raw_ostream &
530 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
531                                           const BlockFrequency Freq) const {
532   return MBFI.printBlockFreq(OS, Freq);
533 }
534 
535 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) {
536   MBFI.view(Name, isSimple);
537 }
538 
539 uint64_t
540 BranchFolder::MBFIWrapper::getEntryFreq() const {
541   return MBFI.getEntryFreq();
542 }
543 
544 /// CountTerminators - Count the number of terminators in the given
545 /// block and set I to the position of the first non-terminator, if there
546 /// is one, or MBB->end() otherwise.
547 static unsigned CountTerminators(MachineBasicBlock *MBB,
548                                  MachineBasicBlock::iterator &I) {
549   I = MBB->end();
550   unsigned NumTerms = 0;
551   while (true) {
552     if (I == MBB->begin()) {
553       I = MBB->end();
554       break;
555     }
556     --I;
557     if (!I->isTerminator()) break;
558     ++NumTerms;
559   }
560   return NumTerms;
561 }
562 
563 /// A no successor, non-return block probably ends in unreachable and is cold.
564 /// Also consider a block that ends in an indirect branch to be a return block,
565 /// since many targets use plain indirect branches to return.
566 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
567   if (!MBB->succ_empty())
568     return false;
569   if (MBB->empty())
570     return true;
571   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
572 }
573 
574 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
575 /// and decide if it would be profitable to merge those tails.  Return the
576 /// length of the common tail and iterators to the first common instruction
577 /// in each block.
578 /// MBB1, MBB2      The blocks to check
579 /// MinCommonTailLength  Minimum size of tail block to be merged.
580 /// CommonTailLen   Out parameter to record the size of the shared tail between
581 ///                 MBB1 and MBB2
582 /// I1, I2          Iterator references that will be changed to point to the first
583 ///                 instruction in the common tail shared by MBB1,MBB2
584 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
585 ///                 relative to SuccBB
586 /// PredBB          The layout predecessor of SuccBB, if any.
587 /// FuncletMembership  map from block to funclet #.
588 /// AfterPlacement  True if we are merging blocks after layout. Stricter
589 ///                 thresholds apply to prevent undoing tail-duplication.
590 static bool
591 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
592                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
593                   MachineBasicBlock::iterator &I1,
594                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
595                   MachineBasicBlock *PredBB,
596                   DenseMap<const MachineBasicBlock *, int> &FuncletMembership,
597                   bool AfterPlacement) {
598   // It is never profitable to tail-merge blocks from two different funclets.
599   if (!FuncletMembership.empty()) {
600     auto Funclet1 = FuncletMembership.find(MBB1);
601     assert(Funclet1 != FuncletMembership.end());
602     auto Funclet2 = FuncletMembership.find(MBB2);
603     assert(Funclet2 != FuncletMembership.end());
604     if (Funclet1->second != Funclet2->second)
605       return false;
606   }
607 
608   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
609   if (CommonTailLen == 0)
610     return false;
611   DEBUG(dbgs() << "Common tail length of BB#" << MBB1->getNumber()
612                << " and BB#" << MBB2->getNumber() << " is " << CommonTailLen
613                << '\n');
614 
615   // It's almost always profitable to merge any number of non-terminator
616   // instructions with the block that falls through into the common successor.
617   // This is true only for a single successor. For multiple successors, we are
618   // trading a conditional branch for an unconditional one.
619   // TODO: Re-visit successor size for non-layout tail merging.
620   if ((MBB1 == PredBB || MBB2 == PredBB) &&
621       (!AfterPlacement || MBB1->succ_size() == 1)) {
622     MachineBasicBlock::iterator I;
623     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
624     if (CommonTailLen > NumTerms)
625       return true;
626   }
627 
628   // If these are identical non-return blocks with no successors, merge them.
629   // Such blocks are typically cold calls to noreturn functions like abort, and
630   // are unlikely to become a fallthrough target after machine block placement.
631   // Tail merging these blocks is unlikely to create additional unconditional
632   // branches, and will reduce the size of this cold code.
633   if (I1 == MBB1->begin() && I2 == MBB2->begin() &&
634       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
635     return true;
636 
637   // If one of the blocks can be completely merged and happens to be in
638   // a position where the other could fall through into it, merge any number
639   // of instructions, because it can be done without a branch.
640   // TODO: If the blocks are not adjacent, move one of them so that they are?
641   if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin())
642     return true;
643   if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin())
644     return true;
645 
646   // If both blocks are identical and end in a branch, merge them unless they
647   // both have a fallthrough predecessor and successor.
648   // We can only do this after block placement because it depends on whether
649   // there are fallthroughs, and we don't know until after layout.
650   if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) {
651     auto BothFallThrough = [](MachineBasicBlock *MBB) {
652       if (MBB->succ_size() != 0 && !MBB->canFallThrough())
653         return false;
654       MachineFunction::iterator I(MBB);
655       MachineFunction *MF = MBB->getParent();
656       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
657     };
658     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
659       return true;
660   }
661 
662   // If both blocks have an unconditional branch temporarily stripped out,
663   // count that as an additional common instruction for the following
664   // heuristics. This heuristic is only accurate for single-succ blocks, so to
665   // make sure that during layout merging and duplicating don't crash, we check
666   // for that when merging during layout.
667   unsigned EffectiveTailLen = CommonTailLen;
668   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
669       (MBB1->succ_size() == 1 || !AfterPlacement) &&
670       !MBB1->back().isBarrier() &&
671       !MBB2->back().isBarrier())
672     ++EffectiveTailLen;
673 
674   // Check if the common tail is long enough to be worthwhile.
675   if (EffectiveTailLen >= MinCommonTailLength)
676     return true;
677 
678   // If we are optimizing for code size, 2 instructions in common is enough if
679   // we don't have to split a block.  At worst we will be introducing 1 new
680   // branch instruction, which is likely to be smaller than the 2
681   // instructions that would be deleted in the merge.
682   MachineFunction *MF = MBB1->getParent();
683   return EffectiveTailLen >= 2 && MF->getFunction()->optForSize() &&
684          (I1 == MBB1->begin() || I2 == MBB2->begin());
685 }
686 
687 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
688                                         unsigned MinCommonTailLength,
689                                         MachineBasicBlock *SuccBB,
690                                         MachineBasicBlock *PredBB) {
691   unsigned maxCommonTailLength = 0U;
692   SameTails.clear();
693   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
694   MPIterator HighestMPIter = std::prev(MergePotentials.end());
695   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
696                   B = MergePotentials.begin();
697        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
698     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
699       unsigned CommonTailLen;
700       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
701                             MinCommonTailLength,
702                             CommonTailLen, TrialBBI1, TrialBBI2,
703                             SuccBB, PredBB,
704                             FuncletMembership,
705                             AfterBlockPlacement)) {
706         if (CommonTailLen > maxCommonTailLength) {
707           SameTails.clear();
708           maxCommonTailLength = CommonTailLen;
709           HighestMPIter = CurMPIter;
710           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
711         }
712         if (HighestMPIter == CurMPIter &&
713             CommonTailLen == maxCommonTailLength)
714           SameTails.push_back(SameTailElt(I, TrialBBI2));
715       }
716       if (I == B)
717         break;
718     }
719   }
720   return maxCommonTailLength;
721 }
722 
723 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
724                                         MachineBasicBlock *SuccBB,
725                                         MachineBasicBlock *PredBB) {
726   MPIterator CurMPIter, B;
727   for (CurMPIter = std::prev(MergePotentials.end()),
728       B = MergePotentials.begin();
729        CurMPIter->getHash() == CurHash; --CurMPIter) {
730     // Put the unconditional branch back, if we need one.
731     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
732     if (SuccBB && CurMBB != PredBB)
733       FixTail(CurMBB, SuccBB, TII);
734     if (CurMPIter == B)
735       break;
736   }
737   if (CurMPIter->getHash() != CurHash)
738     CurMPIter++;
739   MergePotentials.erase(CurMPIter, MergePotentials.end());
740 }
741 
742 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
743                                              MachineBasicBlock *SuccBB,
744                                              unsigned maxCommonTailLength,
745                                              unsigned &commonTailIndex) {
746   commonTailIndex = 0;
747   unsigned TimeEstimate = ~0U;
748   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
749     // Use PredBB if possible; that doesn't require a new branch.
750     if (SameTails[i].getBlock() == PredBB) {
751       commonTailIndex = i;
752       break;
753     }
754     // Otherwise, make a (fairly bogus) choice based on estimate of
755     // how long it will take the various blocks to execute.
756     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
757                                  SameTails[i].getTailStartPos());
758     if (t <= TimeEstimate) {
759       TimeEstimate = t;
760       commonTailIndex = i;
761     }
762   }
763 
764   MachineBasicBlock::iterator BBI =
765     SameTails[commonTailIndex].getTailStartPos();
766   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
767 
768   DEBUG(dbgs() << "\nSplitting BB#" << MBB->getNumber() << ", size "
769                << maxCommonTailLength);
770 
771   // If the split block unconditionally falls-thru to SuccBB, it will be
772   // merged. In control flow terms it should then take SuccBB's name. e.g. If
773   // SuccBB is an inner loop, the common tail is still part of the inner loop.
774   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
775     SuccBB->getBasicBlock() : MBB->getBasicBlock();
776   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
777   if (!newMBB) {
778     DEBUG(dbgs() << "... failed!");
779     return false;
780   }
781 
782   SameTails[commonTailIndex].setBlock(newMBB);
783   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
784 
785   // If we split PredBB, newMBB is the new predecessor.
786   if (PredBB == MBB)
787     PredBB = newMBB;
788 
789   return true;
790 }
791 
792 static void
793 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
794                 MachineBasicBlock &MBBCommon) {
795   MachineBasicBlock *MBB = MBBIStartPos->getParent();
796   // Note CommonTailLen does not necessarily matches the size of
797   // the common BB nor all its instructions because of debug
798   // instructions differences.
799   unsigned CommonTailLen = 0;
800   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
801     ++CommonTailLen;
802 
803   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
804   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
805   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
806   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
807 
808   while (CommonTailLen--) {
809     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
810     (void)MBBIE;
811 
812     if (MBBI->isDebugValue()) {
813       ++MBBI;
814       continue;
815     }
816 
817     while ((MBBICommon != MBBIECommon) && MBBICommon->isDebugValue())
818       ++MBBICommon;
819 
820     assert(MBBICommon != MBBIECommon &&
821            "Reached BB end within common tail length!");
822     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
823 
824     // Merge MMOs from memory operations in the common block.
825     if (MBBICommon->mayLoad() || MBBICommon->mayStore())
826       MBBICommon->setMemRefs(MBBICommon->mergeMemRefsWith(*MBBI));
827     // Drop undef flags if they aren't present in all merged instructions.
828     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
829       MachineOperand &MO = MBBICommon->getOperand(I);
830       if (MO.isReg() && MO.isUndef()) {
831         const MachineOperand &OtherMO = MBBI->getOperand(I);
832         if (!OtherMO.isUndef())
833           MO.setIsUndef(false);
834       }
835     }
836 
837     ++MBBI;
838     ++MBBICommon;
839   }
840 }
841 
842 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
843   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
844 
845   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
846   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
847     if (i != commonTailIndex) {
848       NextCommonInsts[i] = SameTails[i].getTailStartPos();
849       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
850     } else {
851       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
852           "MBB is not a common tail only block");
853     }
854   }
855 
856   for (auto &MI : *MBB) {
857     if (MI.isDebugValue())
858       continue;
859     DebugLoc DL = MI.getDebugLoc();
860     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
861       if (i == commonTailIndex)
862         continue;
863 
864       auto &Pos = NextCommonInsts[i];
865       assert(Pos != SameTails[i].getBlock()->end() &&
866           "Reached BB end within common tail");
867       while (Pos->isDebugValue()) {
868         ++Pos;
869         assert(Pos != SameTails[i].getBlock()->end() &&
870             "Reached BB end within common tail");
871       }
872       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
873       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
874       NextCommonInsts[i] = ++Pos;
875     }
876     MI.setDebugLoc(DL);
877   }
878 
879   if (UpdateLiveIns) {
880     LivePhysRegs NewLiveIns(*TRI);
881     computeLiveIns(NewLiveIns, *MBB);
882 
883     // The flag merging may lead to some register uses no longer using the
884     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
885     for (MachineBasicBlock *Pred : MBB->predecessors()) {
886       LiveRegs.init(*TRI);
887       LiveRegs.addLiveOuts(*Pred);
888       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
889       for (unsigned Reg : NewLiveIns) {
890         if (!LiveRegs.available(*MRI, Reg))
891           continue;
892         DebugLoc DL;
893         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
894                 Reg);
895       }
896     }
897 
898     MBB->clearLiveIns();
899     addLiveIns(*MBB, NewLiveIns);
900   }
901 }
902 
903 // See if any of the blocks in MergePotentials (which all have SuccBB as a
904 // successor, or all have no successor if it is null) can be tail-merged.
905 // If there is a successor, any blocks in MergePotentials that are not
906 // tail-merged and are not immediately before Succ must have an unconditional
907 // branch to Succ added (but the predecessor/successor lists need no
908 // adjustment). The lone predecessor of Succ that falls through into Succ,
909 // if any, is given in PredBB.
910 // MinCommonTailLength - Except for the special cases below, tail-merge if
911 // there are at least this many instructions in common.
912 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
913                                       MachineBasicBlock *PredBB,
914                                       unsigned MinCommonTailLength) {
915   bool MadeChange = false;
916 
917   DEBUG(dbgs() << "\nTryTailMergeBlocks: ";
918         for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
919           dbgs() << "BB#" << MergePotentials[i].getBlock()->getNumber()
920                  << (i == e-1 ? "" : ", ");
921         dbgs() << "\n";
922         if (SuccBB) {
923           dbgs() << "  with successor BB#" << SuccBB->getNumber() << '\n';
924           if (PredBB)
925             dbgs() << "  which has fall-through from BB#"
926                    << PredBB->getNumber() << "\n";
927         }
928         dbgs() << "Looking for common tails of at least "
929                << MinCommonTailLength << " instruction"
930                << (MinCommonTailLength == 1 ? "" : "s") << '\n';
931        );
932 
933   // Sort by hash value so that blocks with identical end sequences sort
934   // together.
935   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
936 
937   // Walk through equivalence sets looking for actual exact matches.
938   while (MergePotentials.size() > 1) {
939     unsigned CurHash = MergePotentials.back().getHash();
940 
941     // Build SameTails, identifying the set of blocks with this hash code
942     // and with the maximum number of instructions in common.
943     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
944                                                     MinCommonTailLength,
945                                                     SuccBB, PredBB);
946 
947     // If we didn't find any pair that has at least MinCommonTailLength
948     // instructions in common, remove all blocks with this hash code and retry.
949     if (SameTails.empty()) {
950       RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
951       continue;
952     }
953 
954     // If one of the blocks is the entire common tail (and not the entry
955     // block, which we can't jump to), we can treat all blocks with this same
956     // tail at once.  Use PredBB if that is one of the possibilities, as that
957     // will not introduce any extra branches.
958     MachineBasicBlock *EntryBB =
959         &MergePotentials.front().getBlock()->getParent()->front();
960     unsigned commonTailIndex = SameTails.size();
961     // If there are two blocks, check to see if one can be made to fall through
962     // into the other.
963     if (SameTails.size() == 2 &&
964         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
965         SameTails[1].tailIsWholeBlock())
966       commonTailIndex = 1;
967     else if (SameTails.size() == 2 &&
968              SameTails[1].getBlock()->isLayoutSuccessor(
969                                                      SameTails[0].getBlock()) &&
970              SameTails[0].tailIsWholeBlock())
971       commonTailIndex = 0;
972     else {
973       // Otherwise just pick one, favoring the fall-through predecessor if
974       // there is one.
975       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
976         MachineBasicBlock *MBB = SameTails[i].getBlock();
977         if (MBB == EntryBB && SameTails[i].tailIsWholeBlock())
978           continue;
979         if (MBB == PredBB) {
980           commonTailIndex = i;
981           break;
982         }
983         if (SameTails[i].tailIsWholeBlock())
984           commonTailIndex = i;
985       }
986     }
987 
988     if (commonTailIndex == SameTails.size() ||
989         (SameTails[commonTailIndex].getBlock() == PredBB &&
990          !SameTails[commonTailIndex].tailIsWholeBlock())) {
991       // None of the blocks consist entirely of the common tail.
992       // Split a block so that one does.
993       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
994                                      maxCommonTailLength, commonTailIndex)) {
995         RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
996         continue;
997       }
998     }
999 
1000     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
1001 
1002     // Recompute common tail MBB's edge weights and block frequency.
1003     setCommonTailEdgeWeights(*MBB);
1004 
1005     // Merge debug locations, MMOs and undef flags across identical instructions
1006     // for common tail.
1007     mergeCommonTails(commonTailIndex);
1008 
1009     // MBB is common tail.  Adjust all other BB's to jump to this one.
1010     // Traversal must be forwards so erases work.
1011     DEBUG(dbgs() << "\nUsing common tail in BB#" << MBB->getNumber()
1012                  << " for ");
1013     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
1014       if (commonTailIndex == i)
1015         continue;
1016       DEBUG(dbgs() << "BB#" << SameTails[i].getBlock()->getNumber()
1017                    << (i == e-1 ? "" : ", "));
1018       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
1019       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
1020       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
1021       MergePotentials.erase(SameTails[i].getMPIter());
1022     }
1023     DEBUG(dbgs() << "\n");
1024     // We leave commonTailIndex in the worklist in case there are other blocks
1025     // that match it with a smaller number of instructions.
1026     MadeChange = true;
1027   }
1028   return MadeChange;
1029 }
1030 
1031 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1032   bool MadeChange = false;
1033   if (!EnableTailMerge) return MadeChange;
1034 
1035   // First find blocks with no successors.
1036   // Block placement does not create new tail merging opportunities for these
1037   // blocks.
1038   if (!AfterBlockPlacement) {
1039     MergePotentials.clear();
1040     for (MachineBasicBlock &MBB : MF) {
1041       if (MergePotentials.size() == TailMergeThreshold)
1042         break;
1043       if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1044         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1045     }
1046 
1047     // If this is a large problem, avoid visiting the same basic blocks
1048     // multiple times.
1049     if (MergePotentials.size() == TailMergeThreshold)
1050       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1051         TriedMerging.insert(MergePotentials[i].getBlock());
1052 
1053     // See if we can do any tail merging on those.
1054     if (MergePotentials.size() >= 2)
1055       MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1056   }
1057 
1058   // Look at blocks (IBB) with multiple predecessors (PBB).
1059   // We change each predecessor to a canonical form, by
1060   // (1) temporarily removing any unconditional branch from the predecessor
1061   // to IBB, and
1062   // (2) alter conditional branches so they branch to the other block
1063   // not IBB; this may require adding back an unconditional branch to IBB
1064   // later, where there wasn't one coming in.  E.g.
1065   //   Bcc IBB
1066   //   fallthrough to QBB
1067   // here becomes
1068   //   Bncc QBB
1069   // with a conceptual B to IBB after that, which never actually exists.
1070   // With those changes, we see whether the predecessors' tails match,
1071   // and merge them if so.  We change things out of canonical form and
1072   // back to the way they were later in the process.  (OptimizeBranches
1073   // would undo some of this, but we can't use it, because we'd get into
1074   // a compile-time infinite loop repeatedly doing and undoing the same
1075   // transformations.)
1076 
1077   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1078        I != E; ++I) {
1079     if (I->pred_size() < 2) continue;
1080     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1081     MachineBasicBlock *IBB = &*I;
1082     MachineBasicBlock *PredBB = &*std::prev(I);
1083     MergePotentials.clear();
1084     MachineLoop *ML;
1085 
1086     // Bail if merging after placement and IBB is the loop header because
1087     // -- If merging predecessors that belong to the same loop as IBB, the
1088     // common tail of merged predecessors may become the loop top if block
1089     // placement is called again and the predecessors may branch to this common
1090     // tail and require more branches. This can be relaxed if
1091     // MachineBlockPlacement::findBestLoopTop is more flexible.
1092     // --If merging predecessors that do not belong to the same loop as IBB, the
1093     // loop info of IBB's loop and the other loops may be affected. Calling the
1094     // block placement again may make big change to the layout and eliminate the
1095     // reason to do tail merging here.
1096     if (AfterBlockPlacement && MLI) {
1097       ML = MLI->getLoopFor(IBB);
1098       if (ML && IBB == ML->getHeader())
1099         continue;
1100     }
1101 
1102     for (MachineBasicBlock *PBB : I->predecessors()) {
1103       if (MergePotentials.size() == TailMergeThreshold)
1104         break;
1105 
1106       if (TriedMerging.count(PBB))
1107         continue;
1108 
1109       // Skip blocks that loop to themselves, can't tail merge these.
1110       if (PBB == IBB)
1111         continue;
1112 
1113       // Visit each predecessor only once.
1114       if (!UniquePreds.insert(PBB).second)
1115         continue;
1116 
1117       // Skip blocks which may jump to a landing pad. Can't tail merge these.
1118       if (PBB->hasEHPadSuccessor())
1119         continue;
1120 
1121       // After block placement, only consider predecessors that belong to the
1122       // same loop as IBB.  The reason is the same as above when skipping loop
1123       // header.
1124       if (AfterBlockPlacement && MLI)
1125         if (ML != MLI->getLoopFor(PBB))
1126           continue;
1127 
1128       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1129       SmallVector<MachineOperand, 4> Cond;
1130       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1131         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1132         // branch.
1133         SmallVector<MachineOperand, 4> NewCond(Cond);
1134         if (!Cond.empty() && TBB == IBB) {
1135           if (TII->reverseBranchCondition(NewCond))
1136             continue;
1137           // This is the QBB case described above
1138           if (!FBB) {
1139             auto Next = ++PBB->getIterator();
1140             if (Next != MF.end())
1141               FBB = &*Next;
1142           }
1143         }
1144 
1145         // Failing case: the only way IBB can be reached from PBB is via
1146         // exception handling.  Happens for landing pads.  Would be nice to have
1147         // a bit in the edge so we didn't have to do all this.
1148         if (IBB->isEHPad()) {
1149           MachineFunction::iterator IP = ++PBB->getIterator();
1150           MachineBasicBlock *PredNextBB = nullptr;
1151           if (IP != MF.end())
1152             PredNextBB = &*IP;
1153           if (!TBB) {
1154             if (IBB != PredNextBB)      // fallthrough
1155               continue;
1156           } else if (FBB) {
1157             if (TBB != IBB && FBB != IBB)   // cbr then ubr
1158               continue;
1159           } else if (Cond.empty()) {
1160             if (TBB != IBB)               // ubr
1161               continue;
1162           } else {
1163             if (TBB != IBB && IBB != PredNextBB)  // cbr
1164               continue;
1165           }
1166         }
1167 
1168         // Remove the unconditional branch at the end, if any.
1169         if (TBB && (Cond.empty() || FBB)) {
1170           DebugLoc dl = PBB->findBranchDebugLoc();
1171           TII->removeBranch(*PBB);
1172           if (!Cond.empty())
1173             // reinsert conditional branch only, for now
1174             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1175                               NewCond, dl);
1176         }
1177 
1178         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1179       }
1180     }
1181 
1182     // If this is a large problem, avoid visiting the same basic blocks multiple
1183     // times.
1184     if (MergePotentials.size() == TailMergeThreshold)
1185       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1186         TriedMerging.insert(MergePotentials[i].getBlock());
1187 
1188     if (MergePotentials.size() >= 2)
1189       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1190 
1191     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1192     // result of removing blocks in TryTailMergeBlocks.
1193     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1194     if (MergePotentials.size() == 1 &&
1195         MergePotentials.begin()->getBlock() != PredBB)
1196       FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1197   }
1198 
1199   return MadeChange;
1200 }
1201 
1202 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1203   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1204   BlockFrequency AccumulatedMBBFreq;
1205 
1206   // Aggregate edge frequency of successor edge j:
1207   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1208   //  where bb is a basic block that is in SameTails.
1209   for (const auto &Src : SameTails) {
1210     const MachineBasicBlock *SrcMBB = Src.getBlock();
1211     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1212     AccumulatedMBBFreq += BlockFreq;
1213 
1214     // It is not necessary to recompute edge weights if TailBB has less than two
1215     // successors.
1216     if (TailMBB.succ_size() <= 1)
1217       continue;
1218 
1219     auto EdgeFreq = EdgeFreqLs.begin();
1220 
1221     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1222          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1223       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1224   }
1225 
1226   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1227 
1228   if (TailMBB.succ_size() <= 1)
1229     return;
1230 
1231   auto SumEdgeFreq =
1232       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1233           .getFrequency();
1234   auto EdgeFreq = EdgeFreqLs.begin();
1235 
1236   if (SumEdgeFreq > 0) {
1237     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1238          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1239       auto Prob = BranchProbability::getBranchProbability(
1240           EdgeFreq->getFrequency(), SumEdgeFreq);
1241       TailMBB.setSuccProbability(SuccI, Prob);
1242     }
1243   }
1244 }
1245 
1246 //===----------------------------------------------------------------------===//
1247 //  Branch Optimization
1248 //===----------------------------------------------------------------------===//
1249 
1250 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1251   bool MadeChange = false;
1252 
1253   // Make sure blocks are numbered in order
1254   MF.RenumberBlocks();
1255   // Renumbering blocks alters funclet membership, recalculate it.
1256   FuncletMembership = getFuncletMembership(MF);
1257 
1258   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1259        I != E; ) {
1260     MachineBasicBlock *MBB = &*I++;
1261     MadeChange |= OptimizeBlock(MBB);
1262 
1263     // If it is dead, remove it.
1264     if (MBB->pred_empty()) {
1265       RemoveDeadBlock(MBB);
1266       MadeChange = true;
1267       ++NumDeadBlocks;
1268     }
1269   }
1270 
1271   return MadeChange;
1272 }
1273 
1274 // Blocks should be considered empty if they contain only debug info;
1275 // else the debug info would affect codegen.
1276 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1277   return MBB->getFirstNonDebugInstr() == MBB->end();
1278 }
1279 
1280 // Blocks with only debug info and branches should be considered the same
1281 // as blocks with only branches.
1282 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1283   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1284   assert(I != MBB->end() && "empty block!");
1285   return I->isBranch();
1286 }
1287 
1288 /// IsBetterFallthrough - Return true if it would be clearly better to
1289 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1290 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1291 /// result in infinite loops.
1292 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1293                                 MachineBasicBlock *MBB2) {
1294   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1295   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1296   // optimize branches that branch to either a return block or an assert block
1297   // into a fallthrough to the return.
1298   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1299   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1300   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1301     return false;
1302 
1303   // If there is a clear successor ordering we make sure that one block
1304   // will fall through to the next
1305   if (MBB1->isSuccessor(MBB2)) return true;
1306   if (MBB2->isSuccessor(MBB1)) return false;
1307 
1308   return MBB2I->isCall() && !MBB1I->isCall();
1309 }
1310 
1311 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1312 /// instructions on the block.
1313 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1314   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1315   if (I != MBB.end() && I->isBranch())
1316     return I->getDebugLoc();
1317   return DebugLoc();
1318 }
1319 
1320 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1321   bool MadeChange = false;
1322   MachineFunction &MF = *MBB->getParent();
1323 ReoptimizeBlock:
1324 
1325   MachineFunction::iterator FallThrough = MBB->getIterator();
1326   ++FallThrough;
1327 
1328   // Make sure MBB and FallThrough belong to the same funclet.
1329   bool SameFunclet = true;
1330   if (!FuncletMembership.empty() && FallThrough != MF.end()) {
1331     auto MBBFunclet = FuncletMembership.find(MBB);
1332     assert(MBBFunclet != FuncletMembership.end());
1333     auto FallThroughFunclet = FuncletMembership.find(&*FallThrough);
1334     assert(FallThroughFunclet != FuncletMembership.end());
1335     SameFunclet = MBBFunclet->second == FallThroughFunclet->second;
1336   }
1337 
1338   // If this block is empty, make everyone use its fall-through, not the block
1339   // explicitly.  Landing pads should not do this since the landing-pad table
1340   // points to this block.  Blocks with their addresses taken shouldn't be
1341   // optimized away.
1342   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1343       SameFunclet) {
1344     // Dead block?  Leave for cleanup later.
1345     if (MBB->pred_empty()) return MadeChange;
1346 
1347     if (FallThrough == MF.end()) {
1348       // TODO: Simplify preds to not branch here if possible!
1349     } else if (FallThrough->isEHPad()) {
1350       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1351       // where a BB jumps to more than one landing pad.
1352       // TODO: Is it ever worth rewriting predecessors which don't already
1353       // jump to a landing pad, and so can safely jump to the fallthrough?
1354     } else if (MBB->isSuccessor(&*FallThrough)) {
1355       // Rewrite all predecessors of the old block to go to the fallthrough
1356       // instead.
1357       while (!MBB->pred_empty()) {
1358         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1359         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1360       }
1361       // If MBB was the target of a jump table, update jump tables to go to the
1362       // fallthrough instead.
1363       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1364         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1365       MadeChange = true;
1366     }
1367     return MadeChange;
1368   }
1369 
1370   // Check to see if we can simplify the terminator of the block before this
1371   // one.
1372   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1373 
1374   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1375   SmallVector<MachineOperand, 4> PriorCond;
1376   bool PriorUnAnalyzable =
1377       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1378   if (!PriorUnAnalyzable) {
1379     // If the CFG for the prior block has extra edges, remove them.
1380     MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
1381                                               !PriorCond.empty());
1382 
1383     // If the previous branch is conditional and both conditions go to the same
1384     // destination, remove the branch, replacing it with an unconditional one or
1385     // a fall-through.
1386     if (PriorTBB && PriorTBB == PriorFBB) {
1387       DebugLoc dl = getBranchDebugLoc(PrevBB);
1388       TII->removeBranch(PrevBB);
1389       PriorCond.clear();
1390       if (PriorTBB != MBB)
1391         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1392       MadeChange = true;
1393       ++NumBranchOpts;
1394       goto ReoptimizeBlock;
1395     }
1396 
1397     // If the previous block unconditionally falls through to this block and
1398     // this block has no other predecessors, move the contents of this block
1399     // into the prior block. This doesn't usually happen when SimplifyCFG
1400     // has been used, but it can happen if tail merging splits a fall-through
1401     // predecessor of a block.
1402     // This has to check PrevBB->succ_size() because EH edges are ignored by
1403     // AnalyzeBranch.
1404     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1405         PrevBB.succ_size() == 1 &&
1406         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1407       DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1408                    << "From MBB: " << *MBB);
1409       // Remove redundant DBG_VALUEs first.
1410       if (PrevBB.begin() != PrevBB.end()) {
1411         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1412         --PrevBBIter;
1413         MachineBasicBlock::iterator MBBIter = MBB->begin();
1414         // Check if DBG_VALUE at the end of PrevBB is identical to the
1415         // DBG_VALUE at the beginning of MBB.
1416         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1417                && PrevBBIter->isDebugValue() && MBBIter->isDebugValue()) {
1418           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1419             break;
1420           MachineInstr &DuplicateDbg = *MBBIter;
1421           ++MBBIter; -- PrevBBIter;
1422           DuplicateDbg.eraseFromParent();
1423         }
1424       }
1425       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1426       PrevBB.removeSuccessor(PrevBB.succ_begin());
1427       assert(PrevBB.succ_empty());
1428       PrevBB.transferSuccessors(MBB);
1429       MadeChange = true;
1430       return MadeChange;
1431     }
1432 
1433     // If the previous branch *only* branches to *this* block (conditional or
1434     // not) remove the branch.
1435     if (PriorTBB == MBB && !PriorFBB) {
1436       TII->removeBranch(PrevBB);
1437       MadeChange = true;
1438       ++NumBranchOpts;
1439       goto ReoptimizeBlock;
1440     }
1441 
1442     // If the prior block branches somewhere else on the condition and here if
1443     // the condition is false, remove the uncond second branch.
1444     if (PriorFBB == MBB) {
1445       DebugLoc dl = getBranchDebugLoc(PrevBB);
1446       TII->removeBranch(PrevBB);
1447       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1448       MadeChange = true;
1449       ++NumBranchOpts;
1450       goto ReoptimizeBlock;
1451     }
1452 
1453     // If the prior block branches here on true and somewhere else on false, and
1454     // if the branch condition is reversible, reverse the branch to create a
1455     // fall-through.
1456     if (PriorTBB == MBB) {
1457       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1458       if (!TII->reverseBranchCondition(NewPriorCond)) {
1459         DebugLoc dl = getBranchDebugLoc(PrevBB);
1460         TII->removeBranch(PrevBB);
1461         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1462         MadeChange = true;
1463         ++NumBranchOpts;
1464         goto ReoptimizeBlock;
1465       }
1466     }
1467 
1468     // If this block has no successors (e.g. it is a return block or ends with
1469     // a call to a no-return function like abort or __cxa_throw) and if the pred
1470     // falls through into this block, and if it would otherwise fall through
1471     // into the block after this, move this block to the end of the function.
1472     //
1473     // We consider it more likely that execution will stay in the function (e.g.
1474     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1475     // the assert condition out of the loop body.
1476     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1477         MachineFunction::iterator(PriorTBB) == FallThrough &&
1478         !MBB->canFallThrough()) {
1479       bool DoTransform = true;
1480 
1481       // We have to be careful that the succs of PredBB aren't both no-successor
1482       // blocks.  If neither have successors and if PredBB is the second from
1483       // last block in the function, we'd just keep swapping the two blocks for
1484       // last.  Only do the swap if one is clearly better to fall through than
1485       // the other.
1486       if (FallThrough == --MF.end() &&
1487           !IsBetterFallthrough(PriorTBB, MBB))
1488         DoTransform = false;
1489 
1490       if (DoTransform) {
1491         // Reverse the branch so we will fall through on the previous true cond.
1492         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1493         if (!TII->reverseBranchCondition(NewPriorCond)) {
1494           DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1495                        << "To make fallthrough to: " << *PriorTBB << "\n");
1496 
1497           DebugLoc dl = getBranchDebugLoc(PrevBB);
1498           TII->removeBranch(PrevBB);
1499           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1500 
1501           // Move this block to the end of the function.
1502           MBB->moveAfter(&MF.back());
1503           MadeChange = true;
1504           ++NumBranchOpts;
1505           return MadeChange;
1506         }
1507       }
1508     }
1509   }
1510 
1511   if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 &&
1512       MF.getFunction()->optForSize()) {
1513     // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1514     // direction, thereby defeating careful block placement and regressing
1515     // performance. Therefore, only consider this for optsize functions.
1516     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1517     if (TII->isUnconditionalTailCall(TailCall)) {
1518       MachineBasicBlock *Pred = *MBB->pred_begin();
1519       MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1520       SmallVector<MachineOperand, 4> PredCond;
1521       bool PredAnalyzable =
1522           !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1523 
1524       if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1525           PredTBB != PredFBB) {
1526         // The predecessor has a conditional branch to this block which consists
1527         // of only a tail call. Try to fold the tail call into the conditional
1528         // branch.
1529         if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1530           // TODO: It would be nice if analyzeBranch() could provide a pointer
1531           // to the branch instruction so replaceBranchWithTailCall() doesn't
1532           // have to search for it.
1533           TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1534           ++NumTailCalls;
1535           Pred->removeSuccessor(MBB);
1536           MadeChange = true;
1537           return MadeChange;
1538         }
1539       }
1540       // If the predecessor is falling through to this block, we could reverse
1541       // the branch condition and fold the tail call into that. However, after
1542       // that we might have to re-arrange the CFG to fall through to the other
1543       // block and there is a high risk of regressing code size rather than
1544       // improving it.
1545     }
1546   }
1547 
1548   // Analyze the branch in the current block.
1549   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1550   SmallVector<MachineOperand, 4> CurCond;
1551   bool CurUnAnalyzable =
1552       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1553   if (!CurUnAnalyzable) {
1554     // If the CFG for the prior block has extra edges, remove them.
1555     MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());
1556 
1557     // If this is a two-way branch, and the FBB branches to this block, reverse
1558     // the condition so the single-basic-block loop is faster.  Instead of:
1559     //    Loop: xxx; jcc Out; jmp Loop
1560     // we want:
1561     //    Loop: xxx; jncc Loop; jmp Out
1562     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1563       SmallVector<MachineOperand, 4> NewCond(CurCond);
1564       if (!TII->reverseBranchCondition(NewCond)) {
1565         DebugLoc dl = getBranchDebugLoc(*MBB);
1566         TII->removeBranch(*MBB);
1567         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1568         MadeChange = true;
1569         ++NumBranchOpts;
1570         goto ReoptimizeBlock;
1571       }
1572     }
1573 
1574     // If this branch is the only thing in its block, see if we can forward
1575     // other blocks across it.
1576     if (CurTBB && CurCond.empty() && !CurFBB &&
1577         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1578         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1579       DebugLoc dl = getBranchDebugLoc(*MBB);
1580       // This block may contain just an unconditional branch.  Because there can
1581       // be 'non-branch terminators' in the block, try removing the branch and
1582       // then seeing if the block is empty.
1583       TII->removeBranch(*MBB);
1584       // If the only things remaining in the block are debug info, remove these
1585       // as well, so this will behave the same as an empty block in non-debug
1586       // mode.
1587       if (IsEmptyBlock(MBB)) {
1588         // Make the block empty, losing the debug info (we could probably
1589         // improve this in some cases.)
1590         MBB->erase(MBB->begin(), MBB->end());
1591       }
1592       // If this block is just an unconditional branch to CurTBB, we can
1593       // usually completely eliminate the block.  The only case we cannot
1594       // completely eliminate the block is when the block before this one
1595       // falls through into MBB and we can't understand the prior block's branch
1596       // condition.
1597       if (MBB->empty()) {
1598         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1599         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1600             !PrevBB.isSuccessor(MBB)) {
1601           // If the prior block falls through into us, turn it into an
1602           // explicit branch to us to make updates simpler.
1603           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1604               PriorTBB != MBB && PriorFBB != MBB) {
1605             if (!PriorTBB) {
1606               assert(PriorCond.empty() && !PriorFBB &&
1607                      "Bad branch analysis");
1608               PriorTBB = MBB;
1609             } else {
1610               assert(!PriorFBB && "Machine CFG out of date!");
1611               PriorFBB = MBB;
1612             }
1613             DebugLoc pdl = getBranchDebugLoc(PrevBB);
1614             TII->removeBranch(PrevBB);
1615             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1616           }
1617 
1618           // Iterate through all the predecessors, revectoring each in-turn.
1619           size_t PI = 0;
1620           bool DidChange = false;
1621           bool HasBranchToSelf = false;
1622           while(PI != MBB->pred_size()) {
1623             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1624             if (PMBB == MBB) {
1625               // If this block has an uncond branch to itself, leave it.
1626               ++PI;
1627               HasBranchToSelf = true;
1628             } else {
1629               DidChange = true;
1630               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1631               // If this change resulted in PMBB ending in a conditional
1632               // branch where both conditions go to the same destination,
1633               // change this to an unconditional branch (and fix the CFG).
1634               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1635               SmallVector<MachineOperand, 4> NewCurCond;
1636               bool NewCurUnAnalyzable = TII->analyzeBranch(
1637                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1638               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1639                 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1640                 TII->removeBranch(*PMBB);
1641                 NewCurCond.clear();
1642                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1643                 MadeChange = true;
1644                 ++NumBranchOpts;
1645                 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
1646               }
1647             }
1648           }
1649 
1650           // Change any jumptables to go to the new MBB.
1651           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1652             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1653           if (DidChange) {
1654             ++NumBranchOpts;
1655             MadeChange = true;
1656             if (!HasBranchToSelf) return MadeChange;
1657           }
1658         }
1659       }
1660 
1661       // Add the branch back if the block is more than just an uncond branch.
1662       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1663     }
1664   }
1665 
1666   // If the prior block doesn't fall through into this block, and if this
1667   // block doesn't fall through into some other block, see if we can find a
1668   // place to move this block where a fall-through will happen.
1669   if (!PrevBB.canFallThrough()) {
1670     // Now we know that there was no fall-through into this block, check to
1671     // see if it has a fall-through into its successor.
1672     bool CurFallsThru = MBB->canFallThrough();
1673 
1674     if (!MBB->isEHPad()) {
1675       // Check all the predecessors of this block.  If one of them has no fall
1676       // throughs, move this block right after it.
1677       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1678         // Analyze the branch at the end of the pred.
1679         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1680         SmallVector<MachineOperand, 4> PredCond;
1681         if (PredBB != MBB && !PredBB->canFallThrough() &&
1682             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1683             (!CurFallsThru || !CurTBB || !CurFBB) &&
1684             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1685           // If the current block doesn't fall through, just move it.
1686           // If the current block can fall through and does not end with a
1687           // conditional branch, we need to append an unconditional jump to
1688           // the (current) next block.  To avoid a possible compile-time
1689           // infinite loop, move blocks only backward in this case.
1690           // Also, if there are already 2 branches here, we cannot add a third;
1691           // this means we have the case
1692           // Bcc next
1693           // B elsewhere
1694           // next:
1695           if (CurFallsThru) {
1696             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1697             CurCond.clear();
1698             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1699           }
1700           MBB->moveAfter(PredBB);
1701           MadeChange = true;
1702           goto ReoptimizeBlock;
1703         }
1704       }
1705     }
1706 
1707     if (!CurFallsThru) {
1708       // Check all successors to see if we can move this block before it.
1709       for (MachineBasicBlock *SuccBB : MBB->successors()) {
1710         // Analyze the branch at the end of the block before the succ.
1711         MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1712 
1713         // If this block doesn't already fall-through to that successor, and if
1714         // the succ doesn't already have a block that can fall through into it,
1715         // and if the successor isn't an EH destination, we can arrange for the
1716         // fallthrough to happen.
1717         if (SuccBB != MBB && &*SuccPrev != MBB &&
1718             !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
1719             !SuccBB->isEHPad()) {
1720           MBB->moveBefore(SuccBB);
1721           MadeChange = true;
1722           goto ReoptimizeBlock;
1723         }
1724       }
1725 
1726       // Okay, there is no really great place to put this block.  If, however,
1727       // the block before this one would be a fall-through if this block were
1728       // removed, move this block to the end of the function. There is no real
1729       // advantage in "falling through" to an EH block, so we don't want to
1730       // perform this transformation for that case.
1731       //
1732       // Also, Windows EH introduced the possibility of an arbitrary number of
1733       // successors to a given block.  The analyzeBranch call does not consider
1734       // exception handling and so we can get in a state where a block
1735       // containing a call is followed by multiple EH blocks that would be
1736       // rotated infinitely at the end of the function if the transformation
1737       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1738       // that appears not to be happening anymore, we should assume that it is
1739       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1740       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1741       SmallVector<MachineOperand, 4> PrevCond;
1742       if (FallThrough != MF.end() &&
1743           !FallThrough->isEHPad() &&
1744           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1745           PrevBB.isSuccessor(&*FallThrough)) {
1746         MBB->moveAfter(&MF.back());
1747         MadeChange = true;
1748         return MadeChange;
1749       }
1750     }
1751   }
1752 
1753   return MadeChange;
1754 }
1755 
1756 //===----------------------------------------------------------------------===//
1757 //  Hoist Common Code
1758 //===----------------------------------------------------------------------===//
1759 
1760 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1761   bool MadeChange = false;
1762   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1763     MachineBasicBlock *MBB = &*I++;
1764     MadeChange |= HoistCommonCodeInSuccs(MBB);
1765   }
1766 
1767   return MadeChange;
1768 }
1769 
1770 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1771 /// its 'true' successor.
1772 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1773                                          MachineBasicBlock *TrueBB) {
1774   for (MachineBasicBlock *SuccBB : BB->successors())
1775     if (SuccBB != TrueBB)
1776       return SuccBB;
1777   return nullptr;
1778 }
1779 
1780 template <class Container>
1781 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
1782                                 Container &Set) {
1783   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1784     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1785       Set.insert(*AI);
1786   } else {
1787     Set.insert(Reg);
1788   }
1789 }
1790 
1791 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1792 /// in successors to. The location is usually just before the terminator,
1793 /// however if the terminator is a conditional branch and its previous
1794 /// instruction is the flag setting instruction, the previous instruction is
1795 /// the preferred location. This function also gathers uses and defs of the
1796 /// instructions from the insertion point to the end of the block. The data is
1797 /// used by HoistCommonCodeInSuccs to ensure safety.
1798 static
1799 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1800                                                   const TargetInstrInfo *TII,
1801                                                   const TargetRegisterInfo *TRI,
1802                                                   SmallSet<unsigned,4> &Uses,
1803                                                   SmallSet<unsigned,4> &Defs) {
1804   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1805   if (!TII->isUnpredicatedTerminator(*Loc))
1806     return MBB->end();
1807 
1808   for (const MachineOperand &MO : Loc->operands()) {
1809     if (!MO.isReg())
1810       continue;
1811     unsigned Reg = MO.getReg();
1812     if (!Reg)
1813       continue;
1814     if (MO.isUse()) {
1815       addRegAndItsAliases(Reg, TRI, Uses);
1816     } else {
1817       if (!MO.isDead())
1818         // Don't try to hoist code in the rare case the terminator defines a
1819         // register that is later used.
1820         return MBB->end();
1821 
1822       // If the terminator defines a register, make sure we don't hoist
1823       // the instruction whose def might be clobbered by the terminator.
1824       addRegAndItsAliases(Reg, TRI, Defs);
1825     }
1826   }
1827 
1828   if (Uses.empty())
1829     return Loc;
1830   if (Loc == MBB->begin())
1831     return MBB->end();
1832 
1833   // The terminator is probably a conditional branch, try not to separate the
1834   // branch from condition setting instruction.
1835   MachineBasicBlock::iterator PI =
1836     skipDebugInstructionsBackward(std::prev(Loc), MBB->begin());
1837 
1838   bool IsDef = false;
1839   for (const MachineOperand &MO : PI->operands()) {
1840     // If PI has a regmask operand, it is probably a call. Separate away.
1841     if (MO.isRegMask())
1842       return Loc;
1843     if (!MO.isReg() || MO.isUse())
1844       continue;
1845     unsigned Reg = MO.getReg();
1846     if (!Reg)
1847       continue;
1848     if (Uses.count(Reg)) {
1849       IsDef = true;
1850       break;
1851     }
1852   }
1853   if (!IsDef)
1854     // The condition setting instruction is not just before the conditional
1855     // branch.
1856     return Loc;
1857 
1858   // Be conservative, don't insert instruction above something that may have
1859   // side-effects. And since it's potentially bad to separate flag setting
1860   // instruction from the conditional branch, just abort the optimization
1861   // completely.
1862   // Also avoid moving code above predicated instruction since it's hard to
1863   // reason about register liveness with predicated instruction.
1864   bool DontMoveAcrossStore = true;
1865   if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1866     return MBB->end();
1867 
1868 
1869   // Find out what registers are live. Note this routine is ignoring other live
1870   // registers which are only used by instructions in successor blocks.
1871   for (const MachineOperand &MO : PI->operands()) {
1872     if (!MO.isReg())
1873       continue;
1874     unsigned Reg = MO.getReg();
1875     if (!Reg)
1876       continue;
1877     if (MO.isUse()) {
1878       addRegAndItsAliases(Reg, TRI, Uses);
1879     } else {
1880       if (Uses.erase(Reg)) {
1881         if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1882           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1883             Uses.erase(*SubRegs); // Use sub-registers to be conservative
1884         }
1885       }
1886       addRegAndItsAliases(Reg, TRI, Defs);
1887     }
1888   }
1889 
1890   return PI;
1891 }
1892 
1893 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1894   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1895   SmallVector<MachineOperand, 4> Cond;
1896   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1897     return false;
1898 
1899   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1900   if (!FBB)
1901     // Malformed bcc? True and false blocks are the same?
1902     return false;
1903 
1904   // Restrict the optimization to cases where MBB is the only predecessor,
1905   // it is an obvious win.
1906   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1907     return false;
1908 
1909   // Find a suitable position to hoist the common instructions to. Also figure
1910   // out which registers are used or defined by instructions from the insertion
1911   // point to the end of the block.
1912   SmallSet<unsigned, 4> Uses, Defs;
1913   MachineBasicBlock::iterator Loc =
1914     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1915   if (Loc == MBB->end())
1916     return false;
1917 
1918   bool HasDups = false;
1919   SmallVector<unsigned, 4> LocalDefs, LocalKills;
1920   SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
1921   MachineBasicBlock::iterator TIB = TBB->begin();
1922   MachineBasicBlock::iterator FIB = FBB->begin();
1923   MachineBasicBlock::iterator TIE = TBB->end();
1924   MachineBasicBlock::iterator FIE = FBB->end();
1925   while (TIB != TIE && FIB != FIE) {
1926     // Skip dbg_value instructions. These do not count.
1927     TIB = skipDebugInstructionsForward(TIB, TIE);
1928     FIB = skipDebugInstructionsForward(FIB, FIE);
1929     if (TIB == TIE || FIB == FIE)
1930       break;
1931 
1932     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1933       break;
1934 
1935     if (TII->isPredicated(*TIB))
1936       // Hard to reason about register liveness with predicated instruction.
1937       break;
1938 
1939     bool IsSafe = true;
1940     for (MachineOperand &MO : TIB->operands()) {
1941       // Don't attempt to hoist instructions with register masks.
1942       if (MO.isRegMask()) {
1943         IsSafe = false;
1944         break;
1945       }
1946       if (!MO.isReg())
1947         continue;
1948       unsigned Reg = MO.getReg();
1949       if (!Reg)
1950         continue;
1951       if (MO.isDef()) {
1952         if (Uses.count(Reg)) {
1953           // Avoid clobbering a register that's used by the instruction at
1954           // the point of insertion.
1955           IsSafe = false;
1956           break;
1957         }
1958 
1959         if (Defs.count(Reg) && !MO.isDead()) {
1960           // Don't hoist the instruction if the def would be clobber by the
1961           // instruction at the point insertion. FIXME: This is overly
1962           // conservative. It should be possible to hoist the instructions
1963           // in BB2 in the following example:
1964           // BB1:
1965           // r1, eflag = op1 r2, r3
1966           // brcc eflag
1967           //
1968           // BB2:
1969           // r1 = op2, ...
1970           //    = op3, r1<kill>
1971           IsSafe = false;
1972           break;
1973         }
1974       } else if (!ActiveDefsSet.count(Reg)) {
1975         if (Defs.count(Reg)) {
1976           // Use is defined by the instruction at the point of insertion.
1977           IsSafe = false;
1978           break;
1979         }
1980 
1981         if (MO.isKill() && Uses.count(Reg))
1982           // Kills a register that's read by the instruction at the point of
1983           // insertion. Remove the kill marker.
1984           MO.setIsKill(false);
1985       }
1986     }
1987     if (!IsSafe)
1988       break;
1989 
1990     bool DontMoveAcrossStore = true;
1991     if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
1992       break;
1993 
1994     // Remove kills from ActiveDefsSet, these registers had short live ranges.
1995     for (const MachineOperand &MO : TIB->operands()) {
1996       if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1997         continue;
1998       unsigned Reg = MO.getReg();
1999       if (!Reg)
2000         continue;
2001       if (!AllDefsSet.count(Reg)) {
2002         LocalKills.push_back(Reg);
2003         continue;
2004       }
2005       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2006         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2007           ActiveDefsSet.erase(*AI);
2008       } else {
2009         ActiveDefsSet.erase(Reg);
2010       }
2011     }
2012 
2013     // Track local defs so we can update liveins.
2014     for (const MachineOperand &MO : TIB->operands()) {
2015       if (!MO.isReg() || !MO.isDef() || MO.isDead())
2016         continue;
2017       unsigned Reg = MO.getReg();
2018       if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg))
2019         continue;
2020       LocalDefs.push_back(Reg);
2021       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2022       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2023     }
2024 
2025     HasDups = true;
2026     ++TIB;
2027     ++FIB;
2028   }
2029 
2030   if (!HasDups)
2031     return false;
2032 
2033   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2034   FBB->erase(FBB->begin(), FIB);
2035 
2036   // Update livein's.
2037   bool ChangedLiveIns = false;
2038   for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) {
2039     unsigned Def = LocalDefs[i];
2040     if (ActiveDefsSet.count(Def)) {
2041       TBB->addLiveIn(Def);
2042       FBB->addLiveIn(Def);
2043       ChangedLiveIns = true;
2044     }
2045   }
2046   for (unsigned K : LocalKills) {
2047     TBB->removeLiveIn(K);
2048     FBB->removeLiveIn(K);
2049     ChangedLiveIns = true;
2050   }
2051 
2052   if (ChangedLiveIns) {
2053     TBB->sortUniqueLiveIns();
2054     FBB->sortUniqueLiveIns();
2055   }
2056 
2057   ++NumHoist;
2058   return true;
2059 }
2060