1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass forwards branches to unconditional branches to make them branch 11 // directly to the target block. This pass often results in dead MBB's, which 12 // it then removes. 13 // 14 // Note that this pass must be run after register allocation, it cannot handle 15 // SSA form. It also must handle virtual registers for targets that emit virtual 16 // ISA (e.g. NVPTX). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "BranchFolding.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/CodeGen/Analysis.h" 29 #include "llvm/CodeGen/LivePhysRegs.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/TargetPassConfig.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/MC/LaneBitmask.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/BlockFrequency.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include "llvm/Target/TargetOpcodes.h" 58 #include "llvm/Target/TargetRegisterInfo.h" 59 #include "llvm/Target/TargetSubtargetInfo.h" 60 #include <cassert> 61 #include <cstddef> 62 #include <iterator> 63 #include <numeric> 64 #include <vector> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "branch-folder" 69 70 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 71 STATISTIC(NumBranchOpts, "Number of branches optimized"); 72 STATISTIC(NumTailMerge , "Number of block tails merged"); 73 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 74 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 75 76 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 77 cl::init(cl::BOU_UNSET), cl::Hidden); 78 79 // Throttle for huge numbers of predecessors (compile speed problems) 80 static cl::opt<unsigned> 81 TailMergeThreshold("tail-merge-threshold", 82 cl::desc("Max number of predecessors to consider tail merging"), 83 cl::init(150), cl::Hidden); 84 85 // Heuristic for tail merging (and, inversely, tail duplication). 86 // TODO: This should be replaced with a target query. 87 static cl::opt<unsigned> 88 TailMergeSize("tail-merge-size", 89 cl::desc("Min number of instructions to consider tail merging"), 90 cl::init(3), cl::Hidden); 91 92 namespace { 93 94 /// BranchFolderPass - Wrap branch folder in a machine function pass. 95 class BranchFolderPass : public MachineFunctionPass { 96 public: 97 static char ID; 98 99 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 100 101 bool runOnMachineFunction(MachineFunction &MF) override; 102 103 void getAnalysisUsage(AnalysisUsage &AU) const override { 104 AU.addRequired<MachineBlockFrequencyInfo>(); 105 AU.addRequired<MachineBranchProbabilityInfo>(); 106 AU.addRequired<TargetPassConfig>(); 107 MachineFunctionPass::getAnalysisUsage(AU); 108 } 109 }; 110 111 } // end anonymous namespace 112 113 char BranchFolderPass::ID = 0; 114 115 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 116 117 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, 118 "Control Flow Optimizer", false, false) 119 120 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 121 if (skipFunction(*MF.getFunction())) 122 return false; 123 124 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 125 // TailMerge can create jump into if branches that make CFG irreducible for 126 // HW that requires structurized CFG. 127 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 128 PassConfig->getEnableTailMerge(); 129 BranchFolder::MBFIWrapper MBBFreqInfo( 130 getAnalysis<MachineBlockFrequencyInfo>()); 131 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 132 getAnalysis<MachineBranchProbabilityInfo>()); 133 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), 134 MF.getSubtarget().getRegisterInfo(), 135 getAnalysisIfAvailable<MachineModuleInfo>()); 136 } 137 138 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, 139 MBFIWrapper &FreqInfo, 140 const MachineBranchProbabilityInfo &ProbInfo, 141 unsigned MinTailLength) 142 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 143 MBBFreqInfo(FreqInfo), MBPI(ProbInfo) { 144 if (MinCommonTailLength == 0) 145 MinCommonTailLength = TailMergeSize; 146 switch (FlagEnableTailMerge) { 147 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; 148 case cl::BOU_TRUE: EnableTailMerge = true; break; 149 case cl::BOU_FALSE: EnableTailMerge = false; break; 150 } 151 } 152 153 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 154 assert(MBB->pred_empty() && "MBB must be dead!"); 155 DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 156 157 MachineFunction *MF = MBB->getParent(); 158 // drop all successors. 159 while (!MBB->succ_empty()) 160 MBB->removeSuccessor(MBB->succ_end()-1); 161 162 // Avoid matching if this pointer gets reused. 163 TriedMerging.erase(MBB); 164 165 // Remove the block. 166 MF->erase(MBB); 167 FuncletMembership.erase(MBB); 168 if (MLI) 169 MLI->removeBlock(MBB); 170 } 171 172 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 173 const TargetInstrInfo *tii, 174 const TargetRegisterInfo *tri, 175 MachineModuleInfo *mmi, 176 MachineLoopInfo *mli, bool AfterPlacement) { 177 if (!tii) return false; 178 179 TriedMerging.clear(); 180 181 MachineRegisterInfo &MRI = MF.getRegInfo(); 182 AfterBlockPlacement = AfterPlacement; 183 TII = tii; 184 TRI = tri; 185 MMI = mmi; 186 MLI = mli; 187 this->MRI = &MRI; 188 189 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 190 if (!UpdateLiveIns) 191 MRI.invalidateLiveness(); 192 193 // Fix CFG. The later algorithms expect it to be right. 194 bool MadeChange = false; 195 for (MachineBasicBlock &MBB : MF) { 196 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 197 SmallVector<MachineOperand, 4> Cond; 198 if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true)) 199 MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 200 } 201 202 // Recalculate funclet membership. 203 FuncletMembership = getFuncletMembership(MF); 204 205 bool MadeChangeThisIteration = true; 206 while (MadeChangeThisIteration) { 207 MadeChangeThisIteration = TailMergeBlocks(MF); 208 // No need to clean up if tail merging does not change anything after the 209 // block placement. 210 if (!AfterBlockPlacement || MadeChangeThisIteration) 211 MadeChangeThisIteration |= OptimizeBranches(MF); 212 if (EnableHoistCommonCode) 213 MadeChangeThisIteration |= HoistCommonCode(MF); 214 MadeChange |= MadeChangeThisIteration; 215 } 216 217 // See if any jump tables have become dead as the code generator 218 // did its thing. 219 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 220 if (!JTI) 221 return MadeChange; 222 223 // Walk the function to find jump tables that are live. 224 BitVector JTIsLive(JTI->getJumpTables().size()); 225 for (const MachineBasicBlock &BB : MF) { 226 for (const MachineInstr &I : BB) 227 for (const MachineOperand &Op : I.operands()) { 228 if (!Op.isJTI()) continue; 229 230 // Remember that this JT is live. 231 JTIsLive.set(Op.getIndex()); 232 } 233 } 234 235 // Finally, remove dead jump tables. This happens when the 236 // indirect jump was unreachable (and thus deleted). 237 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 238 if (!JTIsLive.test(i)) { 239 JTI->RemoveJumpTable(i); 240 MadeChange = true; 241 } 242 243 return MadeChange; 244 } 245 246 //===----------------------------------------------------------------------===// 247 // Tail Merging of Blocks 248 //===----------------------------------------------------------------------===// 249 250 /// HashMachineInstr - Compute a hash value for MI and its operands. 251 static unsigned HashMachineInstr(const MachineInstr &MI) { 252 unsigned Hash = MI.getOpcode(); 253 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 254 const MachineOperand &Op = MI.getOperand(i); 255 256 // Merge in bits from the operand if easy. We can't use MachineOperand's 257 // hash_code here because it's not deterministic and we sort by hash value 258 // later. 259 unsigned OperandHash = 0; 260 switch (Op.getType()) { 261 case MachineOperand::MO_Register: 262 OperandHash = Op.getReg(); 263 break; 264 case MachineOperand::MO_Immediate: 265 OperandHash = Op.getImm(); 266 break; 267 case MachineOperand::MO_MachineBasicBlock: 268 OperandHash = Op.getMBB()->getNumber(); 269 break; 270 case MachineOperand::MO_FrameIndex: 271 case MachineOperand::MO_ConstantPoolIndex: 272 case MachineOperand::MO_JumpTableIndex: 273 OperandHash = Op.getIndex(); 274 break; 275 case MachineOperand::MO_GlobalAddress: 276 case MachineOperand::MO_ExternalSymbol: 277 // Global address / external symbol are too hard, don't bother, but do 278 // pull in the offset. 279 OperandHash = Op.getOffset(); 280 break; 281 default: 282 break; 283 } 284 285 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 286 } 287 return Hash; 288 } 289 290 /// HashEndOfMBB - Hash the last instruction in the MBB. 291 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 292 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 293 if (I == MBB.end()) 294 return 0; 295 296 return HashMachineInstr(*I); 297 } 298 299 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number 300 /// of instructions they actually have in common together at their end. Return 301 /// iterators for the first shared instruction in each block. 302 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 303 MachineBasicBlock *MBB2, 304 MachineBasicBlock::iterator &I1, 305 MachineBasicBlock::iterator &I2) { 306 I1 = MBB1->end(); 307 I2 = MBB2->end(); 308 309 unsigned TailLen = 0; 310 while (I1 != MBB1->begin() && I2 != MBB2->begin()) { 311 --I1; --I2; 312 // Skip debugging pseudos; necessary to avoid changing the code. 313 while (I1->isDebugValue()) { 314 if (I1==MBB1->begin()) { 315 while (I2->isDebugValue()) { 316 if (I2==MBB2->begin()) 317 // I1==DBG at begin; I2==DBG at begin 318 return TailLen; 319 --I2; 320 } 321 ++I2; 322 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin 323 return TailLen; 324 } 325 --I1; 326 } 327 // I1==first (untested) non-DBG preceding known match 328 while (I2->isDebugValue()) { 329 if (I2==MBB2->begin()) { 330 ++I1; 331 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin 332 return TailLen; 333 } 334 --I2; 335 } 336 // I1, I2==first (untested) non-DBGs preceding known match 337 if (!I1->isIdenticalTo(*I2) || 338 // FIXME: This check is dubious. It's used to get around a problem where 339 // people incorrectly expect inline asm directives to remain in the same 340 // relative order. This is untenable because normal compiler 341 // optimizations (like this one) may reorder and/or merge these 342 // directives. 343 I1->isInlineAsm()) { 344 ++I1; ++I2; 345 break; 346 } 347 ++TailLen; 348 } 349 // Back past possible debugging pseudos at beginning of block. This matters 350 // when one block differs from the other only by whether debugging pseudos 351 // are present at the beginning. (This way, the various checks later for 352 // I1==MBB1->begin() work as expected.) 353 if (I1 == MBB1->begin() && I2 != MBB2->begin()) { 354 --I2; 355 while (I2->isDebugValue()) { 356 if (I2 == MBB2->begin()) 357 return TailLen; 358 --I2; 359 } 360 ++I2; 361 } 362 if (I2 == MBB2->begin() && I1 != MBB1->begin()) { 363 --I1; 364 while (I1->isDebugValue()) { 365 if (I1 == MBB1->begin()) 366 return TailLen; 367 --I1; 368 } 369 ++I1; 370 } 371 return TailLen; 372 } 373 374 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 375 MachineBasicBlock &NewDest) { 376 if (UpdateLiveIns) { 377 // OldInst should always point to an instruction. 378 MachineBasicBlock &OldMBB = *OldInst->getParent(); 379 LiveRegs.clear(); 380 LiveRegs.addLiveOuts(OldMBB); 381 // Move backward to the place where will insert the jump. 382 MachineBasicBlock::iterator I = OldMBB.end(); 383 do { 384 --I; 385 LiveRegs.stepBackward(*I); 386 } while (I != OldInst); 387 388 // Merging the tails may have switched some undef operand to non-undef ones. 389 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the 390 // register. 391 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { 392 // We computed the liveins with computeLiveIn earlier and should only see 393 // full registers: 394 assert(P.LaneMask == LaneBitmask::getAll() && 395 "Can only handle full register."); 396 MCPhysReg Reg = P.PhysReg; 397 if (!LiveRegs.available(*MRI, Reg)) 398 continue; 399 DebugLoc DL; 400 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); 401 } 402 } 403 404 TII->ReplaceTailWithBranchTo(OldInst, &NewDest); 405 ++NumTailMerge; 406 } 407 408 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 409 MachineBasicBlock::iterator BBI1, 410 const BasicBlock *BB) { 411 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 412 return nullptr; 413 414 MachineFunction &MF = *CurMBB.getParent(); 415 416 // Create the fall-through block. 417 MachineFunction::iterator MBBI = CurMBB.getIterator(); 418 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); 419 CurMBB.getParent()->insert(++MBBI, NewMBB); 420 421 // Move all the successors of this block to the specified block. 422 NewMBB->transferSuccessors(&CurMBB); 423 424 // Add an edge from CurMBB to NewMBB for the fall-through. 425 CurMBB.addSuccessor(NewMBB); 426 427 // Splice the code over. 428 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 429 430 // NewMBB belongs to the same loop as CurMBB. 431 if (MLI) 432 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 433 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 434 435 // NewMBB inherits CurMBB's block frequency. 436 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 437 438 if (UpdateLiveIns) 439 computeAndAddLiveIns(LiveRegs, *NewMBB); 440 441 // Add the new block to the funclet. 442 const auto &FuncletI = FuncletMembership.find(&CurMBB); 443 if (FuncletI != FuncletMembership.end()) { 444 auto n = FuncletI->second; 445 FuncletMembership[NewMBB] = n; 446 } 447 448 return NewMBB; 449 } 450 451 /// EstimateRuntime - Make a rough estimate for how long it will take to run 452 /// the specified code. 453 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 454 MachineBasicBlock::iterator E) { 455 unsigned Time = 0; 456 for (; I != E; ++I) { 457 if (I->isDebugValue()) 458 continue; 459 if (I->isCall()) 460 Time += 10; 461 else if (I->mayLoad() || I->mayStore()) 462 Time += 2; 463 else 464 ++Time; 465 } 466 return Time; 467 } 468 469 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 470 // branches temporarily for tail merging). In the case where CurMBB ends 471 // with a conditional branch to the next block, optimize by reversing the 472 // test and conditionally branching to SuccMBB instead. 473 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 474 const TargetInstrInfo *TII) { 475 MachineFunction *MF = CurMBB->getParent(); 476 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 477 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 478 SmallVector<MachineOperand, 4> Cond; 479 DebugLoc dl = CurMBB->findBranchDebugLoc(); 480 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 481 MachineBasicBlock *NextBB = &*I; 482 if (TBB == NextBB && !Cond.empty() && !FBB) { 483 if (!TII->reverseBranchCondition(Cond)) { 484 TII->removeBranch(*CurMBB); 485 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 486 return; 487 } 488 } 489 } 490 TII->insertBranch(*CurMBB, SuccBB, nullptr, 491 SmallVector<MachineOperand, 0>(), dl); 492 } 493 494 bool 495 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 496 if (getHash() < o.getHash()) 497 return true; 498 if (getHash() > o.getHash()) 499 return false; 500 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 501 return true; 502 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 503 return false; 504 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 505 // an object with itself. 506 #ifndef _GLIBCXX_DEBUG 507 llvm_unreachable("Predecessor appears twice"); 508 #else 509 return false; 510 #endif 511 } 512 513 BlockFrequency 514 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const { 515 auto I = MergedBBFreq.find(MBB); 516 517 if (I != MergedBBFreq.end()) 518 return I->second; 519 520 return MBFI.getBlockFreq(MBB); 521 } 522 523 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB, 524 BlockFrequency F) { 525 MergedBBFreq[MBB] = F; 526 } 527 528 raw_ostream & 529 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 530 const MachineBasicBlock *MBB) const { 531 return MBFI.printBlockFreq(OS, getBlockFreq(MBB)); 532 } 533 534 raw_ostream & 535 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 536 const BlockFrequency Freq) const { 537 return MBFI.printBlockFreq(OS, Freq); 538 } 539 540 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) { 541 MBFI.view(Name, isSimple); 542 } 543 544 uint64_t 545 BranchFolder::MBFIWrapper::getEntryFreq() const { 546 return MBFI.getEntryFreq(); 547 } 548 549 /// CountTerminators - Count the number of terminators in the given 550 /// block and set I to the position of the first non-terminator, if there 551 /// is one, or MBB->end() otherwise. 552 static unsigned CountTerminators(MachineBasicBlock *MBB, 553 MachineBasicBlock::iterator &I) { 554 I = MBB->end(); 555 unsigned NumTerms = 0; 556 while (true) { 557 if (I == MBB->begin()) { 558 I = MBB->end(); 559 break; 560 } 561 --I; 562 if (!I->isTerminator()) break; 563 ++NumTerms; 564 } 565 return NumTerms; 566 } 567 568 /// A no successor, non-return block probably ends in unreachable and is cold. 569 /// Also consider a block that ends in an indirect branch to be a return block, 570 /// since many targets use plain indirect branches to return. 571 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 572 if (!MBB->succ_empty()) 573 return false; 574 if (MBB->empty()) 575 return true; 576 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 577 } 578 579 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 580 /// and decide if it would be profitable to merge those tails. Return the 581 /// length of the common tail and iterators to the first common instruction 582 /// in each block. 583 /// MBB1, MBB2 The blocks to check 584 /// MinCommonTailLength Minimum size of tail block to be merged. 585 /// CommonTailLen Out parameter to record the size of the shared tail between 586 /// MBB1 and MBB2 587 /// I1, I2 Iterator references that will be changed to point to the first 588 /// instruction in the common tail shared by MBB1,MBB2 589 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 590 /// relative to SuccBB 591 /// PredBB The layout predecessor of SuccBB, if any. 592 /// FuncletMembership map from block to funclet #. 593 /// AfterPlacement True if we are merging blocks after layout. Stricter 594 /// thresholds apply to prevent undoing tail-duplication. 595 static bool 596 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 597 unsigned MinCommonTailLength, unsigned &CommonTailLen, 598 MachineBasicBlock::iterator &I1, 599 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 600 MachineBasicBlock *PredBB, 601 DenseMap<const MachineBasicBlock *, int> &FuncletMembership, 602 bool AfterPlacement) { 603 // It is never profitable to tail-merge blocks from two different funclets. 604 if (!FuncletMembership.empty()) { 605 auto Funclet1 = FuncletMembership.find(MBB1); 606 assert(Funclet1 != FuncletMembership.end()); 607 auto Funclet2 = FuncletMembership.find(MBB2); 608 assert(Funclet2 != FuncletMembership.end()); 609 if (Funclet1->second != Funclet2->second) 610 return false; 611 } 612 613 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 614 if (CommonTailLen == 0) 615 return false; 616 DEBUG(dbgs() << "Common tail length of BB#" << MBB1->getNumber() 617 << " and BB#" << MBB2->getNumber() << " is " << CommonTailLen 618 << '\n'); 619 620 // It's almost always profitable to merge any number of non-terminator 621 // instructions with the block that falls through into the common successor. 622 // This is true only for a single successor. For multiple successors, we are 623 // trading a conditional branch for an unconditional one. 624 // TODO: Re-visit successor size for non-layout tail merging. 625 if ((MBB1 == PredBB || MBB2 == PredBB) && 626 (!AfterPlacement || MBB1->succ_size() == 1)) { 627 MachineBasicBlock::iterator I; 628 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 629 if (CommonTailLen > NumTerms) 630 return true; 631 } 632 633 // If these are identical non-return blocks with no successors, merge them. 634 // Such blocks are typically cold calls to noreturn functions like abort, and 635 // are unlikely to become a fallthrough target after machine block placement. 636 // Tail merging these blocks is unlikely to create additional unconditional 637 // branches, and will reduce the size of this cold code. 638 if (I1 == MBB1->begin() && I2 == MBB2->begin() && 639 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 640 return true; 641 642 // If one of the blocks can be completely merged and happens to be in 643 // a position where the other could fall through into it, merge any number 644 // of instructions, because it can be done without a branch. 645 // TODO: If the blocks are not adjacent, move one of them so that they are? 646 if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin()) 647 return true; 648 if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin()) 649 return true; 650 651 // If both blocks are identical and end in a branch, merge them unless they 652 // both have a fallthrough predecessor and successor. 653 // We can only do this after block placement because it depends on whether 654 // there are fallthroughs, and we don't know until after layout. 655 if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) { 656 auto BothFallThrough = [](MachineBasicBlock *MBB) { 657 if (MBB->succ_size() != 0 && !MBB->canFallThrough()) 658 return false; 659 MachineFunction::iterator I(MBB); 660 MachineFunction *MF = MBB->getParent(); 661 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 662 }; 663 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 664 return true; 665 } 666 667 // If both blocks have an unconditional branch temporarily stripped out, 668 // count that as an additional common instruction for the following 669 // heuristics. This heuristic is only accurate for single-succ blocks, so to 670 // make sure that during layout merging and duplicating don't crash, we check 671 // for that when merging during layout. 672 unsigned EffectiveTailLen = CommonTailLen; 673 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 674 (MBB1->succ_size() == 1 || !AfterPlacement) && 675 !MBB1->back().isBarrier() && 676 !MBB2->back().isBarrier()) 677 ++EffectiveTailLen; 678 679 // Check if the common tail is long enough to be worthwhile. 680 if (EffectiveTailLen >= MinCommonTailLength) 681 return true; 682 683 // If we are optimizing for code size, 2 instructions in common is enough if 684 // we don't have to split a block. At worst we will be introducing 1 new 685 // branch instruction, which is likely to be smaller than the 2 686 // instructions that would be deleted in the merge. 687 MachineFunction *MF = MBB1->getParent(); 688 return EffectiveTailLen >= 2 && MF->getFunction()->optForSize() && 689 (I1 == MBB1->begin() || I2 == MBB2->begin()); 690 } 691 692 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 693 unsigned MinCommonTailLength, 694 MachineBasicBlock *SuccBB, 695 MachineBasicBlock *PredBB) { 696 unsigned maxCommonTailLength = 0U; 697 SameTails.clear(); 698 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 699 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 700 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 701 B = MergePotentials.begin(); 702 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 703 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 704 unsigned CommonTailLen; 705 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 706 MinCommonTailLength, 707 CommonTailLen, TrialBBI1, TrialBBI2, 708 SuccBB, PredBB, 709 FuncletMembership, 710 AfterBlockPlacement)) { 711 if (CommonTailLen > maxCommonTailLength) { 712 SameTails.clear(); 713 maxCommonTailLength = CommonTailLen; 714 HighestMPIter = CurMPIter; 715 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 716 } 717 if (HighestMPIter == CurMPIter && 718 CommonTailLen == maxCommonTailLength) 719 SameTails.push_back(SameTailElt(I, TrialBBI2)); 720 } 721 if (I == B) 722 break; 723 } 724 } 725 return maxCommonTailLength; 726 } 727 728 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 729 MachineBasicBlock *SuccBB, 730 MachineBasicBlock *PredBB) { 731 MPIterator CurMPIter, B; 732 for (CurMPIter = std::prev(MergePotentials.end()), 733 B = MergePotentials.begin(); 734 CurMPIter->getHash() == CurHash; --CurMPIter) { 735 // Put the unconditional branch back, if we need one. 736 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 737 if (SuccBB && CurMBB != PredBB) 738 FixTail(CurMBB, SuccBB, TII); 739 if (CurMPIter == B) 740 break; 741 } 742 if (CurMPIter->getHash() != CurHash) 743 CurMPIter++; 744 MergePotentials.erase(CurMPIter, MergePotentials.end()); 745 } 746 747 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 748 MachineBasicBlock *SuccBB, 749 unsigned maxCommonTailLength, 750 unsigned &commonTailIndex) { 751 commonTailIndex = 0; 752 unsigned TimeEstimate = ~0U; 753 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 754 // Use PredBB if possible; that doesn't require a new branch. 755 if (SameTails[i].getBlock() == PredBB) { 756 commonTailIndex = i; 757 break; 758 } 759 // Otherwise, make a (fairly bogus) choice based on estimate of 760 // how long it will take the various blocks to execute. 761 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 762 SameTails[i].getTailStartPos()); 763 if (t <= TimeEstimate) { 764 TimeEstimate = t; 765 commonTailIndex = i; 766 } 767 } 768 769 MachineBasicBlock::iterator BBI = 770 SameTails[commonTailIndex].getTailStartPos(); 771 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 772 773 DEBUG(dbgs() << "\nSplitting BB#" << MBB->getNumber() << ", size " 774 << maxCommonTailLength); 775 776 // If the split block unconditionally falls-thru to SuccBB, it will be 777 // merged. In control flow terms it should then take SuccBB's name. e.g. If 778 // SuccBB is an inner loop, the common tail is still part of the inner loop. 779 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 780 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 781 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 782 if (!newMBB) { 783 DEBUG(dbgs() << "... failed!"); 784 return false; 785 } 786 787 SameTails[commonTailIndex].setBlock(newMBB); 788 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 789 790 // If we split PredBB, newMBB is the new predecessor. 791 if (PredBB == MBB) 792 PredBB = newMBB; 793 794 return true; 795 } 796 797 static void 798 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 799 MachineBasicBlock &MBBCommon) { 800 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 801 // Note CommonTailLen does not necessarily matches the size of 802 // the common BB nor all its instructions because of debug 803 // instructions differences. 804 unsigned CommonTailLen = 0; 805 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 806 ++CommonTailLen; 807 808 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 809 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 810 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 811 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 812 813 while (CommonTailLen--) { 814 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 815 (void)MBBIE; 816 817 if (MBBI->isDebugValue()) { 818 ++MBBI; 819 continue; 820 } 821 822 while ((MBBICommon != MBBIECommon) && MBBICommon->isDebugValue()) 823 ++MBBICommon; 824 825 assert(MBBICommon != MBBIECommon && 826 "Reached BB end within common tail length!"); 827 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 828 829 // Merge MMOs from memory operations in the common block. 830 if (MBBICommon->mayLoad() || MBBICommon->mayStore()) 831 MBBICommon->setMemRefs(MBBICommon->mergeMemRefsWith(*MBBI)); 832 // Drop undef flags if they aren't present in all merged instructions. 833 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 834 MachineOperand &MO = MBBICommon->getOperand(I); 835 if (MO.isReg() && MO.isUndef()) { 836 const MachineOperand &OtherMO = MBBI->getOperand(I); 837 if (!OtherMO.isUndef()) 838 MO.setIsUndef(false); 839 } 840 } 841 842 ++MBBI; 843 ++MBBICommon; 844 } 845 } 846 847 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { 848 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 849 850 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 851 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 852 if (i != commonTailIndex) { 853 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 854 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 855 } else { 856 assert(SameTails[i].getTailStartPos() == MBB->begin() && 857 "MBB is not a common tail only block"); 858 } 859 } 860 861 for (auto &MI : *MBB) { 862 if (MI.isDebugValue()) 863 continue; 864 DebugLoc DL = MI.getDebugLoc(); 865 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 866 if (i == commonTailIndex) 867 continue; 868 869 auto &Pos = NextCommonInsts[i]; 870 assert(Pos != SameTails[i].getBlock()->end() && 871 "Reached BB end within common tail"); 872 while (Pos->isDebugValue()) { 873 ++Pos; 874 assert(Pos != SameTails[i].getBlock()->end() && 875 "Reached BB end within common tail"); 876 } 877 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 878 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 879 NextCommonInsts[i] = ++Pos; 880 } 881 MI.setDebugLoc(DL); 882 } 883 884 if (UpdateLiveIns) { 885 LivePhysRegs NewLiveIns(*TRI); 886 computeLiveIns(NewLiveIns, *MBB); 887 888 // The flag merging may lead to some register uses no longer using the 889 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. 890 for (MachineBasicBlock *Pred : MBB->predecessors()) { 891 LiveRegs.init(*TRI); 892 LiveRegs.addLiveOuts(*Pred); 893 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); 894 for (unsigned Reg : NewLiveIns) { 895 if (!LiveRegs.available(*MRI, Reg)) 896 continue; 897 DebugLoc DL; 898 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), 899 Reg); 900 } 901 } 902 903 MBB->clearLiveIns(); 904 addLiveIns(*MBB, NewLiveIns); 905 } 906 } 907 908 // See if any of the blocks in MergePotentials (which all have SuccBB as a 909 // successor, or all have no successor if it is null) can be tail-merged. 910 // If there is a successor, any blocks in MergePotentials that are not 911 // tail-merged and are not immediately before Succ must have an unconditional 912 // branch to Succ added (but the predecessor/successor lists need no 913 // adjustment). The lone predecessor of Succ that falls through into Succ, 914 // if any, is given in PredBB. 915 // MinCommonTailLength - Except for the special cases below, tail-merge if 916 // there are at least this many instructions in common. 917 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 918 MachineBasicBlock *PredBB, 919 unsigned MinCommonTailLength) { 920 bool MadeChange = false; 921 922 DEBUG(dbgs() << "\nTryTailMergeBlocks: "; 923 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 924 dbgs() << "BB#" << MergePotentials[i].getBlock()->getNumber() 925 << (i == e-1 ? "" : ", "); 926 dbgs() << "\n"; 927 if (SuccBB) { 928 dbgs() << " with successor BB#" << SuccBB->getNumber() << '\n'; 929 if (PredBB) 930 dbgs() << " which has fall-through from BB#" 931 << PredBB->getNumber() << "\n"; 932 } 933 dbgs() << "Looking for common tails of at least " 934 << MinCommonTailLength << " instruction" 935 << (MinCommonTailLength == 1 ? "" : "s") << '\n'; 936 ); 937 938 // Sort by hash value so that blocks with identical end sequences sort 939 // together. 940 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 941 942 // Walk through equivalence sets looking for actual exact matches. 943 while (MergePotentials.size() > 1) { 944 unsigned CurHash = MergePotentials.back().getHash(); 945 946 // Build SameTails, identifying the set of blocks with this hash code 947 // and with the maximum number of instructions in common. 948 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 949 MinCommonTailLength, 950 SuccBB, PredBB); 951 952 // If we didn't find any pair that has at least MinCommonTailLength 953 // instructions in common, remove all blocks with this hash code and retry. 954 if (SameTails.empty()) { 955 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 956 continue; 957 } 958 959 // If one of the blocks is the entire common tail (and not the entry 960 // block, which we can't jump to), we can treat all blocks with this same 961 // tail at once. Use PredBB if that is one of the possibilities, as that 962 // will not introduce any extra branches. 963 MachineBasicBlock *EntryBB = 964 &MergePotentials.front().getBlock()->getParent()->front(); 965 unsigned commonTailIndex = SameTails.size(); 966 // If there are two blocks, check to see if one can be made to fall through 967 // into the other. 968 if (SameTails.size() == 2 && 969 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 970 SameTails[1].tailIsWholeBlock()) 971 commonTailIndex = 1; 972 else if (SameTails.size() == 2 && 973 SameTails[1].getBlock()->isLayoutSuccessor( 974 SameTails[0].getBlock()) && 975 SameTails[0].tailIsWholeBlock()) 976 commonTailIndex = 0; 977 else { 978 // Otherwise just pick one, favoring the fall-through predecessor if 979 // there is one. 980 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 981 MachineBasicBlock *MBB = SameTails[i].getBlock(); 982 if (MBB == EntryBB && SameTails[i].tailIsWholeBlock()) 983 continue; 984 if (MBB == PredBB) { 985 commonTailIndex = i; 986 break; 987 } 988 if (SameTails[i].tailIsWholeBlock()) 989 commonTailIndex = i; 990 } 991 } 992 993 if (commonTailIndex == SameTails.size() || 994 (SameTails[commonTailIndex].getBlock() == PredBB && 995 !SameTails[commonTailIndex].tailIsWholeBlock())) { 996 // None of the blocks consist entirely of the common tail. 997 // Split a block so that one does. 998 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 999 maxCommonTailLength, commonTailIndex)) { 1000 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 1001 continue; 1002 } 1003 } 1004 1005 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 1006 1007 // Recompute common tail MBB's edge weights and block frequency. 1008 setCommonTailEdgeWeights(*MBB); 1009 1010 // Merge debug locations, MMOs and undef flags across identical instructions 1011 // for common tail. 1012 mergeCommonTails(commonTailIndex); 1013 1014 // MBB is common tail. Adjust all other BB's to jump to this one. 1015 // Traversal must be forwards so erases work. 1016 DEBUG(dbgs() << "\nUsing common tail in BB#" << MBB->getNumber() 1017 << " for "); 1018 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 1019 if (commonTailIndex == i) 1020 continue; 1021 DEBUG(dbgs() << "BB#" << SameTails[i].getBlock()->getNumber() 1022 << (i == e-1 ? "" : ", ")); 1023 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 1024 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); 1025 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 1026 MergePotentials.erase(SameTails[i].getMPIter()); 1027 } 1028 DEBUG(dbgs() << "\n"); 1029 // We leave commonTailIndex in the worklist in case there are other blocks 1030 // that match it with a smaller number of instructions. 1031 MadeChange = true; 1032 } 1033 return MadeChange; 1034 } 1035 1036 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 1037 bool MadeChange = false; 1038 if (!EnableTailMerge) return MadeChange; 1039 1040 // First find blocks with no successors. 1041 // Block placement does not create new tail merging opportunities for these 1042 // blocks. 1043 if (!AfterBlockPlacement) { 1044 MergePotentials.clear(); 1045 for (MachineBasicBlock &MBB : MF) { 1046 if (MergePotentials.size() == TailMergeThreshold) 1047 break; 1048 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 1049 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 1050 } 1051 1052 // If this is a large problem, avoid visiting the same basic blocks 1053 // multiple times. 1054 if (MergePotentials.size() == TailMergeThreshold) 1055 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1056 TriedMerging.insert(MergePotentials[i].getBlock()); 1057 1058 // See if we can do any tail merging on those. 1059 if (MergePotentials.size() >= 2) 1060 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 1061 } 1062 1063 // Look at blocks (IBB) with multiple predecessors (PBB). 1064 // We change each predecessor to a canonical form, by 1065 // (1) temporarily removing any unconditional branch from the predecessor 1066 // to IBB, and 1067 // (2) alter conditional branches so they branch to the other block 1068 // not IBB; this may require adding back an unconditional branch to IBB 1069 // later, where there wasn't one coming in. E.g. 1070 // Bcc IBB 1071 // fallthrough to QBB 1072 // here becomes 1073 // Bncc QBB 1074 // with a conceptual B to IBB after that, which never actually exists. 1075 // With those changes, we see whether the predecessors' tails match, 1076 // and merge them if so. We change things out of canonical form and 1077 // back to the way they were later in the process. (OptimizeBranches 1078 // would undo some of this, but we can't use it, because we'd get into 1079 // a compile-time infinite loop repeatedly doing and undoing the same 1080 // transformations.) 1081 1082 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1083 I != E; ++I) { 1084 if (I->pred_size() < 2) continue; 1085 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1086 MachineBasicBlock *IBB = &*I; 1087 MachineBasicBlock *PredBB = &*std::prev(I); 1088 MergePotentials.clear(); 1089 MachineLoop *ML; 1090 1091 // Bail if merging after placement and IBB is the loop header because 1092 // -- If merging predecessors that belong to the same loop as IBB, the 1093 // common tail of merged predecessors may become the loop top if block 1094 // placement is called again and the predecessors may branch to this common 1095 // tail and require more branches. This can be relaxed if 1096 // MachineBlockPlacement::findBestLoopTop is more flexible. 1097 // --If merging predecessors that do not belong to the same loop as IBB, the 1098 // loop info of IBB's loop and the other loops may be affected. Calling the 1099 // block placement again may make big change to the layout and eliminate the 1100 // reason to do tail merging here. 1101 if (AfterBlockPlacement && MLI) { 1102 ML = MLI->getLoopFor(IBB); 1103 if (ML && IBB == ML->getHeader()) 1104 continue; 1105 } 1106 1107 for (MachineBasicBlock *PBB : I->predecessors()) { 1108 if (MergePotentials.size() == TailMergeThreshold) 1109 break; 1110 1111 if (TriedMerging.count(PBB)) 1112 continue; 1113 1114 // Skip blocks that loop to themselves, can't tail merge these. 1115 if (PBB == IBB) 1116 continue; 1117 1118 // Visit each predecessor only once. 1119 if (!UniquePreds.insert(PBB).second) 1120 continue; 1121 1122 // Skip blocks which may jump to a landing pad. Can't tail merge these. 1123 if (PBB->hasEHPadSuccessor()) 1124 continue; 1125 1126 // After block placement, only consider predecessors that belong to the 1127 // same loop as IBB. The reason is the same as above when skipping loop 1128 // header. 1129 if (AfterBlockPlacement && MLI) 1130 if (ML != MLI->getLoopFor(PBB)) 1131 continue; 1132 1133 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1134 SmallVector<MachineOperand, 4> Cond; 1135 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1136 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1137 // branch. 1138 SmallVector<MachineOperand, 4> NewCond(Cond); 1139 if (!Cond.empty() && TBB == IBB) { 1140 if (TII->reverseBranchCondition(NewCond)) 1141 continue; 1142 // This is the QBB case described above 1143 if (!FBB) { 1144 auto Next = ++PBB->getIterator(); 1145 if (Next != MF.end()) 1146 FBB = &*Next; 1147 } 1148 } 1149 1150 // Failing case: the only way IBB can be reached from PBB is via 1151 // exception handling. Happens for landing pads. Would be nice to have 1152 // a bit in the edge so we didn't have to do all this. 1153 if (IBB->isEHPad()) { 1154 MachineFunction::iterator IP = ++PBB->getIterator(); 1155 MachineBasicBlock *PredNextBB = nullptr; 1156 if (IP != MF.end()) 1157 PredNextBB = &*IP; 1158 if (!TBB) { 1159 if (IBB != PredNextBB) // fallthrough 1160 continue; 1161 } else if (FBB) { 1162 if (TBB != IBB && FBB != IBB) // cbr then ubr 1163 continue; 1164 } else if (Cond.empty()) { 1165 if (TBB != IBB) // ubr 1166 continue; 1167 } else { 1168 if (TBB != IBB && IBB != PredNextBB) // cbr 1169 continue; 1170 } 1171 } 1172 1173 // Remove the unconditional branch at the end, if any. 1174 if (TBB && (Cond.empty() || FBB)) { 1175 DebugLoc dl = PBB->findBranchDebugLoc(); 1176 TII->removeBranch(*PBB); 1177 if (!Cond.empty()) 1178 // reinsert conditional branch only, for now 1179 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1180 NewCond, dl); 1181 } 1182 1183 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1184 } 1185 } 1186 1187 // If this is a large problem, avoid visiting the same basic blocks multiple 1188 // times. 1189 if (MergePotentials.size() == TailMergeThreshold) 1190 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1191 TriedMerging.insert(MergePotentials[i].getBlock()); 1192 1193 if (MergePotentials.size() >= 2) 1194 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1195 1196 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1197 // result of removing blocks in TryTailMergeBlocks. 1198 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1199 if (MergePotentials.size() == 1 && 1200 MergePotentials.begin()->getBlock() != PredBB) 1201 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1202 } 1203 1204 return MadeChange; 1205 } 1206 1207 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1208 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1209 BlockFrequency AccumulatedMBBFreq; 1210 1211 // Aggregate edge frequency of successor edge j: 1212 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1213 // where bb is a basic block that is in SameTails. 1214 for (const auto &Src : SameTails) { 1215 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1216 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1217 AccumulatedMBBFreq += BlockFreq; 1218 1219 // It is not necessary to recompute edge weights if TailBB has less than two 1220 // successors. 1221 if (TailMBB.succ_size() <= 1) 1222 continue; 1223 1224 auto EdgeFreq = EdgeFreqLs.begin(); 1225 1226 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1227 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1228 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1229 } 1230 1231 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1232 1233 if (TailMBB.succ_size() <= 1) 1234 return; 1235 1236 auto SumEdgeFreq = 1237 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1238 .getFrequency(); 1239 auto EdgeFreq = EdgeFreqLs.begin(); 1240 1241 if (SumEdgeFreq > 0) { 1242 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1243 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1244 auto Prob = BranchProbability::getBranchProbability( 1245 EdgeFreq->getFrequency(), SumEdgeFreq); 1246 TailMBB.setSuccProbability(SuccI, Prob); 1247 } 1248 } 1249 } 1250 1251 //===----------------------------------------------------------------------===// 1252 // Branch Optimization 1253 //===----------------------------------------------------------------------===// 1254 1255 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1256 bool MadeChange = false; 1257 1258 // Make sure blocks are numbered in order 1259 MF.RenumberBlocks(); 1260 // Renumbering blocks alters funclet membership, recalculate it. 1261 FuncletMembership = getFuncletMembership(MF); 1262 1263 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1264 I != E; ) { 1265 MachineBasicBlock *MBB = &*I++; 1266 MadeChange |= OptimizeBlock(MBB); 1267 1268 // If it is dead, remove it. 1269 if (MBB->pred_empty()) { 1270 RemoveDeadBlock(MBB); 1271 MadeChange = true; 1272 ++NumDeadBlocks; 1273 } 1274 } 1275 1276 return MadeChange; 1277 } 1278 1279 // Blocks should be considered empty if they contain only debug info; 1280 // else the debug info would affect codegen. 1281 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1282 return MBB->getFirstNonDebugInstr() == MBB->end(); 1283 } 1284 1285 // Blocks with only debug info and branches should be considered the same 1286 // as blocks with only branches. 1287 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1288 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1289 assert(I != MBB->end() && "empty block!"); 1290 return I->isBranch(); 1291 } 1292 1293 /// IsBetterFallthrough - Return true if it would be clearly better to 1294 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1295 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1296 /// result in infinite loops. 1297 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1298 MachineBasicBlock *MBB2) { 1299 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1300 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1301 // optimize branches that branch to either a return block or an assert block 1302 // into a fallthrough to the return. 1303 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1304 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1305 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1306 return false; 1307 1308 // If there is a clear successor ordering we make sure that one block 1309 // will fall through to the next 1310 if (MBB1->isSuccessor(MBB2)) return true; 1311 if (MBB2->isSuccessor(MBB1)) return false; 1312 1313 return MBB2I->isCall() && !MBB1I->isCall(); 1314 } 1315 1316 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1317 /// instructions on the block. 1318 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1319 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1320 if (I != MBB.end() && I->isBranch()) 1321 return I->getDebugLoc(); 1322 return DebugLoc(); 1323 } 1324 1325 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1326 bool MadeChange = false; 1327 MachineFunction &MF = *MBB->getParent(); 1328 ReoptimizeBlock: 1329 1330 MachineFunction::iterator FallThrough = MBB->getIterator(); 1331 ++FallThrough; 1332 1333 // Make sure MBB and FallThrough belong to the same funclet. 1334 bool SameFunclet = true; 1335 if (!FuncletMembership.empty() && FallThrough != MF.end()) { 1336 auto MBBFunclet = FuncletMembership.find(MBB); 1337 assert(MBBFunclet != FuncletMembership.end()); 1338 auto FallThroughFunclet = FuncletMembership.find(&*FallThrough); 1339 assert(FallThroughFunclet != FuncletMembership.end()); 1340 SameFunclet = MBBFunclet->second == FallThroughFunclet->second; 1341 } 1342 1343 // If this block is empty, make everyone use its fall-through, not the block 1344 // explicitly. Landing pads should not do this since the landing-pad table 1345 // points to this block. Blocks with their addresses taken shouldn't be 1346 // optimized away. 1347 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1348 SameFunclet) { 1349 // Dead block? Leave for cleanup later. 1350 if (MBB->pred_empty()) return MadeChange; 1351 1352 if (FallThrough == MF.end()) { 1353 // TODO: Simplify preds to not branch here if possible! 1354 } else if (FallThrough->isEHPad()) { 1355 // Don't rewrite to a landing pad fallthough. That could lead to the case 1356 // where a BB jumps to more than one landing pad. 1357 // TODO: Is it ever worth rewriting predecessors which don't already 1358 // jump to a landing pad, and so can safely jump to the fallthrough? 1359 } else if (MBB->isSuccessor(&*FallThrough)) { 1360 // Rewrite all predecessors of the old block to go to the fallthrough 1361 // instead. 1362 while (!MBB->pred_empty()) { 1363 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1364 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1365 } 1366 // If MBB was the target of a jump table, update jump tables to go to the 1367 // fallthrough instead. 1368 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1369 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1370 MadeChange = true; 1371 } 1372 return MadeChange; 1373 } 1374 1375 // Check to see if we can simplify the terminator of the block before this 1376 // one. 1377 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1378 1379 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1380 SmallVector<MachineOperand, 4> PriorCond; 1381 bool PriorUnAnalyzable = 1382 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1383 if (!PriorUnAnalyzable) { 1384 // If the CFG for the prior block has extra edges, remove them. 1385 MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB, 1386 !PriorCond.empty()); 1387 1388 // If the previous branch is conditional and both conditions go to the same 1389 // destination, remove the branch, replacing it with an unconditional one or 1390 // a fall-through. 1391 if (PriorTBB && PriorTBB == PriorFBB) { 1392 DebugLoc dl = getBranchDebugLoc(PrevBB); 1393 TII->removeBranch(PrevBB); 1394 PriorCond.clear(); 1395 if (PriorTBB != MBB) 1396 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1397 MadeChange = true; 1398 ++NumBranchOpts; 1399 goto ReoptimizeBlock; 1400 } 1401 1402 // If the previous block unconditionally falls through to this block and 1403 // this block has no other predecessors, move the contents of this block 1404 // into the prior block. This doesn't usually happen when SimplifyCFG 1405 // has been used, but it can happen if tail merging splits a fall-through 1406 // predecessor of a block. 1407 // This has to check PrevBB->succ_size() because EH edges are ignored by 1408 // AnalyzeBranch. 1409 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1410 PrevBB.succ_size() == 1 && 1411 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1412 DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1413 << "From MBB: " << *MBB); 1414 // Remove redundant DBG_VALUEs first. 1415 if (PrevBB.begin() != PrevBB.end()) { 1416 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1417 --PrevBBIter; 1418 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1419 // Check if DBG_VALUE at the end of PrevBB is identical to the 1420 // DBG_VALUE at the beginning of MBB. 1421 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1422 && PrevBBIter->isDebugValue() && MBBIter->isDebugValue()) { 1423 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1424 break; 1425 MachineInstr &DuplicateDbg = *MBBIter; 1426 ++MBBIter; -- PrevBBIter; 1427 DuplicateDbg.eraseFromParent(); 1428 } 1429 } 1430 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1431 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1432 assert(PrevBB.succ_empty()); 1433 PrevBB.transferSuccessors(MBB); 1434 MadeChange = true; 1435 return MadeChange; 1436 } 1437 1438 // If the previous branch *only* branches to *this* block (conditional or 1439 // not) remove the branch. 1440 if (PriorTBB == MBB && !PriorFBB) { 1441 TII->removeBranch(PrevBB); 1442 MadeChange = true; 1443 ++NumBranchOpts; 1444 goto ReoptimizeBlock; 1445 } 1446 1447 // If the prior block branches somewhere else on the condition and here if 1448 // the condition is false, remove the uncond second branch. 1449 if (PriorFBB == MBB) { 1450 DebugLoc dl = getBranchDebugLoc(PrevBB); 1451 TII->removeBranch(PrevBB); 1452 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1453 MadeChange = true; 1454 ++NumBranchOpts; 1455 goto ReoptimizeBlock; 1456 } 1457 1458 // If the prior block branches here on true and somewhere else on false, and 1459 // if the branch condition is reversible, reverse the branch to create a 1460 // fall-through. 1461 if (PriorTBB == MBB) { 1462 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1463 if (!TII->reverseBranchCondition(NewPriorCond)) { 1464 DebugLoc dl = getBranchDebugLoc(PrevBB); 1465 TII->removeBranch(PrevBB); 1466 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1467 MadeChange = true; 1468 ++NumBranchOpts; 1469 goto ReoptimizeBlock; 1470 } 1471 } 1472 1473 // If this block has no successors (e.g. it is a return block or ends with 1474 // a call to a no-return function like abort or __cxa_throw) and if the pred 1475 // falls through into this block, and if it would otherwise fall through 1476 // into the block after this, move this block to the end of the function. 1477 // 1478 // We consider it more likely that execution will stay in the function (e.g. 1479 // due to loops) than it is to exit it. This asserts in loops etc, moving 1480 // the assert condition out of the loop body. 1481 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1482 MachineFunction::iterator(PriorTBB) == FallThrough && 1483 !MBB->canFallThrough()) { 1484 bool DoTransform = true; 1485 1486 // We have to be careful that the succs of PredBB aren't both no-successor 1487 // blocks. If neither have successors and if PredBB is the second from 1488 // last block in the function, we'd just keep swapping the two blocks for 1489 // last. Only do the swap if one is clearly better to fall through than 1490 // the other. 1491 if (FallThrough == --MF.end() && 1492 !IsBetterFallthrough(PriorTBB, MBB)) 1493 DoTransform = false; 1494 1495 if (DoTransform) { 1496 // Reverse the branch so we will fall through on the previous true cond. 1497 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1498 if (!TII->reverseBranchCondition(NewPriorCond)) { 1499 DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1500 << "To make fallthrough to: " << *PriorTBB << "\n"); 1501 1502 DebugLoc dl = getBranchDebugLoc(PrevBB); 1503 TII->removeBranch(PrevBB); 1504 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1505 1506 // Move this block to the end of the function. 1507 MBB->moveAfter(&MF.back()); 1508 MadeChange = true; 1509 ++NumBranchOpts; 1510 return MadeChange; 1511 } 1512 } 1513 } 1514 } 1515 1516 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && 1517 MF.getFunction()->optForSize()) { 1518 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1519 // direction, thereby defeating careful block placement and regressing 1520 // performance. Therefore, only consider this for optsize functions. 1521 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1522 if (TII->isUnconditionalTailCall(TailCall)) { 1523 MachineBasicBlock *Pred = *MBB->pred_begin(); 1524 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1525 SmallVector<MachineOperand, 4> PredCond; 1526 bool PredAnalyzable = 1527 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1528 1529 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && 1530 PredTBB != PredFBB) { 1531 // The predecessor has a conditional branch to this block which consists 1532 // of only a tail call. Try to fold the tail call into the conditional 1533 // branch. 1534 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1535 // TODO: It would be nice if analyzeBranch() could provide a pointer 1536 // to the branch instruction so replaceBranchWithTailCall() doesn't 1537 // have to search for it. 1538 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1539 ++NumTailCalls; 1540 Pred->removeSuccessor(MBB); 1541 MadeChange = true; 1542 return MadeChange; 1543 } 1544 } 1545 // If the predecessor is falling through to this block, we could reverse 1546 // the branch condition and fold the tail call into that. However, after 1547 // that we might have to re-arrange the CFG to fall through to the other 1548 // block and there is a high risk of regressing code size rather than 1549 // improving it. 1550 } 1551 } 1552 1553 // Analyze the branch in the current block. 1554 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1555 SmallVector<MachineOperand, 4> CurCond; 1556 bool CurUnAnalyzable = 1557 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1558 if (!CurUnAnalyzable) { 1559 // If the CFG for the prior block has extra edges, remove them. 1560 MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty()); 1561 1562 // If this is a two-way branch, and the FBB branches to this block, reverse 1563 // the condition so the single-basic-block loop is faster. Instead of: 1564 // Loop: xxx; jcc Out; jmp Loop 1565 // we want: 1566 // Loop: xxx; jncc Loop; jmp Out 1567 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1568 SmallVector<MachineOperand, 4> NewCond(CurCond); 1569 if (!TII->reverseBranchCondition(NewCond)) { 1570 DebugLoc dl = getBranchDebugLoc(*MBB); 1571 TII->removeBranch(*MBB); 1572 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1573 MadeChange = true; 1574 ++NumBranchOpts; 1575 goto ReoptimizeBlock; 1576 } 1577 } 1578 1579 // If this branch is the only thing in its block, see if we can forward 1580 // other blocks across it. 1581 if (CurTBB && CurCond.empty() && !CurFBB && 1582 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1583 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1584 DebugLoc dl = getBranchDebugLoc(*MBB); 1585 // This block may contain just an unconditional branch. Because there can 1586 // be 'non-branch terminators' in the block, try removing the branch and 1587 // then seeing if the block is empty. 1588 TII->removeBranch(*MBB); 1589 // If the only things remaining in the block are debug info, remove these 1590 // as well, so this will behave the same as an empty block in non-debug 1591 // mode. 1592 if (IsEmptyBlock(MBB)) { 1593 // Make the block empty, losing the debug info (we could probably 1594 // improve this in some cases.) 1595 MBB->erase(MBB->begin(), MBB->end()); 1596 } 1597 // If this block is just an unconditional branch to CurTBB, we can 1598 // usually completely eliminate the block. The only case we cannot 1599 // completely eliminate the block is when the block before this one 1600 // falls through into MBB and we can't understand the prior block's branch 1601 // condition. 1602 if (MBB->empty()) { 1603 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1604 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1605 !PrevBB.isSuccessor(MBB)) { 1606 // If the prior block falls through into us, turn it into an 1607 // explicit branch to us to make updates simpler. 1608 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1609 PriorTBB != MBB && PriorFBB != MBB) { 1610 if (!PriorTBB) { 1611 assert(PriorCond.empty() && !PriorFBB && 1612 "Bad branch analysis"); 1613 PriorTBB = MBB; 1614 } else { 1615 assert(!PriorFBB && "Machine CFG out of date!"); 1616 PriorFBB = MBB; 1617 } 1618 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1619 TII->removeBranch(PrevBB); 1620 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1621 } 1622 1623 // Iterate through all the predecessors, revectoring each in-turn. 1624 size_t PI = 0; 1625 bool DidChange = false; 1626 bool HasBranchToSelf = false; 1627 while(PI != MBB->pred_size()) { 1628 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1629 if (PMBB == MBB) { 1630 // If this block has an uncond branch to itself, leave it. 1631 ++PI; 1632 HasBranchToSelf = true; 1633 } else { 1634 DidChange = true; 1635 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1636 // If this change resulted in PMBB ending in a conditional 1637 // branch where both conditions go to the same destination, 1638 // change this to an unconditional branch (and fix the CFG). 1639 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1640 SmallVector<MachineOperand, 4> NewCurCond; 1641 bool NewCurUnAnalyzable = TII->analyzeBranch( 1642 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1643 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1644 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1645 TII->removeBranch(*PMBB); 1646 NewCurCond.clear(); 1647 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1648 MadeChange = true; 1649 ++NumBranchOpts; 1650 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false); 1651 } 1652 } 1653 } 1654 1655 // Change any jumptables to go to the new MBB. 1656 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1657 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1658 if (DidChange) { 1659 ++NumBranchOpts; 1660 MadeChange = true; 1661 if (!HasBranchToSelf) return MadeChange; 1662 } 1663 } 1664 } 1665 1666 // Add the branch back if the block is more than just an uncond branch. 1667 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1668 } 1669 } 1670 1671 // If the prior block doesn't fall through into this block, and if this 1672 // block doesn't fall through into some other block, see if we can find a 1673 // place to move this block where a fall-through will happen. 1674 if (!PrevBB.canFallThrough()) { 1675 // Now we know that there was no fall-through into this block, check to 1676 // see if it has a fall-through into its successor. 1677 bool CurFallsThru = MBB->canFallThrough(); 1678 1679 if (!MBB->isEHPad()) { 1680 // Check all the predecessors of this block. If one of them has no fall 1681 // throughs, move this block right after it. 1682 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1683 // Analyze the branch at the end of the pred. 1684 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1685 SmallVector<MachineOperand, 4> PredCond; 1686 if (PredBB != MBB && !PredBB->canFallThrough() && 1687 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1688 (!CurFallsThru || !CurTBB || !CurFBB) && 1689 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1690 // If the current block doesn't fall through, just move it. 1691 // If the current block can fall through and does not end with a 1692 // conditional branch, we need to append an unconditional jump to 1693 // the (current) next block. To avoid a possible compile-time 1694 // infinite loop, move blocks only backward in this case. 1695 // Also, if there are already 2 branches here, we cannot add a third; 1696 // this means we have the case 1697 // Bcc next 1698 // B elsewhere 1699 // next: 1700 if (CurFallsThru) { 1701 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1702 CurCond.clear(); 1703 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1704 } 1705 MBB->moveAfter(PredBB); 1706 MadeChange = true; 1707 goto ReoptimizeBlock; 1708 } 1709 } 1710 } 1711 1712 if (!CurFallsThru) { 1713 // Check all successors to see if we can move this block before it. 1714 for (MachineBasicBlock *SuccBB : MBB->successors()) { 1715 // Analyze the branch at the end of the block before the succ. 1716 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1717 1718 // If this block doesn't already fall-through to that successor, and if 1719 // the succ doesn't already have a block that can fall through into it, 1720 // and if the successor isn't an EH destination, we can arrange for the 1721 // fallthrough to happen. 1722 if (SuccBB != MBB && &*SuccPrev != MBB && 1723 !SuccPrev->canFallThrough() && !CurUnAnalyzable && 1724 !SuccBB->isEHPad()) { 1725 MBB->moveBefore(SuccBB); 1726 MadeChange = true; 1727 goto ReoptimizeBlock; 1728 } 1729 } 1730 1731 // Okay, there is no really great place to put this block. If, however, 1732 // the block before this one would be a fall-through if this block were 1733 // removed, move this block to the end of the function. There is no real 1734 // advantage in "falling through" to an EH block, so we don't want to 1735 // perform this transformation for that case. 1736 // 1737 // Also, Windows EH introduced the possibility of an arbitrary number of 1738 // successors to a given block. The analyzeBranch call does not consider 1739 // exception handling and so we can get in a state where a block 1740 // containing a call is followed by multiple EH blocks that would be 1741 // rotated infinitely at the end of the function if the transformation 1742 // below were performed for EH "FallThrough" blocks. Therefore, even if 1743 // that appears not to be happening anymore, we should assume that it is 1744 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1745 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1746 SmallVector<MachineOperand, 4> PrevCond; 1747 if (FallThrough != MF.end() && 1748 !FallThrough->isEHPad() && 1749 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1750 PrevBB.isSuccessor(&*FallThrough)) { 1751 MBB->moveAfter(&MF.back()); 1752 MadeChange = true; 1753 return MadeChange; 1754 } 1755 } 1756 } 1757 1758 return MadeChange; 1759 } 1760 1761 //===----------------------------------------------------------------------===// 1762 // Hoist Common Code 1763 //===----------------------------------------------------------------------===// 1764 1765 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1766 bool MadeChange = false; 1767 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1768 MachineBasicBlock *MBB = &*I++; 1769 MadeChange |= HoistCommonCodeInSuccs(MBB); 1770 } 1771 1772 return MadeChange; 1773 } 1774 1775 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1776 /// its 'true' successor. 1777 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1778 MachineBasicBlock *TrueBB) { 1779 for (MachineBasicBlock *SuccBB : BB->successors()) 1780 if (SuccBB != TrueBB) 1781 return SuccBB; 1782 return nullptr; 1783 } 1784 1785 template <class Container> 1786 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, 1787 Container &Set) { 1788 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1789 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1790 Set.insert(*AI); 1791 } else { 1792 Set.insert(Reg); 1793 } 1794 } 1795 1796 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1797 /// in successors to. The location is usually just before the terminator, 1798 /// however if the terminator is a conditional branch and its previous 1799 /// instruction is the flag setting instruction, the previous instruction is 1800 /// the preferred location. This function also gathers uses and defs of the 1801 /// instructions from the insertion point to the end of the block. The data is 1802 /// used by HoistCommonCodeInSuccs to ensure safety. 1803 static 1804 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1805 const TargetInstrInfo *TII, 1806 const TargetRegisterInfo *TRI, 1807 SmallSet<unsigned,4> &Uses, 1808 SmallSet<unsigned,4> &Defs) { 1809 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1810 if (!TII->isUnpredicatedTerminator(*Loc)) 1811 return MBB->end(); 1812 1813 for (const MachineOperand &MO : Loc->operands()) { 1814 if (!MO.isReg()) 1815 continue; 1816 unsigned Reg = MO.getReg(); 1817 if (!Reg) 1818 continue; 1819 if (MO.isUse()) { 1820 addRegAndItsAliases(Reg, TRI, Uses); 1821 } else { 1822 if (!MO.isDead()) 1823 // Don't try to hoist code in the rare case the terminator defines a 1824 // register that is later used. 1825 return MBB->end(); 1826 1827 // If the terminator defines a register, make sure we don't hoist 1828 // the instruction whose def might be clobbered by the terminator. 1829 addRegAndItsAliases(Reg, TRI, Defs); 1830 } 1831 } 1832 1833 if (Uses.empty()) 1834 return Loc; 1835 if (Loc == MBB->begin()) 1836 return MBB->end(); 1837 1838 // The terminator is probably a conditional branch, try not to separate the 1839 // branch from condition setting instruction. 1840 MachineBasicBlock::iterator PI = 1841 skipDebugInstructionsBackward(std::prev(Loc), MBB->begin()); 1842 1843 bool IsDef = false; 1844 for (const MachineOperand &MO : PI->operands()) { 1845 // If PI has a regmask operand, it is probably a call. Separate away. 1846 if (MO.isRegMask()) 1847 return Loc; 1848 if (!MO.isReg() || MO.isUse()) 1849 continue; 1850 unsigned Reg = MO.getReg(); 1851 if (!Reg) 1852 continue; 1853 if (Uses.count(Reg)) { 1854 IsDef = true; 1855 break; 1856 } 1857 } 1858 if (!IsDef) 1859 // The condition setting instruction is not just before the conditional 1860 // branch. 1861 return Loc; 1862 1863 // Be conservative, don't insert instruction above something that may have 1864 // side-effects. And since it's potentially bad to separate flag setting 1865 // instruction from the conditional branch, just abort the optimization 1866 // completely. 1867 // Also avoid moving code above predicated instruction since it's hard to 1868 // reason about register liveness with predicated instruction. 1869 bool DontMoveAcrossStore = true; 1870 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1871 return MBB->end(); 1872 1873 // Find out what registers are live. Note this routine is ignoring other live 1874 // registers which are only used by instructions in successor blocks. 1875 for (const MachineOperand &MO : PI->operands()) { 1876 if (!MO.isReg()) 1877 continue; 1878 unsigned Reg = MO.getReg(); 1879 if (!Reg) 1880 continue; 1881 if (MO.isUse()) { 1882 addRegAndItsAliases(Reg, TRI, Uses); 1883 } else { 1884 if (Uses.erase(Reg)) { 1885 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1886 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1887 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1888 } 1889 } 1890 addRegAndItsAliases(Reg, TRI, Defs); 1891 } 1892 } 1893 1894 return PI; 1895 } 1896 1897 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1898 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1899 SmallVector<MachineOperand, 4> Cond; 1900 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1901 return false; 1902 1903 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1904 if (!FBB) 1905 // Malformed bcc? True and false blocks are the same? 1906 return false; 1907 1908 // Restrict the optimization to cases where MBB is the only predecessor, 1909 // it is an obvious win. 1910 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1911 return false; 1912 1913 // Find a suitable position to hoist the common instructions to. Also figure 1914 // out which registers are used or defined by instructions from the insertion 1915 // point to the end of the block. 1916 SmallSet<unsigned, 4> Uses, Defs; 1917 MachineBasicBlock::iterator Loc = 1918 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1919 if (Loc == MBB->end()) 1920 return false; 1921 1922 bool HasDups = false; 1923 SmallVector<unsigned, 4> LocalDefs, LocalKills; 1924 SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet; 1925 MachineBasicBlock::iterator TIB = TBB->begin(); 1926 MachineBasicBlock::iterator FIB = FBB->begin(); 1927 MachineBasicBlock::iterator TIE = TBB->end(); 1928 MachineBasicBlock::iterator FIE = FBB->end(); 1929 while (TIB != TIE && FIB != FIE) { 1930 // Skip dbg_value instructions. These do not count. 1931 TIB = skipDebugInstructionsForward(TIB, TIE); 1932 FIB = skipDebugInstructionsForward(FIB, FIE); 1933 if (TIB == TIE || FIB == FIE) 1934 break; 1935 1936 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 1937 break; 1938 1939 if (TII->isPredicated(*TIB)) 1940 // Hard to reason about register liveness with predicated instruction. 1941 break; 1942 1943 bool IsSafe = true; 1944 for (MachineOperand &MO : TIB->operands()) { 1945 // Don't attempt to hoist instructions with register masks. 1946 if (MO.isRegMask()) { 1947 IsSafe = false; 1948 break; 1949 } 1950 if (!MO.isReg()) 1951 continue; 1952 unsigned Reg = MO.getReg(); 1953 if (!Reg) 1954 continue; 1955 if (MO.isDef()) { 1956 if (Uses.count(Reg)) { 1957 // Avoid clobbering a register that's used by the instruction at 1958 // the point of insertion. 1959 IsSafe = false; 1960 break; 1961 } 1962 1963 if (Defs.count(Reg) && !MO.isDead()) { 1964 // Don't hoist the instruction if the def would be clobber by the 1965 // instruction at the point insertion. FIXME: This is overly 1966 // conservative. It should be possible to hoist the instructions 1967 // in BB2 in the following example: 1968 // BB1: 1969 // r1, eflag = op1 r2, r3 1970 // brcc eflag 1971 // 1972 // BB2: 1973 // r1 = op2, ... 1974 // = op3, r1<kill> 1975 IsSafe = false; 1976 break; 1977 } 1978 } else if (!ActiveDefsSet.count(Reg)) { 1979 if (Defs.count(Reg)) { 1980 // Use is defined by the instruction at the point of insertion. 1981 IsSafe = false; 1982 break; 1983 } 1984 1985 if (MO.isKill() && Uses.count(Reg)) 1986 // Kills a register that's read by the instruction at the point of 1987 // insertion. Remove the kill marker. 1988 MO.setIsKill(false); 1989 } 1990 } 1991 if (!IsSafe) 1992 break; 1993 1994 bool DontMoveAcrossStore = true; 1995 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 1996 break; 1997 1998 // Remove kills from ActiveDefsSet, these registers had short live ranges. 1999 for (const MachineOperand &MO : TIB->operands()) { 2000 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2001 continue; 2002 unsigned Reg = MO.getReg(); 2003 if (!Reg) 2004 continue; 2005 if (!AllDefsSet.count(Reg)) { 2006 LocalKills.push_back(Reg); 2007 continue; 2008 } 2009 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2010 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 2011 ActiveDefsSet.erase(*AI); 2012 } else { 2013 ActiveDefsSet.erase(Reg); 2014 } 2015 } 2016 2017 // Track local defs so we can update liveins. 2018 for (const MachineOperand &MO : TIB->operands()) { 2019 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 2020 continue; 2021 unsigned Reg = MO.getReg(); 2022 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg)) 2023 continue; 2024 LocalDefs.push_back(Reg); 2025 addRegAndItsAliases(Reg, TRI, ActiveDefsSet); 2026 addRegAndItsAliases(Reg, TRI, AllDefsSet); 2027 } 2028 2029 HasDups = true; 2030 ++TIB; 2031 ++FIB; 2032 } 2033 2034 if (!HasDups) 2035 return false; 2036 2037 MBB->splice(Loc, TBB, TBB->begin(), TIB); 2038 FBB->erase(FBB->begin(), FIB); 2039 2040 // Update livein's. 2041 bool ChangedLiveIns = false; 2042 for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) { 2043 unsigned Def = LocalDefs[i]; 2044 if (ActiveDefsSet.count(Def)) { 2045 TBB->addLiveIn(Def); 2046 FBB->addLiveIn(Def); 2047 ChangedLiveIns = true; 2048 } 2049 } 2050 for (unsigned K : LocalKills) { 2051 TBB->removeLiveIn(K); 2052 FBB->removeLiveIn(K); 2053 ChangedLiveIns = true; 2054 } 2055 2056 if (ChangedLiveIns) { 2057 TBB->sortUniqueLiveIns(); 2058 FBB->sortUniqueLiveIns(); 2059 } 2060 2061 ++NumHoist; 2062 return true; 2063 } 2064