1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block.  This pass often results in dead MBB's, which
11 // it then removes.
12 //
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/CodeGen/Analysis.h"
29 #include "llvm/CodeGen/LivePhysRegs.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineModuleInfo.h"
40 #include "llvm/CodeGen/MachineOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/MachineSizeOpts.h"
43 #include "llvm/CodeGen/MBFIWrapper.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/MC/MCRegisterInfo.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetMachine.h"
63 #include <cassert>
64 #include <cstddef>
65 #include <iterator>
66 #include <numeric>
67 #include <vector>
68 
69 using namespace llvm;
70 
71 #define DEBUG_TYPE "branch-folder"
72 
73 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
74 STATISTIC(NumBranchOpts, "Number of branches optimized");
75 STATISTIC(NumTailMerge , "Number of block tails merged");
76 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
77 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
78 
79 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
80                               cl::init(cl::BOU_UNSET), cl::Hidden);
81 
82 // Throttle for huge numbers of predecessors (compile speed problems)
83 static cl::opt<unsigned>
84 TailMergeThreshold("tail-merge-threshold",
85           cl::desc("Max number of predecessors to consider tail merging"),
86           cl::init(150), cl::Hidden);
87 
88 // Heuristic for tail merging (and, inversely, tail duplication).
89 // TODO: This should be replaced with a target query.
90 static cl::opt<unsigned>
91 TailMergeSize("tail-merge-size",
92               cl::desc("Min number of instructions to consider tail merging"),
93               cl::init(3), cl::Hidden);
94 
95 namespace {
96 
97   /// BranchFolderPass - Wrap branch folder in a machine function pass.
98   class BranchFolderPass : public MachineFunctionPass {
99   public:
100     static char ID;
101 
102     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
103 
104     bool runOnMachineFunction(MachineFunction &MF) override;
105 
106     void getAnalysisUsage(AnalysisUsage &AU) const override {
107       AU.addRequired<MachineBlockFrequencyInfo>();
108       AU.addRequired<MachineBranchProbabilityInfo>();
109       AU.addRequired<ProfileSummaryInfoWrapperPass>();
110       AU.addRequired<TargetPassConfig>();
111       MachineFunctionPass::getAnalysisUsage(AU);
112     }
113   };
114 
115 } // end anonymous namespace
116 
117 char BranchFolderPass::ID = 0;
118 
119 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
120 
121 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
122                 "Control Flow Optimizer", false, false)
123 
124 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
125   if (skipFunction(MF.getFunction()))
126     return false;
127 
128   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
129   // TailMerge can create jump into if branches that make CFG irreducible for
130   // HW that requires structurized CFG.
131   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
132                          PassConfig->getEnableTailMerge();
133   MBFIWrapper MBBFreqInfo(
134       getAnalysis<MachineBlockFrequencyInfo>());
135   BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
136                       getAnalysis<MachineBranchProbabilityInfo>(),
137                       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
138   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
139   return Folder.OptimizeFunction(
140       MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(),
141       MMIWP ? &MMIWP->getMMI() : nullptr);
142 }
143 
144 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
145                            MBFIWrapper &FreqInfo,
146                            const MachineBranchProbabilityInfo &ProbInfo,
147                            ProfileSummaryInfo *PSI,
148                            unsigned MinTailLength)
149     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
150       MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
151   if (MinCommonTailLength == 0)
152     MinCommonTailLength = TailMergeSize;
153   switch (FlagEnableTailMerge) {
154   case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
155   case cl::BOU_TRUE: EnableTailMerge = true; break;
156   case cl::BOU_FALSE: EnableTailMerge = false; break;
157   }
158 }
159 
160 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
161   assert(MBB->pred_empty() && "MBB must be dead!");
162   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
163 
164   MachineFunction *MF = MBB->getParent();
165   // drop all successors.
166   while (!MBB->succ_empty())
167     MBB->removeSuccessor(MBB->succ_end()-1);
168 
169   // Avoid matching if this pointer gets reused.
170   TriedMerging.erase(MBB);
171 
172   // Update call site info.
173   std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
174     if (MI.shouldUpdateCallSiteInfo())
175       MF->eraseCallSiteInfo(&MI);
176   });
177   // Remove the block.
178   MF->erase(MBB);
179   EHScopeMembership.erase(MBB);
180   if (MLI)
181     MLI->removeBlock(MBB);
182 }
183 
184 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
185                                     const TargetInstrInfo *tii,
186                                     const TargetRegisterInfo *tri,
187                                     MachineModuleInfo *mmi,
188                                     MachineLoopInfo *mli, bool AfterPlacement) {
189   if (!tii) return false;
190 
191   TriedMerging.clear();
192 
193   MachineRegisterInfo &MRI = MF.getRegInfo();
194   AfterBlockPlacement = AfterPlacement;
195   TII = tii;
196   TRI = tri;
197   MMI = mmi;
198   MLI = mli;
199   this->MRI = &MRI;
200 
201   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
202   if (!UpdateLiveIns)
203     MRI.invalidateLiveness();
204 
205   bool MadeChange = false;
206 
207   // Recalculate EH scope membership.
208   EHScopeMembership = getEHScopeMembership(MF);
209 
210   bool MadeChangeThisIteration = true;
211   while (MadeChangeThisIteration) {
212     MadeChangeThisIteration    = TailMergeBlocks(MF);
213     // No need to clean up if tail merging does not change anything after the
214     // block placement.
215     if (!AfterBlockPlacement || MadeChangeThisIteration)
216       MadeChangeThisIteration |= OptimizeBranches(MF);
217     if (EnableHoistCommonCode)
218       MadeChangeThisIteration |= HoistCommonCode(MF);
219     MadeChange |= MadeChangeThisIteration;
220   }
221 
222   // See if any jump tables have become dead as the code generator
223   // did its thing.
224   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
225   if (!JTI)
226     return MadeChange;
227 
228   // Walk the function to find jump tables that are live.
229   BitVector JTIsLive(JTI->getJumpTables().size());
230   for (const MachineBasicBlock &BB : MF) {
231     for (const MachineInstr &I : BB)
232       for (const MachineOperand &Op : I.operands()) {
233         if (!Op.isJTI()) continue;
234 
235         // Remember that this JT is live.
236         JTIsLive.set(Op.getIndex());
237       }
238   }
239 
240   // Finally, remove dead jump tables.  This happens when the
241   // indirect jump was unreachable (and thus deleted).
242   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
243     if (!JTIsLive.test(i)) {
244       JTI->RemoveJumpTable(i);
245       MadeChange = true;
246     }
247 
248   return MadeChange;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //  Tail Merging of Blocks
253 //===----------------------------------------------------------------------===//
254 
255 /// HashMachineInstr - Compute a hash value for MI and its operands.
256 static unsigned HashMachineInstr(const MachineInstr &MI) {
257   unsigned Hash = MI.getOpcode();
258   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
259     const MachineOperand &Op = MI.getOperand(i);
260 
261     // Merge in bits from the operand if easy. We can't use MachineOperand's
262     // hash_code here because it's not deterministic and we sort by hash value
263     // later.
264     unsigned OperandHash = 0;
265     switch (Op.getType()) {
266     case MachineOperand::MO_Register:
267       OperandHash = Op.getReg();
268       break;
269     case MachineOperand::MO_Immediate:
270       OperandHash = Op.getImm();
271       break;
272     case MachineOperand::MO_MachineBasicBlock:
273       OperandHash = Op.getMBB()->getNumber();
274       break;
275     case MachineOperand::MO_FrameIndex:
276     case MachineOperand::MO_ConstantPoolIndex:
277     case MachineOperand::MO_JumpTableIndex:
278       OperandHash = Op.getIndex();
279       break;
280     case MachineOperand::MO_GlobalAddress:
281     case MachineOperand::MO_ExternalSymbol:
282       // Global address / external symbol are too hard, don't bother, but do
283       // pull in the offset.
284       OperandHash = Op.getOffset();
285       break;
286     default:
287       break;
288     }
289 
290     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
291   }
292   return Hash;
293 }
294 
295 /// HashEndOfMBB - Hash the last instruction in the MBB.
296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
297   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
298   if (I == MBB.end())
299     return 0;
300 
301   return HashMachineInstr(*I);
302 }
303 
304 /// Whether MI should be counted as an instruction when calculating common tail.
305 static bool countsAsInstruction(const MachineInstr &MI) {
306   return !(MI.isDebugInstr() || MI.isCFIInstruction());
307 }
308 
309 /// Iterate backwards from the given iterator \p I, towards the beginning of the
310 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
311 /// pointing to that MI. If no such MI is found, return the end iterator.
312 static MachineBasicBlock::iterator
313 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
314                                 MachineBasicBlock *MBB) {
315   while (I != MBB->begin()) {
316     --I;
317     if (countsAsInstruction(*I))
318       return I;
319   }
320   return MBB->end();
321 }
322 
323 /// Given two machine basic blocks, return the number of instructions they
324 /// actually have in common together at their end. If a common tail is found (at
325 /// least by one instruction), then iterators for the first shared instruction
326 /// in each block are returned as well.
327 ///
328 /// Non-instructions according to countsAsInstruction are ignored.
329 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
330                                         MachineBasicBlock *MBB2,
331                                         MachineBasicBlock::iterator &I1,
332                                         MachineBasicBlock::iterator &I2) {
333   MachineBasicBlock::iterator MBBI1 = MBB1->end();
334   MachineBasicBlock::iterator MBBI2 = MBB2->end();
335 
336   unsigned TailLen = 0;
337   while (true) {
338     MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
339     MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
340     if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
341       break;
342     if (!MBBI1->isIdenticalTo(*MBBI2) ||
343         // FIXME: This check is dubious. It's used to get around a problem where
344         // people incorrectly expect inline asm directives to remain in the same
345         // relative order. This is untenable because normal compiler
346         // optimizations (like this one) may reorder and/or merge these
347         // directives.
348         MBBI1->isInlineAsm()) {
349       break;
350     }
351     if (MBBI1->getFlag(MachineInstr::NoMerge) ||
352         MBBI2->getFlag(MachineInstr::NoMerge))
353       break;
354     ++TailLen;
355     I1 = MBBI1;
356     I2 = MBBI2;
357   }
358 
359   return TailLen;
360 }
361 
362 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
363                                            MachineBasicBlock &NewDest) {
364   if (UpdateLiveIns) {
365     // OldInst should always point to an instruction.
366     MachineBasicBlock &OldMBB = *OldInst->getParent();
367     LiveRegs.clear();
368     LiveRegs.addLiveOuts(OldMBB);
369     // Move backward to the place where will insert the jump.
370     MachineBasicBlock::iterator I = OldMBB.end();
371     do {
372       --I;
373       LiveRegs.stepBackward(*I);
374     } while (I != OldInst);
375 
376     // Merging the tails may have switched some undef operand to non-undef ones.
377     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
378     // register.
379     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
380       // We computed the liveins with computeLiveIn earlier and should only see
381       // full registers:
382       assert(P.LaneMask == LaneBitmask::getAll() &&
383              "Can only handle full register.");
384       MCPhysReg Reg = P.PhysReg;
385       if (!LiveRegs.available(*MRI, Reg))
386         continue;
387       DebugLoc DL;
388       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
389     }
390   }
391 
392   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
393   ++NumTailMerge;
394 }
395 
396 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
397                                             MachineBasicBlock::iterator BBI1,
398                                             const BasicBlock *BB) {
399   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
400     return nullptr;
401 
402   MachineFunction &MF = *CurMBB.getParent();
403 
404   // Create the fall-through block.
405   MachineFunction::iterator MBBI = CurMBB.getIterator();
406   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
407   CurMBB.getParent()->insert(++MBBI, NewMBB);
408 
409   // Move all the successors of this block to the specified block.
410   NewMBB->transferSuccessors(&CurMBB);
411 
412   // Add an edge from CurMBB to NewMBB for the fall-through.
413   CurMBB.addSuccessor(NewMBB);
414 
415   // Splice the code over.
416   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
417 
418   // NewMBB belongs to the same loop as CurMBB.
419   if (MLI)
420     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
421       ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
422 
423   // NewMBB inherits CurMBB's block frequency.
424   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
425 
426   if (UpdateLiveIns)
427     computeAndAddLiveIns(LiveRegs, *NewMBB);
428 
429   // Add the new block to the EH scope.
430   const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
431   if (EHScopeI != EHScopeMembership.end()) {
432     auto n = EHScopeI->second;
433     EHScopeMembership[NewMBB] = n;
434   }
435 
436   return NewMBB;
437 }
438 
439 /// EstimateRuntime - Make a rough estimate for how long it will take to run
440 /// the specified code.
441 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
442                                 MachineBasicBlock::iterator E) {
443   unsigned Time = 0;
444   for (; I != E; ++I) {
445     if (!countsAsInstruction(*I))
446       continue;
447     if (I->isCall())
448       Time += 10;
449     else if (I->mayLoadOrStore())
450       Time += 2;
451     else
452       ++Time;
453   }
454   return Time;
455 }
456 
457 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
458 // branches temporarily for tail merging).  In the case where CurMBB ends
459 // with a conditional branch to the next block, optimize by reversing the
460 // test and conditionally branching to SuccMBB instead.
461 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
462                     const TargetInstrInfo *TII) {
463   MachineFunction *MF = CurMBB->getParent();
464   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
465   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
466   SmallVector<MachineOperand, 4> Cond;
467   DebugLoc dl = CurMBB->findBranchDebugLoc();
468   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
469     MachineBasicBlock *NextBB = &*I;
470     if (TBB == NextBB && !Cond.empty() && !FBB) {
471       if (!TII->reverseBranchCondition(Cond)) {
472         TII->removeBranch(*CurMBB);
473         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
474         return;
475       }
476     }
477   }
478   TII->insertBranch(*CurMBB, SuccBB, nullptr,
479                     SmallVector<MachineOperand, 0>(), dl);
480 }
481 
482 bool
483 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
484   if (getHash() < o.getHash())
485     return true;
486   if (getHash() > o.getHash())
487     return false;
488   if (getBlock()->getNumber() < o.getBlock()->getNumber())
489     return true;
490   if (getBlock()->getNumber() > o.getBlock()->getNumber())
491     return false;
492   // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
493   // an object with itself.
494 #ifndef _GLIBCXX_DEBUG
495   llvm_unreachable("Predecessor appears twice");
496 #else
497   return false;
498 #endif
499 }
500 
501 /// CountTerminators - Count the number of terminators in the given
502 /// block and set I to the position of the first non-terminator, if there
503 /// is one, or MBB->end() otherwise.
504 static unsigned CountTerminators(MachineBasicBlock *MBB,
505                                  MachineBasicBlock::iterator &I) {
506   I = MBB->end();
507   unsigned NumTerms = 0;
508   while (true) {
509     if (I == MBB->begin()) {
510       I = MBB->end();
511       break;
512     }
513     --I;
514     if (!I->isTerminator()) break;
515     ++NumTerms;
516   }
517   return NumTerms;
518 }
519 
520 /// A no successor, non-return block probably ends in unreachable and is cold.
521 /// Also consider a block that ends in an indirect branch to be a return block,
522 /// since many targets use plain indirect branches to return.
523 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
524   if (!MBB->succ_empty())
525     return false;
526   if (MBB->empty())
527     return true;
528   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
529 }
530 
531 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
532 /// and decide if it would be profitable to merge those tails.  Return the
533 /// length of the common tail and iterators to the first common instruction
534 /// in each block.
535 /// MBB1, MBB2      The blocks to check
536 /// MinCommonTailLength  Minimum size of tail block to be merged.
537 /// CommonTailLen   Out parameter to record the size of the shared tail between
538 ///                 MBB1 and MBB2
539 /// I1, I2          Iterator references that will be changed to point to the first
540 ///                 instruction in the common tail shared by MBB1,MBB2
541 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
542 ///                 relative to SuccBB
543 /// PredBB          The layout predecessor of SuccBB, if any.
544 /// EHScopeMembership  map from block to EH scope #.
545 /// AfterPlacement  True if we are merging blocks after layout. Stricter
546 ///                 thresholds apply to prevent undoing tail-duplication.
547 static bool
548 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
549                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
550                   MachineBasicBlock::iterator &I1,
551                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
552                   MachineBasicBlock *PredBB,
553                   DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
554                   bool AfterPlacement,
555                   MBFIWrapper &MBBFreqInfo,
556                   ProfileSummaryInfo *PSI) {
557   // It is never profitable to tail-merge blocks from two different EH scopes.
558   if (!EHScopeMembership.empty()) {
559     auto EHScope1 = EHScopeMembership.find(MBB1);
560     assert(EHScope1 != EHScopeMembership.end());
561     auto EHScope2 = EHScopeMembership.find(MBB2);
562     assert(EHScope2 != EHScopeMembership.end());
563     if (EHScope1->second != EHScope2->second)
564       return false;
565   }
566 
567   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
568   if (CommonTailLen == 0)
569     return false;
570   LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
571                     << " and " << printMBBReference(*MBB2) << " is "
572                     << CommonTailLen << '\n');
573 
574   // Move the iterators to the beginning of the MBB if we only got debug
575   // instructions before the tail. This is to avoid splitting a block when we
576   // only got debug instructions before the tail (to be invariant on -g).
577   if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end()) == I1)
578     I1 = MBB1->begin();
579   if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end()) == I2)
580     I2 = MBB2->begin();
581 
582   bool FullBlockTail1 = I1 == MBB1->begin();
583   bool FullBlockTail2 = I2 == MBB2->begin();
584 
585   // It's almost always profitable to merge any number of non-terminator
586   // instructions with the block that falls through into the common successor.
587   // This is true only for a single successor. For multiple successors, we are
588   // trading a conditional branch for an unconditional one.
589   // TODO: Re-visit successor size for non-layout tail merging.
590   if ((MBB1 == PredBB || MBB2 == PredBB) &&
591       (!AfterPlacement || MBB1->succ_size() == 1)) {
592     MachineBasicBlock::iterator I;
593     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
594     if (CommonTailLen > NumTerms)
595       return true;
596   }
597 
598   // If these are identical non-return blocks with no successors, merge them.
599   // Such blocks are typically cold calls to noreturn functions like abort, and
600   // are unlikely to become a fallthrough target after machine block placement.
601   // Tail merging these blocks is unlikely to create additional unconditional
602   // branches, and will reduce the size of this cold code.
603   if (FullBlockTail1 && FullBlockTail2 &&
604       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
605     return true;
606 
607   // If one of the blocks can be completely merged and happens to be in
608   // a position where the other could fall through into it, merge any number
609   // of instructions, because it can be done without a branch.
610   // TODO: If the blocks are not adjacent, move one of them so that they are?
611   if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
612     return true;
613   if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
614     return true;
615 
616   // If both blocks are identical and end in a branch, merge them unless they
617   // both have a fallthrough predecessor and successor.
618   // We can only do this after block placement because it depends on whether
619   // there are fallthroughs, and we don't know until after layout.
620   if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
621     auto BothFallThrough = [](MachineBasicBlock *MBB) {
622       if (MBB->succ_size() != 0 && !MBB->canFallThrough())
623         return false;
624       MachineFunction::iterator I(MBB);
625       MachineFunction *MF = MBB->getParent();
626       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
627     };
628     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
629       return true;
630   }
631 
632   // If both blocks have an unconditional branch temporarily stripped out,
633   // count that as an additional common instruction for the following
634   // heuristics. This heuristic is only accurate for single-succ blocks, so to
635   // make sure that during layout merging and duplicating don't crash, we check
636   // for that when merging during layout.
637   unsigned EffectiveTailLen = CommonTailLen;
638   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
639       (MBB1->succ_size() == 1 || !AfterPlacement) &&
640       !MBB1->back().isBarrier() &&
641       !MBB2->back().isBarrier())
642     ++EffectiveTailLen;
643 
644   // Check if the common tail is long enough to be worthwhile.
645   if (EffectiveTailLen >= MinCommonTailLength)
646     return true;
647 
648   // If we are optimizing for code size, 2 instructions in common is enough if
649   // we don't have to split a block.  At worst we will be introducing 1 new
650   // branch instruction, which is likely to be smaller than the 2
651   // instructions that would be deleted in the merge.
652   MachineFunction *MF = MBB1->getParent();
653   bool OptForSize =
654       MF->getFunction().hasOptSize() ||
655       (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
656        llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo));
657   return EffectiveTailLen >= 2 && OptForSize &&
658          (FullBlockTail1 || FullBlockTail2);
659 }
660 
661 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
662                                         unsigned MinCommonTailLength,
663                                         MachineBasicBlock *SuccBB,
664                                         MachineBasicBlock *PredBB) {
665   unsigned maxCommonTailLength = 0U;
666   SameTails.clear();
667   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
668   MPIterator HighestMPIter = std::prev(MergePotentials.end());
669   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
670                   B = MergePotentials.begin();
671        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
672     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
673       unsigned CommonTailLen;
674       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
675                             MinCommonTailLength,
676                             CommonTailLen, TrialBBI1, TrialBBI2,
677                             SuccBB, PredBB,
678                             EHScopeMembership,
679                             AfterBlockPlacement, MBBFreqInfo, PSI)) {
680         if (CommonTailLen > maxCommonTailLength) {
681           SameTails.clear();
682           maxCommonTailLength = CommonTailLen;
683           HighestMPIter = CurMPIter;
684           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
685         }
686         if (HighestMPIter == CurMPIter &&
687             CommonTailLen == maxCommonTailLength)
688           SameTails.push_back(SameTailElt(I, TrialBBI2));
689       }
690       if (I == B)
691         break;
692     }
693   }
694   return maxCommonTailLength;
695 }
696 
697 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
698                                         MachineBasicBlock *SuccBB,
699                                         MachineBasicBlock *PredBB) {
700   MPIterator CurMPIter, B;
701   for (CurMPIter = std::prev(MergePotentials.end()),
702       B = MergePotentials.begin();
703        CurMPIter->getHash() == CurHash; --CurMPIter) {
704     // Put the unconditional branch back, if we need one.
705     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
706     if (SuccBB && CurMBB != PredBB)
707       FixTail(CurMBB, SuccBB, TII);
708     if (CurMPIter == B)
709       break;
710   }
711   if (CurMPIter->getHash() != CurHash)
712     CurMPIter++;
713   MergePotentials.erase(CurMPIter, MergePotentials.end());
714 }
715 
716 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
717                                              MachineBasicBlock *SuccBB,
718                                              unsigned maxCommonTailLength,
719                                              unsigned &commonTailIndex) {
720   commonTailIndex = 0;
721   unsigned TimeEstimate = ~0U;
722   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
723     // Use PredBB if possible; that doesn't require a new branch.
724     if (SameTails[i].getBlock() == PredBB) {
725       commonTailIndex = i;
726       break;
727     }
728     // Otherwise, make a (fairly bogus) choice based on estimate of
729     // how long it will take the various blocks to execute.
730     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
731                                  SameTails[i].getTailStartPos());
732     if (t <= TimeEstimate) {
733       TimeEstimate = t;
734       commonTailIndex = i;
735     }
736   }
737 
738   MachineBasicBlock::iterator BBI =
739     SameTails[commonTailIndex].getTailStartPos();
740   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
741 
742   LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
743                     << maxCommonTailLength);
744 
745   // If the split block unconditionally falls-thru to SuccBB, it will be
746   // merged. In control flow terms it should then take SuccBB's name. e.g. If
747   // SuccBB is an inner loop, the common tail is still part of the inner loop.
748   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
749     SuccBB->getBasicBlock() : MBB->getBasicBlock();
750   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
751   if (!newMBB) {
752     LLVM_DEBUG(dbgs() << "... failed!");
753     return false;
754   }
755 
756   SameTails[commonTailIndex].setBlock(newMBB);
757   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
758 
759   // If we split PredBB, newMBB is the new predecessor.
760   if (PredBB == MBB)
761     PredBB = newMBB;
762 
763   return true;
764 }
765 
766 static void
767 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
768                 MachineBasicBlock &MBBCommon) {
769   MachineBasicBlock *MBB = MBBIStartPos->getParent();
770   // Note CommonTailLen does not necessarily matches the size of
771   // the common BB nor all its instructions because of debug
772   // instructions differences.
773   unsigned CommonTailLen = 0;
774   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
775     ++CommonTailLen;
776 
777   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
778   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
779   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
780   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
781 
782   while (CommonTailLen--) {
783     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
784     (void)MBBIE;
785 
786     if (!countsAsInstruction(*MBBI)) {
787       ++MBBI;
788       continue;
789     }
790 
791     while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
792       ++MBBICommon;
793 
794     assert(MBBICommon != MBBIECommon &&
795            "Reached BB end within common tail length!");
796     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
797 
798     // Merge MMOs from memory operations in the common block.
799     if (MBBICommon->mayLoadOrStore())
800       MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
801     // Drop undef flags if they aren't present in all merged instructions.
802     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
803       MachineOperand &MO = MBBICommon->getOperand(I);
804       if (MO.isReg() && MO.isUndef()) {
805         const MachineOperand &OtherMO = MBBI->getOperand(I);
806         if (!OtherMO.isUndef())
807           MO.setIsUndef(false);
808       }
809     }
810 
811     ++MBBI;
812     ++MBBICommon;
813   }
814 }
815 
816 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
817   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
818 
819   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
820   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
821     if (i != commonTailIndex) {
822       NextCommonInsts[i] = SameTails[i].getTailStartPos();
823       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
824     } else {
825       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
826           "MBB is not a common tail only block");
827     }
828   }
829 
830   for (auto &MI : *MBB) {
831     if (!countsAsInstruction(MI))
832       continue;
833     DebugLoc DL = MI.getDebugLoc();
834     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
835       if (i == commonTailIndex)
836         continue;
837 
838       auto &Pos = NextCommonInsts[i];
839       assert(Pos != SameTails[i].getBlock()->end() &&
840           "Reached BB end within common tail");
841       while (!countsAsInstruction(*Pos)) {
842         ++Pos;
843         assert(Pos != SameTails[i].getBlock()->end() &&
844             "Reached BB end within common tail");
845       }
846       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
847       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
848       NextCommonInsts[i] = ++Pos;
849     }
850     MI.setDebugLoc(DL);
851   }
852 
853   if (UpdateLiveIns) {
854     LivePhysRegs NewLiveIns(*TRI);
855     computeLiveIns(NewLiveIns, *MBB);
856     LiveRegs.init(*TRI);
857 
858     // The flag merging may lead to some register uses no longer using the
859     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
860     for (MachineBasicBlock *Pred : MBB->predecessors()) {
861       LiveRegs.clear();
862       LiveRegs.addLiveOuts(*Pred);
863       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
864       for (Register Reg : NewLiveIns) {
865         if (!LiveRegs.available(*MRI, Reg))
866           continue;
867         DebugLoc DL;
868         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
869                 Reg);
870       }
871     }
872 
873     MBB->clearLiveIns();
874     addLiveIns(*MBB, NewLiveIns);
875   }
876 }
877 
878 // See if any of the blocks in MergePotentials (which all have SuccBB as a
879 // successor, or all have no successor if it is null) can be tail-merged.
880 // If there is a successor, any blocks in MergePotentials that are not
881 // tail-merged and are not immediately before Succ must have an unconditional
882 // branch to Succ added (but the predecessor/successor lists need no
883 // adjustment). The lone predecessor of Succ that falls through into Succ,
884 // if any, is given in PredBB.
885 // MinCommonTailLength - Except for the special cases below, tail-merge if
886 // there are at least this many instructions in common.
887 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
888                                       MachineBasicBlock *PredBB,
889                                       unsigned MinCommonTailLength) {
890   bool MadeChange = false;
891 
892   LLVM_DEBUG(
893       dbgs() << "\nTryTailMergeBlocks: ";
894       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
895       << printMBBReference(*MergePotentials[i].getBlock())
896       << (i == e - 1 ? "" : ", ");
897       dbgs() << "\n"; if (SuccBB) {
898         dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
899         if (PredBB)
900           dbgs() << "  which has fall-through from "
901                  << printMBBReference(*PredBB) << "\n";
902       } dbgs() << "Looking for common tails of at least "
903                << MinCommonTailLength << " instruction"
904                << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
905 
906   // Sort by hash value so that blocks with identical end sequences sort
907   // together.
908   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
909 
910   // Walk through equivalence sets looking for actual exact matches.
911   while (MergePotentials.size() > 1) {
912     unsigned CurHash = MergePotentials.back().getHash();
913 
914     // Build SameTails, identifying the set of blocks with this hash code
915     // and with the maximum number of instructions in common.
916     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
917                                                     MinCommonTailLength,
918                                                     SuccBB, PredBB);
919 
920     // If we didn't find any pair that has at least MinCommonTailLength
921     // instructions in common, remove all blocks with this hash code and retry.
922     if (SameTails.empty()) {
923       RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
924       continue;
925     }
926 
927     // If one of the blocks is the entire common tail (and is not the entry
928     // block/an EH pad, which we can't jump to), we can treat all blocks with
929     // this same tail at once.  Use PredBB if that is one of the possibilities,
930     // as that will not introduce any extra branches.
931     MachineBasicBlock *EntryBB =
932         &MergePotentials.front().getBlock()->getParent()->front();
933     unsigned commonTailIndex = SameTails.size();
934     // If there are two blocks, check to see if one can be made to fall through
935     // into the other.
936     if (SameTails.size() == 2 &&
937         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
938         SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad())
939       commonTailIndex = 1;
940     else if (SameTails.size() == 2 &&
941              SameTails[1].getBlock()->isLayoutSuccessor(
942                  SameTails[0].getBlock()) &&
943              SameTails[0].tailIsWholeBlock() &&
944              !SameTails[0].getBlock()->isEHPad())
945       commonTailIndex = 0;
946     else {
947       // Otherwise just pick one, favoring the fall-through predecessor if
948       // there is one.
949       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
950         MachineBasicBlock *MBB = SameTails[i].getBlock();
951         if ((MBB == EntryBB || MBB->isEHPad()) &&
952             SameTails[i].tailIsWholeBlock())
953           continue;
954         if (MBB == PredBB) {
955           commonTailIndex = i;
956           break;
957         }
958         if (SameTails[i].tailIsWholeBlock())
959           commonTailIndex = i;
960       }
961     }
962 
963     if (commonTailIndex == SameTails.size() ||
964         (SameTails[commonTailIndex].getBlock() == PredBB &&
965          !SameTails[commonTailIndex].tailIsWholeBlock())) {
966       // None of the blocks consist entirely of the common tail.
967       // Split a block so that one does.
968       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
969                                      maxCommonTailLength, commonTailIndex)) {
970         RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
971         continue;
972       }
973     }
974 
975     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
976 
977     // Recompute common tail MBB's edge weights and block frequency.
978     setCommonTailEdgeWeights(*MBB);
979 
980     // Merge debug locations, MMOs and undef flags across identical instructions
981     // for common tail.
982     mergeCommonTails(commonTailIndex);
983 
984     // MBB is common tail.  Adjust all other BB's to jump to this one.
985     // Traversal must be forwards so erases work.
986     LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
987                       << " for ");
988     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
989       if (commonTailIndex == i)
990         continue;
991       LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
992                         << (i == e - 1 ? "" : ", "));
993       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
994       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
995       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
996       MergePotentials.erase(SameTails[i].getMPIter());
997     }
998     LLVM_DEBUG(dbgs() << "\n");
999     // We leave commonTailIndex in the worklist in case there are other blocks
1000     // that match it with a smaller number of instructions.
1001     MadeChange = true;
1002   }
1003   return MadeChange;
1004 }
1005 
1006 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1007   bool MadeChange = false;
1008   if (!EnableTailMerge)
1009     return MadeChange;
1010 
1011   // First find blocks with no successors.
1012   // Block placement may create new tail merging opportunities for these blocks.
1013   MergePotentials.clear();
1014   for (MachineBasicBlock &MBB : MF) {
1015     if (MergePotentials.size() == TailMergeThreshold)
1016       break;
1017     if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1018       MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1019   }
1020 
1021   // If this is a large problem, avoid visiting the same basic blocks
1022   // multiple times.
1023   if (MergePotentials.size() == TailMergeThreshold)
1024     for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1025       TriedMerging.insert(MergePotentials[i].getBlock());
1026 
1027   // See if we can do any tail merging on those.
1028   if (MergePotentials.size() >= 2)
1029     MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1030 
1031   // Look at blocks (IBB) with multiple predecessors (PBB).
1032   // We change each predecessor to a canonical form, by
1033   // (1) temporarily removing any unconditional branch from the predecessor
1034   // to IBB, and
1035   // (2) alter conditional branches so they branch to the other block
1036   // not IBB; this may require adding back an unconditional branch to IBB
1037   // later, where there wasn't one coming in.  E.g.
1038   //   Bcc IBB
1039   //   fallthrough to QBB
1040   // here becomes
1041   //   Bncc QBB
1042   // with a conceptual B to IBB after that, which never actually exists.
1043   // With those changes, we see whether the predecessors' tails match,
1044   // and merge them if so.  We change things out of canonical form and
1045   // back to the way they were later in the process.  (OptimizeBranches
1046   // would undo some of this, but we can't use it, because we'd get into
1047   // a compile-time infinite loop repeatedly doing and undoing the same
1048   // transformations.)
1049 
1050   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1051        I != E; ++I) {
1052     if (I->pred_size() < 2) continue;
1053     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1054     MachineBasicBlock *IBB = &*I;
1055     MachineBasicBlock *PredBB = &*std::prev(I);
1056     MergePotentials.clear();
1057     MachineLoop *ML;
1058 
1059     // Bail if merging after placement and IBB is the loop header because
1060     // -- If merging predecessors that belong to the same loop as IBB, the
1061     // common tail of merged predecessors may become the loop top if block
1062     // placement is called again and the predecessors may branch to this common
1063     // tail and require more branches. This can be relaxed if
1064     // MachineBlockPlacement::findBestLoopTop is more flexible.
1065     // --If merging predecessors that do not belong to the same loop as IBB, the
1066     // loop info of IBB's loop and the other loops may be affected. Calling the
1067     // block placement again may make big change to the layout and eliminate the
1068     // reason to do tail merging here.
1069     if (AfterBlockPlacement && MLI) {
1070       ML = MLI->getLoopFor(IBB);
1071       if (ML && IBB == ML->getHeader())
1072         continue;
1073     }
1074 
1075     for (MachineBasicBlock *PBB : I->predecessors()) {
1076       if (MergePotentials.size() == TailMergeThreshold)
1077         break;
1078 
1079       if (TriedMerging.count(PBB))
1080         continue;
1081 
1082       // Skip blocks that loop to themselves, can't tail merge these.
1083       if (PBB == IBB)
1084         continue;
1085 
1086       // Visit each predecessor only once.
1087       if (!UniquePreds.insert(PBB).second)
1088         continue;
1089 
1090       // Skip blocks which may jump to a landing pad. Can't tail merge these.
1091       if (PBB->hasEHPadSuccessor())
1092         continue;
1093 
1094       // After block placement, only consider predecessors that belong to the
1095       // same loop as IBB.  The reason is the same as above when skipping loop
1096       // header.
1097       if (AfterBlockPlacement && MLI)
1098         if (ML != MLI->getLoopFor(PBB))
1099           continue;
1100 
1101       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1102       SmallVector<MachineOperand, 4> Cond;
1103       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1104         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1105         // branch.
1106         SmallVector<MachineOperand, 4> NewCond(Cond);
1107         if (!Cond.empty() && TBB == IBB) {
1108           if (TII->reverseBranchCondition(NewCond))
1109             continue;
1110           // This is the QBB case described above
1111           if (!FBB) {
1112             auto Next = ++PBB->getIterator();
1113             if (Next != MF.end())
1114               FBB = &*Next;
1115           }
1116         }
1117 
1118         // Remove the unconditional branch at the end, if any.
1119         if (TBB && (Cond.empty() || FBB)) {
1120           DebugLoc dl = PBB->findBranchDebugLoc();
1121           TII->removeBranch(*PBB);
1122           if (!Cond.empty())
1123             // reinsert conditional branch only, for now
1124             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1125                               NewCond, dl);
1126         }
1127 
1128         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1129       }
1130     }
1131 
1132     // If this is a large problem, avoid visiting the same basic blocks multiple
1133     // times.
1134     if (MergePotentials.size() == TailMergeThreshold)
1135       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1136         TriedMerging.insert(MergePotentials[i].getBlock());
1137 
1138     if (MergePotentials.size() >= 2)
1139       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1140 
1141     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1142     // result of removing blocks in TryTailMergeBlocks.
1143     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1144     if (MergePotentials.size() == 1 &&
1145         MergePotentials.begin()->getBlock() != PredBB)
1146       FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1147   }
1148 
1149   return MadeChange;
1150 }
1151 
1152 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1153   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1154   BlockFrequency AccumulatedMBBFreq;
1155 
1156   // Aggregate edge frequency of successor edge j:
1157   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1158   //  where bb is a basic block that is in SameTails.
1159   for (const auto &Src : SameTails) {
1160     const MachineBasicBlock *SrcMBB = Src.getBlock();
1161     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1162     AccumulatedMBBFreq += BlockFreq;
1163 
1164     // It is not necessary to recompute edge weights if TailBB has less than two
1165     // successors.
1166     if (TailMBB.succ_size() <= 1)
1167       continue;
1168 
1169     auto EdgeFreq = EdgeFreqLs.begin();
1170 
1171     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1172          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1173       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1174   }
1175 
1176   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1177 
1178   if (TailMBB.succ_size() <= 1)
1179     return;
1180 
1181   auto SumEdgeFreq =
1182       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1183           .getFrequency();
1184   auto EdgeFreq = EdgeFreqLs.begin();
1185 
1186   if (SumEdgeFreq > 0) {
1187     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1188          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1189       auto Prob = BranchProbability::getBranchProbability(
1190           EdgeFreq->getFrequency(), SumEdgeFreq);
1191       TailMBB.setSuccProbability(SuccI, Prob);
1192     }
1193   }
1194 }
1195 
1196 //===----------------------------------------------------------------------===//
1197 //  Branch Optimization
1198 //===----------------------------------------------------------------------===//
1199 
1200 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1201   bool MadeChange = false;
1202 
1203   // Make sure blocks are numbered in order
1204   MF.RenumberBlocks();
1205   // Renumbering blocks alters EH scope membership, recalculate it.
1206   EHScopeMembership = getEHScopeMembership(MF);
1207 
1208   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1209        I != E; ) {
1210     MachineBasicBlock *MBB = &*I++;
1211     MadeChange |= OptimizeBlock(MBB);
1212 
1213     // If it is dead, remove it.
1214     if (MBB->pred_empty()) {
1215       RemoveDeadBlock(MBB);
1216       MadeChange = true;
1217       ++NumDeadBlocks;
1218     }
1219   }
1220 
1221   return MadeChange;
1222 }
1223 
1224 // Blocks should be considered empty if they contain only debug info;
1225 // else the debug info would affect codegen.
1226 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1227   return MBB->getFirstNonDebugInstr() == MBB->end();
1228 }
1229 
1230 // Blocks with only debug info and branches should be considered the same
1231 // as blocks with only branches.
1232 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1233   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1234   assert(I != MBB->end() && "empty block!");
1235   return I->isBranch();
1236 }
1237 
1238 /// IsBetterFallthrough - Return true if it would be clearly better to
1239 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1240 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1241 /// result in infinite loops.
1242 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1243                                 MachineBasicBlock *MBB2) {
1244   assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1245 
1246   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1247   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1248   // optimize branches that branch to either a return block or an assert block
1249   // into a fallthrough to the return.
1250   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1251   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1252   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1253     return false;
1254 
1255   // If there is a clear successor ordering we make sure that one block
1256   // will fall through to the next
1257   if (MBB1->isSuccessor(MBB2)) return true;
1258   if (MBB2->isSuccessor(MBB1)) return false;
1259 
1260   return MBB2I->isCall() && !MBB1I->isCall();
1261 }
1262 
1263 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1264 /// instructions on the block.
1265 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1266   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1267   if (I != MBB.end() && I->isBranch())
1268     return I->getDebugLoc();
1269   return DebugLoc();
1270 }
1271 
1272 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1273                                        MachineBasicBlock &MBB,
1274                                        MachineBasicBlock &PredMBB) {
1275   auto InsertBefore = PredMBB.getFirstTerminator();
1276   for (MachineInstr &MI : MBB.instrs())
1277     if (MI.isDebugInstr()) {
1278       TII->duplicate(PredMBB, InsertBefore, MI);
1279       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1280                         << MI);
1281     }
1282 }
1283 
1284 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1285                                      MachineBasicBlock &MBB,
1286                                      MachineBasicBlock &SuccMBB) {
1287   auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1288   for (MachineInstr &MI : MBB.instrs())
1289     if (MI.isDebugInstr()) {
1290       TII->duplicate(SuccMBB, InsertBefore, MI);
1291       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1292                         << MI);
1293     }
1294 }
1295 
1296 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1297 // a basic block is removed we would lose the debug information unless we have
1298 // copied the information to a predecessor/successor.
1299 //
1300 // TODO: This function only handles some simple cases. An alternative would be
1301 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1302 // branch folding.
1303 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1304                                            MachineBasicBlock &MBB) {
1305   assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1306   // If this MBB is the only predecessor of a successor it is legal to copy
1307   // DBG_VALUE instructions to the beginning of the successor.
1308   for (MachineBasicBlock *SuccBB : MBB.successors())
1309     if (SuccBB->pred_size() == 1)
1310       copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1311   // If this MBB is the only successor of a predecessor it is legal to copy the
1312   // DBG_VALUE instructions to the end of the predecessor (just before the
1313   // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1314   for (MachineBasicBlock *PredBB : MBB.predecessors())
1315     if (PredBB->succ_size() == 1)
1316       copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1317 }
1318 
1319 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1320   bool MadeChange = false;
1321   MachineFunction &MF = *MBB->getParent();
1322 ReoptimizeBlock:
1323 
1324   MachineFunction::iterator FallThrough = MBB->getIterator();
1325   ++FallThrough;
1326 
1327   // Make sure MBB and FallThrough belong to the same EH scope.
1328   bool SameEHScope = true;
1329   if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1330     auto MBBEHScope = EHScopeMembership.find(MBB);
1331     assert(MBBEHScope != EHScopeMembership.end());
1332     auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1333     assert(FallThroughEHScope != EHScopeMembership.end());
1334     SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1335   }
1336 
1337   // Analyze the branch in the current block. As a side-effect, this may cause
1338   // the block to become empty.
1339   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1340   SmallVector<MachineOperand, 4> CurCond;
1341   bool CurUnAnalyzable =
1342       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1343 
1344   // If this block is empty, make everyone use its fall-through, not the block
1345   // explicitly.  Landing pads should not do this since the landing-pad table
1346   // points to this block.  Blocks with their addresses taken shouldn't be
1347   // optimized away.
1348   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1349       SameEHScope) {
1350     salvageDebugInfoFromEmptyBlock(TII, *MBB);
1351     // Dead block?  Leave for cleanup later.
1352     if (MBB->pred_empty()) return MadeChange;
1353 
1354     if (FallThrough == MF.end()) {
1355       // TODO: Simplify preds to not branch here if possible!
1356     } else if (FallThrough->isEHPad()) {
1357       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1358       // where a BB jumps to more than one landing pad.
1359       // TODO: Is it ever worth rewriting predecessors which don't already
1360       // jump to a landing pad, and so can safely jump to the fallthrough?
1361     } else if (MBB->isSuccessor(&*FallThrough)) {
1362       // Rewrite all predecessors of the old block to go to the fallthrough
1363       // instead.
1364       while (!MBB->pred_empty()) {
1365         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1366         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1367       }
1368       // If MBB was the target of a jump table, update jump tables to go to the
1369       // fallthrough instead.
1370       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1371         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1372       MadeChange = true;
1373     }
1374     return MadeChange;
1375   }
1376 
1377   // Check to see if we can simplify the terminator of the block before this
1378   // one.
1379   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1380 
1381   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1382   SmallVector<MachineOperand, 4> PriorCond;
1383   bool PriorUnAnalyzable =
1384       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1385   if (!PriorUnAnalyzable) {
1386     // If the previous branch is conditional and both conditions go to the same
1387     // destination, remove the branch, replacing it with an unconditional one or
1388     // a fall-through.
1389     if (PriorTBB && PriorTBB == PriorFBB) {
1390       DebugLoc dl = getBranchDebugLoc(PrevBB);
1391       TII->removeBranch(PrevBB);
1392       PriorCond.clear();
1393       if (PriorTBB != MBB)
1394         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1395       MadeChange = true;
1396       ++NumBranchOpts;
1397       goto ReoptimizeBlock;
1398     }
1399 
1400     // If the previous block unconditionally falls through to this block and
1401     // this block has no other predecessors, move the contents of this block
1402     // into the prior block. This doesn't usually happen when SimplifyCFG
1403     // has been used, but it can happen if tail merging splits a fall-through
1404     // predecessor of a block.
1405     // This has to check PrevBB->succ_size() because EH edges are ignored by
1406     // analyzeBranch.
1407     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1408         PrevBB.succ_size() == 1 &&
1409         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1410       LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1411                         << "From MBB: " << *MBB);
1412       // Remove redundant DBG_VALUEs first.
1413       if (PrevBB.begin() != PrevBB.end()) {
1414         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1415         --PrevBBIter;
1416         MachineBasicBlock::iterator MBBIter = MBB->begin();
1417         // Check if DBG_VALUE at the end of PrevBB is identical to the
1418         // DBG_VALUE at the beginning of MBB.
1419         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1420                && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1421           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1422             break;
1423           MachineInstr &DuplicateDbg = *MBBIter;
1424           ++MBBIter; -- PrevBBIter;
1425           DuplicateDbg.eraseFromParent();
1426         }
1427       }
1428       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1429       PrevBB.removeSuccessor(PrevBB.succ_begin());
1430       assert(PrevBB.succ_empty());
1431       PrevBB.transferSuccessors(MBB);
1432       MadeChange = true;
1433       return MadeChange;
1434     }
1435 
1436     // If the previous branch *only* branches to *this* block (conditional or
1437     // not) remove the branch.
1438     if (PriorTBB == MBB && !PriorFBB) {
1439       TII->removeBranch(PrevBB);
1440       MadeChange = true;
1441       ++NumBranchOpts;
1442       goto ReoptimizeBlock;
1443     }
1444 
1445     // If the prior block branches somewhere else on the condition and here if
1446     // the condition is false, remove the uncond second branch.
1447     if (PriorFBB == MBB) {
1448       DebugLoc dl = getBranchDebugLoc(PrevBB);
1449       TII->removeBranch(PrevBB);
1450       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1451       MadeChange = true;
1452       ++NumBranchOpts;
1453       goto ReoptimizeBlock;
1454     }
1455 
1456     // If the prior block branches here on true and somewhere else on false, and
1457     // if the branch condition is reversible, reverse the branch to create a
1458     // fall-through.
1459     if (PriorTBB == MBB) {
1460       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1461       if (!TII->reverseBranchCondition(NewPriorCond)) {
1462         DebugLoc dl = getBranchDebugLoc(PrevBB);
1463         TII->removeBranch(PrevBB);
1464         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1465         MadeChange = true;
1466         ++NumBranchOpts;
1467         goto ReoptimizeBlock;
1468       }
1469     }
1470 
1471     // If this block has no successors (e.g. it is a return block or ends with
1472     // a call to a no-return function like abort or __cxa_throw) and if the pred
1473     // falls through into this block, and if it would otherwise fall through
1474     // into the block after this, move this block to the end of the function.
1475     //
1476     // We consider it more likely that execution will stay in the function (e.g.
1477     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1478     // the assert condition out of the loop body.
1479     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1480         MachineFunction::iterator(PriorTBB) == FallThrough &&
1481         !MBB->canFallThrough()) {
1482       bool DoTransform = true;
1483 
1484       // We have to be careful that the succs of PredBB aren't both no-successor
1485       // blocks.  If neither have successors and if PredBB is the second from
1486       // last block in the function, we'd just keep swapping the two blocks for
1487       // last.  Only do the swap if one is clearly better to fall through than
1488       // the other.
1489       if (FallThrough == --MF.end() &&
1490           !IsBetterFallthrough(PriorTBB, MBB))
1491         DoTransform = false;
1492 
1493       if (DoTransform) {
1494         // Reverse the branch so we will fall through on the previous true cond.
1495         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1496         if (!TII->reverseBranchCondition(NewPriorCond)) {
1497           LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1498                             << "To make fallthrough to: " << *PriorTBB << "\n");
1499 
1500           DebugLoc dl = getBranchDebugLoc(PrevBB);
1501           TII->removeBranch(PrevBB);
1502           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1503 
1504           // Move this block to the end of the function.
1505           MBB->moveAfter(&MF.back());
1506           MadeChange = true;
1507           ++NumBranchOpts;
1508           return MadeChange;
1509         }
1510       }
1511     }
1512   }
1513 
1514   bool OptForSize =
1515       MF.getFunction().hasOptSize() ||
1516       llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo);
1517   if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) {
1518     // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1519     // direction, thereby defeating careful block placement and regressing
1520     // performance. Therefore, only consider this for optsize functions.
1521     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1522     if (TII->isUnconditionalTailCall(TailCall)) {
1523       MachineBasicBlock *Pred = *MBB->pred_begin();
1524       MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1525       SmallVector<MachineOperand, 4> PredCond;
1526       bool PredAnalyzable =
1527           !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1528 
1529       if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1530           PredTBB != PredFBB) {
1531         // The predecessor has a conditional branch to this block which consists
1532         // of only a tail call. Try to fold the tail call into the conditional
1533         // branch.
1534         if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1535           // TODO: It would be nice if analyzeBranch() could provide a pointer
1536           // to the branch instruction so replaceBranchWithTailCall() doesn't
1537           // have to search for it.
1538           TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1539           ++NumTailCalls;
1540           Pred->removeSuccessor(MBB);
1541           MadeChange = true;
1542           return MadeChange;
1543         }
1544       }
1545       // If the predecessor is falling through to this block, we could reverse
1546       // the branch condition and fold the tail call into that. However, after
1547       // that we might have to re-arrange the CFG to fall through to the other
1548       // block and there is a high risk of regressing code size rather than
1549       // improving it.
1550     }
1551   }
1552 
1553   if (!CurUnAnalyzable) {
1554     // If this is a two-way branch, and the FBB branches to this block, reverse
1555     // the condition so the single-basic-block loop is faster.  Instead of:
1556     //    Loop: xxx; jcc Out; jmp Loop
1557     // we want:
1558     //    Loop: xxx; jncc Loop; jmp Out
1559     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1560       SmallVector<MachineOperand, 4> NewCond(CurCond);
1561       if (!TII->reverseBranchCondition(NewCond)) {
1562         DebugLoc dl = getBranchDebugLoc(*MBB);
1563         TII->removeBranch(*MBB);
1564         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1565         MadeChange = true;
1566         ++NumBranchOpts;
1567         goto ReoptimizeBlock;
1568       }
1569     }
1570 
1571     // If this branch is the only thing in its block, see if we can forward
1572     // other blocks across it.
1573     if (CurTBB && CurCond.empty() && !CurFBB &&
1574         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1575         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1576       DebugLoc dl = getBranchDebugLoc(*MBB);
1577       // This block may contain just an unconditional branch.  Because there can
1578       // be 'non-branch terminators' in the block, try removing the branch and
1579       // then seeing if the block is empty.
1580       TII->removeBranch(*MBB);
1581       // If the only things remaining in the block are debug info, remove these
1582       // as well, so this will behave the same as an empty block in non-debug
1583       // mode.
1584       if (IsEmptyBlock(MBB)) {
1585         // Make the block empty, losing the debug info (we could probably
1586         // improve this in some cases.)
1587         MBB->erase(MBB->begin(), MBB->end());
1588       }
1589       // If this block is just an unconditional branch to CurTBB, we can
1590       // usually completely eliminate the block.  The only case we cannot
1591       // completely eliminate the block is when the block before this one
1592       // falls through into MBB and we can't understand the prior block's branch
1593       // condition.
1594       if (MBB->empty()) {
1595         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1596         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1597             !PrevBB.isSuccessor(MBB)) {
1598           // If the prior block falls through into us, turn it into an
1599           // explicit branch to us to make updates simpler.
1600           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1601               PriorTBB != MBB && PriorFBB != MBB) {
1602             if (!PriorTBB) {
1603               assert(PriorCond.empty() && !PriorFBB &&
1604                      "Bad branch analysis");
1605               PriorTBB = MBB;
1606             } else {
1607               assert(!PriorFBB && "Machine CFG out of date!");
1608               PriorFBB = MBB;
1609             }
1610             DebugLoc pdl = getBranchDebugLoc(PrevBB);
1611             TII->removeBranch(PrevBB);
1612             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1613           }
1614 
1615           // Iterate through all the predecessors, revectoring each in-turn.
1616           size_t PI = 0;
1617           bool DidChange = false;
1618           bool HasBranchToSelf = false;
1619           while(PI != MBB->pred_size()) {
1620             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1621             if (PMBB == MBB) {
1622               // If this block has an uncond branch to itself, leave it.
1623               ++PI;
1624               HasBranchToSelf = true;
1625             } else {
1626               DidChange = true;
1627               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1628               // If this change resulted in PMBB ending in a conditional
1629               // branch where both conditions go to the same destination,
1630               // change this to an unconditional branch.
1631               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1632               SmallVector<MachineOperand, 4> NewCurCond;
1633               bool NewCurUnAnalyzable = TII->analyzeBranch(
1634                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1635               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1636                 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1637                 TII->removeBranch(*PMBB);
1638                 NewCurCond.clear();
1639                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1640                 MadeChange = true;
1641                 ++NumBranchOpts;
1642               }
1643             }
1644           }
1645 
1646           // Change any jumptables to go to the new MBB.
1647           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1648             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1649           if (DidChange) {
1650             ++NumBranchOpts;
1651             MadeChange = true;
1652             if (!HasBranchToSelf) return MadeChange;
1653           }
1654         }
1655       }
1656 
1657       // Add the branch back if the block is more than just an uncond branch.
1658       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1659     }
1660   }
1661 
1662   // If the prior block doesn't fall through into this block, and if this
1663   // block doesn't fall through into some other block, see if we can find a
1664   // place to move this block where a fall-through will happen.
1665   if (!PrevBB.canFallThrough()) {
1666     // Now we know that there was no fall-through into this block, check to
1667     // see if it has a fall-through into its successor.
1668     bool CurFallsThru = MBB->canFallThrough();
1669 
1670     if (!MBB->isEHPad()) {
1671       // Check all the predecessors of this block.  If one of them has no fall
1672       // throughs, move this block right after it.
1673       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1674         // Analyze the branch at the end of the pred.
1675         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1676         SmallVector<MachineOperand, 4> PredCond;
1677         if (PredBB != MBB && !PredBB->canFallThrough() &&
1678             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1679             (!CurFallsThru || !CurTBB || !CurFBB) &&
1680             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1681           // If the current block doesn't fall through, just move it.
1682           // If the current block can fall through and does not end with a
1683           // conditional branch, we need to append an unconditional jump to
1684           // the (current) next block.  To avoid a possible compile-time
1685           // infinite loop, move blocks only backward in this case.
1686           // Also, if there are already 2 branches here, we cannot add a third;
1687           // this means we have the case
1688           // Bcc next
1689           // B elsewhere
1690           // next:
1691           if (CurFallsThru) {
1692             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1693             CurCond.clear();
1694             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1695           }
1696           MBB->moveAfter(PredBB);
1697           MadeChange = true;
1698           goto ReoptimizeBlock;
1699         }
1700       }
1701     }
1702 
1703     if (!CurFallsThru) {
1704       // Check all successors to see if we can move this block before it.
1705       for (MachineBasicBlock *SuccBB : MBB->successors()) {
1706         // Analyze the branch at the end of the block before the succ.
1707         MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1708 
1709         // If this block doesn't already fall-through to that successor, and if
1710         // the succ doesn't already have a block that can fall through into it,
1711         // and if the successor isn't an EH destination, we can arrange for the
1712         // fallthrough to happen.
1713         if (SuccBB != MBB && &*SuccPrev != MBB &&
1714             !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
1715             !SuccBB->isEHPad()) {
1716           MBB->moveBefore(SuccBB);
1717           MadeChange = true;
1718           goto ReoptimizeBlock;
1719         }
1720       }
1721 
1722       // Okay, there is no really great place to put this block.  If, however,
1723       // the block before this one would be a fall-through if this block were
1724       // removed, move this block to the end of the function. There is no real
1725       // advantage in "falling through" to an EH block, so we don't want to
1726       // perform this transformation for that case.
1727       //
1728       // Also, Windows EH introduced the possibility of an arbitrary number of
1729       // successors to a given block.  The analyzeBranch call does not consider
1730       // exception handling and so we can get in a state where a block
1731       // containing a call is followed by multiple EH blocks that would be
1732       // rotated infinitely at the end of the function if the transformation
1733       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1734       // that appears not to be happening anymore, we should assume that it is
1735       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1736       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1737       SmallVector<MachineOperand, 4> PrevCond;
1738       if (FallThrough != MF.end() &&
1739           !FallThrough->isEHPad() &&
1740           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1741           PrevBB.isSuccessor(&*FallThrough)) {
1742         MBB->moveAfter(&MF.back());
1743         MadeChange = true;
1744         return MadeChange;
1745       }
1746     }
1747   }
1748 
1749   return MadeChange;
1750 }
1751 
1752 //===----------------------------------------------------------------------===//
1753 //  Hoist Common Code
1754 //===----------------------------------------------------------------------===//
1755 
1756 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1757   bool MadeChange = false;
1758   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1759     MachineBasicBlock *MBB = &*I++;
1760     MadeChange |= HoistCommonCodeInSuccs(MBB);
1761   }
1762 
1763   return MadeChange;
1764 }
1765 
1766 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1767 /// its 'true' successor.
1768 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1769                                          MachineBasicBlock *TrueBB) {
1770   for (MachineBasicBlock *SuccBB : BB->successors())
1771     if (SuccBB != TrueBB)
1772       return SuccBB;
1773   return nullptr;
1774 }
1775 
1776 template <class Container>
1777 static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI,
1778                                 Container &Set) {
1779   if (Reg.isPhysical()) {
1780     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1781       Set.insert(*AI);
1782   } else {
1783     Set.insert(Reg);
1784   }
1785 }
1786 
1787 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1788 /// in successors to. The location is usually just before the terminator,
1789 /// however if the terminator is a conditional branch and its previous
1790 /// instruction is the flag setting instruction, the previous instruction is
1791 /// the preferred location. This function also gathers uses and defs of the
1792 /// instructions from the insertion point to the end of the block. The data is
1793 /// used by HoistCommonCodeInSuccs to ensure safety.
1794 static
1795 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1796                                                   const TargetInstrInfo *TII,
1797                                                   const TargetRegisterInfo *TRI,
1798                                                   SmallSet<Register, 4> &Uses,
1799                                                   SmallSet<Register, 4> &Defs) {
1800   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1801   if (!TII->isUnpredicatedTerminator(*Loc))
1802     return MBB->end();
1803 
1804   for (const MachineOperand &MO : Loc->operands()) {
1805     if (!MO.isReg())
1806       continue;
1807     Register Reg = MO.getReg();
1808     if (!Reg)
1809       continue;
1810     if (MO.isUse()) {
1811       addRegAndItsAliases(Reg, TRI, Uses);
1812     } else {
1813       if (!MO.isDead())
1814         // Don't try to hoist code in the rare case the terminator defines a
1815         // register that is later used.
1816         return MBB->end();
1817 
1818       // If the terminator defines a register, make sure we don't hoist
1819       // the instruction whose def might be clobbered by the terminator.
1820       addRegAndItsAliases(Reg, TRI, Defs);
1821     }
1822   }
1823 
1824   if (Uses.empty())
1825     return Loc;
1826   // If the terminator is the only instruction in the block and Uses is not
1827   // empty (or we would have returned above), we can still safely hoist
1828   // instructions just before the terminator as long as the Defs/Uses are not
1829   // violated (which is checked in HoistCommonCodeInSuccs).
1830   if (Loc == MBB->begin())
1831     return Loc;
1832 
1833   // The terminator is probably a conditional branch, try not to separate the
1834   // branch from condition setting instruction.
1835   MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin());
1836 
1837   bool IsDef = false;
1838   for (const MachineOperand &MO : PI->operands()) {
1839     // If PI has a regmask operand, it is probably a call. Separate away.
1840     if (MO.isRegMask())
1841       return Loc;
1842     if (!MO.isReg() || MO.isUse())
1843       continue;
1844     Register Reg = MO.getReg();
1845     if (!Reg)
1846       continue;
1847     if (Uses.count(Reg)) {
1848       IsDef = true;
1849       break;
1850     }
1851   }
1852   if (!IsDef)
1853     // The condition setting instruction is not just before the conditional
1854     // branch.
1855     return Loc;
1856 
1857   // Be conservative, don't insert instruction above something that may have
1858   // side-effects. And since it's potentially bad to separate flag setting
1859   // instruction from the conditional branch, just abort the optimization
1860   // completely.
1861   // Also avoid moving code above predicated instruction since it's hard to
1862   // reason about register liveness with predicated instruction.
1863   bool DontMoveAcrossStore = true;
1864   if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1865     return MBB->end();
1866 
1867   // Find out what registers are live. Note this routine is ignoring other live
1868   // registers which are only used by instructions in successor blocks.
1869   for (const MachineOperand &MO : PI->operands()) {
1870     if (!MO.isReg())
1871       continue;
1872     Register Reg = MO.getReg();
1873     if (!Reg)
1874       continue;
1875     if (MO.isUse()) {
1876       addRegAndItsAliases(Reg, TRI, Uses);
1877     } else {
1878       if (Uses.erase(Reg)) {
1879         if (Register::isPhysicalRegister(Reg)) {
1880           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1881             Uses.erase(*SubRegs); // Use sub-registers to be conservative
1882         }
1883       }
1884       addRegAndItsAliases(Reg, TRI, Defs);
1885     }
1886   }
1887 
1888   return PI;
1889 }
1890 
1891 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1892   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1893   SmallVector<MachineOperand, 4> Cond;
1894   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1895     return false;
1896 
1897   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1898   if (!FBB)
1899     // Malformed bcc? True and false blocks are the same?
1900     return false;
1901 
1902   // Restrict the optimization to cases where MBB is the only predecessor,
1903   // it is an obvious win.
1904   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1905     return false;
1906 
1907   // Find a suitable position to hoist the common instructions to. Also figure
1908   // out which registers are used or defined by instructions from the insertion
1909   // point to the end of the block.
1910   SmallSet<Register, 4> Uses, Defs;
1911   MachineBasicBlock::iterator Loc =
1912     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1913   if (Loc == MBB->end())
1914     return false;
1915 
1916   bool HasDups = false;
1917   SmallSet<Register, 4> ActiveDefsSet, AllDefsSet;
1918   MachineBasicBlock::iterator TIB = TBB->begin();
1919   MachineBasicBlock::iterator FIB = FBB->begin();
1920   MachineBasicBlock::iterator TIE = TBB->end();
1921   MachineBasicBlock::iterator FIE = FBB->end();
1922   while (TIB != TIE && FIB != FIE) {
1923     // Skip dbg_value instructions. These do not count.
1924     TIB = skipDebugInstructionsForward(TIB, TIE);
1925     FIB = skipDebugInstructionsForward(FIB, FIE);
1926     if (TIB == TIE || FIB == FIE)
1927       break;
1928 
1929     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1930       break;
1931 
1932     if (TII->isPredicated(*TIB))
1933       // Hard to reason about register liveness with predicated instruction.
1934       break;
1935 
1936     bool IsSafe = true;
1937     for (MachineOperand &MO : TIB->operands()) {
1938       // Don't attempt to hoist instructions with register masks.
1939       if (MO.isRegMask()) {
1940         IsSafe = false;
1941         break;
1942       }
1943       if (!MO.isReg())
1944         continue;
1945       Register Reg = MO.getReg();
1946       if (!Reg)
1947         continue;
1948       if (MO.isDef()) {
1949         if (Uses.count(Reg)) {
1950           // Avoid clobbering a register that's used by the instruction at
1951           // the point of insertion.
1952           IsSafe = false;
1953           break;
1954         }
1955 
1956         if (Defs.count(Reg) && !MO.isDead()) {
1957           // Don't hoist the instruction if the def would be clobber by the
1958           // instruction at the point insertion. FIXME: This is overly
1959           // conservative. It should be possible to hoist the instructions
1960           // in BB2 in the following example:
1961           // BB1:
1962           // r1, eflag = op1 r2, r3
1963           // brcc eflag
1964           //
1965           // BB2:
1966           // r1 = op2, ...
1967           //    = op3, killed r1
1968           IsSafe = false;
1969           break;
1970         }
1971       } else if (!ActiveDefsSet.count(Reg)) {
1972         if (Defs.count(Reg)) {
1973           // Use is defined by the instruction at the point of insertion.
1974           IsSafe = false;
1975           break;
1976         }
1977 
1978         if (MO.isKill() && Uses.count(Reg))
1979           // Kills a register that's read by the instruction at the point of
1980           // insertion. Remove the kill marker.
1981           MO.setIsKill(false);
1982       }
1983     }
1984     if (!IsSafe)
1985       break;
1986 
1987     bool DontMoveAcrossStore = true;
1988     if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
1989       break;
1990 
1991     // Remove kills from ActiveDefsSet, these registers had short live ranges.
1992     for (const MachineOperand &MO : TIB->operands()) {
1993       if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1994         continue;
1995       Register Reg = MO.getReg();
1996       if (!Reg)
1997         continue;
1998       if (!AllDefsSet.count(Reg)) {
1999         continue;
2000       }
2001       if (Reg.isPhysical()) {
2002         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2003           ActiveDefsSet.erase(*AI);
2004       } else {
2005         ActiveDefsSet.erase(Reg);
2006       }
2007     }
2008 
2009     // Track local defs so we can update liveins.
2010     for (const MachineOperand &MO : TIB->operands()) {
2011       if (!MO.isReg() || !MO.isDef() || MO.isDead())
2012         continue;
2013       Register Reg = MO.getReg();
2014       if (!Reg || Reg.isVirtual())
2015         continue;
2016       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2017       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2018     }
2019 
2020     HasDups = true;
2021     ++TIB;
2022     ++FIB;
2023   }
2024 
2025   if (!HasDups)
2026     return false;
2027 
2028   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2029   FBB->erase(FBB->begin(), FIB);
2030 
2031   if (UpdateLiveIns) {
2032     recomputeLiveIns(*TBB);
2033     recomputeLiveIns(*FBB);
2034   }
2035 
2036   ++NumHoist;
2037   return true;
2038 }
2039