1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass forwards branches to unconditional branches to make them branch 10 // directly to the target block. This pass often results in dead MBB's, which 11 // it then removes. 12 // 13 // Note that this pass must be run after register allocation, it cannot handle 14 // SSA form. It also must handle virtual registers for targets that emit virtual 15 // ISA (e.g. NVPTX). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "BranchFolding.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/ProfileSummaryInfo.h" 28 #include "llvm/CodeGen/Analysis.h" 29 #include "llvm/CodeGen/LivePhysRegs.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/MachineSizeOpts.h" 43 #include "llvm/CodeGen/MBFIWrapper.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetOpcodes.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/LaneBitmask.h" 54 #include "llvm/MC/MCRegisterInfo.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetMachine.h" 63 #include <cassert> 64 #include <cstddef> 65 #include <iterator> 66 #include <numeric> 67 #include <vector> 68 69 using namespace llvm; 70 71 #define DEBUG_TYPE "branch-folder" 72 73 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 74 STATISTIC(NumBranchOpts, "Number of branches optimized"); 75 STATISTIC(NumTailMerge , "Number of block tails merged"); 76 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 77 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 78 79 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 80 cl::init(cl::BOU_UNSET), cl::Hidden); 81 82 // Throttle for huge numbers of predecessors (compile speed problems) 83 static cl::opt<unsigned> 84 TailMergeThreshold("tail-merge-threshold", 85 cl::desc("Max number of predecessors to consider tail merging"), 86 cl::init(150), cl::Hidden); 87 88 // Heuristic for tail merging (and, inversely, tail duplication). 89 // TODO: This should be replaced with a target query. 90 static cl::opt<unsigned> 91 TailMergeSize("tail-merge-size", 92 cl::desc("Min number of instructions to consider tail merging"), 93 cl::init(3), cl::Hidden); 94 95 namespace { 96 97 /// BranchFolderPass - Wrap branch folder in a machine function pass. 98 class BranchFolderPass : public MachineFunctionPass { 99 public: 100 static char ID; 101 102 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 103 104 bool runOnMachineFunction(MachineFunction &MF) override; 105 106 void getAnalysisUsage(AnalysisUsage &AU) const override { 107 AU.addRequired<MachineBlockFrequencyInfo>(); 108 AU.addRequired<MachineBranchProbabilityInfo>(); 109 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 110 AU.addRequired<TargetPassConfig>(); 111 MachineFunctionPass::getAnalysisUsage(AU); 112 } 113 }; 114 115 } // end anonymous namespace 116 117 char BranchFolderPass::ID = 0; 118 119 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 120 121 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, 122 "Control Flow Optimizer", false, false) 123 124 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 125 if (skipFunction(MF.getFunction())) 126 return false; 127 128 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 129 // TailMerge can create jump into if branches that make CFG irreducible for 130 // HW that requires structurized CFG. 131 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 132 PassConfig->getEnableTailMerge(); 133 MBFIWrapper MBBFreqInfo( 134 getAnalysis<MachineBlockFrequencyInfo>()); 135 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 136 getAnalysis<MachineBranchProbabilityInfo>(), 137 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 138 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 139 return Folder.OptimizeFunction( 140 MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(), 141 MMIWP ? &MMIWP->getMMI() : nullptr); 142 } 143 144 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, 145 MBFIWrapper &FreqInfo, 146 const MachineBranchProbabilityInfo &ProbInfo, 147 ProfileSummaryInfo *PSI, 148 unsigned MinTailLength) 149 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 150 MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) { 151 if (MinCommonTailLength == 0) 152 MinCommonTailLength = TailMergeSize; 153 switch (FlagEnableTailMerge) { 154 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; 155 case cl::BOU_TRUE: EnableTailMerge = true; break; 156 case cl::BOU_FALSE: EnableTailMerge = false; break; 157 } 158 } 159 160 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 161 assert(MBB->pred_empty() && "MBB must be dead!"); 162 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 163 164 MachineFunction *MF = MBB->getParent(); 165 // drop all successors. 166 while (!MBB->succ_empty()) 167 MBB->removeSuccessor(MBB->succ_end()-1); 168 169 // Avoid matching if this pointer gets reused. 170 TriedMerging.erase(MBB); 171 172 // Update call site info. 173 std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) { 174 if (MI.shouldUpdateCallSiteInfo()) 175 MF->eraseCallSiteInfo(&MI); 176 }); 177 // Remove the block. 178 MF->erase(MBB); 179 EHScopeMembership.erase(MBB); 180 if (MLI) 181 MLI->removeBlock(MBB); 182 } 183 184 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 185 const TargetInstrInfo *tii, 186 const TargetRegisterInfo *tri, 187 MachineModuleInfo *mmi, 188 MachineLoopInfo *mli, bool AfterPlacement) { 189 if (!tii) return false; 190 191 TriedMerging.clear(); 192 193 MachineRegisterInfo &MRI = MF.getRegInfo(); 194 AfterBlockPlacement = AfterPlacement; 195 TII = tii; 196 TRI = tri; 197 MMI = mmi; 198 MLI = mli; 199 this->MRI = &MRI; 200 201 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 202 if (!UpdateLiveIns) 203 MRI.invalidateLiveness(); 204 205 bool MadeChange = false; 206 207 // Recalculate EH scope membership. 208 EHScopeMembership = getEHScopeMembership(MF); 209 210 bool MadeChangeThisIteration = true; 211 while (MadeChangeThisIteration) { 212 MadeChangeThisIteration = TailMergeBlocks(MF); 213 // No need to clean up if tail merging does not change anything after the 214 // block placement. 215 if (!AfterBlockPlacement || MadeChangeThisIteration) 216 MadeChangeThisIteration |= OptimizeBranches(MF); 217 if (EnableHoistCommonCode) 218 MadeChangeThisIteration |= HoistCommonCode(MF); 219 MadeChange |= MadeChangeThisIteration; 220 } 221 222 // See if any jump tables have become dead as the code generator 223 // did its thing. 224 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 225 if (!JTI) 226 return MadeChange; 227 228 // Walk the function to find jump tables that are live. 229 BitVector JTIsLive(JTI->getJumpTables().size()); 230 for (const MachineBasicBlock &BB : MF) { 231 for (const MachineInstr &I : BB) 232 for (const MachineOperand &Op : I.operands()) { 233 if (!Op.isJTI()) continue; 234 235 // Remember that this JT is live. 236 JTIsLive.set(Op.getIndex()); 237 } 238 } 239 240 // Finally, remove dead jump tables. This happens when the 241 // indirect jump was unreachable (and thus deleted). 242 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 243 if (!JTIsLive.test(i)) { 244 JTI->RemoveJumpTable(i); 245 MadeChange = true; 246 } 247 248 return MadeChange; 249 } 250 251 //===----------------------------------------------------------------------===// 252 // Tail Merging of Blocks 253 //===----------------------------------------------------------------------===// 254 255 /// HashMachineInstr - Compute a hash value for MI and its operands. 256 static unsigned HashMachineInstr(const MachineInstr &MI) { 257 unsigned Hash = MI.getOpcode(); 258 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 259 const MachineOperand &Op = MI.getOperand(i); 260 261 // Merge in bits from the operand if easy. We can't use MachineOperand's 262 // hash_code here because it's not deterministic and we sort by hash value 263 // later. 264 unsigned OperandHash = 0; 265 switch (Op.getType()) { 266 case MachineOperand::MO_Register: 267 OperandHash = Op.getReg(); 268 break; 269 case MachineOperand::MO_Immediate: 270 OperandHash = Op.getImm(); 271 break; 272 case MachineOperand::MO_MachineBasicBlock: 273 OperandHash = Op.getMBB()->getNumber(); 274 break; 275 case MachineOperand::MO_FrameIndex: 276 case MachineOperand::MO_ConstantPoolIndex: 277 case MachineOperand::MO_JumpTableIndex: 278 OperandHash = Op.getIndex(); 279 break; 280 case MachineOperand::MO_GlobalAddress: 281 case MachineOperand::MO_ExternalSymbol: 282 // Global address / external symbol are too hard, don't bother, but do 283 // pull in the offset. 284 OperandHash = Op.getOffset(); 285 break; 286 default: 287 break; 288 } 289 290 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 291 } 292 return Hash; 293 } 294 295 /// HashEndOfMBB - Hash the last instruction in the MBB. 296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 297 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 298 if (I == MBB.end()) 299 return 0; 300 301 return HashMachineInstr(*I); 302 } 303 304 /// Whether MI should be counted as an instruction when calculating common tail. 305 static bool countsAsInstruction(const MachineInstr &MI) { 306 return !(MI.isDebugInstr() || MI.isCFIInstruction()); 307 } 308 309 /// Iterate backwards from the given iterator \p I, towards the beginning of the 310 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator 311 /// pointing to that MI. If no such MI is found, return the end iterator. 312 static MachineBasicBlock::iterator 313 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I, 314 MachineBasicBlock *MBB) { 315 while (I != MBB->begin()) { 316 --I; 317 if (countsAsInstruction(*I)) 318 return I; 319 } 320 return MBB->end(); 321 } 322 323 /// Given two machine basic blocks, return the number of instructions they 324 /// actually have in common together at their end. If a common tail is found (at 325 /// least by one instruction), then iterators for the first shared instruction 326 /// in each block are returned as well. 327 /// 328 /// Non-instructions according to countsAsInstruction are ignored. 329 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 330 MachineBasicBlock *MBB2, 331 MachineBasicBlock::iterator &I1, 332 MachineBasicBlock::iterator &I2) { 333 MachineBasicBlock::iterator MBBI1 = MBB1->end(); 334 MachineBasicBlock::iterator MBBI2 = MBB2->end(); 335 336 unsigned TailLen = 0; 337 while (true) { 338 MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1); 339 MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2); 340 if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end()) 341 break; 342 if (!MBBI1->isIdenticalTo(*MBBI2) || 343 // FIXME: This check is dubious. It's used to get around a problem where 344 // people incorrectly expect inline asm directives to remain in the same 345 // relative order. This is untenable because normal compiler 346 // optimizations (like this one) may reorder and/or merge these 347 // directives. 348 MBBI1->isInlineAsm()) { 349 break; 350 } 351 ++TailLen; 352 I1 = MBBI1; 353 I2 = MBBI2; 354 } 355 356 return TailLen; 357 } 358 359 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 360 MachineBasicBlock &NewDest) { 361 if (UpdateLiveIns) { 362 // OldInst should always point to an instruction. 363 MachineBasicBlock &OldMBB = *OldInst->getParent(); 364 LiveRegs.clear(); 365 LiveRegs.addLiveOuts(OldMBB); 366 // Move backward to the place where will insert the jump. 367 MachineBasicBlock::iterator I = OldMBB.end(); 368 do { 369 --I; 370 LiveRegs.stepBackward(*I); 371 } while (I != OldInst); 372 373 // Merging the tails may have switched some undef operand to non-undef ones. 374 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the 375 // register. 376 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { 377 // We computed the liveins with computeLiveIn earlier and should only see 378 // full registers: 379 assert(P.LaneMask == LaneBitmask::getAll() && 380 "Can only handle full register."); 381 MCPhysReg Reg = P.PhysReg; 382 if (!LiveRegs.available(*MRI, Reg)) 383 continue; 384 DebugLoc DL; 385 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); 386 } 387 } 388 389 TII->ReplaceTailWithBranchTo(OldInst, &NewDest); 390 ++NumTailMerge; 391 } 392 393 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 394 MachineBasicBlock::iterator BBI1, 395 const BasicBlock *BB) { 396 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 397 return nullptr; 398 399 MachineFunction &MF = *CurMBB.getParent(); 400 401 // Create the fall-through block. 402 MachineFunction::iterator MBBI = CurMBB.getIterator(); 403 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); 404 CurMBB.getParent()->insert(++MBBI, NewMBB); 405 406 // Move all the successors of this block to the specified block. 407 NewMBB->transferSuccessors(&CurMBB); 408 409 // Add an edge from CurMBB to NewMBB for the fall-through. 410 CurMBB.addSuccessor(NewMBB); 411 412 // Splice the code over. 413 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 414 415 // NewMBB belongs to the same loop as CurMBB. 416 if (MLI) 417 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 418 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 419 420 // NewMBB inherits CurMBB's block frequency. 421 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 422 423 if (UpdateLiveIns) 424 computeAndAddLiveIns(LiveRegs, *NewMBB); 425 426 // Add the new block to the EH scope. 427 const auto &EHScopeI = EHScopeMembership.find(&CurMBB); 428 if (EHScopeI != EHScopeMembership.end()) { 429 auto n = EHScopeI->second; 430 EHScopeMembership[NewMBB] = n; 431 } 432 433 return NewMBB; 434 } 435 436 /// EstimateRuntime - Make a rough estimate for how long it will take to run 437 /// the specified code. 438 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 439 MachineBasicBlock::iterator E) { 440 unsigned Time = 0; 441 for (; I != E; ++I) { 442 if (!countsAsInstruction(*I)) 443 continue; 444 if (I->isCall()) 445 Time += 10; 446 else if (I->mayLoadOrStore()) 447 Time += 2; 448 else 449 ++Time; 450 } 451 return Time; 452 } 453 454 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 455 // branches temporarily for tail merging). In the case where CurMBB ends 456 // with a conditional branch to the next block, optimize by reversing the 457 // test and conditionally branching to SuccMBB instead. 458 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 459 const TargetInstrInfo *TII) { 460 MachineFunction *MF = CurMBB->getParent(); 461 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 462 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 463 SmallVector<MachineOperand, 4> Cond; 464 DebugLoc dl = CurMBB->findBranchDebugLoc(); 465 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 466 MachineBasicBlock *NextBB = &*I; 467 if (TBB == NextBB && !Cond.empty() && !FBB) { 468 if (!TII->reverseBranchCondition(Cond)) { 469 TII->removeBranch(*CurMBB); 470 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 471 return; 472 } 473 } 474 } 475 TII->insertBranch(*CurMBB, SuccBB, nullptr, 476 SmallVector<MachineOperand, 0>(), dl); 477 } 478 479 bool 480 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 481 if (getHash() < o.getHash()) 482 return true; 483 if (getHash() > o.getHash()) 484 return false; 485 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 486 return true; 487 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 488 return false; 489 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 490 // an object with itself. 491 #ifndef _GLIBCXX_DEBUG 492 llvm_unreachable("Predecessor appears twice"); 493 #else 494 return false; 495 #endif 496 } 497 498 /// CountTerminators - Count the number of terminators in the given 499 /// block and set I to the position of the first non-terminator, if there 500 /// is one, or MBB->end() otherwise. 501 static unsigned CountTerminators(MachineBasicBlock *MBB, 502 MachineBasicBlock::iterator &I) { 503 I = MBB->end(); 504 unsigned NumTerms = 0; 505 while (true) { 506 if (I == MBB->begin()) { 507 I = MBB->end(); 508 break; 509 } 510 --I; 511 if (!I->isTerminator()) break; 512 ++NumTerms; 513 } 514 return NumTerms; 515 } 516 517 /// A no successor, non-return block probably ends in unreachable and is cold. 518 /// Also consider a block that ends in an indirect branch to be a return block, 519 /// since many targets use plain indirect branches to return. 520 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 521 if (!MBB->succ_empty()) 522 return false; 523 if (MBB->empty()) 524 return true; 525 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 526 } 527 528 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 529 /// and decide if it would be profitable to merge those tails. Return the 530 /// length of the common tail and iterators to the first common instruction 531 /// in each block. 532 /// MBB1, MBB2 The blocks to check 533 /// MinCommonTailLength Minimum size of tail block to be merged. 534 /// CommonTailLen Out parameter to record the size of the shared tail between 535 /// MBB1 and MBB2 536 /// I1, I2 Iterator references that will be changed to point to the first 537 /// instruction in the common tail shared by MBB1,MBB2 538 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 539 /// relative to SuccBB 540 /// PredBB The layout predecessor of SuccBB, if any. 541 /// EHScopeMembership map from block to EH scope #. 542 /// AfterPlacement True if we are merging blocks after layout. Stricter 543 /// thresholds apply to prevent undoing tail-duplication. 544 static bool 545 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 546 unsigned MinCommonTailLength, unsigned &CommonTailLen, 547 MachineBasicBlock::iterator &I1, 548 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 549 MachineBasicBlock *PredBB, 550 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, 551 bool AfterPlacement, 552 MBFIWrapper &MBBFreqInfo, 553 ProfileSummaryInfo *PSI) { 554 // It is never profitable to tail-merge blocks from two different EH scopes. 555 if (!EHScopeMembership.empty()) { 556 auto EHScope1 = EHScopeMembership.find(MBB1); 557 assert(EHScope1 != EHScopeMembership.end()); 558 auto EHScope2 = EHScopeMembership.find(MBB2); 559 assert(EHScope2 != EHScopeMembership.end()); 560 if (EHScope1->second != EHScope2->second) 561 return false; 562 } 563 564 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 565 if (CommonTailLen == 0) 566 return false; 567 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) 568 << " and " << printMBBReference(*MBB2) << " is " 569 << CommonTailLen << '\n'); 570 571 // Move the iterators to the beginning of the MBB if we only got debug 572 // instructions before the tail. This is to avoid splitting a block when we 573 // only got debug instructions before the tail (to be invariant on -g). 574 if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end()) == I1) 575 I1 = MBB1->begin(); 576 if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end()) == I2) 577 I2 = MBB2->begin(); 578 579 bool FullBlockTail1 = I1 == MBB1->begin(); 580 bool FullBlockTail2 = I2 == MBB2->begin(); 581 582 // It's almost always profitable to merge any number of non-terminator 583 // instructions with the block that falls through into the common successor. 584 // This is true only for a single successor. For multiple successors, we are 585 // trading a conditional branch for an unconditional one. 586 // TODO: Re-visit successor size for non-layout tail merging. 587 if ((MBB1 == PredBB || MBB2 == PredBB) && 588 (!AfterPlacement || MBB1->succ_size() == 1)) { 589 MachineBasicBlock::iterator I; 590 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 591 if (CommonTailLen > NumTerms) 592 return true; 593 } 594 595 // If these are identical non-return blocks with no successors, merge them. 596 // Such blocks are typically cold calls to noreturn functions like abort, and 597 // are unlikely to become a fallthrough target after machine block placement. 598 // Tail merging these blocks is unlikely to create additional unconditional 599 // branches, and will reduce the size of this cold code. 600 if (FullBlockTail1 && FullBlockTail2 && 601 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 602 return true; 603 604 // If one of the blocks can be completely merged and happens to be in 605 // a position where the other could fall through into it, merge any number 606 // of instructions, because it can be done without a branch. 607 // TODO: If the blocks are not adjacent, move one of them so that they are? 608 if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2) 609 return true; 610 if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1) 611 return true; 612 613 // If both blocks are identical and end in a branch, merge them unless they 614 // both have a fallthrough predecessor and successor. 615 // We can only do this after block placement because it depends on whether 616 // there are fallthroughs, and we don't know until after layout. 617 if (AfterPlacement && FullBlockTail1 && FullBlockTail2) { 618 auto BothFallThrough = [](MachineBasicBlock *MBB) { 619 if (MBB->succ_size() != 0 && !MBB->canFallThrough()) 620 return false; 621 MachineFunction::iterator I(MBB); 622 MachineFunction *MF = MBB->getParent(); 623 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 624 }; 625 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 626 return true; 627 } 628 629 // If both blocks have an unconditional branch temporarily stripped out, 630 // count that as an additional common instruction for the following 631 // heuristics. This heuristic is only accurate for single-succ blocks, so to 632 // make sure that during layout merging and duplicating don't crash, we check 633 // for that when merging during layout. 634 unsigned EffectiveTailLen = CommonTailLen; 635 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 636 (MBB1->succ_size() == 1 || !AfterPlacement) && 637 !MBB1->back().isBarrier() && 638 !MBB2->back().isBarrier()) 639 ++EffectiveTailLen; 640 641 // Check if the common tail is long enough to be worthwhile. 642 if (EffectiveTailLen >= MinCommonTailLength) 643 return true; 644 645 // If we are optimizing for code size, 2 instructions in common is enough if 646 // we don't have to split a block. At worst we will be introducing 1 new 647 // branch instruction, which is likely to be smaller than the 2 648 // instructions that would be deleted in the merge. 649 MachineFunction *MF = MBB1->getParent(); 650 bool OptForSize = 651 MF->getFunction().hasOptSize() || 652 (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) && 653 llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo)); 654 return EffectiveTailLen >= 2 && OptForSize && 655 (FullBlockTail1 || FullBlockTail2); 656 } 657 658 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 659 unsigned MinCommonTailLength, 660 MachineBasicBlock *SuccBB, 661 MachineBasicBlock *PredBB) { 662 unsigned maxCommonTailLength = 0U; 663 SameTails.clear(); 664 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 665 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 666 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 667 B = MergePotentials.begin(); 668 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 669 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 670 unsigned CommonTailLen; 671 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 672 MinCommonTailLength, 673 CommonTailLen, TrialBBI1, TrialBBI2, 674 SuccBB, PredBB, 675 EHScopeMembership, 676 AfterBlockPlacement, MBBFreqInfo, PSI)) { 677 if (CommonTailLen > maxCommonTailLength) { 678 SameTails.clear(); 679 maxCommonTailLength = CommonTailLen; 680 HighestMPIter = CurMPIter; 681 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 682 } 683 if (HighestMPIter == CurMPIter && 684 CommonTailLen == maxCommonTailLength) 685 SameTails.push_back(SameTailElt(I, TrialBBI2)); 686 } 687 if (I == B) 688 break; 689 } 690 } 691 return maxCommonTailLength; 692 } 693 694 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 695 MachineBasicBlock *SuccBB, 696 MachineBasicBlock *PredBB) { 697 MPIterator CurMPIter, B; 698 for (CurMPIter = std::prev(MergePotentials.end()), 699 B = MergePotentials.begin(); 700 CurMPIter->getHash() == CurHash; --CurMPIter) { 701 // Put the unconditional branch back, if we need one. 702 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 703 if (SuccBB && CurMBB != PredBB) 704 FixTail(CurMBB, SuccBB, TII); 705 if (CurMPIter == B) 706 break; 707 } 708 if (CurMPIter->getHash() != CurHash) 709 CurMPIter++; 710 MergePotentials.erase(CurMPIter, MergePotentials.end()); 711 } 712 713 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 714 MachineBasicBlock *SuccBB, 715 unsigned maxCommonTailLength, 716 unsigned &commonTailIndex) { 717 commonTailIndex = 0; 718 unsigned TimeEstimate = ~0U; 719 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 720 // Use PredBB if possible; that doesn't require a new branch. 721 if (SameTails[i].getBlock() == PredBB) { 722 commonTailIndex = i; 723 break; 724 } 725 // Otherwise, make a (fairly bogus) choice based on estimate of 726 // how long it will take the various blocks to execute. 727 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 728 SameTails[i].getTailStartPos()); 729 if (t <= TimeEstimate) { 730 TimeEstimate = t; 731 commonTailIndex = i; 732 } 733 } 734 735 MachineBasicBlock::iterator BBI = 736 SameTails[commonTailIndex].getTailStartPos(); 737 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 738 739 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " 740 << maxCommonTailLength); 741 742 // If the split block unconditionally falls-thru to SuccBB, it will be 743 // merged. In control flow terms it should then take SuccBB's name. e.g. If 744 // SuccBB is an inner loop, the common tail is still part of the inner loop. 745 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 746 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 747 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 748 if (!newMBB) { 749 LLVM_DEBUG(dbgs() << "... failed!"); 750 return false; 751 } 752 753 SameTails[commonTailIndex].setBlock(newMBB); 754 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 755 756 // If we split PredBB, newMBB is the new predecessor. 757 if (PredBB == MBB) 758 PredBB = newMBB; 759 760 return true; 761 } 762 763 static void 764 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 765 MachineBasicBlock &MBBCommon) { 766 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 767 // Note CommonTailLen does not necessarily matches the size of 768 // the common BB nor all its instructions because of debug 769 // instructions differences. 770 unsigned CommonTailLen = 0; 771 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 772 ++CommonTailLen; 773 774 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 775 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 776 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 777 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 778 779 while (CommonTailLen--) { 780 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 781 (void)MBBIE; 782 783 if (!countsAsInstruction(*MBBI)) { 784 ++MBBI; 785 continue; 786 } 787 788 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) 789 ++MBBICommon; 790 791 assert(MBBICommon != MBBIECommon && 792 "Reached BB end within common tail length!"); 793 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 794 795 // Merge MMOs from memory operations in the common block. 796 if (MBBICommon->mayLoadOrStore()) 797 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); 798 // Drop undef flags if they aren't present in all merged instructions. 799 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 800 MachineOperand &MO = MBBICommon->getOperand(I); 801 if (MO.isReg() && MO.isUndef()) { 802 const MachineOperand &OtherMO = MBBI->getOperand(I); 803 if (!OtherMO.isUndef()) 804 MO.setIsUndef(false); 805 } 806 } 807 808 ++MBBI; 809 ++MBBICommon; 810 } 811 } 812 813 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { 814 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 815 816 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 817 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 818 if (i != commonTailIndex) { 819 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 820 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 821 } else { 822 assert(SameTails[i].getTailStartPos() == MBB->begin() && 823 "MBB is not a common tail only block"); 824 } 825 } 826 827 for (auto &MI : *MBB) { 828 if (!countsAsInstruction(MI)) 829 continue; 830 DebugLoc DL = MI.getDebugLoc(); 831 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 832 if (i == commonTailIndex) 833 continue; 834 835 auto &Pos = NextCommonInsts[i]; 836 assert(Pos != SameTails[i].getBlock()->end() && 837 "Reached BB end within common tail"); 838 while (!countsAsInstruction(*Pos)) { 839 ++Pos; 840 assert(Pos != SameTails[i].getBlock()->end() && 841 "Reached BB end within common tail"); 842 } 843 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 844 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 845 NextCommonInsts[i] = ++Pos; 846 } 847 MI.setDebugLoc(DL); 848 } 849 850 if (UpdateLiveIns) { 851 LivePhysRegs NewLiveIns(*TRI); 852 computeLiveIns(NewLiveIns, *MBB); 853 LiveRegs.init(*TRI); 854 855 // The flag merging may lead to some register uses no longer using the 856 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. 857 for (MachineBasicBlock *Pred : MBB->predecessors()) { 858 LiveRegs.clear(); 859 LiveRegs.addLiveOuts(*Pred); 860 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); 861 for (unsigned Reg : NewLiveIns) { 862 if (!LiveRegs.available(*MRI, Reg)) 863 continue; 864 DebugLoc DL; 865 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), 866 Reg); 867 } 868 } 869 870 MBB->clearLiveIns(); 871 addLiveIns(*MBB, NewLiveIns); 872 } 873 } 874 875 // See if any of the blocks in MergePotentials (which all have SuccBB as a 876 // successor, or all have no successor if it is null) can be tail-merged. 877 // If there is a successor, any blocks in MergePotentials that are not 878 // tail-merged and are not immediately before Succ must have an unconditional 879 // branch to Succ added (but the predecessor/successor lists need no 880 // adjustment). The lone predecessor of Succ that falls through into Succ, 881 // if any, is given in PredBB. 882 // MinCommonTailLength - Except for the special cases below, tail-merge if 883 // there are at least this many instructions in common. 884 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 885 MachineBasicBlock *PredBB, 886 unsigned MinCommonTailLength) { 887 bool MadeChange = false; 888 889 LLVM_DEBUG( 890 dbgs() << "\nTryTailMergeBlocks: "; 891 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs() 892 << printMBBReference(*MergePotentials[i].getBlock()) 893 << (i == e - 1 ? "" : ", "); 894 dbgs() << "\n"; if (SuccBB) { 895 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; 896 if (PredBB) 897 dbgs() << " which has fall-through from " 898 << printMBBReference(*PredBB) << "\n"; 899 } dbgs() << "Looking for common tails of at least " 900 << MinCommonTailLength << " instruction" 901 << (MinCommonTailLength == 1 ? "" : "s") << '\n';); 902 903 // Sort by hash value so that blocks with identical end sequences sort 904 // together. 905 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 906 907 // Walk through equivalence sets looking for actual exact matches. 908 while (MergePotentials.size() > 1) { 909 unsigned CurHash = MergePotentials.back().getHash(); 910 911 // Build SameTails, identifying the set of blocks with this hash code 912 // and with the maximum number of instructions in common. 913 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 914 MinCommonTailLength, 915 SuccBB, PredBB); 916 917 // If we didn't find any pair that has at least MinCommonTailLength 918 // instructions in common, remove all blocks with this hash code and retry. 919 if (SameTails.empty()) { 920 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 921 continue; 922 } 923 924 // If one of the blocks is the entire common tail (and is not the entry 925 // block/an EH pad, which we can't jump to), we can treat all blocks with 926 // this same tail at once. Use PredBB if that is one of the possibilities, 927 // as that will not introduce any extra branches. 928 MachineBasicBlock *EntryBB = 929 &MergePotentials.front().getBlock()->getParent()->front(); 930 unsigned commonTailIndex = SameTails.size(); 931 // If there are two blocks, check to see if one can be made to fall through 932 // into the other. 933 if (SameTails.size() == 2 && 934 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 935 SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad()) 936 commonTailIndex = 1; 937 else if (SameTails.size() == 2 && 938 SameTails[1].getBlock()->isLayoutSuccessor( 939 SameTails[0].getBlock()) && 940 SameTails[0].tailIsWholeBlock() && 941 !SameTails[0].getBlock()->isEHPad()) 942 commonTailIndex = 0; 943 else { 944 // Otherwise just pick one, favoring the fall-through predecessor if 945 // there is one. 946 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 947 MachineBasicBlock *MBB = SameTails[i].getBlock(); 948 if ((MBB == EntryBB || MBB->isEHPad()) && 949 SameTails[i].tailIsWholeBlock()) 950 continue; 951 if (MBB == PredBB) { 952 commonTailIndex = i; 953 break; 954 } 955 if (SameTails[i].tailIsWholeBlock()) 956 commonTailIndex = i; 957 } 958 } 959 960 if (commonTailIndex == SameTails.size() || 961 (SameTails[commonTailIndex].getBlock() == PredBB && 962 !SameTails[commonTailIndex].tailIsWholeBlock())) { 963 // None of the blocks consist entirely of the common tail. 964 // Split a block so that one does. 965 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 966 maxCommonTailLength, commonTailIndex)) { 967 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 968 continue; 969 } 970 } 971 972 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 973 974 // Recompute common tail MBB's edge weights and block frequency. 975 setCommonTailEdgeWeights(*MBB); 976 977 // Merge debug locations, MMOs and undef flags across identical instructions 978 // for common tail. 979 mergeCommonTails(commonTailIndex); 980 981 // MBB is common tail. Adjust all other BB's to jump to this one. 982 // Traversal must be forwards so erases work. 983 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) 984 << " for "); 985 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 986 if (commonTailIndex == i) 987 continue; 988 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) 989 << (i == e - 1 ? "" : ", ")); 990 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 991 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); 992 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 993 MergePotentials.erase(SameTails[i].getMPIter()); 994 } 995 LLVM_DEBUG(dbgs() << "\n"); 996 // We leave commonTailIndex in the worklist in case there are other blocks 997 // that match it with a smaller number of instructions. 998 MadeChange = true; 999 } 1000 return MadeChange; 1001 } 1002 1003 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 1004 bool MadeChange = false; 1005 if (!EnableTailMerge) 1006 return MadeChange; 1007 1008 // First find blocks with no successors. 1009 // Block placement may create new tail merging opportunities for these blocks. 1010 MergePotentials.clear(); 1011 for (MachineBasicBlock &MBB : MF) { 1012 if (MergePotentials.size() == TailMergeThreshold) 1013 break; 1014 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 1015 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 1016 } 1017 1018 // If this is a large problem, avoid visiting the same basic blocks 1019 // multiple times. 1020 if (MergePotentials.size() == TailMergeThreshold) 1021 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1022 TriedMerging.insert(MergePotentials[i].getBlock()); 1023 1024 // See if we can do any tail merging on those. 1025 if (MergePotentials.size() >= 2) 1026 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 1027 1028 // Look at blocks (IBB) with multiple predecessors (PBB). 1029 // We change each predecessor to a canonical form, by 1030 // (1) temporarily removing any unconditional branch from the predecessor 1031 // to IBB, and 1032 // (2) alter conditional branches so they branch to the other block 1033 // not IBB; this may require adding back an unconditional branch to IBB 1034 // later, where there wasn't one coming in. E.g. 1035 // Bcc IBB 1036 // fallthrough to QBB 1037 // here becomes 1038 // Bncc QBB 1039 // with a conceptual B to IBB after that, which never actually exists. 1040 // With those changes, we see whether the predecessors' tails match, 1041 // and merge them if so. We change things out of canonical form and 1042 // back to the way they were later in the process. (OptimizeBranches 1043 // would undo some of this, but we can't use it, because we'd get into 1044 // a compile-time infinite loop repeatedly doing and undoing the same 1045 // transformations.) 1046 1047 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1048 I != E; ++I) { 1049 if (I->pred_size() < 2) continue; 1050 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1051 MachineBasicBlock *IBB = &*I; 1052 MachineBasicBlock *PredBB = &*std::prev(I); 1053 MergePotentials.clear(); 1054 MachineLoop *ML; 1055 1056 // Bail if merging after placement and IBB is the loop header because 1057 // -- If merging predecessors that belong to the same loop as IBB, the 1058 // common tail of merged predecessors may become the loop top if block 1059 // placement is called again and the predecessors may branch to this common 1060 // tail and require more branches. This can be relaxed if 1061 // MachineBlockPlacement::findBestLoopTop is more flexible. 1062 // --If merging predecessors that do not belong to the same loop as IBB, the 1063 // loop info of IBB's loop and the other loops may be affected. Calling the 1064 // block placement again may make big change to the layout and eliminate the 1065 // reason to do tail merging here. 1066 if (AfterBlockPlacement && MLI) { 1067 ML = MLI->getLoopFor(IBB); 1068 if (ML && IBB == ML->getHeader()) 1069 continue; 1070 } 1071 1072 for (MachineBasicBlock *PBB : I->predecessors()) { 1073 if (MergePotentials.size() == TailMergeThreshold) 1074 break; 1075 1076 if (TriedMerging.count(PBB)) 1077 continue; 1078 1079 // Skip blocks that loop to themselves, can't tail merge these. 1080 if (PBB == IBB) 1081 continue; 1082 1083 // Visit each predecessor only once. 1084 if (!UniquePreds.insert(PBB).second) 1085 continue; 1086 1087 // Skip blocks which may jump to a landing pad. Can't tail merge these. 1088 if (PBB->hasEHPadSuccessor()) 1089 continue; 1090 1091 // After block placement, only consider predecessors that belong to the 1092 // same loop as IBB. The reason is the same as above when skipping loop 1093 // header. 1094 if (AfterBlockPlacement && MLI) 1095 if (ML != MLI->getLoopFor(PBB)) 1096 continue; 1097 1098 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1099 SmallVector<MachineOperand, 4> Cond; 1100 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1101 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1102 // branch. 1103 SmallVector<MachineOperand, 4> NewCond(Cond); 1104 if (!Cond.empty() && TBB == IBB) { 1105 if (TII->reverseBranchCondition(NewCond)) 1106 continue; 1107 // This is the QBB case described above 1108 if (!FBB) { 1109 auto Next = ++PBB->getIterator(); 1110 if (Next != MF.end()) 1111 FBB = &*Next; 1112 } 1113 } 1114 1115 // Remove the unconditional branch at the end, if any. 1116 if (TBB && (Cond.empty() || FBB)) { 1117 DebugLoc dl = PBB->findBranchDebugLoc(); 1118 TII->removeBranch(*PBB); 1119 if (!Cond.empty()) 1120 // reinsert conditional branch only, for now 1121 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1122 NewCond, dl); 1123 } 1124 1125 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1126 } 1127 } 1128 1129 // If this is a large problem, avoid visiting the same basic blocks multiple 1130 // times. 1131 if (MergePotentials.size() == TailMergeThreshold) 1132 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1133 TriedMerging.insert(MergePotentials[i].getBlock()); 1134 1135 if (MergePotentials.size() >= 2) 1136 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1137 1138 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1139 // result of removing blocks in TryTailMergeBlocks. 1140 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1141 if (MergePotentials.size() == 1 && 1142 MergePotentials.begin()->getBlock() != PredBB) 1143 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1144 } 1145 1146 return MadeChange; 1147 } 1148 1149 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1150 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1151 BlockFrequency AccumulatedMBBFreq; 1152 1153 // Aggregate edge frequency of successor edge j: 1154 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1155 // where bb is a basic block that is in SameTails. 1156 for (const auto &Src : SameTails) { 1157 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1158 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1159 AccumulatedMBBFreq += BlockFreq; 1160 1161 // It is not necessary to recompute edge weights if TailBB has less than two 1162 // successors. 1163 if (TailMBB.succ_size() <= 1) 1164 continue; 1165 1166 auto EdgeFreq = EdgeFreqLs.begin(); 1167 1168 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1169 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1170 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1171 } 1172 1173 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1174 1175 if (TailMBB.succ_size() <= 1) 1176 return; 1177 1178 auto SumEdgeFreq = 1179 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1180 .getFrequency(); 1181 auto EdgeFreq = EdgeFreqLs.begin(); 1182 1183 if (SumEdgeFreq > 0) { 1184 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1185 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1186 auto Prob = BranchProbability::getBranchProbability( 1187 EdgeFreq->getFrequency(), SumEdgeFreq); 1188 TailMBB.setSuccProbability(SuccI, Prob); 1189 } 1190 } 1191 } 1192 1193 //===----------------------------------------------------------------------===// 1194 // Branch Optimization 1195 //===----------------------------------------------------------------------===// 1196 1197 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1198 bool MadeChange = false; 1199 1200 // Make sure blocks are numbered in order 1201 MF.RenumberBlocks(); 1202 // Renumbering blocks alters EH scope membership, recalculate it. 1203 EHScopeMembership = getEHScopeMembership(MF); 1204 1205 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1206 I != E; ) { 1207 MachineBasicBlock *MBB = &*I++; 1208 MadeChange |= OptimizeBlock(MBB); 1209 1210 // If it is dead, remove it. 1211 if (MBB->pred_empty()) { 1212 RemoveDeadBlock(MBB); 1213 MadeChange = true; 1214 ++NumDeadBlocks; 1215 } 1216 } 1217 1218 return MadeChange; 1219 } 1220 1221 // Blocks should be considered empty if they contain only debug info; 1222 // else the debug info would affect codegen. 1223 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1224 return MBB->getFirstNonDebugInstr() == MBB->end(); 1225 } 1226 1227 // Blocks with only debug info and branches should be considered the same 1228 // as blocks with only branches. 1229 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1230 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1231 assert(I != MBB->end() && "empty block!"); 1232 return I->isBranch(); 1233 } 1234 1235 /// IsBetterFallthrough - Return true if it would be clearly better to 1236 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1237 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1238 /// result in infinite loops. 1239 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1240 MachineBasicBlock *MBB2) { 1241 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock"); 1242 1243 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1244 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1245 // optimize branches that branch to either a return block or an assert block 1246 // into a fallthrough to the return. 1247 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1248 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1249 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1250 return false; 1251 1252 // If there is a clear successor ordering we make sure that one block 1253 // will fall through to the next 1254 if (MBB1->isSuccessor(MBB2)) return true; 1255 if (MBB2->isSuccessor(MBB1)) return false; 1256 1257 return MBB2I->isCall() && !MBB1I->isCall(); 1258 } 1259 1260 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1261 /// instructions on the block. 1262 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1263 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1264 if (I != MBB.end() && I->isBranch()) 1265 return I->getDebugLoc(); 1266 return DebugLoc(); 1267 } 1268 1269 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, 1270 MachineBasicBlock &MBB, 1271 MachineBasicBlock &PredMBB) { 1272 auto InsertBefore = PredMBB.getFirstTerminator(); 1273 for (MachineInstr &MI : MBB.instrs()) 1274 if (MI.isDebugInstr()) { 1275 TII->duplicate(PredMBB, InsertBefore, MI); 1276 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: " 1277 << MI); 1278 } 1279 } 1280 1281 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, 1282 MachineBasicBlock &MBB, 1283 MachineBasicBlock &SuccMBB) { 1284 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); 1285 for (MachineInstr &MI : MBB.instrs()) 1286 if (MI.isDebugInstr()) { 1287 TII->duplicate(SuccMBB, InsertBefore, MI); 1288 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: " 1289 << MI); 1290 } 1291 } 1292 1293 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such 1294 // a basic block is removed we would lose the debug information unless we have 1295 // copied the information to a predecessor/successor. 1296 // 1297 // TODO: This function only handles some simple cases. An alternative would be 1298 // to run a heavier analysis, such as the LiveDebugValues pass, before we do 1299 // branch folding. 1300 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, 1301 MachineBasicBlock &MBB) { 1302 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); 1303 // If this MBB is the only predecessor of a successor it is legal to copy 1304 // DBG_VALUE instructions to the beginning of the successor. 1305 for (MachineBasicBlock *SuccBB : MBB.successors()) 1306 if (SuccBB->pred_size() == 1) 1307 copyDebugInfoToSuccessor(TII, MBB, *SuccBB); 1308 // If this MBB is the only successor of a predecessor it is legal to copy the 1309 // DBG_VALUE instructions to the end of the predecessor (just before the 1310 // terminators, assuming that the terminator isn't affecting the DBG_VALUE). 1311 for (MachineBasicBlock *PredBB : MBB.predecessors()) 1312 if (PredBB->succ_size() == 1) 1313 copyDebugInfoToPredecessor(TII, MBB, *PredBB); 1314 } 1315 1316 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1317 bool MadeChange = false; 1318 MachineFunction &MF = *MBB->getParent(); 1319 ReoptimizeBlock: 1320 1321 MachineFunction::iterator FallThrough = MBB->getIterator(); 1322 ++FallThrough; 1323 1324 // Make sure MBB and FallThrough belong to the same EH scope. 1325 bool SameEHScope = true; 1326 if (!EHScopeMembership.empty() && FallThrough != MF.end()) { 1327 auto MBBEHScope = EHScopeMembership.find(MBB); 1328 assert(MBBEHScope != EHScopeMembership.end()); 1329 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); 1330 assert(FallThroughEHScope != EHScopeMembership.end()); 1331 SameEHScope = MBBEHScope->second == FallThroughEHScope->second; 1332 } 1333 1334 // Analyze the branch in the current block. As a side-effect, this may cause 1335 // the block to become empty. 1336 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1337 SmallVector<MachineOperand, 4> CurCond; 1338 bool CurUnAnalyzable = 1339 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1340 1341 // If this block is empty, make everyone use its fall-through, not the block 1342 // explicitly. Landing pads should not do this since the landing-pad table 1343 // points to this block. Blocks with their addresses taken shouldn't be 1344 // optimized away. 1345 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1346 SameEHScope) { 1347 salvageDebugInfoFromEmptyBlock(TII, *MBB); 1348 // Dead block? Leave for cleanup later. 1349 if (MBB->pred_empty()) return MadeChange; 1350 1351 if (FallThrough == MF.end()) { 1352 // TODO: Simplify preds to not branch here if possible! 1353 } else if (FallThrough->isEHPad()) { 1354 // Don't rewrite to a landing pad fallthough. That could lead to the case 1355 // where a BB jumps to more than one landing pad. 1356 // TODO: Is it ever worth rewriting predecessors which don't already 1357 // jump to a landing pad, and so can safely jump to the fallthrough? 1358 } else if (MBB->isSuccessor(&*FallThrough)) { 1359 // Rewrite all predecessors of the old block to go to the fallthrough 1360 // instead. 1361 while (!MBB->pred_empty()) { 1362 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1363 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1364 } 1365 // If MBB was the target of a jump table, update jump tables to go to the 1366 // fallthrough instead. 1367 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1368 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1369 MadeChange = true; 1370 } 1371 return MadeChange; 1372 } 1373 1374 // Check to see if we can simplify the terminator of the block before this 1375 // one. 1376 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1377 1378 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1379 SmallVector<MachineOperand, 4> PriorCond; 1380 bool PriorUnAnalyzable = 1381 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1382 if (!PriorUnAnalyzable) { 1383 // If the previous branch is conditional and both conditions go to the same 1384 // destination, remove the branch, replacing it with an unconditional one or 1385 // a fall-through. 1386 if (PriorTBB && PriorTBB == PriorFBB) { 1387 DebugLoc dl = getBranchDebugLoc(PrevBB); 1388 TII->removeBranch(PrevBB); 1389 PriorCond.clear(); 1390 if (PriorTBB != MBB) 1391 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1392 MadeChange = true; 1393 ++NumBranchOpts; 1394 goto ReoptimizeBlock; 1395 } 1396 1397 // If the previous block unconditionally falls through to this block and 1398 // this block has no other predecessors, move the contents of this block 1399 // into the prior block. This doesn't usually happen when SimplifyCFG 1400 // has been used, but it can happen if tail merging splits a fall-through 1401 // predecessor of a block. 1402 // This has to check PrevBB->succ_size() because EH edges are ignored by 1403 // analyzeBranch. 1404 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1405 PrevBB.succ_size() == 1 && 1406 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1407 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1408 << "From MBB: " << *MBB); 1409 // Remove redundant DBG_VALUEs first. 1410 if (PrevBB.begin() != PrevBB.end()) { 1411 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1412 --PrevBBIter; 1413 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1414 // Check if DBG_VALUE at the end of PrevBB is identical to the 1415 // DBG_VALUE at the beginning of MBB. 1416 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1417 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { 1418 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1419 break; 1420 MachineInstr &DuplicateDbg = *MBBIter; 1421 ++MBBIter; -- PrevBBIter; 1422 DuplicateDbg.eraseFromParent(); 1423 } 1424 } 1425 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1426 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1427 assert(PrevBB.succ_empty()); 1428 PrevBB.transferSuccessors(MBB); 1429 MadeChange = true; 1430 return MadeChange; 1431 } 1432 1433 // If the previous branch *only* branches to *this* block (conditional or 1434 // not) remove the branch. 1435 if (PriorTBB == MBB && !PriorFBB) { 1436 TII->removeBranch(PrevBB); 1437 MadeChange = true; 1438 ++NumBranchOpts; 1439 goto ReoptimizeBlock; 1440 } 1441 1442 // If the prior block branches somewhere else on the condition and here if 1443 // the condition is false, remove the uncond second branch. 1444 if (PriorFBB == MBB) { 1445 DebugLoc dl = getBranchDebugLoc(PrevBB); 1446 TII->removeBranch(PrevBB); 1447 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1448 MadeChange = true; 1449 ++NumBranchOpts; 1450 goto ReoptimizeBlock; 1451 } 1452 1453 // If the prior block branches here on true and somewhere else on false, and 1454 // if the branch condition is reversible, reverse the branch to create a 1455 // fall-through. 1456 if (PriorTBB == MBB) { 1457 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1458 if (!TII->reverseBranchCondition(NewPriorCond)) { 1459 DebugLoc dl = getBranchDebugLoc(PrevBB); 1460 TII->removeBranch(PrevBB); 1461 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1462 MadeChange = true; 1463 ++NumBranchOpts; 1464 goto ReoptimizeBlock; 1465 } 1466 } 1467 1468 // If this block has no successors (e.g. it is a return block or ends with 1469 // a call to a no-return function like abort or __cxa_throw) and if the pred 1470 // falls through into this block, and if it would otherwise fall through 1471 // into the block after this, move this block to the end of the function. 1472 // 1473 // We consider it more likely that execution will stay in the function (e.g. 1474 // due to loops) than it is to exit it. This asserts in loops etc, moving 1475 // the assert condition out of the loop body. 1476 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1477 MachineFunction::iterator(PriorTBB) == FallThrough && 1478 !MBB->canFallThrough()) { 1479 bool DoTransform = true; 1480 1481 // We have to be careful that the succs of PredBB aren't both no-successor 1482 // blocks. If neither have successors and if PredBB is the second from 1483 // last block in the function, we'd just keep swapping the two blocks for 1484 // last. Only do the swap if one is clearly better to fall through than 1485 // the other. 1486 if (FallThrough == --MF.end() && 1487 !IsBetterFallthrough(PriorTBB, MBB)) 1488 DoTransform = false; 1489 1490 if (DoTransform) { 1491 // Reverse the branch so we will fall through on the previous true cond. 1492 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1493 if (!TII->reverseBranchCondition(NewPriorCond)) { 1494 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1495 << "To make fallthrough to: " << *PriorTBB << "\n"); 1496 1497 DebugLoc dl = getBranchDebugLoc(PrevBB); 1498 TII->removeBranch(PrevBB); 1499 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1500 1501 // Move this block to the end of the function. 1502 MBB->moveAfter(&MF.back()); 1503 MadeChange = true; 1504 ++NumBranchOpts; 1505 return MadeChange; 1506 } 1507 } 1508 } 1509 } 1510 1511 bool OptForSize = 1512 MF.getFunction().hasOptSize() || 1513 llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo); 1514 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) { 1515 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1516 // direction, thereby defeating careful block placement and regressing 1517 // performance. Therefore, only consider this for optsize functions. 1518 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1519 if (TII->isUnconditionalTailCall(TailCall)) { 1520 MachineBasicBlock *Pred = *MBB->pred_begin(); 1521 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1522 SmallVector<MachineOperand, 4> PredCond; 1523 bool PredAnalyzable = 1524 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1525 1526 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && 1527 PredTBB != PredFBB) { 1528 // The predecessor has a conditional branch to this block which consists 1529 // of only a tail call. Try to fold the tail call into the conditional 1530 // branch. 1531 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1532 // TODO: It would be nice if analyzeBranch() could provide a pointer 1533 // to the branch instruction so replaceBranchWithTailCall() doesn't 1534 // have to search for it. 1535 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1536 ++NumTailCalls; 1537 Pred->removeSuccessor(MBB); 1538 MadeChange = true; 1539 return MadeChange; 1540 } 1541 } 1542 // If the predecessor is falling through to this block, we could reverse 1543 // the branch condition and fold the tail call into that. However, after 1544 // that we might have to re-arrange the CFG to fall through to the other 1545 // block and there is a high risk of regressing code size rather than 1546 // improving it. 1547 } 1548 } 1549 1550 if (!CurUnAnalyzable) { 1551 // If this is a two-way branch, and the FBB branches to this block, reverse 1552 // the condition so the single-basic-block loop is faster. Instead of: 1553 // Loop: xxx; jcc Out; jmp Loop 1554 // we want: 1555 // Loop: xxx; jncc Loop; jmp Out 1556 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1557 SmallVector<MachineOperand, 4> NewCond(CurCond); 1558 if (!TII->reverseBranchCondition(NewCond)) { 1559 DebugLoc dl = getBranchDebugLoc(*MBB); 1560 TII->removeBranch(*MBB); 1561 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1562 MadeChange = true; 1563 ++NumBranchOpts; 1564 goto ReoptimizeBlock; 1565 } 1566 } 1567 1568 // If this branch is the only thing in its block, see if we can forward 1569 // other blocks across it. 1570 if (CurTBB && CurCond.empty() && !CurFBB && 1571 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1572 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1573 DebugLoc dl = getBranchDebugLoc(*MBB); 1574 // This block may contain just an unconditional branch. Because there can 1575 // be 'non-branch terminators' in the block, try removing the branch and 1576 // then seeing if the block is empty. 1577 TII->removeBranch(*MBB); 1578 // If the only things remaining in the block are debug info, remove these 1579 // as well, so this will behave the same as an empty block in non-debug 1580 // mode. 1581 if (IsEmptyBlock(MBB)) { 1582 // Make the block empty, losing the debug info (we could probably 1583 // improve this in some cases.) 1584 MBB->erase(MBB->begin(), MBB->end()); 1585 } 1586 // If this block is just an unconditional branch to CurTBB, we can 1587 // usually completely eliminate the block. The only case we cannot 1588 // completely eliminate the block is when the block before this one 1589 // falls through into MBB and we can't understand the prior block's branch 1590 // condition. 1591 if (MBB->empty()) { 1592 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1593 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1594 !PrevBB.isSuccessor(MBB)) { 1595 // If the prior block falls through into us, turn it into an 1596 // explicit branch to us to make updates simpler. 1597 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1598 PriorTBB != MBB && PriorFBB != MBB) { 1599 if (!PriorTBB) { 1600 assert(PriorCond.empty() && !PriorFBB && 1601 "Bad branch analysis"); 1602 PriorTBB = MBB; 1603 } else { 1604 assert(!PriorFBB && "Machine CFG out of date!"); 1605 PriorFBB = MBB; 1606 } 1607 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1608 TII->removeBranch(PrevBB); 1609 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1610 } 1611 1612 // Iterate through all the predecessors, revectoring each in-turn. 1613 size_t PI = 0; 1614 bool DidChange = false; 1615 bool HasBranchToSelf = false; 1616 while(PI != MBB->pred_size()) { 1617 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1618 if (PMBB == MBB) { 1619 // If this block has an uncond branch to itself, leave it. 1620 ++PI; 1621 HasBranchToSelf = true; 1622 } else { 1623 DidChange = true; 1624 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1625 // If this change resulted in PMBB ending in a conditional 1626 // branch where both conditions go to the same destination, 1627 // change this to an unconditional branch. 1628 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1629 SmallVector<MachineOperand, 4> NewCurCond; 1630 bool NewCurUnAnalyzable = TII->analyzeBranch( 1631 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1632 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1633 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1634 TII->removeBranch(*PMBB); 1635 NewCurCond.clear(); 1636 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1637 MadeChange = true; 1638 ++NumBranchOpts; 1639 } 1640 } 1641 } 1642 1643 // Change any jumptables to go to the new MBB. 1644 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1645 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1646 if (DidChange) { 1647 ++NumBranchOpts; 1648 MadeChange = true; 1649 if (!HasBranchToSelf) return MadeChange; 1650 } 1651 } 1652 } 1653 1654 // Add the branch back if the block is more than just an uncond branch. 1655 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1656 } 1657 } 1658 1659 // If the prior block doesn't fall through into this block, and if this 1660 // block doesn't fall through into some other block, see if we can find a 1661 // place to move this block where a fall-through will happen. 1662 if (!PrevBB.canFallThrough()) { 1663 // Now we know that there was no fall-through into this block, check to 1664 // see if it has a fall-through into its successor. 1665 bool CurFallsThru = MBB->canFallThrough(); 1666 1667 if (!MBB->isEHPad()) { 1668 // Check all the predecessors of this block. If one of them has no fall 1669 // throughs, move this block right after it. 1670 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1671 // Analyze the branch at the end of the pred. 1672 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1673 SmallVector<MachineOperand, 4> PredCond; 1674 if (PredBB != MBB && !PredBB->canFallThrough() && 1675 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1676 (!CurFallsThru || !CurTBB || !CurFBB) && 1677 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1678 // If the current block doesn't fall through, just move it. 1679 // If the current block can fall through and does not end with a 1680 // conditional branch, we need to append an unconditional jump to 1681 // the (current) next block. To avoid a possible compile-time 1682 // infinite loop, move blocks only backward in this case. 1683 // Also, if there are already 2 branches here, we cannot add a third; 1684 // this means we have the case 1685 // Bcc next 1686 // B elsewhere 1687 // next: 1688 if (CurFallsThru) { 1689 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1690 CurCond.clear(); 1691 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1692 } 1693 MBB->moveAfter(PredBB); 1694 MadeChange = true; 1695 goto ReoptimizeBlock; 1696 } 1697 } 1698 } 1699 1700 if (!CurFallsThru) { 1701 // Check all successors to see if we can move this block before it. 1702 for (MachineBasicBlock *SuccBB : MBB->successors()) { 1703 // Analyze the branch at the end of the block before the succ. 1704 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1705 1706 // If this block doesn't already fall-through to that successor, and if 1707 // the succ doesn't already have a block that can fall through into it, 1708 // and if the successor isn't an EH destination, we can arrange for the 1709 // fallthrough to happen. 1710 if (SuccBB != MBB && &*SuccPrev != MBB && 1711 !SuccPrev->canFallThrough() && !CurUnAnalyzable && 1712 !SuccBB->isEHPad()) { 1713 MBB->moveBefore(SuccBB); 1714 MadeChange = true; 1715 goto ReoptimizeBlock; 1716 } 1717 } 1718 1719 // Okay, there is no really great place to put this block. If, however, 1720 // the block before this one would be a fall-through if this block were 1721 // removed, move this block to the end of the function. There is no real 1722 // advantage in "falling through" to an EH block, so we don't want to 1723 // perform this transformation for that case. 1724 // 1725 // Also, Windows EH introduced the possibility of an arbitrary number of 1726 // successors to a given block. The analyzeBranch call does not consider 1727 // exception handling and so we can get in a state where a block 1728 // containing a call is followed by multiple EH blocks that would be 1729 // rotated infinitely at the end of the function if the transformation 1730 // below were performed for EH "FallThrough" blocks. Therefore, even if 1731 // that appears not to be happening anymore, we should assume that it is 1732 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1733 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1734 SmallVector<MachineOperand, 4> PrevCond; 1735 if (FallThrough != MF.end() && 1736 !FallThrough->isEHPad() && 1737 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1738 PrevBB.isSuccessor(&*FallThrough)) { 1739 MBB->moveAfter(&MF.back()); 1740 MadeChange = true; 1741 return MadeChange; 1742 } 1743 } 1744 } 1745 1746 return MadeChange; 1747 } 1748 1749 //===----------------------------------------------------------------------===// 1750 // Hoist Common Code 1751 //===----------------------------------------------------------------------===// 1752 1753 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1754 bool MadeChange = false; 1755 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1756 MachineBasicBlock *MBB = &*I++; 1757 MadeChange |= HoistCommonCodeInSuccs(MBB); 1758 } 1759 1760 return MadeChange; 1761 } 1762 1763 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1764 /// its 'true' successor. 1765 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1766 MachineBasicBlock *TrueBB) { 1767 for (MachineBasicBlock *SuccBB : BB->successors()) 1768 if (SuccBB != TrueBB) 1769 return SuccBB; 1770 return nullptr; 1771 } 1772 1773 template <class Container> 1774 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, 1775 Container &Set) { 1776 if (Register::isPhysicalRegister(Reg)) { 1777 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1778 Set.insert(*AI); 1779 } else { 1780 Set.insert(Reg); 1781 } 1782 } 1783 1784 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1785 /// in successors to. The location is usually just before the terminator, 1786 /// however if the terminator is a conditional branch and its previous 1787 /// instruction is the flag setting instruction, the previous instruction is 1788 /// the preferred location. This function also gathers uses and defs of the 1789 /// instructions from the insertion point to the end of the block. The data is 1790 /// used by HoistCommonCodeInSuccs to ensure safety. 1791 static 1792 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1793 const TargetInstrInfo *TII, 1794 const TargetRegisterInfo *TRI, 1795 SmallSet<unsigned,4> &Uses, 1796 SmallSet<unsigned,4> &Defs) { 1797 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1798 if (!TII->isUnpredicatedTerminator(*Loc)) 1799 return MBB->end(); 1800 1801 for (const MachineOperand &MO : Loc->operands()) { 1802 if (!MO.isReg()) 1803 continue; 1804 Register Reg = MO.getReg(); 1805 if (!Reg) 1806 continue; 1807 if (MO.isUse()) { 1808 addRegAndItsAliases(Reg, TRI, Uses); 1809 } else { 1810 if (!MO.isDead()) 1811 // Don't try to hoist code in the rare case the terminator defines a 1812 // register that is later used. 1813 return MBB->end(); 1814 1815 // If the terminator defines a register, make sure we don't hoist 1816 // the instruction whose def might be clobbered by the terminator. 1817 addRegAndItsAliases(Reg, TRI, Defs); 1818 } 1819 } 1820 1821 if (Uses.empty()) 1822 return Loc; 1823 // If the terminator is the only instruction in the block and Uses is not 1824 // empty (or we would have returned above), we can still safely hoist 1825 // instructions just before the terminator as long as the Defs/Uses are not 1826 // violated (which is checked in HoistCommonCodeInSuccs). 1827 if (Loc == MBB->begin()) 1828 return Loc; 1829 1830 // The terminator is probably a conditional branch, try not to separate the 1831 // branch from condition setting instruction. 1832 MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin()); 1833 1834 bool IsDef = false; 1835 for (const MachineOperand &MO : PI->operands()) { 1836 // If PI has a regmask operand, it is probably a call. Separate away. 1837 if (MO.isRegMask()) 1838 return Loc; 1839 if (!MO.isReg() || MO.isUse()) 1840 continue; 1841 Register Reg = MO.getReg(); 1842 if (!Reg) 1843 continue; 1844 if (Uses.count(Reg)) { 1845 IsDef = true; 1846 break; 1847 } 1848 } 1849 if (!IsDef) 1850 // The condition setting instruction is not just before the conditional 1851 // branch. 1852 return Loc; 1853 1854 // Be conservative, don't insert instruction above something that may have 1855 // side-effects. And since it's potentially bad to separate flag setting 1856 // instruction from the conditional branch, just abort the optimization 1857 // completely. 1858 // Also avoid moving code above predicated instruction since it's hard to 1859 // reason about register liveness with predicated instruction. 1860 bool DontMoveAcrossStore = true; 1861 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1862 return MBB->end(); 1863 1864 // Find out what registers are live. Note this routine is ignoring other live 1865 // registers which are only used by instructions in successor blocks. 1866 for (const MachineOperand &MO : PI->operands()) { 1867 if (!MO.isReg()) 1868 continue; 1869 Register Reg = MO.getReg(); 1870 if (!Reg) 1871 continue; 1872 if (MO.isUse()) { 1873 addRegAndItsAliases(Reg, TRI, Uses); 1874 } else { 1875 if (Uses.erase(Reg)) { 1876 if (Register::isPhysicalRegister(Reg)) { 1877 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1878 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1879 } 1880 } 1881 addRegAndItsAliases(Reg, TRI, Defs); 1882 } 1883 } 1884 1885 return PI; 1886 } 1887 1888 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1889 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1890 SmallVector<MachineOperand, 4> Cond; 1891 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1892 return false; 1893 1894 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1895 if (!FBB) 1896 // Malformed bcc? True and false blocks are the same? 1897 return false; 1898 1899 // Restrict the optimization to cases where MBB is the only predecessor, 1900 // it is an obvious win. 1901 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1902 return false; 1903 1904 // Find a suitable position to hoist the common instructions to. Also figure 1905 // out which registers are used or defined by instructions from the insertion 1906 // point to the end of the block. 1907 SmallSet<unsigned, 4> Uses, Defs; 1908 MachineBasicBlock::iterator Loc = 1909 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1910 if (Loc == MBB->end()) 1911 return false; 1912 1913 bool HasDups = false; 1914 SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet; 1915 MachineBasicBlock::iterator TIB = TBB->begin(); 1916 MachineBasicBlock::iterator FIB = FBB->begin(); 1917 MachineBasicBlock::iterator TIE = TBB->end(); 1918 MachineBasicBlock::iterator FIE = FBB->end(); 1919 while (TIB != TIE && FIB != FIE) { 1920 // Skip dbg_value instructions. These do not count. 1921 TIB = skipDebugInstructionsForward(TIB, TIE); 1922 FIB = skipDebugInstructionsForward(FIB, FIE); 1923 if (TIB == TIE || FIB == FIE) 1924 break; 1925 1926 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 1927 break; 1928 1929 if (TII->isPredicated(*TIB)) 1930 // Hard to reason about register liveness with predicated instruction. 1931 break; 1932 1933 bool IsSafe = true; 1934 for (MachineOperand &MO : TIB->operands()) { 1935 // Don't attempt to hoist instructions with register masks. 1936 if (MO.isRegMask()) { 1937 IsSafe = false; 1938 break; 1939 } 1940 if (!MO.isReg()) 1941 continue; 1942 Register Reg = MO.getReg(); 1943 if (!Reg) 1944 continue; 1945 if (MO.isDef()) { 1946 if (Uses.count(Reg)) { 1947 // Avoid clobbering a register that's used by the instruction at 1948 // the point of insertion. 1949 IsSafe = false; 1950 break; 1951 } 1952 1953 if (Defs.count(Reg) && !MO.isDead()) { 1954 // Don't hoist the instruction if the def would be clobber by the 1955 // instruction at the point insertion. FIXME: This is overly 1956 // conservative. It should be possible to hoist the instructions 1957 // in BB2 in the following example: 1958 // BB1: 1959 // r1, eflag = op1 r2, r3 1960 // brcc eflag 1961 // 1962 // BB2: 1963 // r1 = op2, ... 1964 // = op3, killed r1 1965 IsSafe = false; 1966 break; 1967 } 1968 } else if (!ActiveDefsSet.count(Reg)) { 1969 if (Defs.count(Reg)) { 1970 // Use is defined by the instruction at the point of insertion. 1971 IsSafe = false; 1972 break; 1973 } 1974 1975 if (MO.isKill() && Uses.count(Reg)) 1976 // Kills a register that's read by the instruction at the point of 1977 // insertion. Remove the kill marker. 1978 MO.setIsKill(false); 1979 } 1980 } 1981 if (!IsSafe) 1982 break; 1983 1984 bool DontMoveAcrossStore = true; 1985 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 1986 break; 1987 1988 // Remove kills from ActiveDefsSet, these registers had short live ranges. 1989 for (const MachineOperand &MO : TIB->operands()) { 1990 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1991 continue; 1992 Register Reg = MO.getReg(); 1993 if (!Reg) 1994 continue; 1995 if (!AllDefsSet.count(Reg)) { 1996 continue; 1997 } 1998 if (Register::isPhysicalRegister(Reg)) { 1999 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 2000 ActiveDefsSet.erase(*AI); 2001 } else { 2002 ActiveDefsSet.erase(Reg); 2003 } 2004 } 2005 2006 // Track local defs so we can update liveins. 2007 for (const MachineOperand &MO : TIB->operands()) { 2008 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 2009 continue; 2010 Register Reg = MO.getReg(); 2011 if (!Reg || Register::isVirtualRegister(Reg)) 2012 continue; 2013 addRegAndItsAliases(Reg, TRI, ActiveDefsSet); 2014 addRegAndItsAliases(Reg, TRI, AllDefsSet); 2015 } 2016 2017 HasDups = true; 2018 ++TIB; 2019 ++FIB; 2020 } 2021 2022 if (!HasDups) 2023 return false; 2024 2025 MBB->splice(Loc, TBB, TBB->begin(), TIB); 2026 FBB->erase(FBB->begin(), FIB); 2027 2028 if (UpdateLiveIns) { 2029 recomputeLiveIns(*TBB); 2030 recomputeLiveIns(*FBB); 2031 } 2032 2033 ++NumHoist; 2034 return true; 2035 } 2036