1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block.  This pass often results in dead MBB's, which
11 // it then removes.
12 //
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/CodeGen/Analysis.h"
29 #include "llvm/CodeGen/LivePhysRegs.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineModuleInfo.h"
40 #include "llvm/CodeGen/MachineOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/MachineSizeOpts.h"
43 #include "llvm/CodeGen/MBFIWrapper.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/MC/MCRegisterInfo.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetMachine.h"
63 #include <cassert>
64 #include <cstddef>
65 #include <iterator>
66 #include <numeric>
67 #include <vector>
68 
69 using namespace llvm;
70 
71 #define DEBUG_TYPE "branch-folder"
72 
73 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
74 STATISTIC(NumBranchOpts, "Number of branches optimized");
75 STATISTIC(NumTailMerge , "Number of block tails merged");
76 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
77 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
78 
79 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
80                               cl::init(cl::BOU_UNSET), cl::Hidden);
81 
82 // Throttle for huge numbers of predecessors (compile speed problems)
83 static cl::opt<unsigned>
84 TailMergeThreshold("tail-merge-threshold",
85           cl::desc("Max number of predecessors to consider tail merging"),
86           cl::init(150), cl::Hidden);
87 
88 // Heuristic for tail merging (and, inversely, tail duplication).
89 // TODO: This should be replaced with a target query.
90 static cl::opt<unsigned>
91 TailMergeSize("tail-merge-size",
92               cl::desc("Min number of instructions to consider tail merging"),
93               cl::init(3), cl::Hidden);
94 
95 namespace {
96 
97   /// BranchFolderPass - Wrap branch folder in a machine function pass.
98   class BranchFolderPass : public MachineFunctionPass {
99   public:
100     static char ID;
101 
102     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
103 
104     bool runOnMachineFunction(MachineFunction &MF) override;
105 
106     void getAnalysisUsage(AnalysisUsage &AU) const override {
107       AU.addRequired<MachineBlockFrequencyInfo>();
108       AU.addRequired<MachineBranchProbabilityInfo>();
109       AU.addRequired<ProfileSummaryInfoWrapperPass>();
110       AU.addRequired<TargetPassConfig>();
111       MachineFunctionPass::getAnalysisUsage(AU);
112     }
113   };
114 
115 } // end anonymous namespace
116 
117 char BranchFolderPass::ID = 0;
118 
119 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
120 
121 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
122                 "Control Flow Optimizer", false, false)
123 
124 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
125   if (skipFunction(MF.getFunction()))
126     return false;
127 
128   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
129   // TailMerge can create jump into if branches that make CFG irreducible for
130   // HW that requires structurized CFG.
131   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
132                          PassConfig->getEnableTailMerge();
133   MBFIWrapper MBBFreqInfo(
134       getAnalysis<MachineBlockFrequencyInfo>());
135   BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
136                       getAnalysis<MachineBranchProbabilityInfo>(),
137                       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
138   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
139   return Folder.OptimizeFunction(
140       MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(),
141       MMIWP ? &MMIWP->getMMI() : nullptr);
142 }
143 
144 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
145                            MBFIWrapper &FreqInfo,
146                            const MachineBranchProbabilityInfo &ProbInfo,
147                            ProfileSummaryInfo *PSI,
148                            unsigned MinTailLength)
149     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
150       MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
151   if (MinCommonTailLength == 0)
152     MinCommonTailLength = TailMergeSize;
153   switch (FlagEnableTailMerge) {
154   case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
155   case cl::BOU_TRUE: EnableTailMerge = true; break;
156   case cl::BOU_FALSE: EnableTailMerge = false; break;
157   }
158 }
159 
160 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
161   assert(MBB->pred_empty() && "MBB must be dead!");
162   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
163 
164   MachineFunction *MF = MBB->getParent();
165   // drop all successors.
166   while (!MBB->succ_empty())
167     MBB->removeSuccessor(MBB->succ_end()-1);
168 
169   // Avoid matching if this pointer gets reused.
170   TriedMerging.erase(MBB);
171 
172   // Update call site info.
173   std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
174     if (MI.shouldUpdateCallSiteInfo())
175       MF->eraseCallSiteInfo(&MI);
176   });
177   // Remove the block.
178   MF->erase(MBB);
179   EHScopeMembership.erase(MBB);
180   if (MLI)
181     MLI->removeBlock(MBB);
182 }
183 
184 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
185                                     const TargetInstrInfo *tii,
186                                     const TargetRegisterInfo *tri,
187                                     MachineModuleInfo *mmi,
188                                     MachineLoopInfo *mli, bool AfterPlacement) {
189   if (!tii) return false;
190 
191   TriedMerging.clear();
192 
193   MachineRegisterInfo &MRI = MF.getRegInfo();
194   AfterBlockPlacement = AfterPlacement;
195   TII = tii;
196   TRI = tri;
197   MMI = mmi;
198   MLI = mli;
199   this->MRI = &MRI;
200 
201   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
202   if (!UpdateLiveIns)
203     MRI.invalidateLiveness();
204 
205   bool MadeChange = false;
206 
207   // Recalculate EH scope membership.
208   EHScopeMembership = getEHScopeMembership(MF);
209 
210   bool MadeChangeThisIteration = true;
211   while (MadeChangeThisIteration) {
212     MadeChangeThisIteration    = TailMergeBlocks(MF);
213     // No need to clean up if tail merging does not change anything after the
214     // block placement.
215     if (!AfterBlockPlacement || MadeChangeThisIteration)
216       MadeChangeThisIteration |= OptimizeBranches(MF);
217     if (EnableHoistCommonCode)
218       MadeChangeThisIteration |= HoistCommonCode(MF);
219     MadeChange |= MadeChangeThisIteration;
220   }
221 
222   // See if any jump tables have become dead as the code generator
223   // did its thing.
224   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
225   if (!JTI)
226     return MadeChange;
227 
228   // Walk the function to find jump tables that are live.
229   BitVector JTIsLive(JTI->getJumpTables().size());
230   for (const MachineBasicBlock &BB : MF) {
231     for (const MachineInstr &I : BB)
232       for (const MachineOperand &Op : I.operands()) {
233         if (!Op.isJTI()) continue;
234 
235         // Remember that this JT is live.
236         JTIsLive.set(Op.getIndex());
237       }
238   }
239 
240   // Finally, remove dead jump tables.  This happens when the
241   // indirect jump was unreachable (and thus deleted).
242   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
243     if (!JTIsLive.test(i)) {
244       JTI->RemoveJumpTable(i);
245       MadeChange = true;
246     }
247 
248   return MadeChange;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //  Tail Merging of Blocks
253 //===----------------------------------------------------------------------===//
254 
255 /// HashMachineInstr - Compute a hash value for MI and its operands.
256 static unsigned HashMachineInstr(const MachineInstr &MI) {
257   unsigned Hash = MI.getOpcode();
258   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
259     const MachineOperand &Op = MI.getOperand(i);
260 
261     // Merge in bits from the operand if easy. We can't use MachineOperand's
262     // hash_code here because it's not deterministic and we sort by hash value
263     // later.
264     unsigned OperandHash = 0;
265     switch (Op.getType()) {
266     case MachineOperand::MO_Register:
267       OperandHash = Op.getReg();
268       break;
269     case MachineOperand::MO_Immediate:
270       OperandHash = Op.getImm();
271       break;
272     case MachineOperand::MO_MachineBasicBlock:
273       OperandHash = Op.getMBB()->getNumber();
274       break;
275     case MachineOperand::MO_FrameIndex:
276     case MachineOperand::MO_ConstantPoolIndex:
277     case MachineOperand::MO_JumpTableIndex:
278       OperandHash = Op.getIndex();
279       break;
280     case MachineOperand::MO_GlobalAddress:
281     case MachineOperand::MO_ExternalSymbol:
282       // Global address / external symbol are too hard, don't bother, but do
283       // pull in the offset.
284       OperandHash = Op.getOffset();
285       break;
286     default:
287       break;
288     }
289 
290     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
291   }
292   return Hash;
293 }
294 
295 /// HashEndOfMBB - Hash the last instruction in the MBB.
296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
297   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
298   if (I == MBB.end())
299     return 0;
300 
301   return HashMachineInstr(*I);
302 }
303 
304 /// Whether MI should be counted as an instruction when calculating common tail.
305 static bool countsAsInstruction(const MachineInstr &MI) {
306   return !(MI.isDebugInstr() || MI.isCFIInstruction());
307 }
308 
309 /// Iterate backwards from the given iterator \p I, towards the beginning of the
310 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
311 /// pointing to that MI. If no such MI is found, return the end iterator.
312 static MachineBasicBlock::iterator
313 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
314                                 MachineBasicBlock *MBB) {
315   while (I != MBB->begin()) {
316     --I;
317     if (countsAsInstruction(*I))
318       return I;
319   }
320   return MBB->end();
321 }
322 
323 /// Given two machine basic blocks, return the number of instructions they
324 /// actually have in common together at their end. If a common tail is found (at
325 /// least by one instruction), then iterators for the first shared instruction
326 /// in each block are returned as well.
327 ///
328 /// Non-instructions according to countsAsInstruction are ignored.
329 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
330                                         MachineBasicBlock *MBB2,
331                                         MachineBasicBlock::iterator &I1,
332                                         MachineBasicBlock::iterator &I2) {
333   MachineBasicBlock::iterator MBBI1 = MBB1->end();
334   MachineBasicBlock::iterator MBBI2 = MBB2->end();
335 
336   unsigned TailLen = 0;
337   while (true) {
338     MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
339     MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
340     if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
341       break;
342     if (!MBBI1->isIdenticalTo(*MBBI2) ||
343         // FIXME: This check is dubious. It's used to get around a problem where
344         // people incorrectly expect inline asm directives to remain in the same
345         // relative order. This is untenable because normal compiler
346         // optimizations (like this one) may reorder and/or merge these
347         // directives.
348         MBBI1->isInlineAsm()) {
349       break;
350     }
351     ++TailLen;
352     I1 = MBBI1;
353     I2 = MBBI2;
354   }
355 
356   return TailLen;
357 }
358 
359 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
360                                            MachineBasicBlock &NewDest) {
361   if (UpdateLiveIns) {
362     // OldInst should always point to an instruction.
363     MachineBasicBlock &OldMBB = *OldInst->getParent();
364     LiveRegs.clear();
365     LiveRegs.addLiveOuts(OldMBB);
366     // Move backward to the place where will insert the jump.
367     MachineBasicBlock::iterator I = OldMBB.end();
368     do {
369       --I;
370       LiveRegs.stepBackward(*I);
371     } while (I != OldInst);
372 
373     // Merging the tails may have switched some undef operand to non-undef ones.
374     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
375     // register.
376     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
377       // We computed the liveins with computeLiveIn earlier and should only see
378       // full registers:
379       assert(P.LaneMask == LaneBitmask::getAll() &&
380              "Can only handle full register.");
381       MCPhysReg Reg = P.PhysReg;
382       if (!LiveRegs.available(*MRI, Reg))
383         continue;
384       DebugLoc DL;
385       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
386     }
387   }
388 
389   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
390   ++NumTailMerge;
391 }
392 
393 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
394                                             MachineBasicBlock::iterator BBI1,
395                                             const BasicBlock *BB) {
396   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
397     return nullptr;
398 
399   MachineFunction &MF = *CurMBB.getParent();
400 
401   // Create the fall-through block.
402   MachineFunction::iterator MBBI = CurMBB.getIterator();
403   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
404   CurMBB.getParent()->insert(++MBBI, NewMBB);
405 
406   // Move all the successors of this block to the specified block.
407   NewMBB->transferSuccessors(&CurMBB);
408 
409   // Add an edge from CurMBB to NewMBB for the fall-through.
410   CurMBB.addSuccessor(NewMBB);
411 
412   // Splice the code over.
413   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
414 
415   // NewMBB belongs to the same loop as CurMBB.
416   if (MLI)
417     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
418       ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
419 
420   // NewMBB inherits CurMBB's block frequency.
421   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
422 
423   if (UpdateLiveIns)
424     computeAndAddLiveIns(LiveRegs, *NewMBB);
425 
426   // Add the new block to the EH scope.
427   const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
428   if (EHScopeI != EHScopeMembership.end()) {
429     auto n = EHScopeI->second;
430     EHScopeMembership[NewMBB] = n;
431   }
432 
433   return NewMBB;
434 }
435 
436 /// EstimateRuntime - Make a rough estimate for how long it will take to run
437 /// the specified code.
438 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
439                                 MachineBasicBlock::iterator E) {
440   unsigned Time = 0;
441   for (; I != E; ++I) {
442     if (!countsAsInstruction(*I))
443       continue;
444     if (I->isCall())
445       Time += 10;
446     else if (I->mayLoadOrStore())
447       Time += 2;
448     else
449       ++Time;
450   }
451   return Time;
452 }
453 
454 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
455 // branches temporarily for tail merging).  In the case where CurMBB ends
456 // with a conditional branch to the next block, optimize by reversing the
457 // test and conditionally branching to SuccMBB instead.
458 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
459                     const TargetInstrInfo *TII) {
460   MachineFunction *MF = CurMBB->getParent();
461   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
462   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
463   SmallVector<MachineOperand, 4> Cond;
464   DebugLoc dl = CurMBB->findBranchDebugLoc();
465   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
466     MachineBasicBlock *NextBB = &*I;
467     if (TBB == NextBB && !Cond.empty() && !FBB) {
468       if (!TII->reverseBranchCondition(Cond)) {
469         TII->removeBranch(*CurMBB);
470         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
471         return;
472       }
473     }
474   }
475   TII->insertBranch(*CurMBB, SuccBB, nullptr,
476                     SmallVector<MachineOperand, 0>(), dl);
477 }
478 
479 bool
480 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
481   if (getHash() < o.getHash())
482     return true;
483   if (getHash() > o.getHash())
484     return false;
485   if (getBlock()->getNumber() < o.getBlock()->getNumber())
486     return true;
487   if (getBlock()->getNumber() > o.getBlock()->getNumber())
488     return false;
489   // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
490   // an object with itself.
491 #ifndef _GLIBCXX_DEBUG
492   llvm_unreachable("Predecessor appears twice");
493 #else
494   return false;
495 #endif
496 }
497 
498 /// CountTerminators - Count the number of terminators in the given
499 /// block and set I to the position of the first non-terminator, if there
500 /// is one, or MBB->end() otherwise.
501 static unsigned CountTerminators(MachineBasicBlock *MBB,
502                                  MachineBasicBlock::iterator &I) {
503   I = MBB->end();
504   unsigned NumTerms = 0;
505   while (true) {
506     if (I == MBB->begin()) {
507       I = MBB->end();
508       break;
509     }
510     --I;
511     if (!I->isTerminator()) break;
512     ++NumTerms;
513   }
514   return NumTerms;
515 }
516 
517 /// A no successor, non-return block probably ends in unreachable and is cold.
518 /// Also consider a block that ends in an indirect branch to be a return block,
519 /// since many targets use plain indirect branches to return.
520 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
521   if (!MBB->succ_empty())
522     return false;
523   if (MBB->empty())
524     return true;
525   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
526 }
527 
528 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
529 /// and decide if it would be profitable to merge those tails.  Return the
530 /// length of the common tail and iterators to the first common instruction
531 /// in each block.
532 /// MBB1, MBB2      The blocks to check
533 /// MinCommonTailLength  Minimum size of tail block to be merged.
534 /// CommonTailLen   Out parameter to record the size of the shared tail between
535 ///                 MBB1 and MBB2
536 /// I1, I2          Iterator references that will be changed to point to the first
537 ///                 instruction in the common tail shared by MBB1,MBB2
538 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
539 ///                 relative to SuccBB
540 /// PredBB          The layout predecessor of SuccBB, if any.
541 /// EHScopeMembership  map from block to EH scope #.
542 /// AfterPlacement  True if we are merging blocks after layout. Stricter
543 ///                 thresholds apply to prevent undoing tail-duplication.
544 static bool
545 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
546                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
547                   MachineBasicBlock::iterator &I1,
548                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
549                   MachineBasicBlock *PredBB,
550                   DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
551                   bool AfterPlacement,
552                   MBFIWrapper &MBBFreqInfo,
553                   ProfileSummaryInfo *PSI) {
554   // It is never profitable to tail-merge blocks from two different EH scopes.
555   if (!EHScopeMembership.empty()) {
556     auto EHScope1 = EHScopeMembership.find(MBB1);
557     assert(EHScope1 != EHScopeMembership.end());
558     auto EHScope2 = EHScopeMembership.find(MBB2);
559     assert(EHScope2 != EHScopeMembership.end());
560     if (EHScope1->second != EHScope2->second)
561       return false;
562   }
563 
564   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
565   if (CommonTailLen == 0)
566     return false;
567   LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
568                     << " and " << printMBBReference(*MBB2) << " is "
569                     << CommonTailLen << '\n');
570 
571   // Move the iterators to the beginning of the MBB if we only got debug
572   // instructions before the tail. This is to avoid splitting a block when we
573   // only got debug instructions before the tail (to be invariant on -g).
574   if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end()) == I1)
575     I1 = MBB1->begin();
576   if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end()) == I2)
577     I2 = MBB2->begin();
578 
579   bool FullBlockTail1 = I1 == MBB1->begin();
580   bool FullBlockTail2 = I2 == MBB2->begin();
581 
582   // It's almost always profitable to merge any number of non-terminator
583   // instructions with the block that falls through into the common successor.
584   // This is true only for a single successor. For multiple successors, we are
585   // trading a conditional branch for an unconditional one.
586   // TODO: Re-visit successor size for non-layout tail merging.
587   if ((MBB1 == PredBB || MBB2 == PredBB) &&
588       (!AfterPlacement || MBB1->succ_size() == 1)) {
589     MachineBasicBlock::iterator I;
590     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
591     if (CommonTailLen > NumTerms)
592       return true;
593   }
594 
595   // If these are identical non-return blocks with no successors, merge them.
596   // Such blocks are typically cold calls to noreturn functions like abort, and
597   // are unlikely to become a fallthrough target after machine block placement.
598   // Tail merging these blocks is unlikely to create additional unconditional
599   // branches, and will reduce the size of this cold code.
600   if (FullBlockTail1 && FullBlockTail2 &&
601       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
602     return true;
603 
604   // If one of the blocks can be completely merged and happens to be in
605   // a position where the other could fall through into it, merge any number
606   // of instructions, because it can be done without a branch.
607   // TODO: If the blocks are not adjacent, move one of them so that they are?
608   if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
609     return true;
610   if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
611     return true;
612 
613   // If both blocks are identical and end in a branch, merge them unless they
614   // both have a fallthrough predecessor and successor.
615   // We can only do this after block placement because it depends on whether
616   // there are fallthroughs, and we don't know until after layout.
617   if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
618     auto BothFallThrough = [](MachineBasicBlock *MBB) {
619       if (MBB->succ_size() != 0 && !MBB->canFallThrough())
620         return false;
621       MachineFunction::iterator I(MBB);
622       MachineFunction *MF = MBB->getParent();
623       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
624     };
625     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
626       return true;
627   }
628 
629   // If both blocks have an unconditional branch temporarily stripped out,
630   // count that as an additional common instruction for the following
631   // heuristics. This heuristic is only accurate for single-succ blocks, so to
632   // make sure that during layout merging and duplicating don't crash, we check
633   // for that when merging during layout.
634   unsigned EffectiveTailLen = CommonTailLen;
635   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
636       (MBB1->succ_size() == 1 || !AfterPlacement) &&
637       !MBB1->back().isBarrier() &&
638       !MBB2->back().isBarrier())
639     ++EffectiveTailLen;
640 
641   // Check if the common tail is long enough to be worthwhile.
642   if (EffectiveTailLen >= MinCommonTailLength)
643     return true;
644 
645   // If we are optimizing for code size, 2 instructions in common is enough if
646   // we don't have to split a block.  At worst we will be introducing 1 new
647   // branch instruction, which is likely to be smaller than the 2
648   // instructions that would be deleted in the merge.
649   MachineFunction *MF = MBB1->getParent();
650   bool OptForSize =
651       MF->getFunction().hasOptSize() ||
652       (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
653        llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo));
654   return EffectiveTailLen >= 2 && OptForSize &&
655          (FullBlockTail1 || FullBlockTail2);
656 }
657 
658 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
659                                         unsigned MinCommonTailLength,
660                                         MachineBasicBlock *SuccBB,
661                                         MachineBasicBlock *PredBB) {
662   unsigned maxCommonTailLength = 0U;
663   SameTails.clear();
664   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
665   MPIterator HighestMPIter = std::prev(MergePotentials.end());
666   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
667                   B = MergePotentials.begin();
668        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
669     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
670       unsigned CommonTailLen;
671       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
672                             MinCommonTailLength,
673                             CommonTailLen, TrialBBI1, TrialBBI2,
674                             SuccBB, PredBB,
675                             EHScopeMembership,
676                             AfterBlockPlacement, MBBFreqInfo, PSI)) {
677         if (CommonTailLen > maxCommonTailLength) {
678           SameTails.clear();
679           maxCommonTailLength = CommonTailLen;
680           HighestMPIter = CurMPIter;
681           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
682         }
683         if (HighestMPIter == CurMPIter &&
684             CommonTailLen == maxCommonTailLength)
685           SameTails.push_back(SameTailElt(I, TrialBBI2));
686       }
687       if (I == B)
688         break;
689     }
690   }
691   return maxCommonTailLength;
692 }
693 
694 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
695                                         MachineBasicBlock *SuccBB,
696                                         MachineBasicBlock *PredBB) {
697   MPIterator CurMPIter, B;
698   for (CurMPIter = std::prev(MergePotentials.end()),
699       B = MergePotentials.begin();
700        CurMPIter->getHash() == CurHash; --CurMPIter) {
701     // Put the unconditional branch back, if we need one.
702     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
703     if (SuccBB && CurMBB != PredBB)
704       FixTail(CurMBB, SuccBB, TII);
705     if (CurMPIter == B)
706       break;
707   }
708   if (CurMPIter->getHash() != CurHash)
709     CurMPIter++;
710   MergePotentials.erase(CurMPIter, MergePotentials.end());
711 }
712 
713 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
714                                              MachineBasicBlock *SuccBB,
715                                              unsigned maxCommonTailLength,
716                                              unsigned &commonTailIndex) {
717   commonTailIndex = 0;
718   unsigned TimeEstimate = ~0U;
719   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
720     // Use PredBB if possible; that doesn't require a new branch.
721     if (SameTails[i].getBlock() == PredBB) {
722       commonTailIndex = i;
723       break;
724     }
725     // Otherwise, make a (fairly bogus) choice based on estimate of
726     // how long it will take the various blocks to execute.
727     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
728                                  SameTails[i].getTailStartPos());
729     if (t <= TimeEstimate) {
730       TimeEstimate = t;
731       commonTailIndex = i;
732     }
733   }
734 
735   MachineBasicBlock::iterator BBI =
736     SameTails[commonTailIndex].getTailStartPos();
737   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
738 
739   LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
740                     << maxCommonTailLength);
741 
742   // If the split block unconditionally falls-thru to SuccBB, it will be
743   // merged. In control flow terms it should then take SuccBB's name. e.g. If
744   // SuccBB is an inner loop, the common tail is still part of the inner loop.
745   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
746     SuccBB->getBasicBlock() : MBB->getBasicBlock();
747   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
748   if (!newMBB) {
749     LLVM_DEBUG(dbgs() << "... failed!");
750     return false;
751   }
752 
753   SameTails[commonTailIndex].setBlock(newMBB);
754   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
755 
756   // If we split PredBB, newMBB is the new predecessor.
757   if (PredBB == MBB)
758     PredBB = newMBB;
759 
760   return true;
761 }
762 
763 static void
764 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
765                 MachineBasicBlock &MBBCommon) {
766   MachineBasicBlock *MBB = MBBIStartPos->getParent();
767   // Note CommonTailLen does not necessarily matches the size of
768   // the common BB nor all its instructions because of debug
769   // instructions differences.
770   unsigned CommonTailLen = 0;
771   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
772     ++CommonTailLen;
773 
774   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
775   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
776   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
777   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
778 
779   while (CommonTailLen--) {
780     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
781     (void)MBBIE;
782 
783     if (!countsAsInstruction(*MBBI)) {
784       ++MBBI;
785       continue;
786     }
787 
788     while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
789       ++MBBICommon;
790 
791     assert(MBBICommon != MBBIECommon &&
792            "Reached BB end within common tail length!");
793     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
794 
795     // Merge MMOs from memory operations in the common block.
796     if (MBBICommon->mayLoadOrStore())
797       MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
798     // Drop undef flags if they aren't present in all merged instructions.
799     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
800       MachineOperand &MO = MBBICommon->getOperand(I);
801       if (MO.isReg() && MO.isUndef()) {
802         const MachineOperand &OtherMO = MBBI->getOperand(I);
803         if (!OtherMO.isUndef())
804           MO.setIsUndef(false);
805       }
806     }
807 
808     ++MBBI;
809     ++MBBICommon;
810   }
811 }
812 
813 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
814   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
815 
816   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
817   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
818     if (i != commonTailIndex) {
819       NextCommonInsts[i] = SameTails[i].getTailStartPos();
820       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
821     } else {
822       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
823           "MBB is not a common tail only block");
824     }
825   }
826 
827   for (auto &MI : *MBB) {
828     if (!countsAsInstruction(MI))
829       continue;
830     DebugLoc DL = MI.getDebugLoc();
831     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
832       if (i == commonTailIndex)
833         continue;
834 
835       auto &Pos = NextCommonInsts[i];
836       assert(Pos != SameTails[i].getBlock()->end() &&
837           "Reached BB end within common tail");
838       while (!countsAsInstruction(*Pos)) {
839         ++Pos;
840         assert(Pos != SameTails[i].getBlock()->end() &&
841             "Reached BB end within common tail");
842       }
843       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
844       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
845       NextCommonInsts[i] = ++Pos;
846     }
847     MI.setDebugLoc(DL);
848   }
849 
850   if (UpdateLiveIns) {
851     LivePhysRegs NewLiveIns(*TRI);
852     computeLiveIns(NewLiveIns, *MBB);
853     LiveRegs.init(*TRI);
854 
855     // The flag merging may lead to some register uses no longer using the
856     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
857     for (MachineBasicBlock *Pred : MBB->predecessors()) {
858       LiveRegs.clear();
859       LiveRegs.addLiveOuts(*Pred);
860       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
861       for (unsigned Reg : NewLiveIns) {
862         if (!LiveRegs.available(*MRI, Reg))
863           continue;
864         DebugLoc DL;
865         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
866                 Reg);
867       }
868     }
869 
870     MBB->clearLiveIns();
871     addLiveIns(*MBB, NewLiveIns);
872   }
873 }
874 
875 // See if any of the blocks in MergePotentials (which all have SuccBB as a
876 // successor, or all have no successor if it is null) can be tail-merged.
877 // If there is a successor, any blocks in MergePotentials that are not
878 // tail-merged and are not immediately before Succ must have an unconditional
879 // branch to Succ added (but the predecessor/successor lists need no
880 // adjustment). The lone predecessor of Succ that falls through into Succ,
881 // if any, is given in PredBB.
882 // MinCommonTailLength - Except for the special cases below, tail-merge if
883 // there are at least this many instructions in common.
884 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
885                                       MachineBasicBlock *PredBB,
886                                       unsigned MinCommonTailLength) {
887   bool MadeChange = false;
888 
889   LLVM_DEBUG(
890       dbgs() << "\nTryTailMergeBlocks: ";
891       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
892       << printMBBReference(*MergePotentials[i].getBlock())
893       << (i == e - 1 ? "" : ", ");
894       dbgs() << "\n"; if (SuccBB) {
895         dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
896         if (PredBB)
897           dbgs() << "  which has fall-through from "
898                  << printMBBReference(*PredBB) << "\n";
899       } dbgs() << "Looking for common tails of at least "
900                << MinCommonTailLength << " instruction"
901                << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
902 
903   // Sort by hash value so that blocks with identical end sequences sort
904   // together.
905   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
906 
907   // Walk through equivalence sets looking for actual exact matches.
908   while (MergePotentials.size() > 1) {
909     unsigned CurHash = MergePotentials.back().getHash();
910 
911     // Build SameTails, identifying the set of blocks with this hash code
912     // and with the maximum number of instructions in common.
913     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
914                                                     MinCommonTailLength,
915                                                     SuccBB, PredBB);
916 
917     // If we didn't find any pair that has at least MinCommonTailLength
918     // instructions in common, remove all blocks with this hash code and retry.
919     if (SameTails.empty()) {
920       RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
921       continue;
922     }
923 
924     // If one of the blocks is the entire common tail (and is not the entry
925     // block/an EH pad, which we can't jump to), we can treat all blocks with
926     // this same tail at once.  Use PredBB if that is one of the possibilities,
927     // as that will not introduce any extra branches.
928     MachineBasicBlock *EntryBB =
929         &MergePotentials.front().getBlock()->getParent()->front();
930     unsigned commonTailIndex = SameTails.size();
931     // If there are two blocks, check to see if one can be made to fall through
932     // into the other.
933     if (SameTails.size() == 2 &&
934         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
935         SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad())
936       commonTailIndex = 1;
937     else if (SameTails.size() == 2 &&
938              SameTails[1].getBlock()->isLayoutSuccessor(
939                  SameTails[0].getBlock()) &&
940              SameTails[0].tailIsWholeBlock() &&
941              !SameTails[0].getBlock()->isEHPad())
942       commonTailIndex = 0;
943     else {
944       // Otherwise just pick one, favoring the fall-through predecessor if
945       // there is one.
946       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
947         MachineBasicBlock *MBB = SameTails[i].getBlock();
948         if ((MBB == EntryBB || MBB->isEHPad()) &&
949             SameTails[i].tailIsWholeBlock())
950           continue;
951         if (MBB == PredBB) {
952           commonTailIndex = i;
953           break;
954         }
955         if (SameTails[i].tailIsWholeBlock())
956           commonTailIndex = i;
957       }
958     }
959 
960     if (commonTailIndex == SameTails.size() ||
961         (SameTails[commonTailIndex].getBlock() == PredBB &&
962          !SameTails[commonTailIndex].tailIsWholeBlock())) {
963       // None of the blocks consist entirely of the common tail.
964       // Split a block so that one does.
965       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
966                                      maxCommonTailLength, commonTailIndex)) {
967         RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
968         continue;
969       }
970     }
971 
972     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
973 
974     // Recompute common tail MBB's edge weights and block frequency.
975     setCommonTailEdgeWeights(*MBB);
976 
977     // Merge debug locations, MMOs and undef flags across identical instructions
978     // for common tail.
979     mergeCommonTails(commonTailIndex);
980 
981     // MBB is common tail.  Adjust all other BB's to jump to this one.
982     // Traversal must be forwards so erases work.
983     LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
984                       << " for ");
985     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
986       if (commonTailIndex == i)
987         continue;
988       LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
989                         << (i == e - 1 ? "" : ", "));
990       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
991       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
992       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
993       MergePotentials.erase(SameTails[i].getMPIter());
994     }
995     LLVM_DEBUG(dbgs() << "\n");
996     // We leave commonTailIndex in the worklist in case there are other blocks
997     // that match it with a smaller number of instructions.
998     MadeChange = true;
999   }
1000   return MadeChange;
1001 }
1002 
1003 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1004   bool MadeChange = false;
1005   if (!EnableTailMerge)
1006     return MadeChange;
1007 
1008   // First find blocks with no successors.
1009   // Block placement may create new tail merging opportunities for these blocks.
1010   MergePotentials.clear();
1011   for (MachineBasicBlock &MBB : MF) {
1012     if (MergePotentials.size() == TailMergeThreshold)
1013       break;
1014     if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1015       MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1016   }
1017 
1018   // If this is a large problem, avoid visiting the same basic blocks
1019   // multiple times.
1020   if (MergePotentials.size() == TailMergeThreshold)
1021     for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1022       TriedMerging.insert(MergePotentials[i].getBlock());
1023 
1024   // See if we can do any tail merging on those.
1025   if (MergePotentials.size() >= 2)
1026     MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1027 
1028   // Look at blocks (IBB) with multiple predecessors (PBB).
1029   // We change each predecessor to a canonical form, by
1030   // (1) temporarily removing any unconditional branch from the predecessor
1031   // to IBB, and
1032   // (2) alter conditional branches so they branch to the other block
1033   // not IBB; this may require adding back an unconditional branch to IBB
1034   // later, where there wasn't one coming in.  E.g.
1035   //   Bcc IBB
1036   //   fallthrough to QBB
1037   // here becomes
1038   //   Bncc QBB
1039   // with a conceptual B to IBB after that, which never actually exists.
1040   // With those changes, we see whether the predecessors' tails match,
1041   // and merge them if so.  We change things out of canonical form and
1042   // back to the way they were later in the process.  (OptimizeBranches
1043   // would undo some of this, but we can't use it, because we'd get into
1044   // a compile-time infinite loop repeatedly doing and undoing the same
1045   // transformations.)
1046 
1047   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1048        I != E; ++I) {
1049     if (I->pred_size() < 2) continue;
1050     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1051     MachineBasicBlock *IBB = &*I;
1052     MachineBasicBlock *PredBB = &*std::prev(I);
1053     MergePotentials.clear();
1054     MachineLoop *ML;
1055 
1056     // Bail if merging after placement and IBB is the loop header because
1057     // -- If merging predecessors that belong to the same loop as IBB, the
1058     // common tail of merged predecessors may become the loop top if block
1059     // placement is called again and the predecessors may branch to this common
1060     // tail and require more branches. This can be relaxed if
1061     // MachineBlockPlacement::findBestLoopTop is more flexible.
1062     // --If merging predecessors that do not belong to the same loop as IBB, the
1063     // loop info of IBB's loop and the other loops may be affected. Calling the
1064     // block placement again may make big change to the layout and eliminate the
1065     // reason to do tail merging here.
1066     if (AfterBlockPlacement && MLI) {
1067       ML = MLI->getLoopFor(IBB);
1068       if (ML && IBB == ML->getHeader())
1069         continue;
1070     }
1071 
1072     for (MachineBasicBlock *PBB : I->predecessors()) {
1073       if (MergePotentials.size() == TailMergeThreshold)
1074         break;
1075 
1076       if (TriedMerging.count(PBB))
1077         continue;
1078 
1079       // Skip blocks that loop to themselves, can't tail merge these.
1080       if (PBB == IBB)
1081         continue;
1082 
1083       // Visit each predecessor only once.
1084       if (!UniquePreds.insert(PBB).second)
1085         continue;
1086 
1087       // Skip blocks which may jump to a landing pad. Can't tail merge these.
1088       if (PBB->hasEHPadSuccessor())
1089         continue;
1090 
1091       // After block placement, only consider predecessors that belong to the
1092       // same loop as IBB.  The reason is the same as above when skipping loop
1093       // header.
1094       if (AfterBlockPlacement && MLI)
1095         if (ML != MLI->getLoopFor(PBB))
1096           continue;
1097 
1098       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1099       SmallVector<MachineOperand, 4> Cond;
1100       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1101         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1102         // branch.
1103         SmallVector<MachineOperand, 4> NewCond(Cond);
1104         if (!Cond.empty() && TBB == IBB) {
1105           if (TII->reverseBranchCondition(NewCond))
1106             continue;
1107           // This is the QBB case described above
1108           if (!FBB) {
1109             auto Next = ++PBB->getIterator();
1110             if (Next != MF.end())
1111               FBB = &*Next;
1112           }
1113         }
1114 
1115         // Remove the unconditional branch at the end, if any.
1116         if (TBB && (Cond.empty() || FBB)) {
1117           DebugLoc dl = PBB->findBranchDebugLoc();
1118           TII->removeBranch(*PBB);
1119           if (!Cond.empty())
1120             // reinsert conditional branch only, for now
1121             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1122                               NewCond, dl);
1123         }
1124 
1125         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1126       }
1127     }
1128 
1129     // If this is a large problem, avoid visiting the same basic blocks multiple
1130     // times.
1131     if (MergePotentials.size() == TailMergeThreshold)
1132       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1133         TriedMerging.insert(MergePotentials[i].getBlock());
1134 
1135     if (MergePotentials.size() >= 2)
1136       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1137 
1138     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1139     // result of removing blocks in TryTailMergeBlocks.
1140     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1141     if (MergePotentials.size() == 1 &&
1142         MergePotentials.begin()->getBlock() != PredBB)
1143       FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1144   }
1145 
1146   return MadeChange;
1147 }
1148 
1149 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1150   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1151   BlockFrequency AccumulatedMBBFreq;
1152 
1153   // Aggregate edge frequency of successor edge j:
1154   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1155   //  where bb is a basic block that is in SameTails.
1156   for (const auto &Src : SameTails) {
1157     const MachineBasicBlock *SrcMBB = Src.getBlock();
1158     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1159     AccumulatedMBBFreq += BlockFreq;
1160 
1161     // It is not necessary to recompute edge weights if TailBB has less than two
1162     // successors.
1163     if (TailMBB.succ_size() <= 1)
1164       continue;
1165 
1166     auto EdgeFreq = EdgeFreqLs.begin();
1167 
1168     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1169          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1170       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1171   }
1172 
1173   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1174 
1175   if (TailMBB.succ_size() <= 1)
1176     return;
1177 
1178   auto SumEdgeFreq =
1179       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1180           .getFrequency();
1181   auto EdgeFreq = EdgeFreqLs.begin();
1182 
1183   if (SumEdgeFreq > 0) {
1184     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1185          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1186       auto Prob = BranchProbability::getBranchProbability(
1187           EdgeFreq->getFrequency(), SumEdgeFreq);
1188       TailMBB.setSuccProbability(SuccI, Prob);
1189     }
1190   }
1191 }
1192 
1193 //===----------------------------------------------------------------------===//
1194 //  Branch Optimization
1195 //===----------------------------------------------------------------------===//
1196 
1197 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1198   bool MadeChange = false;
1199 
1200   // Make sure blocks are numbered in order
1201   MF.RenumberBlocks();
1202   // Renumbering blocks alters EH scope membership, recalculate it.
1203   EHScopeMembership = getEHScopeMembership(MF);
1204 
1205   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1206        I != E; ) {
1207     MachineBasicBlock *MBB = &*I++;
1208     MadeChange |= OptimizeBlock(MBB);
1209 
1210     // If it is dead, remove it.
1211     if (MBB->pred_empty()) {
1212       RemoveDeadBlock(MBB);
1213       MadeChange = true;
1214       ++NumDeadBlocks;
1215     }
1216   }
1217 
1218   return MadeChange;
1219 }
1220 
1221 // Blocks should be considered empty if they contain only debug info;
1222 // else the debug info would affect codegen.
1223 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1224   return MBB->getFirstNonDebugInstr() == MBB->end();
1225 }
1226 
1227 // Blocks with only debug info and branches should be considered the same
1228 // as blocks with only branches.
1229 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1230   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1231   assert(I != MBB->end() && "empty block!");
1232   return I->isBranch();
1233 }
1234 
1235 /// IsBetterFallthrough - Return true if it would be clearly better to
1236 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1237 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1238 /// result in infinite loops.
1239 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1240                                 MachineBasicBlock *MBB2) {
1241   assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1242 
1243   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1244   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1245   // optimize branches that branch to either a return block or an assert block
1246   // into a fallthrough to the return.
1247   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1248   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1249   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1250     return false;
1251 
1252   // If there is a clear successor ordering we make sure that one block
1253   // will fall through to the next
1254   if (MBB1->isSuccessor(MBB2)) return true;
1255   if (MBB2->isSuccessor(MBB1)) return false;
1256 
1257   return MBB2I->isCall() && !MBB1I->isCall();
1258 }
1259 
1260 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1261 /// instructions on the block.
1262 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1263   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1264   if (I != MBB.end() && I->isBranch())
1265     return I->getDebugLoc();
1266   return DebugLoc();
1267 }
1268 
1269 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1270                                        MachineBasicBlock &MBB,
1271                                        MachineBasicBlock &PredMBB) {
1272   auto InsertBefore = PredMBB.getFirstTerminator();
1273   for (MachineInstr &MI : MBB.instrs())
1274     if (MI.isDebugInstr()) {
1275       TII->duplicate(PredMBB, InsertBefore, MI);
1276       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1277                         << MI);
1278     }
1279 }
1280 
1281 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1282                                      MachineBasicBlock &MBB,
1283                                      MachineBasicBlock &SuccMBB) {
1284   auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1285   for (MachineInstr &MI : MBB.instrs())
1286     if (MI.isDebugInstr()) {
1287       TII->duplicate(SuccMBB, InsertBefore, MI);
1288       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1289                         << MI);
1290     }
1291 }
1292 
1293 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1294 // a basic block is removed we would lose the debug information unless we have
1295 // copied the information to a predecessor/successor.
1296 //
1297 // TODO: This function only handles some simple cases. An alternative would be
1298 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1299 // branch folding.
1300 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1301                                            MachineBasicBlock &MBB) {
1302   assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1303   // If this MBB is the only predecessor of a successor it is legal to copy
1304   // DBG_VALUE instructions to the beginning of the successor.
1305   for (MachineBasicBlock *SuccBB : MBB.successors())
1306     if (SuccBB->pred_size() == 1)
1307       copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1308   // If this MBB is the only successor of a predecessor it is legal to copy the
1309   // DBG_VALUE instructions to the end of the predecessor (just before the
1310   // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1311   for (MachineBasicBlock *PredBB : MBB.predecessors())
1312     if (PredBB->succ_size() == 1)
1313       copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1314 }
1315 
1316 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1317   bool MadeChange = false;
1318   MachineFunction &MF = *MBB->getParent();
1319 ReoptimizeBlock:
1320 
1321   MachineFunction::iterator FallThrough = MBB->getIterator();
1322   ++FallThrough;
1323 
1324   // Make sure MBB and FallThrough belong to the same EH scope.
1325   bool SameEHScope = true;
1326   if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1327     auto MBBEHScope = EHScopeMembership.find(MBB);
1328     assert(MBBEHScope != EHScopeMembership.end());
1329     auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1330     assert(FallThroughEHScope != EHScopeMembership.end());
1331     SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1332   }
1333 
1334   // Analyze the branch in the current block. As a side-effect, this may cause
1335   // the block to become empty.
1336   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1337   SmallVector<MachineOperand, 4> CurCond;
1338   bool CurUnAnalyzable =
1339       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1340 
1341   // If this block is empty, make everyone use its fall-through, not the block
1342   // explicitly.  Landing pads should not do this since the landing-pad table
1343   // points to this block.  Blocks with their addresses taken shouldn't be
1344   // optimized away.
1345   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1346       SameEHScope) {
1347     salvageDebugInfoFromEmptyBlock(TII, *MBB);
1348     // Dead block?  Leave for cleanup later.
1349     if (MBB->pred_empty()) return MadeChange;
1350 
1351     if (FallThrough == MF.end()) {
1352       // TODO: Simplify preds to not branch here if possible!
1353     } else if (FallThrough->isEHPad()) {
1354       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1355       // where a BB jumps to more than one landing pad.
1356       // TODO: Is it ever worth rewriting predecessors which don't already
1357       // jump to a landing pad, and so can safely jump to the fallthrough?
1358     } else if (MBB->isSuccessor(&*FallThrough)) {
1359       // Rewrite all predecessors of the old block to go to the fallthrough
1360       // instead.
1361       while (!MBB->pred_empty()) {
1362         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1363         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1364       }
1365       // If MBB was the target of a jump table, update jump tables to go to the
1366       // fallthrough instead.
1367       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1368         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1369       MadeChange = true;
1370     }
1371     return MadeChange;
1372   }
1373 
1374   // Check to see if we can simplify the terminator of the block before this
1375   // one.
1376   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1377 
1378   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1379   SmallVector<MachineOperand, 4> PriorCond;
1380   bool PriorUnAnalyzable =
1381       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1382   if (!PriorUnAnalyzable) {
1383     // If the previous branch is conditional and both conditions go to the same
1384     // destination, remove the branch, replacing it with an unconditional one or
1385     // a fall-through.
1386     if (PriorTBB && PriorTBB == PriorFBB) {
1387       DebugLoc dl = getBranchDebugLoc(PrevBB);
1388       TII->removeBranch(PrevBB);
1389       PriorCond.clear();
1390       if (PriorTBB != MBB)
1391         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1392       MadeChange = true;
1393       ++NumBranchOpts;
1394       goto ReoptimizeBlock;
1395     }
1396 
1397     // If the previous block unconditionally falls through to this block and
1398     // this block has no other predecessors, move the contents of this block
1399     // into the prior block. This doesn't usually happen when SimplifyCFG
1400     // has been used, but it can happen if tail merging splits a fall-through
1401     // predecessor of a block.
1402     // This has to check PrevBB->succ_size() because EH edges are ignored by
1403     // analyzeBranch.
1404     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1405         PrevBB.succ_size() == 1 &&
1406         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1407       LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1408                         << "From MBB: " << *MBB);
1409       // Remove redundant DBG_VALUEs first.
1410       if (PrevBB.begin() != PrevBB.end()) {
1411         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1412         --PrevBBIter;
1413         MachineBasicBlock::iterator MBBIter = MBB->begin();
1414         // Check if DBG_VALUE at the end of PrevBB is identical to the
1415         // DBG_VALUE at the beginning of MBB.
1416         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1417                && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1418           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1419             break;
1420           MachineInstr &DuplicateDbg = *MBBIter;
1421           ++MBBIter; -- PrevBBIter;
1422           DuplicateDbg.eraseFromParent();
1423         }
1424       }
1425       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1426       PrevBB.removeSuccessor(PrevBB.succ_begin());
1427       assert(PrevBB.succ_empty());
1428       PrevBB.transferSuccessors(MBB);
1429       MadeChange = true;
1430       return MadeChange;
1431     }
1432 
1433     // If the previous branch *only* branches to *this* block (conditional or
1434     // not) remove the branch.
1435     if (PriorTBB == MBB && !PriorFBB) {
1436       TII->removeBranch(PrevBB);
1437       MadeChange = true;
1438       ++NumBranchOpts;
1439       goto ReoptimizeBlock;
1440     }
1441 
1442     // If the prior block branches somewhere else on the condition and here if
1443     // the condition is false, remove the uncond second branch.
1444     if (PriorFBB == MBB) {
1445       DebugLoc dl = getBranchDebugLoc(PrevBB);
1446       TII->removeBranch(PrevBB);
1447       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1448       MadeChange = true;
1449       ++NumBranchOpts;
1450       goto ReoptimizeBlock;
1451     }
1452 
1453     // If the prior block branches here on true and somewhere else on false, and
1454     // if the branch condition is reversible, reverse the branch to create a
1455     // fall-through.
1456     if (PriorTBB == MBB) {
1457       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1458       if (!TII->reverseBranchCondition(NewPriorCond)) {
1459         DebugLoc dl = getBranchDebugLoc(PrevBB);
1460         TII->removeBranch(PrevBB);
1461         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1462         MadeChange = true;
1463         ++NumBranchOpts;
1464         goto ReoptimizeBlock;
1465       }
1466     }
1467 
1468     // If this block has no successors (e.g. it is a return block or ends with
1469     // a call to a no-return function like abort or __cxa_throw) and if the pred
1470     // falls through into this block, and if it would otherwise fall through
1471     // into the block after this, move this block to the end of the function.
1472     //
1473     // We consider it more likely that execution will stay in the function (e.g.
1474     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1475     // the assert condition out of the loop body.
1476     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1477         MachineFunction::iterator(PriorTBB) == FallThrough &&
1478         !MBB->canFallThrough()) {
1479       bool DoTransform = true;
1480 
1481       // We have to be careful that the succs of PredBB aren't both no-successor
1482       // blocks.  If neither have successors and if PredBB is the second from
1483       // last block in the function, we'd just keep swapping the two blocks for
1484       // last.  Only do the swap if one is clearly better to fall through than
1485       // the other.
1486       if (FallThrough == --MF.end() &&
1487           !IsBetterFallthrough(PriorTBB, MBB))
1488         DoTransform = false;
1489 
1490       if (DoTransform) {
1491         // Reverse the branch so we will fall through on the previous true cond.
1492         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1493         if (!TII->reverseBranchCondition(NewPriorCond)) {
1494           LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1495                             << "To make fallthrough to: " << *PriorTBB << "\n");
1496 
1497           DebugLoc dl = getBranchDebugLoc(PrevBB);
1498           TII->removeBranch(PrevBB);
1499           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1500 
1501           // Move this block to the end of the function.
1502           MBB->moveAfter(&MF.back());
1503           MadeChange = true;
1504           ++NumBranchOpts;
1505           return MadeChange;
1506         }
1507       }
1508     }
1509   }
1510 
1511   bool OptForSize =
1512       MF.getFunction().hasOptSize() ||
1513       llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo);
1514   if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) {
1515     // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1516     // direction, thereby defeating careful block placement and regressing
1517     // performance. Therefore, only consider this for optsize functions.
1518     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1519     if (TII->isUnconditionalTailCall(TailCall)) {
1520       MachineBasicBlock *Pred = *MBB->pred_begin();
1521       MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1522       SmallVector<MachineOperand, 4> PredCond;
1523       bool PredAnalyzable =
1524           !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1525 
1526       if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1527           PredTBB != PredFBB) {
1528         // The predecessor has a conditional branch to this block which consists
1529         // of only a tail call. Try to fold the tail call into the conditional
1530         // branch.
1531         if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1532           // TODO: It would be nice if analyzeBranch() could provide a pointer
1533           // to the branch instruction so replaceBranchWithTailCall() doesn't
1534           // have to search for it.
1535           TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1536           ++NumTailCalls;
1537           Pred->removeSuccessor(MBB);
1538           MadeChange = true;
1539           return MadeChange;
1540         }
1541       }
1542       // If the predecessor is falling through to this block, we could reverse
1543       // the branch condition and fold the tail call into that. However, after
1544       // that we might have to re-arrange the CFG to fall through to the other
1545       // block and there is a high risk of regressing code size rather than
1546       // improving it.
1547     }
1548   }
1549 
1550   if (!CurUnAnalyzable) {
1551     // If this is a two-way branch, and the FBB branches to this block, reverse
1552     // the condition so the single-basic-block loop is faster.  Instead of:
1553     //    Loop: xxx; jcc Out; jmp Loop
1554     // we want:
1555     //    Loop: xxx; jncc Loop; jmp Out
1556     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1557       SmallVector<MachineOperand, 4> NewCond(CurCond);
1558       if (!TII->reverseBranchCondition(NewCond)) {
1559         DebugLoc dl = getBranchDebugLoc(*MBB);
1560         TII->removeBranch(*MBB);
1561         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1562         MadeChange = true;
1563         ++NumBranchOpts;
1564         goto ReoptimizeBlock;
1565       }
1566     }
1567 
1568     // If this branch is the only thing in its block, see if we can forward
1569     // other blocks across it.
1570     if (CurTBB && CurCond.empty() && !CurFBB &&
1571         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1572         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1573       DebugLoc dl = getBranchDebugLoc(*MBB);
1574       // This block may contain just an unconditional branch.  Because there can
1575       // be 'non-branch terminators' in the block, try removing the branch and
1576       // then seeing if the block is empty.
1577       TII->removeBranch(*MBB);
1578       // If the only things remaining in the block are debug info, remove these
1579       // as well, so this will behave the same as an empty block in non-debug
1580       // mode.
1581       if (IsEmptyBlock(MBB)) {
1582         // Make the block empty, losing the debug info (we could probably
1583         // improve this in some cases.)
1584         MBB->erase(MBB->begin(), MBB->end());
1585       }
1586       // If this block is just an unconditional branch to CurTBB, we can
1587       // usually completely eliminate the block.  The only case we cannot
1588       // completely eliminate the block is when the block before this one
1589       // falls through into MBB and we can't understand the prior block's branch
1590       // condition.
1591       if (MBB->empty()) {
1592         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1593         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1594             !PrevBB.isSuccessor(MBB)) {
1595           // If the prior block falls through into us, turn it into an
1596           // explicit branch to us to make updates simpler.
1597           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1598               PriorTBB != MBB && PriorFBB != MBB) {
1599             if (!PriorTBB) {
1600               assert(PriorCond.empty() && !PriorFBB &&
1601                      "Bad branch analysis");
1602               PriorTBB = MBB;
1603             } else {
1604               assert(!PriorFBB && "Machine CFG out of date!");
1605               PriorFBB = MBB;
1606             }
1607             DebugLoc pdl = getBranchDebugLoc(PrevBB);
1608             TII->removeBranch(PrevBB);
1609             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1610           }
1611 
1612           // Iterate through all the predecessors, revectoring each in-turn.
1613           size_t PI = 0;
1614           bool DidChange = false;
1615           bool HasBranchToSelf = false;
1616           while(PI != MBB->pred_size()) {
1617             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1618             if (PMBB == MBB) {
1619               // If this block has an uncond branch to itself, leave it.
1620               ++PI;
1621               HasBranchToSelf = true;
1622             } else {
1623               DidChange = true;
1624               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1625               // If this change resulted in PMBB ending in a conditional
1626               // branch where both conditions go to the same destination,
1627               // change this to an unconditional branch.
1628               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1629               SmallVector<MachineOperand, 4> NewCurCond;
1630               bool NewCurUnAnalyzable = TII->analyzeBranch(
1631                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1632               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1633                 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1634                 TII->removeBranch(*PMBB);
1635                 NewCurCond.clear();
1636                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1637                 MadeChange = true;
1638                 ++NumBranchOpts;
1639               }
1640             }
1641           }
1642 
1643           // Change any jumptables to go to the new MBB.
1644           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1645             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1646           if (DidChange) {
1647             ++NumBranchOpts;
1648             MadeChange = true;
1649             if (!HasBranchToSelf) return MadeChange;
1650           }
1651         }
1652       }
1653 
1654       // Add the branch back if the block is more than just an uncond branch.
1655       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1656     }
1657   }
1658 
1659   // If the prior block doesn't fall through into this block, and if this
1660   // block doesn't fall through into some other block, see if we can find a
1661   // place to move this block where a fall-through will happen.
1662   if (!PrevBB.canFallThrough()) {
1663     // Now we know that there was no fall-through into this block, check to
1664     // see if it has a fall-through into its successor.
1665     bool CurFallsThru = MBB->canFallThrough();
1666 
1667     if (!MBB->isEHPad()) {
1668       // Check all the predecessors of this block.  If one of them has no fall
1669       // throughs, move this block right after it.
1670       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1671         // Analyze the branch at the end of the pred.
1672         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1673         SmallVector<MachineOperand, 4> PredCond;
1674         if (PredBB != MBB && !PredBB->canFallThrough() &&
1675             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1676             (!CurFallsThru || !CurTBB || !CurFBB) &&
1677             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1678           // If the current block doesn't fall through, just move it.
1679           // If the current block can fall through and does not end with a
1680           // conditional branch, we need to append an unconditional jump to
1681           // the (current) next block.  To avoid a possible compile-time
1682           // infinite loop, move blocks only backward in this case.
1683           // Also, if there are already 2 branches here, we cannot add a third;
1684           // this means we have the case
1685           // Bcc next
1686           // B elsewhere
1687           // next:
1688           if (CurFallsThru) {
1689             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1690             CurCond.clear();
1691             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1692           }
1693           MBB->moveAfter(PredBB);
1694           MadeChange = true;
1695           goto ReoptimizeBlock;
1696         }
1697       }
1698     }
1699 
1700     if (!CurFallsThru) {
1701       // Check all successors to see if we can move this block before it.
1702       for (MachineBasicBlock *SuccBB : MBB->successors()) {
1703         // Analyze the branch at the end of the block before the succ.
1704         MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1705 
1706         // If this block doesn't already fall-through to that successor, and if
1707         // the succ doesn't already have a block that can fall through into it,
1708         // and if the successor isn't an EH destination, we can arrange for the
1709         // fallthrough to happen.
1710         if (SuccBB != MBB && &*SuccPrev != MBB &&
1711             !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
1712             !SuccBB->isEHPad()) {
1713           MBB->moveBefore(SuccBB);
1714           MadeChange = true;
1715           goto ReoptimizeBlock;
1716         }
1717       }
1718 
1719       // Okay, there is no really great place to put this block.  If, however,
1720       // the block before this one would be a fall-through if this block were
1721       // removed, move this block to the end of the function. There is no real
1722       // advantage in "falling through" to an EH block, so we don't want to
1723       // perform this transformation for that case.
1724       //
1725       // Also, Windows EH introduced the possibility of an arbitrary number of
1726       // successors to a given block.  The analyzeBranch call does not consider
1727       // exception handling and so we can get in a state where a block
1728       // containing a call is followed by multiple EH blocks that would be
1729       // rotated infinitely at the end of the function if the transformation
1730       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1731       // that appears not to be happening anymore, we should assume that it is
1732       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1733       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1734       SmallVector<MachineOperand, 4> PrevCond;
1735       if (FallThrough != MF.end() &&
1736           !FallThrough->isEHPad() &&
1737           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1738           PrevBB.isSuccessor(&*FallThrough)) {
1739         MBB->moveAfter(&MF.back());
1740         MadeChange = true;
1741         return MadeChange;
1742       }
1743     }
1744   }
1745 
1746   return MadeChange;
1747 }
1748 
1749 //===----------------------------------------------------------------------===//
1750 //  Hoist Common Code
1751 //===----------------------------------------------------------------------===//
1752 
1753 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1754   bool MadeChange = false;
1755   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1756     MachineBasicBlock *MBB = &*I++;
1757     MadeChange |= HoistCommonCodeInSuccs(MBB);
1758   }
1759 
1760   return MadeChange;
1761 }
1762 
1763 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1764 /// its 'true' successor.
1765 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1766                                          MachineBasicBlock *TrueBB) {
1767   for (MachineBasicBlock *SuccBB : BB->successors())
1768     if (SuccBB != TrueBB)
1769       return SuccBB;
1770   return nullptr;
1771 }
1772 
1773 template <class Container>
1774 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
1775                                 Container &Set) {
1776   if (Register::isPhysicalRegister(Reg)) {
1777     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1778       Set.insert(*AI);
1779   } else {
1780     Set.insert(Reg);
1781   }
1782 }
1783 
1784 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1785 /// in successors to. The location is usually just before the terminator,
1786 /// however if the terminator is a conditional branch and its previous
1787 /// instruction is the flag setting instruction, the previous instruction is
1788 /// the preferred location. This function also gathers uses and defs of the
1789 /// instructions from the insertion point to the end of the block. The data is
1790 /// used by HoistCommonCodeInSuccs to ensure safety.
1791 static
1792 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1793                                                   const TargetInstrInfo *TII,
1794                                                   const TargetRegisterInfo *TRI,
1795                                                   SmallSet<unsigned,4> &Uses,
1796                                                   SmallSet<unsigned,4> &Defs) {
1797   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1798   if (!TII->isUnpredicatedTerminator(*Loc))
1799     return MBB->end();
1800 
1801   for (const MachineOperand &MO : Loc->operands()) {
1802     if (!MO.isReg())
1803       continue;
1804     Register Reg = MO.getReg();
1805     if (!Reg)
1806       continue;
1807     if (MO.isUse()) {
1808       addRegAndItsAliases(Reg, TRI, Uses);
1809     } else {
1810       if (!MO.isDead())
1811         // Don't try to hoist code in the rare case the terminator defines a
1812         // register that is later used.
1813         return MBB->end();
1814 
1815       // If the terminator defines a register, make sure we don't hoist
1816       // the instruction whose def might be clobbered by the terminator.
1817       addRegAndItsAliases(Reg, TRI, Defs);
1818     }
1819   }
1820 
1821   if (Uses.empty())
1822     return Loc;
1823   // If the terminator is the only instruction in the block and Uses is not
1824   // empty (or we would have returned above), we can still safely hoist
1825   // instructions just before the terminator as long as the Defs/Uses are not
1826   // violated (which is checked in HoistCommonCodeInSuccs).
1827   if (Loc == MBB->begin())
1828     return Loc;
1829 
1830   // The terminator is probably a conditional branch, try not to separate the
1831   // branch from condition setting instruction.
1832   MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin());
1833 
1834   bool IsDef = false;
1835   for (const MachineOperand &MO : PI->operands()) {
1836     // If PI has a regmask operand, it is probably a call. Separate away.
1837     if (MO.isRegMask())
1838       return Loc;
1839     if (!MO.isReg() || MO.isUse())
1840       continue;
1841     Register Reg = MO.getReg();
1842     if (!Reg)
1843       continue;
1844     if (Uses.count(Reg)) {
1845       IsDef = true;
1846       break;
1847     }
1848   }
1849   if (!IsDef)
1850     // The condition setting instruction is not just before the conditional
1851     // branch.
1852     return Loc;
1853 
1854   // Be conservative, don't insert instruction above something that may have
1855   // side-effects. And since it's potentially bad to separate flag setting
1856   // instruction from the conditional branch, just abort the optimization
1857   // completely.
1858   // Also avoid moving code above predicated instruction since it's hard to
1859   // reason about register liveness with predicated instruction.
1860   bool DontMoveAcrossStore = true;
1861   if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1862     return MBB->end();
1863 
1864   // Find out what registers are live. Note this routine is ignoring other live
1865   // registers which are only used by instructions in successor blocks.
1866   for (const MachineOperand &MO : PI->operands()) {
1867     if (!MO.isReg())
1868       continue;
1869     Register Reg = MO.getReg();
1870     if (!Reg)
1871       continue;
1872     if (MO.isUse()) {
1873       addRegAndItsAliases(Reg, TRI, Uses);
1874     } else {
1875       if (Uses.erase(Reg)) {
1876         if (Register::isPhysicalRegister(Reg)) {
1877           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1878             Uses.erase(*SubRegs); // Use sub-registers to be conservative
1879         }
1880       }
1881       addRegAndItsAliases(Reg, TRI, Defs);
1882     }
1883   }
1884 
1885   return PI;
1886 }
1887 
1888 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1889   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1890   SmallVector<MachineOperand, 4> Cond;
1891   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1892     return false;
1893 
1894   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1895   if (!FBB)
1896     // Malformed bcc? True and false blocks are the same?
1897     return false;
1898 
1899   // Restrict the optimization to cases where MBB is the only predecessor,
1900   // it is an obvious win.
1901   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1902     return false;
1903 
1904   // Find a suitable position to hoist the common instructions to. Also figure
1905   // out which registers are used or defined by instructions from the insertion
1906   // point to the end of the block.
1907   SmallSet<unsigned, 4> Uses, Defs;
1908   MachineBasicBlock::iterator Loc =
1909     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1910   if (Loc == MBB->end())
1911     return false;
1912 
1913   bool HasDups = false;
1914   SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
1915   MachineBasicBlock::iterator TIB = TBB->begin();
1916   MachineBasicBlock::iterator FIB = FBB->begin();
1917   MachineBasicBlock::iterator TIE = TBB->end();
1918   MachineBasicBlock::iterator FIE = FBB->end();
1919   while (TIB != TIE && FIB != FIE) {
1920     // Skip dbg_value instructions. These do not count.
1921     TIB = skipDebugInstructionsForward(TIB, TIE);
1922     FIB = skipDebugInstructionsForward(FIB, FIE);
1923     if (TIB == TIE || FIB == FIE)
1924       break;
1925 
1926     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1927       break;
1928 
1929     if (TII->isPredicated(*TIB))
1930       // Hard to reason about register liveness with predicated instruction.
1931       break;
1932 
1933     bool IsSafe = true;
1934     for (MachineOperand &MO : TIB->operands()) {
1935       // Don't attempt to hoist instructions with register masks.
1936       if (MO.isRegMask()) {
1937         IsSafe = false;
1938         break;
1939       }
1940       if (!MO.isReg())
1941         continue;
1942       Register Reg = MO.getReg();
1943       if (!Reg)
1944         continue;
1945       if (MO.isDef()) {
1946         if (Uses.count(Reg)) {
1947           // Avoid clobbering a register that's used by the instruction at
1948           // the point of insertion.
1949           IsSafe = false;
1950           break;
1951         }
1952 
1953         if (Defs.count(Reg) && !MO.isDead()) {
1954           // Don't hoist the instruction if the def would be clobber by the
1955           // instruction at the point insertion. FIXME: This is overly
1956           // conservative. It should be possible to hoist the instructions
1957           // in BB2 in the following example:
1958           // BB1:
1959           // r1, eflag = op1 r2, r3
1960           // brcc eflag
1961           //
1962           // BB2:
1963           // r1 = op2, ...
1964           //    = op3, killed r1
1965           IsSafe = false;
1966           break;
1967         }
1968       } else if (!ActiveDefsSet.count(Reg)) {
1969         if (Defs.count(Reg)) {
1970           // Use is defined by the instruction at the point of insertion.
1971           IsSafe = false;
1972           break;
1973         }
1974 
1975         if (MO.isKill() && Uses.count(Reg))
1976           // Kills a register that's read by the instruction at the point of
1977           // insertion. Remove the kill marker.
1978           MO.setIsKill(false);
1979       }
1980     }
1981     if (!IsSafe)
1982       break;
1983 
1984     bool DontMoveAcrossStore = true;
1985     if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
1986       break;
1987 
1988     // Remove kills from ActiveDefsSet, these registers had short live ranges.
1989     for (const MachineOperand &MO : TIB->operands()) {
1990       if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1991         continue;
1992       Register Reg = MO.getReg();
1993       if (!Reg)
1994         continue;
1995       if (!AllDefsSet.count(Reg)) {
1996         continue;
1997       }
1998       if (Register::isPhysicalRegister(Reg)) {
1999         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2000           ActiveDefsSet.erase(*AI);
2001       } else {
2002         ActiveDefsSet.erase(Reg);
2003       }
2004     }
2005 
2006     // Track local defs so we can update liveins.
2007     for (const MachineOperand &MO : TIB->operands()) {
2008       if (!MO.isReg() || !MO.isDef() || MO.isDead())
2009         continue;
2010       Register Reg = MO.getReg();
2011       if (!Reg || Register::isVirtualRegister(Reg))
2012         continue;
2013       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2014       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2015     }
2016 
2017     HasDups = true;
2018     ++TIB;
2019     ++FIB;
2020   }
2021 
2022   if (!HasDups)
2023     return false;
2024 
2025   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2026   FBB->erase(FBB->begin(), FIB);
2027 
2028   if (UpdateLiveIns) {
2029     recomputeLiveIns(*TBB);
2030     recomputeLiveIns(*FBB);
2031   }
2032 
2033   ++NumHoist;
2034   return true;
2035 }
2036