1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block.  This pass often results in dead MBB's, which
11 // it then removes.
12 //
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/CodeGen/Analysis.h"
29 #include "llvm/CodeGen/LivePhysRegs.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineModuleInfo.h"
40 #include "llvm/CodeGen/MachineOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/MachineSizeOpts.h"
43 #include "llvm/CodeGen/MBFIWrapper.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/MC/MCRegisterInfo.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetMachine.h"
63 #include <cassert>
64 #include <cstddef>
65 #include <iterator>
66 #include <numeric>
67 #include <vector>
68 
69 using namespace llvm;
70 
71 #define DEBUG_TYPE "branch-folder"
72 
73 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
74 STATISTIC(NumBranchOpts, "Number of branches optimized");
75 STATISTIC(NumTailMerge , "Number of block tails merged");
76 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
77 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
78 
79 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
80                               cl::init(cl::BOU_UNSET), cl::Hidden);
81 
82 // Throttle for huge numbers of predecessors (compile speed problems)
83 static cl::opt<unsigned>
84 TailMergeThreshold("tail-merge-threshold",
85           cl::desc("Max number of predecessors to consider tail merging"),
86           cl::init(150), cl::Hidden);
87 
88 // Heuristic for tail merging (and, inversely, tail duplication).
89 // TODO: This should be replaced with a target query.
90 static cl::opt<unsigned>
91 TailMergeSize("tail-merge-size",
92               cl::desc("Min number of instructions to consider tail merging"),
93               cl::init(3), cl::Hidden);
94 
95 namespace {
96 
97   /// BranchFolderPass - Wrap branch folder in a machine function pass.
98   class BranchFolderPass : public MachineFunctionPass {
99   public:
100     static char ID;
101 
102     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
103 
104     bool runOnMachineFunction(MachineFunction &MF) override;
105 
106     void getAnalysisUsage(AnalysisUsage &AU) const override {
107       AU.addRequired<MachineBlockFrequencyInfo>();
108       AU.addRequired<MachineBranchProbabilityInfo>();
109       AU.addRequired<ProfileSummaryInfoWrapperPass>();
110       AU.addRequired<TargetPassConfig>();
111       MachineFunctionPass::getAnalysisUsage(AU);
112     }
113   };
114 
115 } // end anonymous namespace
116 
117 char BranchFolderPass::ID = 0;
118 
119 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
120 
121 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
122                 "Control Flow Optimizer", false, false)
123 
124 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
125   if (skipFunction(MF.getFunction()))
126     return false;
127 
128   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
129   // TailMerge can create jump into if branches that make CFG irreducible for
130   // HW that requires structurized CFG.
131   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
132                          PassConfig->getEnableTailMerge();
133   MBFIWrapper MBBFreqInfo(
134       getAnalysis<MachineBlockFrequencyInfo>());
135   BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
136                       getAnalysis<MachineBranchProbabilityInfo>(),
137                       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
138   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
139   return Folder.OptimizeFunction(
140       MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(),
141       MMIWP ? &MMIWP->getMMI() : nullptr);
142 }
143 
144 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
145                            MBFIWrapper &FreqInfo,
146                            const MachineBranchProbabilityInfo &ProbInfo,
147                            ProfileSummaryInfo *PSI,
148                            unsigned MinTailLength)
149     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
150       MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
151   if (MinCommonTailLength == 0)
152     MinCommonTailLength = TailMergeSize;
153   switch (FlagEnableTailMerge) {
154   case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
155   case cl::BOU_TRUE: EnableTailMerge = true; break;
156   case cl::BOU_FALSE: EnableTailMerge = false; break;
157   }
158 }
159 
160 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
161   assert(MBB->pred_empty() && "MBB must be dead!");
162   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
163 
164   MachineFunction *MF = MBB->getParent();
165   // drop all successors.
166   while (!MBB->succ_empty())
167     MBB->removeSuccessor(MBB->succ_end()-1);
168 
169   // Avoid matching if this pointer gets reused.
170   TriedMerging.erase(MBB);
171 
172   // Update call site info.
173   std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
174     if (MI.shouldUpdateCallSiteInfo())
175       MF->eraseCallSiteInfo(&MI);
176   });
177   // Remove the block.
178   MF->erase(MBB);
179   EHScopeMembership.erase(MBB);
180   if (MLI)
181     MLI->removeBlock(MBB);
182 }
183 
184 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
185                                     const TargetInstrInfo *tii,
186                                     const TargetRegisterInfo *tri,
187                                     MachineModuleInfo *mmi,
188                                     MachineLoopInfo *mli, bool AfterPlacement) {
189   if (!tii) return false;
190 
191   TriedMerging.clear();
192 
193   MachineRegisterInfo &MRI = MF.getRegInfo();
194   AfterBlockPlacement = AfterPlacement;
195   TII = tii;
196   TRI = tri;
197   MMI = mmi;
198   MLI = mli;
199   this->MRI = &MRI;
200 
201   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
202   if (!UpdateLiveIns)
203     MRI.invalidateLiveness();
204 
205   bool MadeChange = false;
206 
207   // Recalculate EH scope membership.
208   EHScopeMembership = getEHScopeMembership(MF);
209 
210   bool MadeChangeThisIteration = true;
211   while (MadeChangeThisIteration) {
212     MadeChangeThisIteration    = TailMergeBlocks(MF);
213     // No need to clean up if tail merging does not change anything after the
214     // block placement.
215     if (!AfterBlockPlacement || MadeChangeThisIteration)
216       MadeChangeThisIteration |= OptimizeBranches(MF);
217     if (EnableHoistCommonCode)
218       MadeChangeThisIteration |= HoistCommonCode(MF);
219     MadeChange |= MadeChangeThisIteration;
220   }
221 
222   // See if any jump tables have become dead as the code generator
223   // did its thing.
224   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
225   if (!JTI)
226     return MadeChange;
227 
228   // Walk the function to find jump tables that are live.
229   BitVector JTIsLive(JTI->getJumpTables().size());
230   for (const MachineBasicBlock &BB : MF) {
231     for (const MachineInstr &I : BB)
232       for (const MachineOperand &Op : I.operands()) {
233         if (!Op.isJTI()) continue;
234 
235         // Remember that this JT is live.
236         JTIsLive.set(Op.getIndex());
237       }
238   }
239 
240   // Finally, remove dead jump tables.  This happens when the
241   // indirect jump was unreachable (and thus deleted).
242   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
243     if (!JTIsLive.test(i)) {
244       JTI->RemoveJumpTable(i);
245       MadeChange = true;
246     }
247 
248   return MadeChange;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //  Tail Merging of Blocks
253 //===----------------------------------------------------------------------===//
254 
255 /// HashMachineInstr - Compute a hash value for MI and its operands.
256 static unsigned HashMachineInstr(const MachineInstr &MI) {
257   unsigned Hash = MI.getOpcode();
258   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
259     const MachineOperand &Op = MI.getOperand(i);
260 
261     // Merge in bits from the operand if easy. We can't use MachineOperand's
262     // hash_code here because it's not deterministic and we sort by hash value
263     // later.
264     unsigned OperandHash = 0;
265     switch (Op.getType()) {
266     case MachineOperand::MO_Register:
267       OperandHash = Op.getReg();
268       break;
269     case MachineOperand::MO_Immediate:
270       OperandHash = Op.getImm();
271       break;
272     case MachineOperand::MO_MachineBasicBlock:
273       OperandHash = Op.getMBB()->getNumber();
274       break;
275     case MachineOperand::MO_FrameIndex:
276     case MachineOperand::MO_ConstantPoolIndex:
277     case MachineOperand::MO_JumpTableIndex:
278       OperandHash = Op.getIndex();
279       break;
280     case MachineOperand::MO_GlobalAddress:
281     case MachineOperand::MO_ExternalSymbol:
282       // Global address / external symbol are too hard, don't bother, but do
283       // pull in the offset.
284       OperandHash = Op.getOffset();
285       break;
286     default:
287       break;
288     }
289 
290     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
291   }
292   return Hash;
293 }
294 
295 /// HashEndOfMBB - Hash the last instruction in the MBB.
296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
297   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
298   if (I == MBB.end())
299     return 0;
300 
301   return HashMachineInstr(*I);
302 }
303 
304 /// Whether MI should be counted as an instruction when calculating common tail.
305 static bool countsAsInstruction(const MachineInstr &MI) {
306   return !(MI.isDebugInstr() || MI.isCFIInstruction());
307 }
308 
309 /// Iterate backwards from the given iterator \p I, towards the beginning of the
310 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
311 /// pointing to that MI. If no such MI is found, return the end iterator.
312 static MachineBasicBlock::iterator
313 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
314                                 MachineBasicBlock *MBB) {
315   while (I != MBB->begin()) {
316     --I;
317     if (countsAsInstruction(*I))
318       return I;
319   }
320   return MBB->end();
321 }
322 
323 /// Given two machine basic blocks, return the number of instructions they
324 /// actually have in common together at their end. If a common tail is found (at
325 /// least by one instruction), then iterators for the first shared instruction
326 /// in each block are returned as well.
327 ///
328 /// Non-instructions according to countsAsInstruction are ignored.
329 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
330                                         MachineBasicBlock *MBB2,
331                                         MachineBasicBlock::iterator &I1,
332                                         MachineBasicBlock::iterator &I2) {
333   MachineBasicBlock::iterator MBBI1 = MBB1->end();
334   MachineBasicBlock::iterator MBBI2 = MBB2->end();
335 
336   unsigned TailLen = 0;
337   while (true) {
338     MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
339     MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
340     if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
341       break;
342     if (!MBBI1->isIdenticalTo(*MBBI2) ||
343         // FIXME: This check is dubious. It's used to get around a problem where
344         // people incorrectly expect inline asm directives to remain in the same
345         // relative order. This is untenable because normal compiler
346         // optimizations (like this one) may reorder and/or merge these
347         // directives.
348         MBBI1->isInlineAsm()) {
349       break;
350     }
351     ++TailLen;
352     I1 = MBBI1;
353     I2 = MBBI2;
354   }
355 
356   return TailLen;
357 }
358 
359 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
360                                            MachineBasicBlock &NewDest) {
361   if (UpdateLiveIns) {
362     // OldInst should always point to an instruction.
363     MachineBasicBlock &OldMBB = *OldInst->getParent();
364     LiveRegs.clear();
365     LiveRegs.addLiveOuts(OldMBB);
366     // Move backward to the place where will insert the jump.
367     MachineBasicBlock::iterator I = OldMBB.end();
368     do {
369       --I;
370       LiveRegs.stepBackward(*I);
371     } while (I != OldInst);
372 
373     // Merging the tails may have switched some undef operand to non-undef ones.
374     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
375     // register.
376     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
377       // We computed the liveins with computeLiveIn earlier and should only see
378       // full registers:
379       assert(P.LaneMask == LaneBitmask::getAll() &&
380              "Can only handle full register.");
381       MCPhysReg Reg = P.PhysReg;
382       if (!LiveRegs.available(*MRI, Reg))
383         continue;
384       DebugLoc DL;
385       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
386     }
387   }
388 
389   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
390   ++NumTailMerge;
391 }
392 
393 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
394                                             MachineBasicBlock::iterator BBI1,
395                                             const BasicBlock *BB) {
396   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
397     return nullptr;
398 
399   MachineFunction &MF = *CurMBB.getParent();
400 
401   // Create the fall-through block.
402   MachineFunction::iterator MBBI = CurMBB.getIterator();
403   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
404   CurMBB.getParent()->insert(++MBBI, NewMBB);
405 
406   // Move all the successors of this block to the specified block.
407   NewMBB->transferSuccessors(&CurMBB);
408 
409   // Add an edge from CurMBB to NewMBB for the fall-through.
410   CurMBB.addSuccessor(NewMBB);
411 
412   // Splice the code over.
413   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
414 
415   // NewMBB belongs to the same loop as CurMBB.
416   if (MLI)
417     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
418       ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
419 
420   // NewMBB inherits CurMBB's block frequency.
421   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
422 
423   if (UpdateLiveIns)
424     computeAndAddLiveIns(LiveRegs, *NewMBB);
425 
426   // Add the new block to the EH scope.
427   const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
428   if (EHScopeI != EHScopeMembership.end()) {
429     auto n = EHScopeI->second;
430     EHScopeMembership[NewMBB] = n;
431   }
432 
433   return NewMBB;
434 }
435 
436 /// EstimateRuntime - Make a rough estimate for how long it will take to run
437 /// the specified code.
438 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
439                                 MachineBasicBlock::iterator E) {
440   unsigned Time = 0;
441   for (; I != E; ++I) {
442     if (!countsAsInstruction(*I))
443       continue;
444     if (I->isCall())
445       Time += 10;
446     else if (I->mayLoadOrStore())
447       Time += 2;
448     else
449       ++Time;
450   }
451   return Time;
452 }
453 
454 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
455 // branches temporarily for tail merging).  In the case where CurMBB ends
456 // with a conditional branch to the next block, optimize by reversing the
457 // test and conditionally branching to SuccMBB instead.
458 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
459                     const TargetInstrInfo *TII) {
460   MachineFunction *MF = CurMBB->getParent();
461   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
462   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
463   SmallVector<MachineOperand, 4> Cond;
464   DebugLoc dl = CurMBB->findBranchDebugLoc();
465   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
466     MachineBasicBlock *NextBB = &*I;
467     if (TBB == NextBB && !Cond.empty() && !FBB) {
468       if (!TII->reverseBranchCondition(Cond)) {
469         TII->removeBranch(*CurMBB);
470         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
471         return;
472       }
473     }
474   }
475   TII->insertBranch(*CurMBB, SuccBB, nullptr,
476                     SmallVector<MachineOperand, 0>(), dl);
477 }
478 
479 bool
480 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
481   if (getHash() < o.getHash())
482     return true;
483   if (getHash() > o.getHash())
484     return false;
485   if (getBlock()->getNumber() < o.getBlock()->getNumber())
486     return true;
487   if (getBlock()->getNumber() > o.getBlock()->getNumber())
488     return false;
489   // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
490   // an object with itself.
491 #ifndef _GLIBCXX_DEBUG
492   llvm_unreachable("Predecessor appears twice");
493 #else
494   return false;
495 #endif
496 }
497 
498 /// CountTerminators - Count the number of terminators in the given
499 /// block and set I to the position of the first non-terminator, if there
500 /// is one, or MBB->end() otherwise.
501 static unsigned CountTerminators(MachineBasicBlock *MBB,
502                                  MachineBasicBlock::iterator &I) {
503   I = MBB->end();
504   unsigned NumTerms = 0;
505   while (true) {
506     if (I == MBB->begin()) {
507       I = MBB->end();
508       break;
509     }
510     --I;
511     if (!I->isTerminator()) break;
512     ++NumTerms;
513   }
514   return NumTerms;
515 }
516 
517 /// A no successor, non-return block probably ends in unreachable and is cold.
518 /// Also consider a block that ends in an indirect branch to be a return block,
519 /// since many targets use plain indirect branches to return.
520 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
521   if (!MBB->succ_empty())
522     return false;
523   if (MBB->empty())
524     return true;
525   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
526 }
527 
528 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
529 /// and decide if it would be profitable to merge those tails.  Return the
530 /// length of the common tail and iterators to the first common instruction
531 /// in each block.
532 /// MBB1, MBB2      The blocks to check
533 /// MinCommonTailLength  Minimum size of tail block to be merged.
534 /// CommonTailLen   Out parameter to record the size of the shared tail between
535 ///                 MBB1 and MBB2
536 /// I1, I2          Iterator references that will be changed to point to the first
537 ///                 instruction in the common tail shared by MBB1,MBB2
538 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
539 ///                 relative to SuccBB
540 /// PredBB          The layout predecessor of SuccBB, if any.
541 /// EHScopeMembership  map from block to EH scope #.
542 /// AfterPlacement  True if we are merging blocks after layout. Stricter
543 ///                 thresholds apply to prevent undoing tail-duplication.
544 static bool
545 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
546                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
547                   MachineBasicBlock::iterator &I1,
548                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
549                   MachineBasicBlock *PredBB,
550                   DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
551                   bool AfterPlacement,
552                   MBFIWrapper &MBBFreqInfo,
553                   ProfileSummaryInfo *PSI) {
554   // It is never profitable to tail-merge blocks from two different EH scopes.
555   if (!EHScopeMembership.empty()) {
556     auto EHScope1 = EHScopeMembership.find(MBB1);
557     assert(EHScope1 != EHScopeMembership.end());
558     auto EHScope2 = EHScopeMembership.find(MBB2);
559     assert(EHScope2 != EHScopeMembership.end());
560     if (EHScope1->second != EHScope2->second)
561       return false;
562   }
563 
564   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
565   if (CommonTailLen == 0)
566     return false;
567   LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
568                     << " and " << printMBBReference(*MBB2) << " is "
569                     << CommonTailLen << '\n');
570 
571   // Move the iterators to the beginning of the MBB if we only got debug
572   // instructions before the tail. This is to avoid splitting a block when we
573   // only got debug instructions before the tail (to be invariant on -g).
574   if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end()) == I1)
575     I1 = MBB1->begin();
576   if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end()) == I2)
577     I2 = MBB2->begin();
578 
579   bool FullBlockTail1 = I1 == MBB1->begin();
580   bool FullBlockTail2 = I2 == MBB2->begin();
581 
582   // It's almost always profitable to merge any number of non-terminator
583   // instructions with the block that falls through into the common successor.
584   // This is true only for a single successor. For multiple successors, we are
585   // trading a conditional branch for an unconditional one.
586   // TODO: Re-visit successor size for non-layout tail merging.
587   if ((MBB1 == PredBB || MBB2 == PredBB) &&
588       (!AfterPlacement || MBB1->succ_size() == 1)) {
589     MachineBasicBlock::iterator I;
590     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
591     if (CommonTailLen > NumTerms)
592       return true;
593   }
594 
595   // If these are identical non-return blocks with no successors, merge them.
596   // Such blocks are typically cold calls to noreturn functions like abort, and
597   // are unlikely to become a fallthrough target after machine block placement.
598   // Tail merging these blocks is unlikely to create additional unconditional
599   // branches, and will reduce the size of this cold code.
600   if (FullBlockTail1 && FullBlockTail2 &&
601       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
602     return true;
603 
604   // If one of the blocks can be completely merged and happens to be in
605   // a position where the other could fall through into it, merge any number
606   // of instructions, because it can be done without a branch.
607   // TODO: If the blocks are not adjacent, move one of them so that they are?
608   if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
609     return true;
610   if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
611     return true;
612 
613   // If both blocks are identical and end in a branch, merge them unless they
614   // both have a fallthrough predecessor and successor.
615   // We can only do this after block placement because it depends on whether
616   // there are fallthroughs, and we don't know until after layout.
617   if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
618     auto BothFallThrough = [](MachineBasicBlock *MBB) {
619       if (MBB->succ_size() != 0 && !MBB->canFallThrough())
620         return false;
621       MachineFunction::iterator I(MBB);
622       MachineFunction *MF = MBB->getParent();
623       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
624     };
625     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
626       return true;
627   }
628 
629   // If both blocks have an unconditional branch temporarily stripped out,
630   // count that as an additional common instruction for the following
631   // heuristics. This heuristic is only accurate for single-succ blocks, so to
632   // make sure that during layout merging and duplicating don't crash, we check
633   // for that when merging during layout.
634   unsigned EffectiveTailLen = CommonTailLen;
635   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
636       (MBB1->succ_size() == 1 || !AfterPlacement) &&
637       !MBB1->back().isBarrier() &&
638       !MBB2->back().isBarrier())
639     ++EffectiveTailLen;
640 
641   // Check if the common tail is long enough to be worthwhile.
642   if (EffectiveTailLen >= MinCommonTailLength)
643     return true;
644 
645   // If we are optimizing for code size, 2 instructions in common is enough if
646   // we don't have to split a block.  At worst we will be introducing 1 new
647   // branch instruction, which is likely to be smaller than the 2
648   // instructions that would be deleted in the merge.
649   MachineFunction *MF = MBB1->getParent();
650   bool OptForSize =
651       MF->getFunction().hasOptSize() ||
652       (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
653        llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo));
654   return EffectiveTailLen >= 2 && OptForSize &&
655          (FullBlockTail1 || FullBlockTail2);
656 }
657 
658 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
659                                         unsigned MinCommonTailLength,
660                                         MachineBasicBlock *SuccBB,
661                                         MachineBasicBlock *PredBB) {
662   unsigned maxCommonTailLength = 0U;
663   SameTails.clear();
664   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
665   MPIterator HighestMPIter = std::prev(MergePotentials.end());
666   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
667                   B = MergePotentials.begin();
668        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
669     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
670       unsigned CommonTailLen;
671       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
672                             MinCommonTailLength,
673                             CommonTailLen, TrialBBI1, TrialBBI2,
674                             SuccBB, PredBB,
675                             EHScopeMembership,
676                             AfterBlockPlacement, MBBFreqInfo, PSI)) {
677         if (CommonTailLen > maxCommonTailLength) {
678           SameTails.clear();
679           maxCommonTailLength = CommonTailLen;
680           HighestMPIter = CurMPIter;
681           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
682         }
683         if (HighestMPIter == CurMPIter &&
684             CommonTailLen == maxCommonTailLength)
685           SameTails.push_back(SameTailElt(I, TrialBBI2));
686       }
687       if (I == B)
688         break;
689     }
690   }
691   return maxCommonTailLength;
692 }
693 
694 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
695                                         MachineBasicBlock *SuccBB,
696                                         MachineBasicBlock *PredBB) {
697   MPIterator CurMPIter, B;
698   for (CurMPIter = std::prev(MergePotentials.end()),
699       B = MergePotentials.begin();
700        CurMPIter->getHash() == CurHash; --CurMPIter) {
701     // Put the unconditional branch back, if we need one.
702     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
703     if (SuccBB && CurMBB != PredBB)
704       FixTail(CurMBB, SuccBB, TII);
705     if (CurMPIter == B)
706       break;
707   }
708   if (CurMPIter->getHash() != CurHash)
709     CurMPIter++;
710   MergePotentials.erase(CurMPIter, MergePotentials.end());
711 }
712 
713 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
714                                              MachineBasicBlock *SuccBB,
715                                              unsigned maxCommonTailLength,
716                                              unsigned &commonTailIndex) {
717   commonTailIndex = 0;
718   unsigned TimeEstimate = ~0U;
719   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
720     // Use PredBB if possible; that doesn't require a new branch.
721     if (SameTails[i].getBlock() == PredBB) {
722       commonTailIndex = i;
723       break;
724     }
725     // Otherwise, make a (fairly bogus) choice based on estimate of
726     // how long it will take the various blocks to execute.
727     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
728                                  SameTails[i].getTailStartPos());
729     if (t <= TimeEstimate) {
730       TimeEstimate = t;
731       commonTailIndex = i;
732     }
733   }
734 
735   MachineBasicBlock::iterator BBI =
736     SameTails[commonTailIndex].getTailStartPos();
737   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
738 
739   LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
740                     << maxCommonTailLength);
741 
742   // If the split block unconditionally falls-thru to SuccBB, it will be
743   // merged. In control flow terms it should then take SuccBB's name. e.g. If
744   // SuccBB is an inner loop, the common tail is still part of the inner loop.
745   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
746     SuccBB->getBasicBlock() : MBB->getBasicBlock();
747   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
748   if (!newMBB) {
749     LLVM_DEBUG(dbgs() << "... failed!");
750     return false;
751   }
752 
753   SameTails[commonTailIndex].setBlock(newMBB);
754   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
755 
756   // If we split PredBB, newMBB is the new predecessor.
757   if (PredBB == MBB)
758     PredBB = newMBB;
759 
760   return true;
761 }
762 
763 static void
764 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
765                 MachineBasicBlock &MBBCommon) {
766   MachineBasicBlock *MBB = MBBIStartPos->getParent();
767   // Note CommonTailLen does not necessarily matches the size of
768   // the common BB nor all its instructions because of debug
769   // instructions differences.
770   unsigned CommonTailLen = 0;
771   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
772     ++CommonTailLen;
773 
774   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
775   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
776   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
777   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
778 
779   while (CommonTailLen--) {
780     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
781     (void)MBBIE;
782 
783     if (!countsAsInstruction(*MBBI)) {
784       ++MBBI;
785       continue;
786     }
787 
788     while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
789       ++MBBICommon;
790 
791     assert(MBBICommon != MBBIECommon &&
792            "Reached BB end within common tail length!");
793     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
794 
795     // Merge MMOs from memory operations in the common block.
796     if (MBBICommon->mayLoadOrStore())
797       MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
798     // Drop undef flags if they aren't present in all merged instructions.
799     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
800       MachineOperand &MO = MBBICommon->getOperand(I);
801       if (MO.isReg() && MO.isUndef()) {
802         const MachineOperand &OtherMO = MBBI->getOperand(I);
803         if (!OtherMO.isUndef())
804           MO.setIsUndef(false);
805       }
806     }
807 
808     ++MBBI;
809     ++MBBICommon;
810   }
811 }
812 
813 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
814   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
815 
816   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
817   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
818     if (i != commonTailIndex) {
819       NextCommonInsts[i] = SameTails[i].getTailStartPos();
820       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
821     } else {
822       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
823           "MBB is not a common tail only block");
824     }
825   }
826 
827   for (auto &MI : *MBB) {
828     if (!countsAsInstruction(MI))
829       continue;
830     DebugLoc DL = MI.getDebugLoc();
831     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
832       if (i == commonTailIndex)
833         continue;
834 
835       auto &Pos = NextCommonInsts[i];
836       assert(Pos != SameTails[i].getBlock()->end() &&
837           "Reached BB end within common tail");
838       while (!countsAsInstruction(*Pos)) {
839         ++Pos;
840         assert(Pos != SameTails[i].getBlock()->end() &&
841             "Reached BB end within common tail");
842       }
843       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
844       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
845       NextCommonInsts[i] = ++Pos;
846     }
847     MI.setDebugLoc(DL);
848   }
849 
850   if (UpdateLiveIns) {
851     LivePhysRegs NewLiveIns(*TRI);
852     computeLiveIns(NewLiveIns, *MBB);
853     LiveRegs.init(*TRI);
854 
855     // The flag merging may lead to some register uses no longer using the
856     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
857     for (MachineBasicBlock *Pred : MBB->predecessors()) {
858       LiveRegs.clear();
859       LiveRegs.addLiveOuts(*Pred);
860       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
861       for (unsigned Reg : NewLiveIns) {
862         if (!LiveRegs.available(*MRI, Reg))
863           continue;
864         DebugLoc DL;
865         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
866                 Reg);
867       }
868     }
869 
870     MBB->clearLiveIns();
871     addLiveIns(*MBB, NewLiveIns);
872   }
873 }
874 
875 // See if any of the blocks in MergePotentials (which all have SuccBB as a
876 // successor, or all have no successor if it is null) can be tail-merged.
877 // If there is a successor, any blocks in MergePotentials that are not
878 // tail-merged and are not immediately before Succ must have an unconditional
879 // branch to Succ added (but the predecessor/successor lists need no
880 // adjustment). The lone predecessor of Succ that falls through into Succ,
881 // if any, is given in PredBB.
882 // MinCommonTailLength - Except for the special cases below, tail-merge if
883 // there are at least this many instructions in common.
884 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
885                                       MachineBasicBlock *PredBB,
886                                       unsigned MinCommonTailLength) {
887   bool MadeChange = false;
888 
889   LLVM_DEBUG(
890       dbgs() << "\nTryTailMergeBlocks: ";
891       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
892       << printMBBReference(*MergePotentials[i].getBlock())
893       << (i == e - 1 ? "" : ", ");
894       dbgs() << "\n"; if (SuccBB) {
895         dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
896         if (PredBB)
897           dbgs() << "  which has fall-through from "
898                  << printMBBReference(*PredBB) << "\n";
899       } dbgs() << "Looking for common tails of at least "
900                << MinCommonTailLength << " instruction"
901                << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
902 
903   // Sort by hash value so that blocks with identical end sequences sort
904   // together.
905   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
906 
907   // Walk through equivalence sets looking for actual exact matches.
908   while (MergePotentials.size() > 1) {
909     unsigned CurHash = MergePotentials.back().getHash();
910 
911     // Build SameTails, identifying the set of blocks with this hash code
912     // and with the maximum number of instructions in common.
913     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
914                                                     MinCommonTailLength,
915                                                     SuccBB, PredBB);
916 
917     // If we didn't find any pair that has at least MinCommonTailLength
918     // instructions in common, remove all blocks with this hash code and retry.
919     if (SameTails.empty()) {
920       RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
921       continue;
922     }
923 
924     // If one of the blocks is the entire common tail (and not the entry
925     // block, which we can't jump to), we can treat all blocks with this same
926     // tail at once.  Use PredBB if that is one of the possibilities, as that
927     // will not introduce any extra branches.
928     MachineBasicBlock *EntryBB =
929         &MergePotentials.front().getBlock()->getParent()->front();
930     unsigned commonTailIndex = SameTails.size();
931     // If there are two blocks, check to see if one can be made to fall through
932     // into the other.
933     if (SameTails.size() == 2 &&
934         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
935         SameTails[1].tailIsWholeBlock())
936       commonTailIndex = 1;
937     else if (SameTails.size() == 2 &&
938              SameTails[1].getBlock()->isLayoutSuccessor(
939                                                      SameTails[0].getBlock()) &&
940              SameTails[0].tailIsWholeBlock())
941       commonTailIndex = 0;
942     else {
943       // Otherwise just pick one, favoring the fall-through predecessor if
944       // there is one.
945       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
946         MachineBasicBlock *MBB = SameTails[i].getBlock();
947         if (MBB == EntryBB && SameTails[i].tailIsWholeBlock())
948           continue;
949         if (MBB == PredBB) {
950           commonTailIndex = i;
951           break;
952         }
953         if (SameTails[i].tailIsWholeBlock())
954           commonTailIndex = i;
955       }
956     }
957 
958     if (commonTailIndex == SameTails.size() ||
959         (SameTails[commonTailIndex].getBlock() == PredBB &&
960          !SameTails[commonTailIndex].tailIsWholeBlock())) {
961       // None of the blocks consist entirely of the common tail.
962       // Split a block so that one does.
963       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
964                                      maxCommonTailLength, commonTailIndex)) {
965         RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
966         continue;
967       }
968     }
969 
970     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
971 
972     // Recompute common tail MBB's edge weights and block frequency.
973     setCommonTailEdgeWeights(*MBB);
974 
975     // Merge debug locations, MMOs and undef flags across identical instructions
976     // for common tail.
977     mergeCommonTails(commonTailIndex);
978 
979     // MBB is common tail.  Adjust all other BB's to jump to this one.
980     // Traversal must be forwards so erases work.
981     LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
982                       << " for ");
983     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
984       if (commonTailIndex == i)
985         continue;
986       LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
987                         << (i == e - 1 ? "" : ", "));
988       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
989       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
990       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
991       MergePotentials.erase(SameTails[i].getMPIter());
992     }
993     LLVM_DEBUG(dbgs() << "\n");
994     // We leave commonTailIndex in the worklist in case there are other blocks
995     // that match it with a smaller number of instructions.
996     MadeChange = true;
997   }
998   return MadeChange;
999 }
1000 
1001 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1002   bool MadeChange = false;
1003   if (!EnableTailMerge)
1004     return MadeChange;
1005 
1006   // First find blocks with no successors.
1007   // Block placement may create new tail merging opportunities for these blocks.
1008   MergePotentials.clear();
1009   for (MachineBasicBlock &MBB : MF) {
1010     if (MergePotentials.size() == TailMergeThreshold)
1011       break;
1012     if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1013       MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1014   }
1015 
1016   // If this is a large problem, avoid visiting the same basic blocks
1017   // multiple times.
1018   if (MergePotentials.size() == TailMergeThreshold)
1019     for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1020       TriedMerging.insert(MergePotentials[i].getBlock());
1021 
1022   // See if we can do any tail merging on those.
1023   if (MergePotentials.size() >= 2)
1024     MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1025 
1026   // Look at blocks (IBB) with multiple predecessors (PBB).
1027   // We change each predecessor to a canonical form, by
1028   // (1) temporarily removing any unconditional branch from the predecessor
1029   // to IBB, and
1030   // (2) alter conditional branches so they branch to the other block
1031   // not IBB; this may require adding back an unconditional branch to IBB
1032   // later, where there wasn't one coming in.  E.g.
1033   //   Bcc IBB
1034   //   fallthrough to QBB
1035   // here becomes
1036   //   Bncc QBB
1037   // with a conceptual B to IBB after that, which never actually exists.
1038   // With those changes, we see whether the predecessors' tails match,
1039   // and merge them if so.  We change things out of canonical form and
1040   // back to the way they were later in the process.  (OptimizeBranches
1041   // would undo some of this, but we can't use it, because we'd get into
1042   // a compile-time infinite loop repeatedly doing and undoing the same
1043   // transformations.)
1044 
1045   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1046        I != E; ++I) {
1047     if (I->pred_size() < 2) continue;
1048     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1049     MachineBasicBlock *IBB = &*I;
1050     MachineBasicBlock *PredBB = &*std::prev(I);
1051     MergePotentials.clear();
1052     MachineLoop *ML;
1053 
1054     // Bail if merging after placement and IBB is the loop header because
1055     // -- If merging predecessors that belong to the same loop as IBB, the
1056     // common tail of merged predecessors may become the loop top if block
1057     // placement is called again and the predecessors may branch to this common
1058     // tail and require more branches. This can be relaxed if
1059     // MachineBlockPlacement::findBestLoopTop is more flexible.
1060     // --If merging predecessors that do not belong to the same loop as IBB, the
1061     // loop info of IBB's loop and the other loops may be affected. Calling the
1062     // block placement again may make big change to the layout and eliminate the
1063     // reason to do tail merging here.
1064     if (AfterBlockPlacement && MLI) {
1065       ML = MLI->getLoopFor(IBB);
1066       if (ML && IBB == ML->getHeader())
1067         continue;
1068     }
1069 
1070     for (MachineBasicBlock *PBB : I->predecessors()) {
1071       if (MergePotentials.size() == TailMergeThreshold)
1072         break;
1073 
1074       if (TriedMerging.count(PBB))
1075         continue;
1076 
1077       // Skip blocks that loop to themselves, can't tail merge these.
1078       if (PBB == IBB)
1079         continue;
1080 
1081       // Visit each predecessor only once.
1082       if (!UniquePreds.insert(PBB).second)
1083         continue;
1084 
1085       // Skip blocks which may jump to a landing pad. Can't tail merge these.
1086       if (PBB->hasEHPadSuccessor())
1087         continue;
1088 
1089       // After block placement, only consider predecessors that belong to the
1090       // same loop as IBB.  The reason is the same as above when skipping loop
1091       // header.
1092       if (AfterBlockPlacement && MLI)
1093         if (ML != MLI->getLoopFor(PBB))
1094           continue;
1095 
1096       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1097       SmallVector<MachineOperand, 4> Cond;
1098       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1099         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1100         // branch.
1101         SmallVector<MachineOperand, 4> NewCond(Cond);
1102         if (!Cond.empty() && TBB == IBB) {
1103           if (TII->reverseBranchCondition(NewCond))
1104             continue;
1105           // This is the QBB case described above
1106           if (!FBB) {
1107             auto Next = ++PBB->getIterator();
1108             if (Next != MF.end())
1109               FBB = &*Next;
1110           }
1111         }
1112 
1113         // Remove the unconditional branch at the end, if any.
1114         if (TBB && (Cond.empty() || FBB)) {
1115           DebugLoc dl = PBB->findBranchDebugLoc();
1116           TII->removeBranch(*PBB);
1117           if (!Cond.empty())
1118             // reinsert conditional branch only, for now
1119             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1120                               NewCond, dl);
1121         }
1122 
1123         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1124       }
1125     }
1126 
1127     // If this is a large problem, avoid visiting the same basic blocks multiple
1128     // times.
1129     if (MergePotentials.size() == TailMergeThreshold)
1130       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1131         TriedMerging.insert(MergePotentials[i].getBlock());
1132 
1133     if (MergePotentials.size() >= 2)
1134       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1135 
1136     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1137     // result of removing blocks in TryTailMergeBlocks.
1138     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1139     if (MergePotentials.size() == 1 &&
1140         MergePotentials.begin()->getBlock() != PredBB)
1141       FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1142   }
1143 
1144   return MadeChange;
1145 }
1146 
1147 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1148   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1149   BlockFrequency AccumulatedMBBFreq;
1150 
1151   // Aggregate edge frequency of successor edge j:
1152   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1153   //  where bb is a basic block that is in SameTails.
1154   for (const auto &Src : SameTails) {
1155     const MachineBasicBlock *SrcMBB = Src.getBlock();
1156     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1157     AccumulatedMBBFreq += BlockFreq;
1158 
1159     // It is not necessary to recompute edge weights if TailBB has less than two
1160     // successors.
1161     if (TailMBB.succ_size() <= 1)
1162       continue;
1163 
1164     auto EdgeFreq = EdgeFreqLs.begin();
1165 
1166     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1167          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1168       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1169   }
1170 
1171   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1172 
1173   if (TailMBB.succ_size() <= 1)
1174     return;
1175 
1176   auto SumEdgeFreq =
1177       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1178           .getFrequency();
1179   auto EdgeFreq = EdgeFreqLs.begin();
1180 
1181   if (SumEdgeFreq > 0) {
1182     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1183          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1184       auto Prob = BranchProbability::getBranchProbability(
1185           EdgeFreq->getFrequency(), SumEdgeFreq);
1186       TailMBB.setSuccProbability(SuccI, Prob);
1187     }
1188   }
1189 }
1190 
1191 //===----------------------------------------------------------------------===//
1192 //  Branch Optimization
1193 //===----------------------------------------------------------------------===//
1194 
1195 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1196   bool MadeChange = false;
1197 
1198   // Make sure blocks are numbered in order
1199   MF.RenumberBlocks();
1200   // Renumbering blocks alters EH scope membership, recalculate it.
1201   EHScopeMembership = getEHScopeMembership(MF);
1202 
1203   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1204        I != E; ) {
1205     MachineBasicBlock *MBB = &*I++;
1206     MadeChange |= OptimizeBlock(MBB);
1207 
1208     // If it is dead, remove it.
1209     if (MBB->pred_empty()) {
1210       RemoveDeadBlock(MBB);
1211       MadeChange = true;
1212       ++NumDeadBlocks;
1213     }
1214   }
1215 
1216   return MadeChange;
1217 }
1218 
1219 // Blocks should be considered empty if they contain only debug info;
1220 // else the debug info would affect codegen.
1221 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1222   return MBB->getFirstNonDebugInstr() == MBB->end();
1223 }
1224 
1225 // Blocks with only debug info and branches should be considered the same
1226 // as blocks with only branches.
1227 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1228   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1229   assert(I != MBB->end() && "empty block!");
1230   return I->isBranch();
1231 }
1232 
1233 /// IsBetterFallthrough - Return true if it would be clearly better to
1234 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1235 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1236 /// result in infinite loops.
1237 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1238                                 MachineBasicBlock *MBB2) {
1239   assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1240 
1241   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1242   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1243   // optimize branches that branch to either a return block or an assert block
1244   // into a fallthrough to the return.
1245   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1246   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1247   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1248     return false;
1249 
1250   // If there is a clear successor ordering we make sure that one block
1251   // will fall through to the next
1252   if (MBB1->isSuccessor(MBB2)) return true;
1253   if (MBB2->isSuccessor(MBB1)) return false;
1254 
1255   return MBB2I->isCall() && !MBB1I->isCall();
1256 }
1257 
1258 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1259 /// instructions on the block.
1260 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1261   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1262   if (I != MBB.end() && I->isBranch())
1263     return I->getDebugLoc();
1264   return DebugLoc();
1265 }
1266 
1267 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1268                                        MachineBasicBlock &MBB,
1269                                        MachineBasicBlock &PredMBB) {
1270   auto InsertBefore = PredMBB.getFirstTerminator();
1271   for (MachineInstr &MI : MBB.instrs())
1272     if (MI.isDebugInstr()) {
1273       TII->duplicate(PredMBB, InsertBefore, MI);
1274       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1275                         << MI);
1276     }
1277 }
1278 
1279 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1280                                      MachineBasicBlock &MBB,
1281                                      MachineBasicBlock &SuccMBB) {
1282   auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1283   for (MachineInstr &MI : MBB.instrs())
1284     if (MI.isDebugInstr()) {
1285       TII->duplicate(SuccMBB, InsertBefore, MI);
1286       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1287                         << MI);
1288     }
1289 }
1290 
1291 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1292 // a basic block is removed we would lose the debug information unless we have
1293 // copied the information to a predecessor/successor.
1294 //
1295 // TODO: This function only handles some simple cases. An alternative would be
1296 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1297 // branch folding.
1298 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1299                                            MachineBasicBlock &MBB) {
1300   assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1301   // If this MBB is the only predecessor of a successor it is legal to copy
1302   // DBG_VALUE instructions to the beginning of the successor.
1303   for (MachineBasicBlock *SuccBB : MBB.successors())
1304     if (SuccBB->pred_size() == 1)
1305       copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1306   // If this MBB is the only successor of a predecessor it is legal to copy the
1307   // DBG_VALUE instructions to the end of the predecessor (just before the
1308   // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1309   for (MachineBasicBlock *PredBB : MBB.predecessors())
1310     if (PredBB->succ_size() == 1)
1311       copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1312 }
1313 
1314 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1315   bool MadeChange = false;
1316   MachineFunction &MF = *MBB->getParent();
1317 ReoptimizeBlock:
1318 
1319   MachineFunction::iterator FallThrough = MBB->getIterator();
1320   ++FallThrough;
1321 
1322   // Make sure MBB and FallThrough belong to the same EH scope.
1323   bool SameEHScope = true;
1324   if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1325     auto MBBEHScope = EHScopeMembership.find(MBB);
1326     assert(MBBEHScope != EHScopeMembership.end());
1327     auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1328     assert(FallThroughEHScope != EHScopeMembership.end());
1329     SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1330   }
1331 
1332   // Analyze the branch in the current block. As a side-effect, this may cause
1333   // the block to become empty.
1334   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1335   SmallVector<MachineOperand, 4> CurCond;
1336   bool CurUnAnalyzable =
1337       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1338 
1339   // If this block is empty, make everyone use its fall-through, not the block
1340   // explicitly.  Landing pads should not do this since the landing-pad table
1341   // points to this block.  Blocks with their addresses taken shouldn't be
1342   // optimized away.
1343   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1344       SameEHScope) {
1345     salvageDebugInfoFromEmptyBlock(TII, *MBB);
1346     // Dead block?  Leave for cleanup later.
1347     if (MBB->pred_empty()) return MadeChange;
1348 
1349     if (FallThrough == MF.end()) {
1350       // TODO: Simplify preds to not branch here if possible!
1351     } else if (FallThrough->isEHPad()) {
1352       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1353       // where a BB jumps to more than one landing pad.
1354       // TODO: Is it ever worth rewriting predecessors which don't already
1355       // jump to a landing pad, and so can safely jump to the fallthrough?
1356     } else if (MBB->isSuccessor(&*FallThrough)) {
1357       // Rewrite all predecessors of the old block to go to the fallthrough
1358       // instead.
1359       while (!MBB->pred_empty()) {
1360         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1361         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1362       }
1363       // If MBB was the target of a jump table, update jump tables to go to the
1364       // fallthrough instead.
1365       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1366         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1367       MadeChange = true;
1368     }
1369     return MadeChange;
1370   }
1371 
1372   // Check to see if we can simplify the terminator of the block before this
1373   // one.
1374   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1375 
1376   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1377   SmallVector<MachineOperand, 4> PriorCond;
1378   bool PriorUnAnalyzable =
1379       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1380   if (!PriorUnAnalyzable) {
1381     // If the previous branch is conditional and both conditions go to the same
1382     // destination, remove the branch, replacing it with an unconditional one or
1383     // a fall-through.
1384     if (PriorTBB && PriorTBB == PriorFBB) {
1385       DebugLoc dl = getBranchDebugLoc(PrevBB);
1386       TII->removeBranch(PrevBB);
1387       PriorCond.clear();
1388       if (PriorTBB != MBB)
1389         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1390       MadeChange = true;
1391       ++NumBranchOpts;
1392       goto ReoptimizeBlock;
1393     }
1394 
1395     // If the previous block unconditionally falls through to this block and
1396     // this block has no other predecessors, move the contents of this block
1397     // into the prior block. This doesn't usually happen when SimplifyCFG
1398     // has been used, but it can happen if tail merging splits a fall-through
1399     // predecessor of a block.
1400     // This has to check PrevBB->succ_size() because EH edges are ignored by
1401     // analyzeBranch.
1402     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1403         PrevBB.succ_size() == 1 &&
1404         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1405       LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1406                         << "From MBB: " << *MBB);
1407       // Remove redundant DBG_VALUEs first.
1408       if (PrevBB.begin() != PrevBB.end()) {
1409         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1410         --PrevBBIter;
1411         MachineBasicBlock::iterator MBBIter = MBB->begin();
1412         // Check if DBG_VALUE at the end of PrevBB is identical to the
1413         // DBG_VALUE at the beginning of MBB.
1414         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1415                && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1416           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1417             break;
1418           MachineInstr &DuplicateDbg = *MBBIter;
1419           ++MBBIter; -- PrevBBIter;
1420           DuplicateDbg.eraseFromParent();
1421         }
1422       }
1423       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1424       PrevBB.removeSuccessor(PrevBB.succ_begin());
1425       assert(PrevBB.succ_empty());
1426       PrevBB.transferSuccessors(MBB);
1427       MadeChange = true;
1428       return MadeChange;
1429     }
1430 
1431     // If the previous branch *only* branches to *this* block (conditional or
1432     // not) remove the branch.
1433     if (PriorTBB == MBB && !PriorFBB) {
1434       TII->removeBranch(PrevBB);
1435       MadeChange = true;
1436       ++NumBranchOpts;
1437       goto ReoptimizeBlock;
1438     }
1439 
1440     // If the prior block branches somewhere else on the condition and here if
1441     // the condition is false, remove the uncond second branch.
1442     if (PriorFBB == MBB) {
1443       DebugLoc dl = getBranchDebugLoc(PrevBB);
1444       TII->removeBranch(PrevBB);
1445       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1446       MadeChange = true;
1447       ++NumBranchOpts;
1448       goto ReoptimizeBlock;
1449     }
1450 
1451     // If the prior block branches here on true and somewhere else on false, and
1452     // if the branch condition is reversible, reverse the branch to create a
1453     // fall-through.
1454     if (PriorTBB == MBB) {
1455       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1456       if (!TII->reverseBranchCondition(NewPriorCond)) {
1457         DebugLoc dl = getBranchDebugLoc(PrevBB);
1458         TII->removeBranch(PrevBB);
1459         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1460         MadeChange = true;
1461         ++NumBranchOpts;
1462         goto ReoptimizeBlock;
1463       }
1464     }
1465 
1466     // If this block has no successors (e.g. it is a return block or ends with
1467     // a call to a no-return function like abort or __cxa_throw) and if the pred
1468     // falls through into this block, and if it would otherwise fall through
1469     // into the block after this, move this block to the end of the function.
1470     //
1471     // We consider it more likely that execution will stay in the function (e.g.
1472     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1473     // the assert condition out of the loop body.
1474     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1475         MachineFunction::iterator(PriorTBB) == FallThrough &&
1476         !MBB->canFallThrough()) {
1477       bool DoTransform = true;
1478 
1479       // We have to be careful that the succs of PredBB aren't both no-successor
1480       // blocks.  If neither have successors and if PredBB is the second from
1481       // last block in the function, we'd just keep swapping the two blocks for
1482       // last.  Only do the swap if one is clearly better to fall through than
1483       // the other.
1484       if (FallThrough == --MF.end() &&
1485           !IsBetterFallthrough(PriorTBB, MBB))
1486         DoTransform = false;
1487 
1488       if (DoTransform) {
1489         // Reverse the branch so we will fall through on the previous true cond.
1490         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1491         if (!TII->reverseBranchCondition(NewPriorCond)) {
1492           LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1493                             << "To make fallthrough to: " << *PriorTBB << "\n");
1494 
1495           DebugLoc dl = getBranchDebugLoc(PrevBB);
1496           TII->removeBranch(PrevBB);
1497           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1498 
1499           // Move this block to the end of the function.
1500           MBB->moveAfter(&MF.back());
1501           MadeChange = true;
1502           ++NumBranchOpts;
1503           return MadeChange;
1504         }
1505       }
1506     }
1507   }
1508 
1509   bool OptForSize =
1510       MF.getFunction().hasOptSize() ||
1511       llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo);
1512   if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) {
1513     // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1514     // direction, thereby defeating careful block placement and regressing
1515     // performance. Therefore, only consider this for optsize functions.
1516     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1517     if (TII->isUnconditionalTailCall(TailCall)) {
1518       MachineBasicBlock *Pred = *MBB->pred_begin();
1519       MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1520       SmallVector<MachineOperand, 4> PredCond;
1521       bool PredAnalyzable =
1522           !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1523 
1524       if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1525           PredTBB != PredFBB) {
1526         // The predecessor has a conditional branch to this block which consists
1527         // of only a tail call. Try to fold the tail call into the conditional
1528         // branch.
1529         if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1530           // TODO: It would be nice if analyzeBranch() could provide a pointer
1531           // to the branch instruction so replaceBranchWithTailCall() doesn't
1532           // have to search for it.
1533           TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1534           ++NumTailCalls;
1535           Pred->removeSuccessor(MBB);
1536           MadeChange = true;
1537           return MadeChange;
1538         }
1539       }
1540       // If the predecessor is falling through to this block, we could reverse
1541       // the branch condition and fold the tail call into that. However, after
1542       // that we might have to re-arrange the CFG to fall through to the other
1543       // block and there is a high risk of regressing code size rather than
1544       // improving it.
1545     }
1546   }
1547 
1548   if (!CurUnAnalyzable) {
1549     // If this is a two-way branch, and the FBB branches to this block, reverse
1550     // the condition so the single-basic-block loop is faster.  Instead of:
1551     //    Loop: xxx; jcc Out; jmp Loop
1552     // we want:
1553     //    Loop: xxx; jncc Loop; jmp Out
1554     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1555       SmallVector<MachineOperand, 4> NewCond(CurCond);
1556       if (!TII->reverseBranchCondition(NewCond)) {
1557         DebugLoc dl = getBranchDebugLoc(*MBB);
1558         TII->removeBranch(*MBB);
1559         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1560         MadeChange = true;
1561         ++NumBranchOpts;
1562         goto ReoptimizeBlock;
1563       }
1564     }
1565 
1566     // If this branch is the only thing in its block, see if we can forward
1567     // other blocks across it.
1568     if (CurTBB && CurCond.empty() && !CurFBB &&
1569         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1570         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1571       DebugLoc dl = getBranchDebugLoc(*MBB);
1572       // This block may contain just an unconditional branch.  Because there can
1573       // be 'non-branch terminators' in the block, try removing the branch and
1574       // then seeing if the block is empty.
1575       TII->removeBranch(*MBB);
1576       // If the only things remaining in the block are debug info, remove these
1577       // as well, so this will behave the same as an empty block in non-debug
1578       // mode.
1579       if (IsEmptyBlock(MBB)) {
1580         // Make the block empty, losing the debug info (we could probably
1581         // improve this in some cases.)
1582         MBB->erase(MBB->begin(), MBB->end());
1583       }
1584       // If this block is just an unconditional branch to CurTBB, we can
1585       // usually completely eliminate the block.  The only case we cannot
1586       // completely eliminate the block is when the block before this one
1587       // falls through into MBB and we can't understand the prior block's branch
1588       // condition.
1589       if (MBB->empty()) {
1590         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1591         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1592             !PrevBB.isSuccessor(MBB)) {
1593           // If the prior block falls through into us, turn it into an
1594           // explicit branch to us to make updates simpler.
1595           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1596               PriorTBB != MBB && PriorFBB != MBB) {
1597             if (!PriorTBB) {
1598               assert(PriorCond.empty() && !PriorFBB &&
1599                      "Bad branch analysis");
1600               PriorTBB = MBB;
1601             } else {
1602               assert(!PriorFBB && "Machine CFG out of date!");
1603               PriorFBB = MBB;
1604             }
1605             DebugLoc pdl = getBranchDebugLoc(PrevBB);
1606             TII->removeBranch(PrevBB);
1607             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1608           }
1609 
1610           // Iterate through all the predecessors, revectoring each in-turn.
1611           size_t PI = 0;
1612           bool DidChange = false;
1613           bool HasBranchToSelf = false;
1614           while(PI != MBB->pred_size()) {
1615             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1616             if (PMBB == MBB) {
1617               // If this block has an uncond branch to itself, leave it.
1618               ++PI;
1619               HasBranchToSelf = true;
1620             } else {
1621               DidChange = true;
1622               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1623               // If this change resulted in PMBB ending in a conditional
1624               // branch where both conditions go to the same destination,
1625               // change this to an unconditional branch.
1626               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1627               SmallVector<MachineOperand, 4> NewCurCond;
1628               bool NewCurUnAnalyzable = TII->analyzeBranch(
1629                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1630               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1631                 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1632                 TII->removeBranch(*PMBB);
1633                 NewCurCond.clear();
1634                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1635                 MadeChange = true;
1636                 ++NumBranchOpts;
1637               }
1638             }
1639           }
1640 
1641           // Change any jumptables to go to the new MBB.
1642           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1643             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1644           if (DidChange) {
1645             ++NumBranchOpts;
1646             MadeChange = true;
1647             if (!HasBranchToSelf) return MadeChange;
1648           }
1649         }
1650       }
1651 
1652       // Add the branch back if the block is more than just an uncond branch.
1653       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1654     }
1655   }
1656 
1657   // If the prior block doesn't fall through into this block, and if this
1658   // block doesn't fall through into some other block, see if we can find a
1659   // place to move this block where a fall-through will happen.
1660   if (!PrevBB.canFallThrough()) {
1661     // Now we know that there was no fall-through into this block, check to
1662     // see if it has a fall-through into its successor.
1663     bool CurFallsThru = MBB->canFallThrough();
1664 
1665     if (!MBB->isEHPad()) {
1666       // Check all the predecessors of this block.  If one of them has no fall
1667       // throughs, move this block right after it.
1668       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1669         // Analyze the branch at the end of the pred.
1670         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1671         SmallVector<MachineOperand, 4> PredCond;
1672         if (PredBB != MBB && !PredBB->canFallThrough() &&
1673             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1674             (!CurFallsThru || !CurTBB || !CurFBB) &&
1675             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1676           // If the current block doesn't fall through, just move it.
1677           // If the current block can fall through and does not end with a
1678           // conditional branch, we need to append an unconditional jump to
1679           // the (current) next block.  To avoid a possible compile-time
1680           // infinite loop, move blocks only backward in this case.
1681           // Also, if there are already 2 branches here, we cannot add a third;
1682           // this means we have the case
1683           // Bcc next
1684           // B elsewhere
1685           // next:
1686           if (CurFallsThru) {
1687             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1688             CurCond.clear();
1689             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1690           }
1691           MBB->moveAfter(PredBB);
1692           MadeChange = true;
1693           goto ReoptimizeBlock;
1694         }
1695       }
1696     }
1697 
1698     if (!CurFallsThru) {
1699       // Check all successors to see if we can move this block before it.
1700       for (MachineBasicBlock *SuccBB : MBB->successors()) {
1701         // Analyze the branch at the end of the block before the succ.
1702         MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1703 
1704         // If this block doesn't already fall-through to that successor, and if
1705         // the succ doesn't already have a block that can fall through into it,
1706         // and if the successor isn't an EH destination, we can arrange for the
1707         // fallthrough to happen.
1708         if (SuccBB != MBB && &*SuccPrev != MBB &&
1709             !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
1710             !SuccBB->isEHPad()) {
1711           MBB->moveBefore(SuccBB);
1712           MadeChange = true;
1713           goto ReoptimizeBlock;
1714         }
1715       }
1716 
1717       // Okay, there is no really great place to put this block.  If, however,
1718       // the block before this one would be a fall-through if this block were
1719       // removed, move this block to the end of the function. There is no real
1720       // advantage in "falling through" to an EH block, so we don't want to
1721       // perform this transformation for that case.
1722       //
1723       // Also, Windows EH introduced the possibility of an arbitrary number of
1724       // successors to a given block.  The analyzeBranch call does not consider
1725       // exception handling and so we can get in a state where a block
1726       // containing a call is followed by multiple EH blocks that would be
1727       // rotated infinitely at the end of the function if the transformation
1728       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1729       // that appears not to be happening anymore, we should assume that it is
1730       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1731       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1732       SmallVector<MachineOperand, 4> PrevCond;
1733       if (FallThrough != MF.end() &&
1734           !FallThrough->isEHPad() &&
1735           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1736           PrevBB.isSuccessor(&*FallThrough)) {
1737         MBB->moveAfter(&MF.back());
1738         MadeChange = true;
1739         return MadeChange;
1740       }
1741     }
1742   }
1743 
1744   return MadeChange;
1745 }
1746 
1747 //===----------------------------------------------------------------------===//
1748 //  Hoist Common Code
1749 //===----------------------------------------------------------------------===//
1750 
1751 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1752   bool MadeChange = false;
1753   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1754     MachineBasicBlock *MBB = &*I++;
1755     MadeChange |= HoistCommonCodeInSuccs(MBB);
1756   }
1757 
1758   return MadeChange;
1759 }
1760 
1761 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1762 /// its 'true' successor.
1763 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1764                                          MachineBasicBlock *TrueBB) {
1765   for (MachineBasicBlock *SuccBB : BB->successors())
1766     if (SuccBB != TrueBB)
1767       return SuccBB;
1768   return nullptr;
1769 }
1770 
1771 template <class Container>
1772 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
1773                                 Container &Set) {
1774   if (Register::isPhysicalRegister(Reg)) {
1775     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1776       Set.insert(*AI);
1777   } else {
1778     Set.insert(Reg);
1779   }
1780 }
1781 
1782 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1783 /// in successors to. The location is usually just before the terminator,
1784 /// however if the terminator is a conditional branch and its previous
1785 /// instruction is the flag setting instruction, the previous instruction is
1786 /// the preferred location. This function also gathers uses and defs of the
1787 /// instructions from the insertion point to the end of the block. The data is
1788 /// used by HoistCommonCodeInSuccs to ensure safety.
1789 static
1790 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1791                                                   const TargetInstrInfo *TII,
1792                                                   const TargetRegisterInfo *TRI,
1793                                                   SmallSet<unsigned,4> &Uses,
1794                                                   SmallSet<unsigned,4> &Defs) {
1795   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1796   if (!TII->isUnpredicatedTerminator(*Loc))
1797     return MBB->end();
1798 
1799   for (const MachineOperand &MO : Loc->operands()) {
1800     if (!MO.isReg())
1801       continue;
1802     Register Reg = MO.getReg();
1803     if (!Reg)
1804       continue;
1805     if (MO.isUse()) {
1806       addRegAndItsAliases(Reg, TRI, Uses);
1807     } else {
1808       if (!MO.isDead())
1809         // Don't try to hoist code in the rare case the terminator defines a
1810         // register that is later used.
1811         return MBB->end();
1812 
1813       // If the terminator defines a register, make sure we don't hoist
1814       // the instruction whose def might be clobbered by the terminator.
1815       addRegAndItsAliases(Reg, TRI, Defs);
1816     }
1817   }
1818 
1819   if (Uses.empty())
1820     return Loc;
1821   // If the terminator is the only instruction in the block and Uses is not
1822   // empty (or we would have returned above), we can still safely hoist
1823   // instructions just before the terminator as long as the Defs/Uses are not
1824   // violated (which is checked in HoistCommonCodeInSuccs).
1825   if (Loc == MBB->begin())
1826     return Loc;
1827 
1828   // The terminator is probably a conditional branch, try not to separate the
1829   // branch from condition setting instruction.
1830   MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin());
1831 
1832   bool IsDef = false;
1833   for (const MachineOperand &MO : PI->operands()) {
1834     // If PI has a regmask operand, it is probably a call. Separate away.
1835     if (MO.isRegMask())
1836       return Loc;
1837     if (!MO.isReg() || MO.isUse())
1838       continue;
1839     Register Reg = MO.getReg();
1840     if (!Reg)
1841       continue;
1842     if (Uses.count(Reg)) {
1843       IsDef = true;
1844       break;
1845     }
1846   }
1847   if (!IsDef)
1848     // The condition setting instruction is not just before the conditional
1849     // branch.
1850     return Loc;
1851 
1852   // Be conservative, don't insert instruction above something that may have
1853   // side-effects. And since it's potentially bad to separate flag setting
1854   // instruction from the conditional branch, just abort the optimization
1855   // completely.
1856   // Also avoid moving code above predicated instruction since it's hard to
1857   // reason about register liveness with predicated instruction.
1858   bool DontMoveAcrossStore = true;
1859   if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1860     return MBB->end();
1861 
1862   // Find out what registers are live. Note this routine is ignoring other live
1863   // registers which are only used by instructions in successor blocks.
1864   for (const MachineOperand &MO : PI->operands()) {
1865     if (!MO.isReg())
1866       continue;
1867     Register Reg = MO.getReg();
1868     if (!Reg)
1869       continue;
1870     if (MO.isUse()) {
1871       addRegAndItsAliases(Reg, TRI, Uses);
1872     } else {
1873       if (Uses.erase(Reg)) {
1874         if (Register::isPhysicalRegister(Reg)) {
1875           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1876             Uses.erase(*SubRegs); // Use sub-registers to be conservative
1877         }
1878       }
1879       addRegAndItsAliases(Reg, TRI, Defs);
1880     }
1881   }
1882 
1883   return PI;
1884 }
1885 
1886 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1887   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1888   SmallVector<MachineOperand, 4> Cond;
1889   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1890     return false;
1891 
1892   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1893   if (!FBB)
1894     // Malformed bcc? True and false blocks are the same?
1895     return false;
1896 
1897   // Restrict the optimization to cases where MBB is the only predecessor,
1898   // it is an obvious win.
1899   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1900     return false;
1901 
1902   // Find a suitable position to hoist the common instructions to. Also figure
1903   // out which registers are used or defined by instructions from the insertion
1904   // point to the end of the block.
1905   SmallSet<unsigned, 4> Uses, Defs;
1906   MachineBasicBlock::iterator Loc =
1907     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1908   if (Loc == MBB->end())
1909     return false;
1910 
1911   bool HasDups = false;
1912   SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
1913   MachineBasicBlock::iterator TIB = TBB->begin();
1914   MachineBasicBlock::iterator FIB = FBB->begin();
1915   MachineBasicBlock::iterator TIE = TBB->end();
1916   MachineBasicBlock::iterator FIE = FBB->end();
1917   while (TIB != TIE && FIB != FIE) {
1918     // Skip dbg_value instructions. These do not count.
1919     TIB = skipDebugInstructionsForward(TIB, TIE);
1920     FIB = skipDebugInstructionsForward(FIB, FIE);
1921     if (TIB == TIE || FIB == FIE)
1922       break;
1923 
1924     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1925       break;
1926 
1927     if (TII->isPredicated(*TIB))
1928       // Hard to reason about register liveness with predicated instruction.
1929       break;
1930 
1931     bool IsSafe = true;
1932     for (MachineOperand &MO : TIB->operands()) {
1933       // Don't attempt to hoist instructions with register masks.
1934       if (MO.isRegMask()) {
1935         IsSafe = false;
1936         break;
1937       }
1938       if (!MO.isReg())
1939         continue;
1940       Register Reg = MO.getReg();
1941       if (!Reg)
1942         continue;
1943       if (MO.isDef()) {
1944         if (Uses.count(Reg)) {
1945           // Avoid clobbering a register that's used by the instruction at
1946           // the point of insertion.
1947           IsSafe = false;
1948           break;
1949         }
1950 
1951         if (Defs.count(Reg) && !MO.isDead()) {
1952           // Don't hoist the instruction if the def would be clobber by the
1953           // instruction at the point insertion. FIXME: This is overly
1954           // conservative. It should be possible to hoist the instructions
1955           // in BB2 in the following example:
1956           // BB1:
1957           // r1, eflag = op1 r2, r3
1958           // brcc eflag
1959           //
1960           // BB2:
1961           // r1 = op2, ...
1962           //    = op3, killed r1
1963           IsSafe = false;
1964           break;
1965         }
1966       } else if (!ActiveDefsSet.count(Reg)) {
1967         if (Defs.count(Reg)) {
1968           // Use is defined by the instruction at the point of insertion.
1969           IsSafe = false;
1970           break;
1971         }
1972 
1973         if (MO.isKill() && Uses.count(Reg))
1974           // Kills a register that's read by the instruction at the point of
1975           // insertion. Remove the kill marker.
1976           MO.setIsKill(false);
1977       }
1978     }
1979     if (!IsSafe)
1980       break;
1981 
1982     bool DontMoveAcrossStore = true;
1983     if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
1984       break;
1985 
1986     // Remove kills from ActiveDefsSet, these registers had short live ranges.
1987     for (const MachineOperand &MO : TIB->operands()) {
1988       if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1989         continue;
1990       Register Reg = MO.getReg();
1991       if (!Reg)
1992         continue;
1993       if (!AllDefsSet.count(Reg)) {
1994         continue;
1995       }
1996       if (Register::isPhysicalRegister(Reg)) {
1997         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1998           ActiveDefsSet.erase(*AI);
1999       } else {
2000         ActiveDefsSet.erase(Reg);
2001       }
2002     }
2003 
2004     // Track local defs so we can update liveins.
2005     for (const MachineOperand &MO : TIB->operands()) {
2006       if (!MO.isReg() || !MO.isDef() || MO.isDead())
2007         continue;
2008       Register Reg = MO.getReg();
2009       if (!Reg || Register::isVirtualRegister(Reg))
2010         continue;
2011       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2012       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2013     }
2014 
2015     HasDups = true;
2016     ++TIB;
2017     ++FIB;
2018   }
2019 
2020   if (!HasDups)
2021     return false;
2022 
2023   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2024   FBB->erase(FBB->begin(), FIB);
2025 
2026   if (UpdateLiveIns) {
2027     recomputeLiveIns(*TBB);
2028     recomputeLiveIns(*FBB);
2029   }
2030 
2031   ++NumHoist;
2032   return true;
2033 }
2034