1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass forwards branches to unconditional branches to make them branch 10 // directly to the target block. This pass often results in dead MBB's, which 11 // it then removes. 12 // 13 // Note that this pass must be run after register allocation, it cannot handle 14 // SSA form. It also must handle virtual registers for targets that emit virtual 15 // ISA (e.g. NVPTX). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "BranchFolding.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/LivePhysRegs.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineJumpTableInfo.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineModuleInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetOpcodes.h" 43 #include "llvm/CodeGen/TargetPassConfig.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/MC/LaneBitmask.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BlockFrequency.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <cassert> 60 #include <cstddef> 61 #include <iterator> 62 #include <numeric> 63 #include <vector> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "branch-folder" 68 69 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 70 STATISTIC(NumBranchOpts, "Number of branches optimized"); 71 STATISTIC(NumTailMerge , "Number of block tails merged"); 72 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 73 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 74 75 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 76 cl::init(cl::BOU_UNSET), cl::Hidden); 77 78 // Throttle for huge numbers of predecessors (compile speed problems) 79 static cl::opt<unsigned> 80 TailMergeThreshold("tail-merge-threshold", 81 cl::desc("Max number of predecessors to consider tail merging"), 82 cl::init(150), cl::Hidden); 83 84 // Heuristic for tail merging (and, inversely, tail duplication). 85 // TODO: This should be replaced with a target query. 86 static cl::opt<unsigned> 87 TailMergeSize("tail-merge-size", 88 cl::desc("Min number of instructions to consider tail merging"), 89 cl::init(3), cl::Hidden); 90 91 namespace { 92 93 /// BranchFolderPass - Wrap branch folder in a machine function pass. 94 class BranchFolderPass : public MachineFunctionPass { 95 public: 96 static char ID; 97 98 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 99 100 bool runOnMachineFunction(MachineFunction &MF) override; 101 102 void getAnalysisUsage(AnalysisUsage &AU) const override { 103 AU.addRequired<MachineBlockFrequencyInfo>(); 104 AU.addRequired<MachineBranchProbabilityInfo>(); 105 AU.addRequired<TargetPassConfig>(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 }; 109 110 } // end anonymous namespace 111 112 char BranchFolderPass::ID = 0; 113 114 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 115 116 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, 117 "Control Flow Optimizer", false, false) 118 119 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 120 if (skipFunction(MF.getFunction())) 121 return false; 122 123 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 124 // TailMerge can create jump into if branches that make CFG irreducible for 125 // HW that requires structurized CFG. 126 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 127 PassConfig->getEnableTailMerge(); 128 BranchFolder::MBFIWrapper MBBFreqInfo( 129 getAnalysis<MachineBlockFrequencyInfo>()); 130 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 131 getAnalysis<MachineBranchProbabilityInfo>()); 132 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 133 return Folder.OptimizeFunction( 134 MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(), 135 MMIWP ? &MMIWP->getMMI() : nullptr); 136 } 137 138 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, 139 MBFIWrapper &FreqInfo, 140 const MachineBranchProbabilityInfo &ProbInfo, 141 unsigned MinTailLength) 142 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 143 MBBFreqInfo(FreqInfo), MBPI(ProbInfo) { 144 if (MinCommonTailLength == 0) 145 MinCommonTailLength = TailMergeSize; 146 switch (FlagEnableTailMerge) { 147 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; 148 case cl::BOU_TRUE: EnableTailMerge = true; break; 149 case cl::BOU_FALSE: EnableTailMerge = false; break; 150 } 151 } 152 153 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 154 assert(MBB->pred_empty() && "MBB must be dead!"); 155 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 156 157 MachineFunction *MF = MBB->getParent(); 158 // drop all successors. 159 while (!MBB->succ_empty()) 160 MBB->removeSuccessor(MBB->succ_end()-1); 161 162 // Avoid matching if this pointer gets reused. 163 TriedMerging.erase(MBB); 164 165 // Update call site info. 166 std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) { 167 if (MI.isCall(MachineInstr::IgnoreBundle)) 168 MF->eraseCallSiteInfo(&MI); 169 }); 170 // Remove the block. 171 MF->erase(MBB); 172 EHScopeMembership.erase(MBB); 173 if (MLI) 174 MLI->removeBlock(MBB); 175 } 176 177 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 178 const TargetInstrInfo *tii, 179 const TargetRegisterInfo *tri, 180 MachineModuleInfo *mmi, 181 MachineLoopInfo *mli, bool AfterPlacement) { 182 if (!tii) return false; 183 184 TriedMerging.clear(); 185 186 MachineRegisterInfo &MRI = MF.getRegInfo(); 187 AfterBlockPlacement = AfterPlacement; 188 TII = tii; 189 TRI = tri; 190 MMI = mmi; 191 MLI = mli; 192 this->MRI = &MRI; 193 194 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 195 if (!UpdateLiveIns) 196 MRI.invalidateLiveness(); 197 198 // Fix CFG. The later algorithms expect it to be right. 199 bool MadeChange = false; 200 for (MachineBasicBlock &MBB : MF) { 201 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 202 SmallVector<MachineOperand, 4> Cond; 203 if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true)) 204 MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 205 } 206 207 // Recalculate EH scope membership. 208 EHScopeMembership = getEHScopeMembership(MF); 209 210 bool MadeChangeThisIteration = true; 211 while (MadeChangeThisIteration) { 212 MadeChangeThisIteration = TailMergeBlocks(MF); 213 // No need to clean up if tail merging does not change anything after the 214 // block placement. 215 if (!AfterBlockPlacement || MadeChangeThisIteration) 216 MadeChangeThisIteration |= OptimizeBranches(MF); 217 if (EnableHoistCommonCode) 218 MadeChangeThisIteration |= HoistCommonCode(MF); 219 MadeChange |= MadeChangeThisIteration; 220 } 221 222 // See if any jump tables have become dead as the code generator 223 // did its thing. 224 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 225 if (!JTI) 226 return MadeChange; 227 228 // Walk the function to find jump tables that are live. 229 BitVector JTIsLive(JTI->getJumpTables().size()); 230 for (const MachineBasicBlock &BB : MF) { 231 for (const MachineInstr &I : BB) 232 for (const MachineOperand &Op : I.operands()) { 233 if (!Op.isJTI()) continue; 234 235 // Remember that this JT is live. 236 JTIsLive.set(Op.getIndex()); 237 } 238 } 239 240 // Finally, remove dead jump tables. This happens when the 241 // indirect jump was unreachable (and thus deleted). 242 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 243 if (!JTIsLive.test(i)) { 244 JTI->RemoveJumpTable(i); 245 MadeChange = true; 246 } 247 248 return MadeChange; 249 } 250 251 //===----------------------------------------------------------------------===// 252 // Tail Merging of Blocks 253 //===----------------------------------------------------------------------===// 254 255 /// HashMachineInstr - Compute a hash value for MI and its operands. 256 static unsigned HashMachineInstr(const MachineInstr &MI) { 257 unsigned Hash = MI.getOpcode(); 258 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 259 const MachineOperand &Op = MI.getOperand(i); 260 261 // Merge in bits from the operand if easy. We can't use MachineOperand's 262 // hash_code here because it's not deterministic and we sort by hash value 263 // later. 264 unsigned OperandHash = 0; 265 switch (Op.getType()) { 266 case MachineOperand::MO_Register: 267 OperandHash = Op.getReg(); 268 break; 269 case MachineOperand::MO_Immediate: 270 OperandHash = Op.getImm(); 271 break; 272 case MachineOperand::MO_MachineBasicBlock: 273 OperandHash = Op.getMBB()->getNumber(); 274 break; 275 case MachineOperand::MO_FrameIndex: 276 case MachineOperand::MO_ConstantPoolIndex: 277 case MachineOperand::MO_JumpTableIndex: 278 OperandHash = Op.getIndex(); 279 break; 280 case MachineOperand::MO_GlobalAddress: 281 case MachineOperand::MO_ExternalSymbol: 282 // Global address / external symbol are too hard, don't bother, but do 283 // pull in the offset. 284 OperandHash = Op.getOffset(); 285 break; 286 default: 287 break; 288 } 289 290 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 291 } 292 return Hash; 293 } 294 295 /// HashEndOfMBB - Hash the last instruction in the MBB. 296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 297 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 298 if (I == MBB.end()) 299 return 0; 300 301 return HashMachineInstr(*I); 302 } 303 304 /// Whether MI should be counted as an instruction when calculating common tail. 305 static bool countsAsInstruction(const MachineInstr &MI) { 306 return !(MI.isDebugInstr() || MI.isCFIInstruction()); 307 } 308 309 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number 310 /// of instructions they actually have in common together at their end. Return 311 /// iterators for the first shared instruction in each block. 312 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 313 MachineBasicBlock *MBB2, 314 MachineBasicBlock::iterator &I1, 315 MachineBasicBlock::iterator &I2) { 316 I1 = MBB1->end(); 317 I2 = MBB2->end(); 318 319 unsigned TailLen = 0; 320 while (I1 != MBB1->begin() && I2 != MBB2->begin()) { 321 --I1; --I2; 322 // Skip debugging pseudos; necessary to avoid changing the code. 323 while (!countsAsInstruction(*I1)) { 324 if (I1==MBB1->begin()) { 325 while (!countsAsInstruction(*I2)) { 326 if (I2==MBB2->begin()) { 327 // I1==DBG at begin; I2==DBG at begin 328 goto SkipTopCFIAndReturn; 329 } 330 --I2; 331 } 332 ++I2; 333 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin 334 goto SkipTopCFIAndReturn; 335 } 336 --I1; 337 } 338 // I1==first (untested) non-DBG preceding known match 339 while (!countsAsInstruction(*I2)) { 340 if (I2==MBB2->begin()) { 341 ++I1; 342 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin 343 goto SkipTopCFIAndReturn; 344 } 345 --I2; 346 } 347 // I1, I2==first (untested) non-DBGs preceding known match 348 if (!I1->isIdenticalTo(*I2) || 349 // FIXME: This check is dubious. It's used to get around a problem where 350 // people incorrectly expect inline asm directives to remain in the same 351 // relative order. This is untenable because normal compiler 352 // optimizations (like this one) may reorder and/or merge these 353 // directives. 354 I1->isInlineAsm()) { 355 ++I1; ++I2; 356 break; 357 } 358 ++TailLen; 359 } 360 // Back past possible debugging pseudos at beginning of block. This matters 361 // when one block differs from the other only by whether debugging pseudos 362 // are present at the beginning. (This way, the various checks later for 363 // I1==MBB1->begin() work as expected.) 364 if (I1 == MBB1->begin() && I2 != MBB2->begin()) { 365 --I2; 366 while (I2->isDebugInstr()) { 367 if (I2 == MBB2->begin()) 368 return TailLen; 369 --I2; 370 } 371 ++I2; 372 } 373 if (I2 == MBB2->begin() && I1 != MBB1->begin()) { 374 --I1; 375 while (I1->isDebugInstr()) { 376 if (I1 == MBB1->begin()) 377 return TailLen; 378 --I1; 379 } 380 ++I1; 381 } 382 383 SkipTopCFIAndReturn: 384 // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if 385 // I1 and I2 are non-identical when compared and then one or both of them ends 386 // up pointing to a CFI instruction after being incremented. For example: 387 /* 388 BB1: 389 ... 390 INSTRUCTION_A 391 ADD32ri8 <- last common instruction 392 ... 393 BB2: 394 ... 395 INSTRUCTION_B 396 CFI_INSTRUCTION 397 ADD32ri8 <- last common instruction 398 ... 399 */ 400 // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after 401 // incrementing the iterators, I1 will point to ADD, however I2 will point to 402 // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the 403 // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI 404 // instruction. 405 // Skip CFI_INSTRUCTION and debugging instruction; necessary to avoid changing the code. 406 while (I1 != MBB1->end() && !countsAsInstruction(*I1)) { 407 ++I1; 408 } 409 410 while (I2 != MBB2->end() && !countsAsInstruction(*I2)) { 411 ++I2; 412 } 413 414 return TailLen; 415 } 416 417 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 418 MachineBasicBlock &NewDest) { 419 if (UpdateLiveIns) { 420 // OldInst should always point to an instruction. 421 MachineBasicBlock &OldMBB = *OldInst->getParent(); 422 LiveRegs.clear(); 423 LiveRegs.addLiveOuts(OldMBB); 424 // Move backward to the place where will insert the jump. 425 MachineBasicBlock::iterator I = OldMBB.end(); 426 do { 427 --I; 428 LiveRegs.stepBackward(*I); 429 } while (I != OldInst); 430 431 // Merging the tails may have switched some undef operand to non-undef ones. 432 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the 433 // register. 434 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { 435 // We computed the liveins with computeLiveIn earlier and should only see 436 // full registers: 437 assert(P.LaneMask == LaneBitmask::getAll() && 438 "Can only handle full register."); 439 MCPhysReg Reg = P.PhysReg; 440 if (!LiveRegs.available(*MRI, Reg)) 441 continue; 442 DebugLoc DL; 443 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); 444 } 445 } 446 447 TII->ReplaceTailWithBranchTo(OldInst, &NewDest); 448 ++NumTailMerge; 449 } 450 451 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 452 MachineBasicBlock::iterator BBI1, 453 const BasicBlock *BB) { 454 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 455 return nullptr; 456 457 MachineFunction &MF = *CurMBB.getParent(); 458 459 // Create the fall-through block. 460 MachineFunction::iterator MBBI = CurMBB.getIterator(); 461 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); 462 CurMBB.getParent()->insert(++MBBI, NewMBB); 463 464 // Move all the successors of this block to the specified block. 465 NewMBB->transferSuccessors(&CurMBB); 466 467 // Add an edge from CurMBB to NewMBB for the fall-through. 468 CurMBB.addSuccessor(NewMBB); 469 470 // Splice the code over. 471 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 472 473 // NewMBB belongs to the same loop as CurMBB. 474 if (MLI) 475 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 476 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 477 478 // NewMBB inherits CurMBB's block frequency. 479 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 480 481 if (UpdateLiveIns) 482 computeAndAddLiveIns(LiveRegs, *NewMBB); 483 484 // Add the new block to the EH scope. 485 const auto &EHScopeI = EHScopeMembership.find(&CurMBB); 486 if (EHScopeI != EHScopeMembership.end()) { 487 auto n = EHScopeI->second; 488 EHScopeMembership[NewMBB] = n; 489 } 490 491 return NewMBB; 492 } 493 494 /// EstimateRuntime - Make a rough estimate for how long it will take to run 495 /// the specified code. 496 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 497 MachineBasicBlock::iterator E) { 498 unsigned Time = 0; 499 for (; I != E; ++I) { 500 if (!countsAsInstruction(*I)) 501 continue; 502 if (I->isCall()) 503 Time += 10; 504 else if (I->mayLoad() || I->mayStore()) 505 Time += 2; 506 else 507 ++Time; 508 } 509 return Time; 510 } 511 512 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 513 // branches temporarily for tail merging). In the case where CurMBB ends 514 // with a conditional branch to the next block, optimize by reversing the 515 // test and conditionally branching to SuccMBB instead. 516 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 517 const TargetInstrInfo *TII) { 518 MachineFunction *MF = CurMBB->getParent(); 519 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 520 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 521 SmallVector<MachineOperand, 4> Cond; 522 DebugLoc dl = CurMBB->findBranchDebugLoc(); 523 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 524 MachineBasicBlock *NextBB = &*I; 525 if (TBB == NextBB && !Cond.empty() && !FBB) { 526 if (!TII->reverseBranchCondition(Cond)) { 527 TII->removeBranch(*CurMBB); 528 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 529 return; 530 } 531 } 532 } 533 TII->insertBranch(*CurMBB, SuccBB, nullptr, 534 SmallVector<MachineOperand, 0>(), dl); 535 } 536 537 bool 538 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 539 if (getHash() < o.getHash()) 540 return true; 541 if (getHash() > o.getHash()) 542 return false; 543 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 544 return true; 545 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 546 return false; 547 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 548 // an object with itself. 549 #ifndef _GLIBCXX_DEBUG 550 llvm_unreachable("Predecessor appears twice"); 551 #else 552 return false; 553 #endif 554 } 555 556 BlockFrequency 557 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const { 558 auto I = MergedBBFreq.find(MBB); 559 560 if (I != MergedBBFreq.end()) 561 return I->second; 562 563 return MBFI.getBlockFreq(MBB); 564 } 565 566 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB, 567 BlockFrequency F) { 568 MergedBBFreq[MBB] = F; 569 } 570 571 raw_ostream & 572 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 573 const MachineBasicBlock *MBB) const { 574 return MBFI.printBlockFreq(OS, getBlockFreq(MBB)); 575 } 576 577 raw_ostream & 578 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 579 const BlockFrequency Freq) const { 580 return MBFI.printBlockFreq(OS, Freq); 581 } 582 583 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) { 584 MBFI.view(Name, isSimple); 585 } 586 587 uint64_t 588 BranchFolder::MBFIWrapper::getEntryFreq() const { 589 return MBFI.getEntryFreq(); 590 } 591 592 /// CountTerminators - Count the number of terminators in the given 593 /// block and set I to the position of the first non-terminator, if there 594 /// is one, or MBB->end() otherwise. 595 static unsigned CountTerminators(MachineBasicBlock *MBB, 596 MachineBasicBlock::iterator &I) { 597 I = MBB->end(); 598 unsigned NumTerms = 0; 599 while (true) { 600 if (I == MBB->begin()) { 601 I = MBB->end(); 602 break; 603 } 604 --I; 605 if (!I->isTerminator()) break; 606 ++NumTerms; 607 } 608 return NumTerms; 609 } 610 611 /// A no successor, non-return block probably ends in unreachable and is cold. 612 /// Also consider a block that ends in an indirect branch to be a return block, 613 /// since many targets use plain indirect branches to return. 614 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 615 if (!MBB->succ_empty()) 616 return false; 617 if (MBB->empty()) 618 return true; 619 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 620 } 621 622 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 623 /// and decide if it would be profitable to merge those tails. Return the 624 /// length of the common tail and iterators to the first common instruction 625 /// in each block. 626 /// MBB1, MBB2 The blocks to check 627 /// MinCommonTailLength Minimum size of tail block to be merged. 628 /// CommonTailLen Out parameter to record the size of the shared tail between 629 /// MBB1 and MBB2 630 /// I1, I2 Iterator references that will be changed to point to the first 631 /// instruction in the common tail shared by MBB1,MBB2 632 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 633 /// relative to SuccBB 634 /// PredBB The layout predecessor of SuccBB, if any. 635 /// EHScopeMembership map from block to EH scope #. 636 /// AfterPlacement True if we are merging blocks after layout. Stricter 637 /// thresholds apply to prevent undoing tail-duplication. 638 static bool 639 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 640 unsigned MinCommonTailLength, unsigned &CommonTailLen, 641 MachineBasicBlock::iterator &I1, 642 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 643 MachineBasicBlock *PredBB, 644 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, 645 bool AfterPlacement) { 646 // It is never profitable to tail-merge blocks from two different EH scopes. 647 if (!EHScopeMembership.empty()) { 648 auto EHScope1 = EHScopeMembership.find(MBB1); 649 assert(EHScope1 != EHScopeMembership.end()); 650 auto EHScope2 = EHScopeMembership.find(MBB2); 651 assert(EHScope2 != EHScopeMembership.end()); 652 if (EHScope1->second != EHScope2->second) 653 return false; 654 } 655 656 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 657 if (CommonTailLen == 0) 658 return false; 659 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) 660 << " and " << printMBBReference(*MBB2) << " is " 661 << CommonTailLen << '\n'); 662 663 // It's almost always profitable to merge any number of non-terminator 664 // instructions with the block that falls through into the common successor. 665 // This is true only for a single successor. For multiple successors, we are 666 // trading a conditional branch for an unconditional one. 667 // TODO: Re-visit successor size for non-layout tail merging. 668 if ((MBB1 == PredBB || MBB2 == PredBB) && 669 (!AfterPlacement || MBB1->succ_size() == 1)) { 670 MachineBasicBlock::iterator I; 671 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 672 if (CommonTailLen > NumTerms) 673 return true; 674 } 675 676 // If these are identical non-return blocks with no successors, merge them. 677 // Such blocks are typically cold calls to noreturn functions like abort, and 678 // are unlikely to become a fallthrough target after machine block placement. 679 // Tail merging these blocks is unlikely to create additional unconditional 680 // branches, and will reduce the size of this cold code. 681 if (I1 == MBB1->begin() && I2 == MBB2->begin() && 682 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 683 return true; 684 685 // If one of the blocks can be completely merged and happens to be in 686 // a position where the other could fall through into it, merge any number 687 // of instructions, because it can be done without a branch. 688 // TODO: If the blocks are not adjacent, move one of them so that they are? 689 if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin()) 690 return true; 691 if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin()) 692 return true; 693 694 // If both blocks are identical and end in a branch, merge them unless they 695 // both have a fallthrough predecessor and successor. 696 // We can only do this after block placement because it depends on whether 697 // there are fallthroughs, and we don't know until after layout. 698 if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) { 699 auto BothFallThrough = [](MachineBasicBlock *MBB) { 700 if (MBB->succ_size() != 0 && !MBB->canFallThrough()) 701 return false; 702 MachineFunction::iterator I(MBB); 703 MachineFunction *MF = MBB->getParent(); 704 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 705 }; 706 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 707 return true; 708 } 709 710 // If both blocks have an unconditional branch temporarily stripped out, 711 // count that as an additional common instruction for the following 712 // heuristics. This heuristic is only accurate for single-succ blocks, so to 713 // make sure that during layout merging and duplicating don't crash, we check 714 // for that when merging during layout. 715 unsigned EffectiveTailLen = CommonTailLen; 716 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 717 (MBB1->succ_size() == 1 || !AfterPlacement) && 718 !MBB1->back().isBarrier() && 719 !MBB2->back().isBarrier()) 720 ++EffectiveTailLen; 721 722 // Check if the common tail is long enough to be worthwhile. 723 if (EffectiveTailLen >= MinCommonTailLength) 724 return true; 725 726 // If we are optimizing for code size, 2 instructions in common is enough if 727 // we don't have to split a block. At worst we will be introducing 1 new 728 // branch instruction, which is likely to be smaller than the 2 729 // instructions that would be deleted in the merge. 730 MachineFunction *MF = MBB1->getParent(); 731 return EffectiveTailLen >= 2 && MF->getFunction().hasOptSize() && 732 (I1 == MBB1->begin() || I2 == MBB2->begin()); 733 } 734 735 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 736 unsigned MinCommonTailLength, 737 MachineBasicBlock *SuccBB, 738 MachineBasicBlock *PredBB) { 739 unsigned maxCommonTailLength = 0U; 740 SameTails.clear(); 741 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 742 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 743 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 744 B = MergePotentials.begin(); 745 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 746 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 747 unsigned CommonTailLen; 748 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 749 MinCommonTailLength, 750 CommonTailLen, TrialBBI1, TrialBBI2, 751 SuccBB, PredBB, 752 EHScopeMembership, 753 AfterBlockPlacement)) { 754 if (CommonTailLen > maxCommonTailLength) { 755 SameTails.clear(); 756 maxCommonTailLength = CommonTailLen; 757 HighestMPIter = CurMPIter; 758 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 759 } 760 if (HighestMPIter == CurMPIter && 761 CommonTailLen == maxCommonTailLength) 762 SameTails.push_back(SameTailElt(I, TrialBBI2)); 763 } 764 if (I == B) 765 break; 766 } 767 } 768 return maxCommonTailLength; 769 } 770 771 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 772 MachineBasicBlock *SuccBB, 773 MachineBasicBlock *PredBB) { 774 MPIterator CurMPIter, B; 775 for (CurMPIter = std::prev(MergePotentials.end()), 776 B = MergePotentials.begin(); 777 CurMPIter->getHash() == CurHash; --CurMPIter) { 778 // Put the unconditional branch back, if we need one. 779 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 780 if (SuccBB && CurMBB != PredBB) 781 FixTail(CurMBB, SuccBB, TII); 782 if (CurMPIter == B) 783 break; 784 } 785 if (CurMPIter->getHash() != CurHash) 786 CurMPIter++; 787 MergePotentials.erase(CurMPIter, MergePotentials.end()); 788 } 789 790 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 791 MachineBasicBlock *SuccBB, 792 unsigned maxCommonTailLength, 793 unsigned &commonTailIndex) { 794 commonTailIndex = 0; 795 unsigned TimeEstimate = ~0U; 796 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 797 // Use PredBB if possible; that doesn't require a new branch. 798 if (SameTails[i].getBlock() == PredBB) { 799 commonTailIndex = i; 800 break; 801 } 802 // Otherwise, make a (fairly bogus) choice based on estimate of 803 // how long it will take the various blocks to execute. 804 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 805 SameTails[i].getTailStartPos()); 806 if (t <= TimeEstimate) { 807 TimeEstimate = t; 808 commonTailIndex = i; 809 } 810 } 811 812 MachineBasicBlock::iterator BBI = 813 SameTails[commonTailIndex].getTailStartPos(); 814 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 815 816 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " 817 << maxCommonTailLength); 818 819 // If the split block unconditionally falls-thru to SuccBB, it will be 820 // merged. In control flow terms it should then take SuccBB's name. e.g. If 821 // SuccBB is an inner loop, the common tail is still part of the inner loop. 822 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 823 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 824 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 825 if (!newMBB) { 826 LLVM_DEBUG(dbgs() << "... failed!"); 827 return false; 828 } 829 830 SameTails[commonTailIndex].setBlock(newMBB); 831 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 832 833 // If we split PredBB, newMBB is the new predecessor. 834 if (PredBB == MBB) 835 PredBB = newMBB; 836 837 return true; 838 } 839 840 static void 841 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 842 MachineBasicBlock &MBBCommon) { 843 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 844 // Note CommonTailLen does not necessarily matches the size of 845 // the common BB nor all its instructions because of debug 846 // instructions differences. 847 unsigned CommonTailLen = 0; 848 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 849 ++CommonTailLen; 850 851 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 852 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 853 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 854 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 855 856 while (CommonTailLen--) { 857 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 858 (void)MBBIE; 859 860 if (!countsAsInstruction(*MBBI)) { 861 ++MBBI; 862 continue; 863 } 864 865 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) 866 ++MBBICommon; 867 868 assert(MBBICommon != MBBIECommon && 869 "Reached BB end within common tail length!"); 870 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 871 872 // Merge MMOs from memory operations in the common block. 873 if (MBBICommon->mayLoad() || MBBICommon->mayStore()) 874 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); 875 // Drop undef flags if they aren't present in all merged instructions. 876 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 877 MachineOperand &MO = MBBICommon->getOperand(I); 878 if (MO.isReg() && MO.isUndef()) { 879 const MachineOperand &OtherMO = MBBI->getOperand(I); 880 if (!OtherMO.isUndef()) 881 MO.setIsUndef(false); 882 } 883 } 884 885 ++MBBI; 886 ++MBBICommon; 887 } 888 } 889 890 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { 891 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 892 893 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 894 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 895 if (i != commonTailIndex) { 896 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 897 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 898 } else { 899 assert(SameTails[i].getTailStartPos() == MBB->begin() && 900 "MBB is not a common tail only block"); 901 } 902 } 903 904 for (auto &MI : *MBB) { 905 if (!countsAsInstruction(MI)) 906 continue; 907 DebugLoc DL = MI.getDebugLoc(); 908 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 909 if (i == commonTailIndex) 910 continue; 911 912 auto &Pos = NextCommonInsts[i]; 913 assert(Pos != SameTails[i].getBlock()->end() && 914 "Reached BB end within common tail"); 915 while (!countsAsInstruction(*Pos)) { 916 ++Pos; 917 assert(Pos != SameTails[i].getBlock()->end() && 918 "Reached BB end within common tail"); 919 } 920 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 921 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 922 NextCommonInsts[i] = ++Pos; 923 } 924 MI.setDebugLoc(DL); 925 } 926 927 if (UpdateLiveIns) { 928 LivePhysRegs NewLiveIns(*TRI); 929 computeLiveIns(NewLiveIns, *MBB); 930 LiveRegs.init(*TRI); 931 932 // The flag merging may lead to some register uses no longer using the 933 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. 934 for (MachineBasicBlock *Pred : MBB->predecessors()) { 935 LiveRegs.clear(); 936 LiveRegs.addLiveOuts(*Pred); 937 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); 938 for (unsigned Reg : NewLiveIns) { 939 if (!LiveRegs.available(*MRI, Reg)) 940 continue; 941 DebugLoc DL; 942 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), 943 Reg); 944 } 945 } 946 947 MBB->clearLiveIns(); 948 addLiveIns(*MBB, NewLiveIns); 949 } 950 } 951 952 // See if any of the blocks in MergePotentials (which all have SuccBB as a 953 // successor, or all have no successor if it is null) can be tail-merged. 954 // If there is a successor, any blocks in MergePotentials that are not 955 // tail-merged and are not immediately before Succ must have an unconditional 956 // branch to Succ added (but the predecessor/successor lists need no 957 // adjustment). The lone predecessor of Succ that falls through into Succ, 958 // if any, is given in PredBB. 959 // MinCommonTailLength - Except for the special cases below, tail-merge if 960 // there are at least this many instructions in common. 961 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 962 MachineBasicBlock *PredBB, 963 unsigned MinCommonTailLength) { 964 bool MadeChange = false; 965 966 LLVM_DEBUG( 967 dbgs() << "\nTryTailMergeBlocks: "; 968 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs() 969 << printMBBReference(*MergePotentials[i].getBlock()) 970 << (i == e - 1 ? "" : ", "); 971 dbgs() << "\n"; if (SuccBB) { 972 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; 973 if (PredBB) 974 dbgs() << " which has fall-through from " 975 << printMBBReference(*PredBB) << "\n"; 976 } dbgs() << "Looking for common tails of at least " 977 << MinCommonTailLength << " instruction" 978 << (MinCommonTailLength == 1 ? "" : "s") << '\n';); 979 980 // Sort by hash value so that blocks with identical end sequences sort 981 // together. 982 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 983 984 // Walk through equivalence sets looking for actual exact matches. 985 while (MergePotentials.size() > 1) { 986 unsigned CurHash = MergePotentials.back().getHash(); 987 988 // Build SameTails, identifying the set of blocks with this hash code 989 // and with the maximum number of instructions in common. 990 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 991 MinCommonTailLength, 992 SuccBB, PredBB); 993 994 // If we didn't find any pair that has at least MinCommonTailLength 995 // instructions in common, remove all blocks with this hash code and retry. 996 if (SameTails.empty()) { 997 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 998 continue; 999 } 1000 1001 // If one of the blocks is the entire common tail (and not the entry 1002 // block, which we can't jump to), we can treat all blocks with this same 1003 // tail at once. Use PredBB if that is one of the possibilities, as that 1004 // will not introduce any extra branches. 1005 MachineBasicBlock *EntryBB = 1006 &MergePotentials.front().getBlock()->getParent()->front(); 1007 unsigned commonTailIndex = SameTails.size(); 1008 // If there are two blocks, check to see if one can be made to fall through 1009 // into the other. 1010 if (SameTails.size() == 2 && 1011 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 1012 SameTails[1].tailIsWholeBlock()) 1013 commonTailIndex = 1; 1014 else if (SameTails.size() == 2 && 1015 SameTails[1].getBlock()->isLayoutSuccessor( 1016 SameTails[0].getBlock()) && 1017 SameTails[0].tailIsWholeBlock()) 1018 commonTailIndex = 0; 1019 else { 1020 // Otherwise just pick one, favoring the fall-through predecessor if 1021 // there is one. 1022 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 1023 MachineBasicBlock *MBB = SameTails[i].getBlock(); 1024 if (MBB == EntryBB && SameTails[i].tailIsWholeBlock()) 1025 continue; 1026 if (MBB == PredBB) { 1027 commonTailIndex = i; 1028 break; 1029 } 1030 if (SameTails[i].tailIsWholeBlock()) 1031 commonTailIndex = i; 1032 } 1033 } 1034 1035 if (commonTailIndex == SameTails.size() || 1036 (SameTails[commonTailIndex].getBlock() == PredBB && 1037 !SameTails[commonTailIndex].tailIsWholeBlock())) { 1038 // None of the blocks consist entirely of the common tail. 1039 // Split a block so that one does. 1040 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 1041 maxCommonTailLength, commonTailIndex)) { 1042 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 1043 continue; 1044 } 1045 } 1046 1047 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 1048 1049 // Recompute common tail MBB's edge weights and block frequency. 1050 setCommonTailEdgeWeights(*MBB); 1051 1052 // Merge debug locations, MMOs and undef flags across identical instructions 1053 // for common tail. 1054 mergeCommonTails(commonTailIndex); 1055 1056 // MBB is common tail. Adjust all other BB's to jump to this one. 1057 // Traversal must be forwards so erases work. 1058 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) 1059 << " for "); 1060 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 1061 if (commonTailIndex == i) 1062 continue; 1063 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) 1064 << (i == e - 1 ? "" : ", ")); 1065 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 1066 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); 1067 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 1068 MergePotentials.erase(SameTails[i].getMPIter()); 1069 } 1070 LLVM_DEBUG(dbgs() << "\n"); 1071 // We leave commonTailIndex in the worklist in case there are other blocks 1072 // that match it with a smaller number of instructions. 1073 MadeChange = true; 1074 } 1075 return MadeChange; 1076 } 1077 1078 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 1079 bool MadeChange = false; 1080 if (!EnableTailMerge) 1081 return MadeChange; 1082 1083 // First find blocks with no successors. 1084 // Block placement may create new tail merging opportunities for these blocks. 1085 MergePotentials.clear(); 1086 for (MachineBasicBlock &MBB : MF) { 1087 if (MergePotentials.size() == TailMergeThreshold) 1088 break; 1089 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 1090 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 1091 } 1092 1093 // If this is a large problem, avoid visiting the same basic blocks 1094 // multiple times. 1095 if (MergePotentials.size() == TailMergeThreshold) 1096 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1097 TriedMerging.insert(MergePotentials[i].getBlock()); 1098 1099 // See if we can do any tail merging on those. 1100 if (MergePotentials.size() >= 2) 1101 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 1102 1103 // Look at blocks (IBB) with multiple predecessors (PBB). 1104 // We change each predecessor to a canonical form, by 1105 // (1) temporarily removing any unconditional branch from the predecessor 1106 // to IBB, and 1107 // (2) alter conditional branches so they branch to the other block 1108 // not IBB; this may require adding back an unconditional branch to IBB 1109 // later, where there wasn't one coming in. E.g. 1110 // Bcc IBB 1111 // fallthrough to QBB 1112 // here becomes 1113 // Bncc QBB 1114 // with a conceptual B to IBB after that, which never actually exists. 1115 // With those changes, we see whether the predecessors' tails match, 1116 // and merge them if so. We change things out of canonical form and 1117 // back to the way they were later in the process. (OptimizeBranches 1118 // would undo some of this, but we can't use it, because we'd get into 1119 // a compile-time infinite loop repeatedly doing and undoing the same 1120 // transformations.) 1121 1122 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1123 I != E; ++I) { 1124 if (I->pred_size() < 2) continue; 1125 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1126 MachineBasicBlock *IBB = &*I; 1127 MachineBasicBlock *PredBB = &*std::prev(I); 1128 MergePotentials.clear(); 1129 MachineLoop *ML; 1130 1131 // Bail if merging after placement and IBB is the loop header because 1132 // -- If merging predecessors that belong to the same loop as IBB, the 1133 // common tail of merged predecessors may become the loop top if block 1134 // placement is called again and the predecessors may branch to this common 1135 // tail and require more branches. This can be relaxed if 1136 // MachineBlockPlacement::findBestLoopTop is more flexible. 1137 // --If merging predecessors that do not belong to the same loop as IBB, the 1138 // loop info of IBB's loop and the other loops may be affected. Calling the 1139 // block placement again may make big change to the layout and eliminate the 1140 // reason to do tail merging here. 1141 if (AfterBlockPlacement && MLI) { 1142 ML = MLI->getLoopFor(IBB); 1143 if (ML && IBB == ML->getHeader()) 1144 continue; 1145 } 1146 1147 for (MachineBasicBlock *PBB : I->predecessors()) { 1148 if (MergePotentials.size() == TailMergeThreshold) 1149 break; 1150 1151 if (TriedMerging.count(PBB)) 1152 continue; 1153 1154 // Skip blocks that loop to themselves, can't tail merge these. 1155 if (PBB == IBB) 1156 continue; 1157 1158 // Visit each predecessor only once. 1159 if (!UniquePreds.insert(PBB).second) 1160 continue; 1161 1162 // Skip blocks which may jump to a landing pad. Can't tail merge these. 1163 if (PBB->hasEHPadSuccessor()) 1164 continue; 1165 1166 // After block placement, only consider predecessors that belong to the 1167 // same loop as IBB. The reason is the same as above when skipping loop 1168 // header. 1169 if (AfterBlockPlacement && MLI) 1170 if (ML != MLI->getLoopFor(PBB)) 1171 continue; 1172 1173 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1174 SmallVector<MachineOperand, 4> Cond; 1175 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1176 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1177 // branch. 1178 SmallVector<MachineOperand, 4> NewCond(Cond); 1179 if (!Cond.empty() && TBB == IBB) { 1180 if (TII->reverseBranchCondition(NewCond)) 1181 continue; 1182 // This is the QBB case described above 1183 if (!FBB) { 1184 auto Next = ++PBB->getIterator(); 1185 if (Next != MF.end()) 1186 FBB = &*Next; 1187 } 1188 } 1189 1190 // Remove the unconditional branch at the end, if any. 1191 if (TBB && (Cond.empty() || FBB)) { 1192 DebugLoc dl = PBB->findBranchDebugLoc(); 1193 TII->removeBranch(*PBB); 1194 if (!Cond.empty()) 1195 // reinsert conditional branch only, for now 1196 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1197 NewCond, dl); 1198 } 1199 1200 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1201 } 1202 } 1203 1204 // If this is a large problem, avoid visiting the same basic blocks multiple 1205 // times. 1206 if (MergePotentials.size() == TailMergeThreshold) 1207 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1208 TriedMerging.insert(MergePotentials[i].getBlock()); 1209 1210 if (MergePotentials.size() >= 2) 1211 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1212 1213 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1214 // result of removing blocks in TryTailMergeBlocks. 1215 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1216 if (MergePotentials.size() == 1 && 1217 MergePotentials.begin()->getBlock() != PredBB) 1218 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1219 } 1220 1221 return MadeChange; 1222 } 1223 1224 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1225 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1226 BlockFrequency AccumulatedMBBFreq; 1227 1228 // Aggregate edge frequency of successor edge j: 1229 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1230 // where bb is a basic block that is in SameTails. 1231 for (const auto &Src : SameTails) { 1232 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1233 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1234 AccumulatedMBBFreq += BlockFreq; 1235 1236 // It is not necessary to recompute edge weights if TailBB has less than two 1237 // successors. 1238 if (TailMBB.succ_size() <= 1) 1239 continue; 1240 1241 auto EdgeFreq = EdgeFreqLs.begin(); 1242 1243 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1244 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1245 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1246 } 1247 1248 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1249 1250 if (TailMBB.succ_size() <= 1) 1251 return; 1252 1253 auto SumEdgeFreq = 1254 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1255 .getFrequency(); 1256 auto EdgeFreq = EdgeFreqLs.begin(); 1257 1258 if (SumEdgeFreq > 0) { 1259 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1260 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1261 auto Prob = BranchProbability::getBranchProbability( 1262 EdgeFreq->getFrequency(), SumEdgeFreq); 1263 TailMBB.setSuccProbability(SuccI, Prob); 1264 } 1265 } 1266 } 1267 1268 //===----------------------------------------------------------------------===// 1269 // Branch Optimization 1270 //===----------------------------------------------------------------------===// 1271 1272 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1273 bool MadeChange = false; 1274 1275 // Make sure blocks are numbered in order 1276 MF.RenumberBlocks(); 1277 // Renumbering blocks alters EH scope membership, recalculate it. 1278 EHScopeMembership = getEHScopeMembership(MF); 1279 1280 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1281 I != E; ) { 1282 MachineBasicBlock *MBB = &*I++; 1283 MadeChange |= OptimizeBlock(MBB); 1284 1285 // If it is dead, remove it. 1286 if (MBB->pred_empty()) { 1287 RemoveDeadBlock(MBB); 1288 MadeChange = true; 1289 ++NumDeadBlocks; 1290 } 1291 } 1292 1293 return MadeChange; 1294 } 1295 1296 // Blocks should be considered empty if they contain only debug info; 1297 // else the debug info would affect codegen. 1298 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1299 return MBB->getFirstNonDebugInstr() == MBB->end(); 1300 } 1301 1302 // Blocks with only debug info and branches should be considered the same 1303 // as blocks with only branches. 1304 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1305 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1306 assert(I != MBB->end() && "empty block!"); 1307 return I->isBranch(); 1308 } 1309 1310 /// IsBetterFallthrough - Return true if it would be clearly better to 1311 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1312 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1313 /// result in infinite loops. 1314 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1315 MachineBasicBlock *MBB2) { 1316 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock"); 1317 1318 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1319 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1320 // optimize branches that branch to either a return block or an assert block 1321 // into a fallthrough to the return. 1322 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1323 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1324 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1325 return false; 1326 1327 // If there is a clear successor ordering we make sure that one block 1328 // will fall through to the next 1329 if (MBB1->isSuccessor(MBB2)) return true; 1330 if (MBB2->isSuccessor(MBB1)) return false; 1331 1332 return MBB2I->isCall() && !MBB1I->isCall(); 1333 } 1334 1335 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1336 /// instructions on the block. 1337 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1338 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1339 if (I != MBB.end() && I->isBranch()) 1340 return I->getDebugLoc(); 1341 return DebugLoc(); 1342 } 1343 1344 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, 1345 MachineBasicBlock &MBB, 1346 MachineBasicBlock &PredMBB) { 1347 auto InsertBefore = PredMBB.getFirstTerminator(); 1348 for (MachineInstr &MI : MBB.instrs()) 1349 if (MI.isDebugInstr()) { 1350 TII->duplicate(PredMBB, InsertBefore, MI); 1351 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: " 1352 << MI); 1353 } 1354 } 1355 1356 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, 1357 MachineBasicBlock &MBB, 1358 MachineBasicBlock &SuccMBB) { 1359 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); 1360 for (MachineInstr &MI : MBB.instrs()) 1361 if (MI.isDebugInstr()) { 1362 TII->duplicate(SuccMBB, InsertBefore, MI); 1363 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: " 1364 << MI); 1365 } 1366 } 1367 1368 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such 1369 // a basic block is removed we would lose the debug information unless we have 1370 // copied the information to a predecessor/successor. 1371 // 1372 // TODO: This function only handles some simple cases. An alternative would be 1373 // to run a heavier analysis, such as the LiveDebugValues pass, before we do 1374 // branch folding. 1375 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, 1376 MachineBasicBlock &MBB) { 1377 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); 1378 // If this MBB is the only predecessor of a successor it is legal to copy 1379 // DBG_VALUE instructions to the beginning of the successor. 1380 for (MachineBasicBlock *SuccBB : MBB.successors()) 1381 if (SuccBB->pred_size() == 1) 1382 copyDebugInfoToSuccessor(TII, MBB, *SuccBB); 1383 // If this MBB is the only successor of a predecessor it is legal to copy the 1384 // DBG_VALUE instructions to the end of the predecessor (just before the 1385 // terminators, assuming that the terminator isn't affecting the DBG_VALUE). 1386 for (MachineBasicBlock *PredBB : MBB.predecessors()) 1387 if (PredBB->succ_size() == 1) 1388 copyDebugInfoToPredecessor(TII, MBB, *PredBB); 1389 } 1390 1391 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1392 bool MadeChange = false; 1393 MachineFunction &MF = *MBB->getParent(); 1394 ReoptimizeBlock: 1395 1396 MachineFunction::iterator FallThrough = MBB->getIterator(); 1397 ++FallThrough; 1398 1399 // Make sure MBB and FallThrough belong to the same EH scope. 1400 bool SameEHScope = true; 1401 if (!EHScopeMembership.empty() && FallThrough != MF.end()) { 1402 auto MBBEHScope = EHScopeMembership.find(MBB); 1403 assert(MBBEHScope != EHScopeMembership.end()); 1404 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); 1405 assert(FallThroughEHScope != EHScopeMembership.end()); 1406 SameEHScope = MBBEHScope->second == FallThroughEHScope->second; 1407 } 1408 1409 // If this block is empty, make everyone use its fall-through, not the block 1410 // explicitly. Landing pads should not do this since the landing-pad table 1411 // points to this block. Blocks with their addresses taken shouldn't be 1412 // optimized away. 1413 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1414 SameEHScope) { 1415 salvageDebugInfoFromEmptyBlock(TII, *MBB); 1416 // Dead block? Leave for cleanup later. 1417 if (MBB->pred_empty()) return MadeChange; 1418 1419 if (FallThrough == MF.end()) { 1420 // TODO: Simplify preds to not branch here if possible! 1421 } else if (FallThrough->isEHPad()) { 1422 // Don't rewrite to a landing pad fallthough. That could lead to the case 1423 // where a BB jumps to more than one landing pad. 1424 // TODO: Is it ever worth rewriting predecessors which don't already 1425 // jump to a landing pad, and so can safely jump to the fallthrough? 1426 } else if (MBB->isSuccessor(&*FallThrough)) { 1427 // Rewrite all predecessors of the old block to go to the fallthrough 1428 // instead. 1429 while (!MBB->pred_empty()) { 1430 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1431 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1432 } 1433 // If MBB was the target of a jump table, update jump tables to go to the 1434 // fallthrough instead. 1435 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1436 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1437 MadeChange = true; 1438 } 1439 return MadeChange; 1440 } 1441 1442 // Check to see if we can simplify the terminator of the block before this 1443 // one. 1444 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1445 1446 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1447 SmallVector<MachineOperand, 4> PriorCond; 1448 bool PriorUnAnalyzable = 1449 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1450 if (!PriorUnAnalyzable) { 1451 // If the CFG for the prior block has extra edges, remove them. 1452 MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB, 1453 !PriorCond.empty()); 1454 1455 // If the previous branch is conditional and both conditions go to the same 1456 // destination, remove the branch, replacing it with an unconditional one or 1457 // a fall-through. 1458 if (PriorTBB && PriorTBB == PriorFBB) { 1459 DebugLoc dl = getBranchDebugLoc(PrevBB); 1460 TII->removeBranch(PrevBB); 1461 PriorCond.clear(); 1462 if (PriorTBB != MBB) 1463 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1464 MadeChange = true; 1465 ++NumBranchOpts; 1466 goto ReoptimizeBlock; 1467 } 1468 1469 // If the previous block unconditionally falls through to this block and 1470 // this block has no other predecessors, move the contents of this block 1471 // into the prior block. This doesn't usually happen when SimplifyCFG 1472 // has been used, but it can happen if tail merging splits a fall-through 1473 // predecessor of a block. 1474 // This has to check PrevBB->succ_size() because EH edges are ignored by 1475 // AnalyzeBranch. 1476 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1477 PrevBB.succ_size() == 1 && 1478 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1479 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1480 << "From MBB: " << *MBB); 1481 // Remove redundant DBG_VALUEs first. 1482 if (PrevBB.begin() != PrevBB.end()) { 1483 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1484 --PrevBBIter; 1485 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1486 // Check if DBG_VALUE at the end of PrevBB is identical to the 1487 // DBG_VALUE at the beginning of MBB. 1488 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1489 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { 1490 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1491 break; 1492 MachineInstr &DuplicateDbg = *MBBIter; 1493 ++MBBIter; -- PrevBBIter; 1494 DuplicateDbg.eraseFromParent(); 1495 } 1496 } 1497 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1498 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1499 assert(PrevBB.succ_empty()); 1500 PrevBB.transferSuccessors(MBB); 1501 MadeChange = true; 1502 return MadeChange; 1503 } 1504 1505 // If the previous branch *only* branches to *this* block (conditional or 1506 // not) remove the branch. 1507 if (PriorTBB == MBB && !PriorFBB) { 1508 TII->removeBranch(PrevBB); 1509 MadeChange = true; 1510 ++NumBranchOpts; 1511 goto ReoptimizeBlock; 1512 } 1513 1514 // If the prior block branches somewhere else on the condition and here if 1515 // the condition is false, remove the uncond second branch. 1516 if (PriorFBB == MBB) { 1517 DebugLoc dl = getBranchDebugLoc(PrevBB); 1518 TII->removeBranch(PrevBB); 1519 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1520 MadeChange = true; 1521 ++NumBranchOpts; 1522 goto ReoptimizeBlock; 1523 } 1524 1525 // If the prior block branches here on true and somewhere else on false, and 1526 // if the branch condition is reversible, reverse the branch to create a 1527 // fall-through. 1528 if (PriorTBB == MBB) { 1529 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1530 if (!TII->reverseBranchCondition(NewPriorCond)) { 1531 DebugLoc dl = getBranchDebugLoc(PrevBB); 1532 TII->removeBranch(PrevBB); 1533 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1534 MadeChange = true; 1535 ++NumBranchOpts; 1536 goto ReoptimizeBlock; 1537 } 1538 } 1539 1540 // If this block has no successors (e.g. it is a return block or ends with 1541 // a call to a no-return function like abort or __cxa_throw) and if the pred 1542 // falls through into this block, and if it would otherwise fall through 1543 // into the block after this, move this block to the end of the function. 1544 // 1545 // We consider it more likely that execution will stay in the function (e.g. 1546 // due to loops) than it is to exit it. This asserts in loops etc, moving 1547 // the assert condition out of the loop body. 1548 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1549 MachineFunction::iterator(PriorTBB) == FallThrough && 1550 !MBB->canFallThrough()) { 1551 bool DoTransform = true; 1552 1553 // We have to be careful that the succs of PredBB aren't both no-successor 1554 // blocks. If neither have successors and if PredBB is the second from 1555 // last block in the function, we'd just keep swapping the two blocks for 1556 // last. Only do the swap if one is clearly better to fall through than 1557 // the other. 1558 if (FallThrough == --MF.end() && 1559 !IsBetterFallthrough(PriorTBB, MBB)) 1560 DoTransform = false; 1561 1562 if (DoTransform) { 1563 // Reverse the branch so we will fall through on the previous true cond. 1564 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1565 if (!TII->reverseBranchCondition(NewPriorCond)) { 1566 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1567 << "To make fallthrough to: " << *PriorTBB << "\n"); 1568 1569 DebugLoc dl = getBranchDebugLoc(PrevBB); 1570 TII->removeBranch(PrevBB); 1571 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1572 1573 // Move this block to the end of the function. 1574 MBB->moveAfter(&MF.back()); 1575 MadeChange = true; 1576 ++NumBranchOpts; 1577 return MadeChange; 1578 } 1579 } 1580 } 1581 } 1582 1583 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && 1584 MF.getFunction().hasOptSize()) { 1585 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1586 // direction, thereby defeating careful block placement and regressing 1587 // performance. Therefore, only consider this for optsize functions. 1588 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1589 if (TII->isUnconditionalTailCall(TailCall)) { 1590 MachineBasicBlock *Pred = *MBB->pred_begin(); 1591 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1592 SmallVector<MachineOperand, 4> PredCond; 1593 bool PredAnalyzable = 1594 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1595 1596 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && 1597 PredTBB != PredFBB) { 1598 // The predecessor has a conditional branch to this block which consists 1599 // of only a tail call. Try to fold the tail call into the conditional 1600 // branch. 1601 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1602 // TODO: It would be nice if analyzeBranch() could provide a pointer 1603 // to the branch instruction so replaceBranchWithTailCall() doesn't 1604 // have to search for it. 1605 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1606 ++NumTailCalls; 1607 Pred->removeSuccessor(MBB); 1608 MadeChange = true; 1609 return MadeChange; 1610 } 1611 } 1612 // If the predecessor is falling through to this block, we could reverse 1613 // the branch condition and fold the tail call into that. However, after 1614 // that we might have to re-arrange the CFG to fall through to the other 1615 // block and there is a high risk of regressing code size rather than 1616 // improving it. 1617 } 1618 } 1619 1620 // Analyze the branch in the current block. 1621 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1622 SmallVector<MachineOperand, 4> CurCond; 1623 bool CurUnAnalyzable = 1624 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1625 if (!CurUnAnalyzable) { 1626 // If the CFG for the prior block has extra edges, remove them. 1627 MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty()); 1628 1629 // If this is a two-way branch, and the FBB branches to this block, reverse 1630 // the condition so the single-basic-block loop is faster. Instead of: 1631 // Loop: xxx; jcc Out; jmp Loop 1632 // we want: 1633 // Loop: xxx; jncc Loop; jmp Out 1634 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1635 SmallVector<MachineOperand, 4> NewCond(CurCond); 1636 if (!TII->reverseBranchCondition(NewCond)) { 1637 DebugLoc dl = getBranchDebugLoc(*MBB); 1638 TII->removeBranch(*MBB); 1639 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1640 MadeChange = true; 1641 ++NumBranchOpts; 1642 goto ReoptimizeBlock; 1643 } 1644 } 1645 1646 // If this branch is the only thing in its block, see if we can forward 1647 // other blocks across it. 1648 if (CurTBB && CurCond.empty() && !CurFBB && 1649 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1650 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1651 DebugLoc dl = getBranchDebugLoc(*MBB); 1652 // This block may contain just an unconditional branch. Because there can 1653 // be 'non-branch terminators' in the block, try removing the branch and 1654 // then seeing if the block is empty. 1655 TII->removeBranch(*MBB); 1656 // If the only things remaining in the block are debug info, remove these 1657 // as well, so this will behave the same as an empty block in non-debug 1658 // mode. 1659 if (IsEmptyBlock(MBB)) { 1660 // Make the block empty, losing the debug info (we could probably 1661 // improve this in some cases.) 1662 MBB->erase(MBB->begin(), MBB->end()); 1663 } 1664 // If this block is just an unconditional branch to CurTBB, we can 1665 // usually completely eliminate the block. The only case we cannot 1666 // completely eliminate the block is when the block before this one 1667 // falls through into MBB and we can't understand the prior block's branch 1668 // condition. 1669 if (MBB->empty()) { 1670 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1671 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1672 !PrevBB.isSuccessor(MBB)) { 1673 // If the prior block falls through into us, turn it into an 1674 // explicit branch to us to make updates simpler. 1675 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1676 PriorTBB != MBB && PriorFBB != MBB) { 1677 if (!PriorTBB) { 1678 assert(PriorCond.empty() && !PriorFBB && 1679 "Bad branch analysis"); 1680 PriorTBB = MBB; 1681 } else { 1682 assert(!PriorFBB && "Machine CFG out of date!"); 1683 PriorFBB = MBB; 1684 } 1685 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1686 TII->removeBranch(PrevBB); 1687 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1688 } 1689 1690 // Iterate through all the predecessors, revectoring each in-turn. 1691 size_t PI = 0; 1692 bool DidChange = false; 1693 bool HasBranchToSelf = false; 1694 while(PI != MBB->pred_size()) { 1695 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1696 if (PMBB == MBB) { 1697 // If this block has an uncond branch to itself, leave it. 1698 ++PI; 1699 HasBranchToSelf = true; 1700 } else { 1701 DidChange = true; 1702 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1703 // If this change resulted in PMBB ending in a conditional 1704 // branch where both conditions go to the same destination, 1705 // change this to an unconditional branch (and fix the CFG). 1706 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1707 SmallVector<MachineOperand, 4> NewCurCond; 1708 bool NewCurUnAnalyzable = TII->analyzeBranch( 1709 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1710 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1711 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1712 TII->removeBranch(*PMBB); 1713 NewCurCond.clear(); 1714 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1715 MadeChange = true; 1716 ++NumBranchOpts; 1717 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false); 1718 } 1719 } 1720 } 1721 1722 // Change any jumptables to go to the new MBB. 1723 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1724 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1725 if (DidChange) { 1726 ++NumBranchOpts; 1727 MadeChange = true; 1728 if (!HasBranchToSelf) return MadeChange; 1729 } 1730 } 1731 } 1732 1733 // Add the branch back if the block is more than just an uncond branch. 1734 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1735 } 1736 } 1737 1738 // If the prior block doesn't fall through into this block, and if this 1739 // block doesn't fall through into some other block, see if we can find a 1740 // place to move this block where a fall-through will happen. 1741 if (!PrevBB.canFallThrough()) { 1742 // Now we know that there was no fall-through into this block, check to 1743 // see if it has a fall-through into its successor. 1744 bool CurFallsThru = MBB->canFallThrough(); 1745 1746 if (!MBB->isEHPad()) { 1747 // Check all the predecessors of this block. If one of them has no fall 1748 // throughs, move this block right after it. 1749 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1750 // Analyze the branch at the end of the pred. 1751 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1752 SmallVector<MachineOperand, 4> PredCond; 1753 if (PredBB != MBB && !PredBB->canFallThrough() && 1754 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1755 (!CurFallsThru || !CurTBB || !CurFBB) && 1756 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1757 // If the current block doesn't fall through, just move it. 1758 // If the current block can fall through and does not end with a 1759 // conditional branch, we need to append an unconditional jump to 1760 // the (current) next block. To avoid a possible compile-time 1761 // infinite loop, move blocks only backward in this case. 1762 // Also, if there are already 2 branches here, we cannot add a third; 1763 // this means we have the case 1764 // Bcc next 1765 // B elsewhere 1766 // next: 1767 if (CurFallsThru) { 1768 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1769 CurCond.clear(); 1770 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1771 } 1772 MBB->moveAfter(PredBB); 1773 MadeChange = true; 1774 goto ReoptimizeBlock; 1775 } 1776 } 1777 } 1778 1779 if (!CurFallsThru) { 1780 // Check all successors to see if we can move this block before it. 1781 for (MachineBasicBlock *SuccBB : MBB->successors()) { 1782 // Analyze the branch at the end of the block before the succ. 1783 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1784 1785 // If this block doesn't already fall-through to that successor, and if 1786 // the succ doesn't already have a block that can fall through into it, 1787 // and if the successor isn't an EH destination, we can arrange for the 1788 // fallthrough to happen. 1789 if (SuccBB != MBB && &*SuccPrev != MBB && 1790 !SuccPrev->canFallThrough() && !CurUnAnalyzable && 1791 !SuccBB->isEHPad()) { 1792 MBB->moveBefore(SuccBB); 1793 MadeChange = true; 1794 goto ReoptimizeBlock; 1795 } 1796 } 1797 1798 // Okay, there is no really great place to put this block. If, however, 1799 // the block before this one would be a fall-through if this block were 1800 // removed, move this block to the end of the function. There is no real 1801 // advantage in "falling through" to an EH block, so we don't want to 1802 // perform this transformation for that case. 1803 // 1804 // Also, Windows EH introduced the possibility of an arbitrary number of 1805 // successors to a given block. The analyzeBranch call does not consider 1806 // exception handling and so we can get in a state where a block 1807 // containing a call is followed by multiple EH blocks that would be 1808 // rotated infinitely at the end of the function if the transformation 1809 // below were performed for EH "FallThrough" blocks. Therefore, even if 1810 // that appears not to be happening anymore, we should assume that it is 1811 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1812 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1813 SmallVector<MachineOperand, 4> PrevCond; 1814 if (FallThrough != MF.end() && 1815 !FallThrough->isEHPad() && 1816 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1817 PrevBB.isSuccessor(&*FallThrough)) { 1818 MBB->moveAfter(&MF.back()); 1819 MadeChange = true; 1820 return MadeChange; 1821 } 1822 } 1823 } 1824 1825 return MadeChange; 1826 } 1827 1828 //===----------------------------------------------------------------------===// 1829 // Hoist Common Code 1830 //===----------------------------------------------------------------------===// 1831 1832 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1833 bool MadeChange = false; 1834 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1835 MachineBasicBlock *MBB = &*I++; 1836 MadeChange |= HoistCommonCodeInSuccs(MBB); 1837 } 1838 1839 return MadeChange; 1840 } 1841 1842 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1843 /// its 'true' successor. 1844 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1845 MachineBasicBlock *TrueBB) { 1846 for (MachineBasicBlock *SuccBB : BB->successors()) 1847 if (SuccBB != TrueBB) 1848 return SuccBB; 1849 return nullptr; 1850 } 1851 1852 template <class Container> 1853 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, 1854 Container &Set) { 1855 if (Register::isPhysicalRegister(Reg)) { 1856 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1857 Set.insert(*AI); 1858 } else { 1859 Set.insert(Reg); 1860 } 1861 } 1862 1863 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1864 /// in successors to. The location is usually just before the terminator, 1865 /// however if the terminator is a conditional branch and its previous 1866 /// instruction is the flag setting instruction, the previous instruction is 1867 /// the preferred location. This function also gathers uses and defs of the 1868 /// instructions from the insertion point to the end of the block. The data is 1869 /// used by HoistCommonCodeInSuccs to ensure safety. 1870 static 1871 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1872 const TargetInstrInfo *TII, 1873 const TargetRegisterInfo *TRI, 1874 SmallSet<unsigned,4> &Uses, 1875 SmallSet<unsigned,4> &Defs) { 1876 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1877 if (!TII->isUnpredicatedTerminator(*Loc)) 1878 return MBB->end(); 1879 1880 for (const MachineOperand &MO : Loc->operands()) { 1881 if (!MO.isReg()) 1882 continue; 1883 Register Reg = MO.getReg(); 1884 if (!Reg) 1885 continue; 1886 if (MO.isUse()) { 1887 addRegAndItsAliases(Reg, TRI, Uses); 1888 } else { 1889 if (!MO.isDead()) 1890 // Don't try to hoist code in the rare case the terminator defines a 1891 // register that is later used. 1892 return MBB->end(); 1893 1894 // If the terminator defines a register, make sure we don't hoist 1895 // the instruction whose def might be clobbered by the terminator. 1896 addRegAndItsAliases(Reg, TRI, Defs); 1897 } 1898 } 1899 1900 if (Uses.empty()) 1901 return Loc; 1902 // If the terminator is the only instruction in the block and Uses is not 1903 // empty (or we would have returned above), we can still safely hoist 1904 // instructions just before the terminator as long as the Defs/Uses are not 1905 // violated (which is checked in HoistCommonCodeInSuccs). 1906 if (Loc == MBB->begin()) 1907 return Loc; 1908 1909 // The terminator is probably a conditional branch, try not to separate the 1910 // branch from condition setting instruction. 1911 MachineBasicBlock::iterator PI = 1912 skipDebugInstructionsBackward(std::prev(Loc), MBB->begin()); 1913 1914 bool IsDef = false; 1915 for (const MachineOperand &MO : PI->operands()) { 1916 // If PI has a regmask operand, it is probably a call. Separate away. 1917 if (MO.isRegMask()) 1918 return Loc; 1919 if (!MO.isReg() || MO.isUse()) 1920 continue; 1921 Register Reg = MO.getReg(); 1922 if (!Reg) 1923 continue; 1924 if (Uses.count(Reg)) { 1925 IsDef = true; 1926 break; 1927 } 1928 } 1929 if (!IsDef) 1930 // The condition setting instruction is not just before the conditional 1931 // branch. 1932 return Loc; 1933 1934 // Be conservative, don't insert instruction above something that may have 1935 // side-effects. And since it's potentially bad to separate flag setting 1936 // instruction from the conditional branch, just abort the optimization 1937 // completely. 1938 // Also avoid moving code above predicated instruction since it's hard to 1939 // reason about register liveness with predicated instruction. 1940 bool DontMoveAcrossStore = true; 1941 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1942 return MBB->end(); 1943 1944 // Find out what registers are live. Note this routine is ignoring other live 1945 // registers which are only used by instructions in successor blocks. 1946 for (const MachineOperand &MO : PI->operands()) { 1947 if (!MO.isReg()) 1948 continue; 1949 Register Reg = MO.getReg(); 1950 if (!Reg) 1951 continue; 1952 if (MO.isUse()) { 1953 addRegAndItsAliases(Reg, TRI, Uses); 1954 } else { 1955 if (Uses.erase(Reg)) { 1956 if (Register::isPhysicalRegister(Reg)) { 1957 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1958 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1959 } 1960 } 1961 addRegAndItsAliases(Reg, TRI, Defs); 1962 } 1963 } 1964 1965 return PI; 1966 } 1967 1968 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1969 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1970 SmallVector<MachineOperand, 4> Cond; 1971 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1972 return false; 1973 1974 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1975 if (!FBB) 1976 // Malformed bcc? True and false blocks are the same? 1977 return false; 1978 1979 // Restrict the optimization to cases where MBB is the only predecessor, 1980 // it is an obvious win. 1981 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1982 return false; 1983 1984 // Find a suitable position to hoist the common instructions to. Also figure 1985 // out which registers are used or defined by instructions from the insertion 1986 // point to the end of the block. 1987 SmallSet<unsigned, 4> Uses, Defs; 1988 MachineBasicBlock::iterator Loc = 1989 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1990 if (Loc == MBB->end()) 1991 return false; 1992 1993 bool HasDups = false; 1994 SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet; 1995 MachineBasicBlock::iterator TIB = TBB->begin(); 1996 MachineBasicBlock::iterator FIB = FBB->begin(); 1997 MachineBasicBlock::iterator TIE = TBB->end(); 1998 MachineBasicBlock::iterator FIE = FBB->end(); 1999 while (TIB != TIE && FIB != FIE) { 2000 // Skip dbg_value instructions. These do not count. 2001 TIB = skipDebugInstructionsForward(TIB, TIE); 2002 FIB = skipDebugInstructionsForward(FIB, FIE); 2003 if (TIB == TIE || FIB == FIE) 2004 break; 2005 2006 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 2007 break; 2008 2009 if (TII->isPredicated(*TIB)) 2010 // Hard to reason about register liveness with predicated instruction. 2011 break; 2012 2013 bool IsSafe = true; 2014 for (MachineOperand &MO : TIB->operands()) { 2015 // Don't attempt to hoist instructions with register masks. 2016 if (MO.isRegMask()) { 2017 IsSafe = false; 2018 break; 2019 } 2020 if (!MO.isReg()) 2021 continue; 2022 Register Reg = MO.getReg(); 2023 if (!Reg) 2024 continue; 2025 if (MO.isDef()) { 2026 if (Uses.count(Reg)) { 2027 // Avoid clobbering a register that's used by the instruction at 2028 // the point of insertion. 2029 IsSafe = false; 2030 break; 2031 } 2032 2033 if (Defs.count(Reg) && !MO.isDead()) { 2034 // Don't hoist the instruction if the def would be clobber by the 2035 // instruction at the point insertion. FIXME: This is overly 2036 // conservative. It should be possible to hoist the instructions 2037 // in BB2 in the following example: 2038 // BB1: 2039 // r1, eflag = op1 r2, r3 2040 // brcc eflag 2041 // 2042 // BB2: 2043 // r1 = op2, ... 2044 // = op3, killed r1 2045 IsSafe = false; 2046 break; 2047 } 2048 } else if (!ActiveDefsSet.count(Reg)) { 2049 if (Defs.count(Reg)) { 2050 // Use is defined by the instruction at the point of insertion. 2051 IsSafe = false; 2052 break; 2053 } 2054 2055 if (MO.isKill() && Uses.count(Reg)) 2056 // Kills a register that's read by the instruction at the point of 2057 // insertion. Remove the kill marker. 2058 MO.setIsKill(false); 2059 } 2060 } 2061 if (!IsSafe) 2062 break; 2063 2064 bool DontMoveAcrossStore = true; 2065 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 2066 break; 2067 2068 // Remove kills from ActiveDefsSet, these registers had short live ranges. 2069 for (const MachineOperand &MO : TIB->operands()) { 2070 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2071 continue; 2072 Register Reg = MO.getReg(); 2073 if (!Reg) 2074 continue; 2075 if (!AllDefsSet.count(Reg)) { 2076 continue; 2077 } 2078 if (Register::isPhysicalRegister(Reg)) { 2079 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 2080 ActiveDefsSet.erase(*AI); 2081 } else { 2082 ActiveDefsSet.erase(Reg); 2083 } 2084 } 2085 2086 // Track local defs so we can update liveins. 2087 for (const MachineOperand &MO : TIB->operands()) { 2088 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 2089 continue; 2090 Register Reg = MO.getReg(); 2091 if (!Reg || Register::isVirtualRegister(Reg)) 2092 continue; 2093 addRegAndItsAliases(Reg, TRI, ActiveDefsSet); 2094 addRegAndItsAliases(Reg, TRI, AllDefsSet); 2095 } 2096 2097 HasDups = true; 2098 ++TIB; 2099 ++FIB; 2100 } 2101 2102 if (!HasDups) 2103 return false; 2104 2105 MBB->splice(Loc, TBB, TBB->begin(), TIB); 2106 FBB->erase(FBB->begin(), FIB); 2107 2108 if (UpdateLiveIns) { 2109 recomputeLiveIns(*TBB); 2110 recomputeLiveIns(*FBB); 2111 } 2112 2113 ++NumHoist; 2114 return true; 2115 } 2116