1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block.  This pass often results in dead MBB's, which
11 // it then removes.
12 //
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/LivePhysRegs.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetOpcodes.h"
43 #include "llvm/CodeGen/TargetPassConfig.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/MC/LaneBitmask.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <cassert>
60 #include <cstddef>
61 #include <iterator>
62 #include <numeric>
63 #include <vector>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "branch-folder"
68 
69 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
70 STATISTIC(NumBranchOpts, "Number of branches optimized");
71 STATISTIC(NumTailMerge , "Number of block tails merged");
72 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
73 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
74 
75 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
76                               cl::init(cl::BOU_UNSET), cl::Hidden);
77 
78 // Throttle for huge numbers of predecessors (compile speed problems)
79 static cl::opt<unsigned>
80 TailMergeThreshold("tail-merge-threshold",
81           cl::desc("Max number of predecessors to consider tail merging"),
82           cl::init(150), cl::Hidden);
83 
84 // Heuristic for tail merging (and, inversely, tail duplication).
85 // TODO: This should be replaced with a target query.
86 static cl::opt<unsigned>
87 TailMergeSize("tail-merge-size",
88               cl::desc("Min number of instructions to consider tail merging"),
89               cl::init(3), cl::Hidden);
90 
91 namespace {
92 
93   /// BranchFolderPass - Wrap branch folder in a machine function pass.
94   class BranchFolderPass : public MachineFunctionPass {
95   public:
96     static char ID;
97 
98     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
99 
100     bool runOnMachineFunction(MachineFunction &MF) override;
101 
102     void getAnalysisUsage(AnalysisUsage &AU) const override {
103       AU.addRequired<MachineBlockFrequencyInfo>();
104       AU.addRequired<MachineBranchProbabilityInfo>();
105       AU.addRequired<TargetPassConfig>();
106       MachineFunctionPass::getAnalysisUsage(AU);
107     }
108   };
109 
110 } // end anonymous namespace
111 
112 char BranchFolderPass::ID = 0;
113 
114 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
115 
116 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
117                 "Control Flow Optimizer", false, false)
118 
119 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
120   if (skipFunction(MF.getFunction()))
121     return false;
122 
123   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
124   // TailMerge can create jump into if branches that make CFG irreducible for
125   // HW that requires structurized CFG.
126   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
127                          PassConfig->getEnableTailMerge();
128   BranchFolder::MBFIWrapper MBBFreqInfo(
129       getAnalysis<MachineBlockFrequencyInfo>());
130   BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
131                       getAnalysis<MachineBranchProbabilityInfo>());
132   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
133   return Folder.OptimizeFunction(
134       MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(),
135       MMIWP ? &MMIWP->getMMI() : nullptr);
136 }
137 
138 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
139                            MBFIWrapper &FreqInfo,
140                            const MachineBranchProbabilityInfo &ProbInfo,
141                            unsigned MinTailLength)
142     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
143       MBBFreqInfo(FreqInfo), MBPI(ProbInfo) {
144   if (MinCommonTailLength == 0)
145     MinCommonTailLength = TailMergeSize;
146   switch (FlagEnableTailMerge) {
147   case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
148   case cl::BOU_TRUE: EnableTailMerge = true; break;
149   case cl::BOU_FALSE: EnableTailMerge = false; break;
150   }
151 }
152 
153 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
154   assert(MBB->pred_empty() && "MBB must be dead!");
155   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
156 
157   MachineFunction *MF = MBB->getParent();
158   // drop all successors.
159   while (!MBB->succ_empty())
160     MBB->removeSuccessor(MBB->succ_end()-1);
161 
162   // Avoid matching if this pointer gets reused.
163   TriedMerging.erase(MBB);
164 
165   // Update call site info.
166   std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
167     if (MI.isCall(MachineInstr::IgnoreBundle))
168       MF->eraseCallSiteInfo(&MI);
169   });
170   // Remove the block.
171   MF->erase(MBB);
172   EHScopeMembership.erase(MBB);
173   if (MLI)
174     MLI->removeBlock(MBB);
175 }
176 
177 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
178                                     const TargetInstrInfo *tii,
179                                     const TargetRegisterInfo *tri,
180                                     MachineModuleInfo *mmi,
181                                     MachineLoopInfo *mli, bool AfterPlacement) {
182   if (!tii) return false;
183 
184   TriedMerging.clear();
185 
186   MachineRegisterInfo &MRI = MF.getRegInfo();
187   AfterBlockPlacement = AfterPlacement;
188   TII = tii;
189   TRI = tri;
190   MMI = mmi;
191   MLI = mli;
192   this->MRI = &MRI;
193 
194   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
195   if (!UpdateLiveIns)
196     MRI.invalidateLiveness();
197 
198   // Fix CFG.  The later algorithms expect it to be right.
199   bool MadeChange = false;
200   for (MachineBasicBlock &MBB : MF) {
201     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
202     SmallVector<MachineOperand, 4> Cond;
203     if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
204       MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
205   }
206 
207   // Recalculate EH scope membership.
208   EHScopeMembership = getEHScopeMembership(MF);
209 
210   bool MadeChangeThisIteration = true;
211   while (MadeChangeThisIteration) {
212     MadeChangeThisIteration    = TailMergeBlocks(MF);
213     // No need to clean up if tail merging does not change anything after the
214     // block placement.
215     if (!AfterBlockPlacement || MadeChangeThisIteration)
216       MadeChangeThisIteration |= OptimizeBranches(MF);
217     if (EnableHoistCommonCode)
218       MadeChangeThisIteration |= HoistCommonCode(MF);
219     MadeChange |= MadeChangeThisIteration;
220   }
221 
222   // See if any jump tables have become dead as the code generator
223   // did its thing.
224   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
225   if (!JTI)
226     return MadeChange;
227 
228   // Walk the function to find jump tables that are live.
229   BitVector JTIsLive(JTI->getJumpTables().size());
230   for (const MachineBasicBlock &BB : MF) {
231     for (const MachineInstr &I : BB)
232       for (const MachineOperand &Op : I.operands()) {
233         if (!Op.isJTI()) continue;
234 
235         // Remember that this JT is live.
236         JTIsLive.set(Op.getIndex());
237       }
238   }
239 
240   // Finally, remove dead jump tables.  This happens when the
241   // indirect jump was unreachable (and thus deleted).
242   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
243     if (!JTIsLive.test(i)) {
244       JTI->RemoveJumpTable(i);
245       MadeChange = true;
246     }
247 
248   return MadeChange;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //  Tail Merging of Blocks
253 //===----------------------------------------------------------------------===//
254 
255 /// HashMachineInstr - Compute a hash value for MI and its operands.
256 static unsigned HashMachineInstr(const MachineInstr &MI) {
257   unsigned Hash = MI.getOpcode();
258   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
259     const MachineOperand &Op = MI.getOperand(i);
260 
261     // Merge in bits from the operand if easy. We can't use MachineOperand's
262     // hash_code here because it's not deterministic and we sort by hash value
263     // later.
264     unsigned OperandHash = 0;
265     switch (Op.getType()) {
266     case MachineOperand::MO_Register:
267       OperandHash = Op.getReg();
268       break;
269     case MachineOperand::MO_Immediate:
270       OperandHash = Op.getImm();
271       break;
272     case MachineOperand::MO_MachineBasicBlock:
273       OperandHash = Op.getMBB()->getNumber();
274       break;
275     case MachineOperand::MO_FrameIndex:
276     case MachineOperand::MO_ConstantPoolIndex:
277     case MachineOperand::MO_JumpTableIndex:
278       OperandHash = Op.getIndex();
279       break;
280     case MachineOperand::MO_GlobalAddress:
281     case MachineOperand::MO_ExternalSymbol:
282       // Global address / external symbol are too hard, don't bother, but do
283       // pull in the offset.
284       OperandHash = Op.getOffset();
285       break;
286     default:
287       break;
288     }
289 
290     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
291   }
292   return Hash;
293 }
294 
295 /// HashEndOfMBB - Hash the last instruction in the MBB.
296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
297   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
298   if (I == MBB.end())
299     return 0;
300 
301   return HashMachineInstr(*I);
302 }
303 
304 ///  Whether MI should be counted as an instruction when calculating common tail.
305 static bool countsAsInstruction(const MachineInstr &MI) {
306   return !(MI.isDebugInstr() || MI.isCFIInstruction());
307 }
308 
309 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number
310 /// of instructions they actually have in common together at their end.  Return
311 /// iterators for the first shared instruction in each block.
312 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
313                                         MachineBasicBlock *MBB2,
314                                         MachineBasicBlock::iterator &I1,
315                                         MachineBasicBlock::iterator &I2) {
316   I1 = MBB1->end();
317   I2 = MBB2->end();
318 
319   unsigned TailLen = 0;
320   while (I1 != MBB1->begin() && I2 != MBB2->begin()) {
321     --I1; --I2;
322     // Skip debugging pseudos; necessary to avoid changing the code.
323     while (!countsAsInstruction(*I1)) {
324       if (I1==MBB1->begin()) {
325         while (!countsAsInstruction(*I2)) {
326           if (I2==MBB2->begin()) {
327             // I1==DBG at begin; I2==DBG at begin
328             goto SkipTopCFIAndReturn;
329           }
330           --I2;
331         }
332         ++I2;
333         // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin
334         goto SkipTopCFIAndReturn;
335       }
336       --I1;
337     }
338     // I1==first (untested) non-DBG preceding known match
339     while (!countsAsInstruction(*I2)) {
340       if (I2==MBB2->begin()) {
341         ++I1;
342         // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin
343         goto SkipTopCFIAndReturn;
344       }
345       --I2;
346     }
347     // I1, I2==first (untested) non-DBGs preceding known match
348     if (!I1->isIdenticalTo(*I2) ||
349         // FIXME: This check is dubious. It's used to get around a problem where
350         // people incorrectly expect inline asm directives to remain in the same
351         // relative order. This is untenable because normal compiler
352         // optimizations (like this one) may reorder and/or merge these
353         // directives.
354         I1->isInlineAsm()) {
355       ++I1; ++I2;
356       break;
357     }
358     ++TailLen;
359   }
360   // Back past possible debugging pseudos at beginning of block.  This matters
361   // when one block differs from the other only by whether debugging pseudos
362   // are present at the beginning. (This way, the various checks later for
363   // I1==MBB1->begin() work as expected.)
364   if (I1 == MBB1->begin() && I2 != MBB2->begin()) {
365     --I2;
366     while (I2->isDebugInstr()) {
367       if (I2 == MBB2->begin())
368         return TailLen;
369       --I2;
370     }
371     ++I2;
372   }
373   if (I2 == MBB2->begin() && I1 != MBB1->begin()) {
374     --I1;
375     while (I1->isDebugInstr()) {
376       if (I1 == MBB1->begin())
377         return TailLen;
378       --I1;
379     }
380     ++I1;
381   }
382 
383 SkipTopCFIAndReturn:
384   // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if
385   // I1 and I2 are non-identical when compared and then one or both of them ends
386   // up pointing to a CFI instruction after being incremented. For example:
387   /*
388     BB1:
389     ...
390     INSTRUCTION_A
391     ADD32ri8  <- last common instruction
392     ...
393     BB2:
394     ...
395     INSTRUCTION_B
396     CFI_INSTRUCTION
397     ADD32ri8  <- last common instruction
398     ...
399   */
400   // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after
401   // incrementing the iterators, I1 will point to ADD, however I2 will point to
402   // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the
403   // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI
404   // instruction.
405   // Skip CFI_INSTRUCTION and debugging instruction; necessary to avoid changing the code.
406   while (I1 != MBB1->end() && !countsAsInstruction(*I1)) {
407     ++I1;
408   }
409 
410   while (I2 != MBB2->end() && !countsAsInstruction(*I2)) {
411     ++I2;
412   }
413 
414   return TailLen;
415 }
416 
417 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
418                                            MachineBasicBlock &NewDest) {
419   if (UpdateLiveIns) {
420     // OldInst should always point to an instruction.
421     MachineBasicBlock &OldMBB = *OldInst->getParent();
422     LiveRegs.clear();
423     LiveRegs.addLiveOuts(OldMBB);
424     // Move backward to the place where will insert the jump.
425     MachineBasicBlock::iterator I = OldMBB.end();
426     do {
427       --I;
428       LiveRegs.stepBackward(*I);
429     } while (I != OldInst);
430 
431     // Merging the tails may have switched some undef operand to non-undef ones.
432     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
433     // register.
434     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
435       // We computed the liveins with computeLiveIn earlier and should only see
436       // full registers:
437       assert(P.LaneMask == LaneBitmask::getAll() &&
438              "Can only handle full register.");
439       MCPhysReg Reg = P.PhysReg;
440       if (!LiveRegs.available(*MRI, Reg))
441         continue;
442       DebugLoc DL;
443       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
444     }
445   }
446 
447   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
448   ++NumTailMerge;
449 }
450 
451 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
452                                             MachineBasicBlock::iterator BBI1,
453                                             const BasicBlock *BB) {
454   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
455     return nullptr;
456 
457   MachineFunction &MF = *CurMBB.getParent();
458 
459   // Create the fall-through block.
460   MachineFunction::iterator MBBI = CurMBB.getIterator();
461   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
462   CurMBB.getParent()->insert(++MBBI, NewMBB);
463 
464   // Move all the successors of this block to the specified block.
465   NewMBB->transferSuccessors(&CurMBB);
466 
467   // Add an edge from CurMBB to NewMBB for the fall-through.
468   CurMBB.addSuccessor(NewMBB);
469 
470   // Splice the code over.
471   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
472 
473   // NewMBB belongs to the same loop as CurMBB.
474   if (MLI)
475     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
476       ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
477 
478   // NewMBB inherits CurMBB's block frequency.
479   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
480 
481   if (UpdateLiveIns)
482     computeAndAddLiveIns(LiveRegs, *NewMBB);
483 
484   // Add the new block to the EH scope.
485   const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
486   if (EHScopeI != EHScopeMembership.end()) {
487     auto n = EHScopeI->second;
488     EHScopeMembership[NewMBB] = n;
489   }
490 
491   return NewMBB;
492 }
493 
494 /// EstimateRuntime - Make a rough estimate for how long it will take to run
495 /// the specified code.
496 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
497                                 MachineBasicBlock::iterator E) {
498   unsigned Time = 0;
499   for (; I != E; ++I) {
500     if (!countsAsInstruction(*I))
501       continue;
502     if (I->isCall())
503       Time += 10;
504     else if (I->mayLoad() || I->mayStore())
505       Time += 2;
506     else
507       ++Time;
508   }
509   return Time;
510 }
511 
512 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
513 // branches temporarily for tail merging).  In the case where CurMBB ends
514 // with a conditional branch to the next block, optimize by reversing the
515 // test and conditionally branching to SuccMBB instead.
516 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
517                     const TargetInstrInfo *TII) {
518   MachineFunction *MF = CurMBB->getParent();
519   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
520   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
521   SmallVector<MachineOperand, 4> Cond;
522   DebugLoc dl = CurMBB->findBranchDebugLoc();
523   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
524     MachineBasicBlock *NextBB = &*I;
525     if (TBB == NextBB && !Cond.empty() && !FBB) {
526       if (!TII->reverseBranchCondition(Cond)) {
527         TII->removeBranch(*CurMBB);
528         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
529         return;
530       }
531     }
532   }
533   TII->insertBranch(*CurMBB, SuccBB, nullptr,
534                     SmallVector<MachineOperand, 0>(), dl);
535 }
536 
537 bool
538 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
539   if (getHash() < o.getHash())
540     return true;
541   if (getHash() > o.getHash())
542     return false;
543   if (getBlock()->getNumber() < o.getBlock()->getNumber())
544     return true;
545   if (getBlock()->getNumber() > o.getBlock()->getNumber())
546     return false;
547   // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
548   // an object with itself.
549 #ifndef _GLIBCXX_DEBUG
550   llvm_unreachable("Predecessor appears twice");
551 #else
552   return false;
553 #endif
554 }
555 
556 BlockFrequency
557 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const {
558   auto I = MergedBBFreq.find(MBB);
559 
560   if (I != MergedBBFreq.end())
561     return I->second;
562 
563   return MBFI.getBlockFreq(MBB);
564 }
565 
566 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB,
567                                              BlockFrequency F) {
568   MergedBBFreq[MBB] = F;
569 }
570 
571 raw_ostream &
572 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
573                                           const MachineBasicBlock *MBB) const {
574   return MBFI.printBlockFreq(OS, getBlockFreq(MBB));
575 }
576 
577 raw_ostream &
578 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
579                                           const BlockFrequency Freq) const {
580   return MBFI.printBlockFreq(OS, Freq);
581 }
582 
583 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) {
584   MBFI.view(Name, isSimple);
585 }
586 
587 uint64_t
588 BranchFolder::MBFIWrapper::getEntryFreq() const {
589   return MBFI.getEntryFreq();
590 }
591 
592 /// CountTerminators - Count the number of terminators in the given
593 /// block and set I to the position of the first non-terminator, if there
594 /// is one, or MBB->end() otherwise.
595 static unsigned CountTerminators(MachineBasicBlock *MBB,
596                                  MachineBasicBlock::iterator &I) {
597   I = MBB->end();
598   unsigned NumTerms = 0;
599   while (true) {
600     if (I == MBB->begin()) {
601       I = MBB->end();
602       break;
603     }
604     --I;
605     if (!I->isTerminator()) break;
606     ++NumTerms;
607   }
608   return NumTerms;
609 }
610 
611 /// A no successor, non-return block probably ends in unreachable and is cold.
612 /// Also consider a block that ends in an indirect branch to be a return block,
613 /// since many targets use plain indirect branches to return.
614 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
615   if (!MBB->succ_empty())
616     return false;
617   if (MBB->empty())
618     return true;
619   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
620 }
621 
622 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
623 /// and decide if it would be profitable to merge those tails.  Return the
624 /// length of the common tail and iterators to the first common instruction
625 /// in each block.
626 /// MBB1, MBB2      The blocks to check
627 /// MinCommonTailLength  Minimum size of tail block to be merged.
628 /// CommonTailLen   Out parameter to record the size of the shared tail between
629 ///                 MBB1 and MBB2
630 /// I1, I2          Iterator references that will be changed to point to the first
631 ///                 instruction in the common tail shared by MBB1,MBB2
632 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
633 ///                 relative to SuccBB
634 /// PredBB          The layout predecessor of SuccBB, if any.
635 /// EHScopeMembership  map from block to EH scope #.
636 /// AfterPlacement  True if we are merging blocks after layout. Stricter
637 ///                 thresholds apply to prevent undoing tail-duplication.
638 static bool
639 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
640                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
641                   MachineBasicBlock::iterator &I1,
642                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
643                   MachineBasicBlock *PredBB,
644                   DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
645                   bool AfterPlacement) {
646   // It is never profitable to tail-merge blocks from two different EH scopes.
647   if (!EHScopeMembership.empty()) {
648     auto EHScope1 = EHScopeMembership.find(MBB1);
649     assert(EHScope1 != EHScopeMembership.end());
650     auto EHScope2 = EHScopeMembership.find(MBB2);
651     assert(EHScope2 != EHScopeMembership.end());
652     if (EHScope1->second != EHScope2->second)
653       return false;
654   }
655 
656   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
657   if (CommonTailLen == 0)
658     return false;
659   LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
660                     << " and " << printMBBReference(*MBB2) << " is "
661                     << CommonTailLen << '\n');
662 
663   // It's almost always profitable to merge any number of non-terminator
664   // instructions with the block that falls through into the common successor.
665   // This is true only for a single successor. For multiple successors, we are
666   // trading a conditional branch for an unconditional one.
667   // TODO: Re-visit successor size for non-layout tail merging.
668   if ((MBB1 == PredBB || MBB2 == PredBB) &&
669       (!AfterPlacement || MBB1->succ_size() == 1)) {
670     MachineBasicBlock::iterator I;
671     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
672     if (CommonTailLen > NumTerms)
673       return true;
674   }
675 
676   // If these are identical non-return blocks with no successors, merge them.
677   // Such blocks are typically cold calls to noreturn functions like abort, and
678   // are unlikely to become a fallthrough target after machine block placement.
679   // Tail merging these blocks is unlikely to create additional unconditional
680   // branches, and will reduce the size of this cold code.
681   if (I1 == MBB1->begin() && I2 == MBB2->begin() &&
682       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
683     return true;
684 
685   // If one of the blocks can be completely merged and happens to be in
686   // a position where the other could fall through into it, merge any number
687   // of instructions, because it can be done without a branch.
688   // TODO: If the blocks are not adjacent, move one of them so that they are?
689   if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin())
690     return true;
691   if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin())
692     return true;
693 
694   // If both blocks are identical and end in a branch, merge them unless they
695   // both have a fallthrough predecessor and successor.
696   // We can only do this after block placement because it depends on whether
697   // there are fallthroughs, and we don't know until after layout.
698   if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) {
699     auto BothFallThrough = [](MachineBasicBlock *MBB) {
700       if (MBB->succ_size() != 0 && !MBB->canFallThrough())
701         return false;
702       MachineFunction::iterator I(MBB);
703       MachineFunction *MF = MBB->getParent();
704       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
705     };
706     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
707       return true;
708   }
709 
710   // If both blocks have an unconditional branch temporarily stripped out,
711   // count that as an additional common instruction for the following
712   // heuristics. This heuristic is only accurate for single-succ blocks, so to
713   // make sure that during layout merging and duplicating don't crash, we check
714   // for that when merging during layout.
715   unsigned EffectiveTailLen = CommonTailLen;
716   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
717       (MBB1->succ_size() == 1 || !AfterPlacement) &&
718       !MBB1->back().isBarrier() &&
719       !MBB2->back().isBarrier())
720     ++EffectiveTailLen;
721 
722   // Check if the common tail is long enough to be worthwhile.
723   if (EffectiveTailLen >= MinCommonTailLength)
724     return true;
725 
726   // If we are optimizing for code size, 2 instructions in common is enough if
727   // we don't have to split a block.  At worst we will be introducing 1 new
728   // branch instruction, which is likely to be smaller than the 2
729   // instructions that would be deleted in the merge.
730   MachineFunction *MF = MBB1->getParent();
731   return EffectiveTailLen >= 2 && MF->getFunction().hasOptSize() &&
732          (I1 == MBB1->begin() || I2 == MBB2->begin());
733 }
734 
735 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
736                                         unsigned MinCommonTailLength,
737                                         MachineBasicBlock *SuccBB,
738                                         MachineBasicBlock *PredBB) {
739   unsigned maxCommonTailLength = 0U;
740   SameTails.clear();
741   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
742   MPIterator HighestMPIter = std::prev(MergePotentials.end());
743   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
744                   B = MergePotentials.begin();
745        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
746     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
747       unsigned CommonTailLen;
748       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
749                             MinCommonTailLength,
750                             CommonTailLen, TrialBBI1, TrialBBI2,
751                             SuccBB, PredBB,
752                             EHScopeMembership,
753                             AfterBlockPlacement)) {
754         if (CommonTailLen > maxCommonTailLength) {
755           SameTails.clear();
756           maxCommonTailLength = CommonTailLen;
757           HighestMPIter = CurMPIter;
758           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
759         }
760         if (HighestMPIter == CurMPIter &&
761             CommonTailLen == maxCommonTailLength)
762           SameTails.push_back(SameTailElt(I, TrialBBI2));
763       }
764       if (I == B)
765         break;
766     }
767   }
768   return maxCommonTailLength;
769 }
770 
771 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
772                                         MachineBasicBlock *SuccBB,
773                                         MachineBasicBlock *PredBB) {
774   MPIterator CurMPIter, B;
775   for (CurMPIter = std::prev(MergePotentials.end()),
776       B = MergePotentials.begin();
777        CurMPIter->getHash() == CurHash; --CurMPIter) {
778     // Put the unconditional branch back, if we need one.
779     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
780     if (SuccBB && CurMBB != PredBB)
781       FixTail(CurMBB, SuccBB, TII);
782     if (CurMPIter == B)
783       break;
784   }
785   if (CurMPIter->getHash() != CurHash)
786     CurMPIter++;
787   MergePotentials.erase(CurMPIter, MergePotentials.end());
788 }
789 
790 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
791                                              MachineBasicBlock *SuccBB,
792                                              unsigned maxCommonTailLength,
793                                              unsigned &commonTailIndex) {
794   commonTailIndex = 0;
795   unsigned TimeEstimate = ~0U;
796   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
797     // Use PredBB if possible; that doesn't require a new branch.
798     if (SameTails[i].getBlock() == PredBB) {
799       commonTailIndex = i;
800       break;
801     }
802     // Otherwise, make a (fairly bogus) choice based on estimate of
803     // how long it will take the various blocks to execute.
804     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
805                                  SameTails[i].getTailStartPos());
806     if (t <= TimeEstimate) {
807       TimeEstimate = t;
808       commonTailIndex = i;
809     }
810   }
811 
812   MachineBasicBlock::iterator BBI =
813     SameTails[commonTailIndex].getTailStartPos();
814   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
815 
816   LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
817                     << maxCommonTailLength);
818 
819   // If the split block unconditionally falls-thru to SuccBB, it will be
820   // merged. In control flow terms it should then take SuccBB's name. e.g. If
821   // SuccBB is an inner loop, the common tail is still part of the inner loop.
822   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
823     SuccBB->getBasicBlock() : MBB->getBasicBlock();
824   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
825   if (!newMBB) {
826     LLVM_DEBUG(dbgs() << "... failed!");
827     return false;
828   }
829 
830   SameTails[commonTailIndex].setBlock(newMBB);
831   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
832 
833   // If we split PredBB, newMBB is the new predecessor.
834   if (PredBB == MBB)
835     PredBB = newMBB;
836 
837   return true;
838 }
839 
840 static void
841 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
842                 MachineBasicBlock &MBBCommon) {
843   MachineBasicBlock *MBB = MBBIStartPos->getParent();
844   // Note CommonTailLen does not necessarily matches the size of
845   // the common BB nor all its instructions because of debug
846   // instructions differences.
847   unsigned CommonTailLen = 0;
848   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
849     ++CommonTailLen;
850 
851   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
852   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
853   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
854   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
855 
856   while (CommonTailLen--) {
857     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
858     (void)MBBIE;
859 
860     if (!countsAsInstruction(*MBBI)) {
861       ++MBBI;
862       continue;
863     }
864 
865     while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
866       ++MBBICommon;
867 
868     assert(MBBICommon != MBBIECommon &&
869            "Reached BB end within common tail length!");
870     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
871 
872     // Merge MMOs from memory operations in the common block.
873     if (MBBICommon->mayLoad() || MBBICommon->mayStore())
874       MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
875     // Drop undef flags if they aren't present in all merged instructions.
876     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
877       MachineOperand &MO = MBBICommon->getOperand(I);
878       if (MO.isReg() && MO.isUndef()) {
879         const MachineOperand &OtherMO = MBBI->getOperand(I);
880         if (!OtherMO.isUndef())
881           MO.setIsUndef(false);
882       }
883     }
884 
885     ++MBBI;
886     ++MBBICommon;
887   }
888 }
889 
890 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
891   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
892 
893   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
894   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
895     if (i != commonTailIndex) {
896       NextCommonInsts[i] = SameTails[i].getTailStartPos();
897       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
898     } else {
899       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
900           "MBB is not a common tail only block");
901     }
902   }
903 
904   for (auto &MI : *MBB) {
905     if (!countsAsInstruction(MI))
906       continue;
907     DebugLoc DL = MI.getDebugLoc();
908     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
909       if (i == commonTailIndex)
910         continue;
911 
912       auto &Pos = NextCommonInsts[i];
913       assert(Pos != SameTails[i].getBlock()->end() &&
914           "Reached BB end within common tail");
915       while (!countsAsInstruction(*Pos)) {
916         ++Pos;
917         assert(Pos != SameTails[i].getBlock()->end() &&
918             "Reached BB end within common tail");
919       }
920       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
921       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
922       NextCommonInsts[i] = ++Pos;
923     }
924     MI.setDebugLoc(DL);
925   }
926 
927   if (UpdateLiveIns) {
928     LivePhysRegs NewLiveIns(*TRI);
929     computeLiveIns(NewLiveIns, *MBB);
930     LiveRegs.init(*TRI);
931 
932     // The flag merging may lead to some register uses no longer using the
933     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
934     for (MachineBasicBlock *Pred : MBB->predecessors()) {
935       LiveRegs.clear();
936       LiveRegs.addLiveOuts(*Pred);
937       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
938       for (unsigned Reg : NewLiveIns) {
939         if (!LiveRegs.available(*MRI, Reg))
940           continue;
941         DebugLoc DL;
942         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
943                 Reg);
944       }
945     }
946 
947     MBB->clearLiveIns();
948     addLiveIns(*MBB, NewLiveIns);
949   }
950 }
951 
952 // See if any of the blocks in MergePotentials (which all have SuccBB as a
953 // successor, or all have no successor if it is null) can be tail-merged.
954 // If there is a successor, any blocks in MergePotentials that are not
955 // tail-merged and are not immediately before Succ must have an unconditional
956 // branch to Succ added (but the predecessor/successor lists need no
957 // adjustment). The lone predecessor of Succ that falls through into Succ,
958 // if any, is given in PredBB.
959 // MinCommonTailLength - Except for the special cases below, tail-merge if
960 // there are at least this many instructions in common.
961 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
962                                       MachineBasicBlock *PredBB,
963                                       unsigned MinCommonTailLength) {
964   bool MadeChange = false;
965 
966   LLVM_DEBUG(
967       dbgs() << "\nTryTailMergeBlocks: ";
968       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
969       << printMBBReference(*MergePotentials[i].getBlock())
970       << (i == e - 1 ? "" : ", ");
971       dbgs() << "\n"; if (SuccBB) {
972         dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
973         if (PredBB)
974           dbgs() << "  which has fall-through from "
975                  << printMBBReference(*PredBB) << "\n";
976       } dbgs() << "Looking for common tails of at least "
977                << MinCommonTailLength << " instruction"
978                << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
979 
980   // Sort by hash value so that blocks with identical end sequences sort
981   // together.
982   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
983 
984   // Walk through equivalence sets looking for actual exact matches.
985   while (MergePotentials.size() > 1) {
986     unsigned CurHash = MergePotentials.back().getHash();
987 
988     // Build SameTails, identifying the set of blocks with this hash code
989     // and with the maximum number of instructions in common.
990     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
991                                                     MinCommonTailLength,
992                                                     SuccBB, PredBB);
993 
994     // If we didn't find any pair that has at least MinCommonTailLength
995     // instructions in common, remove all blocks with this hash code and retry.
996     if (SameTails.empty()) {
997       RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
998       continue;
999     }
1000 
1001     // If one of the blocks is the entire common tail (and not the entry
1002     // block, which we can't jump to), we can treat all blocks with this same
1003     // tail at once.  Use PredBB if that is one of the possibilities, as that
1004     // will not introduce any extra branches.
1005     MachineBasicBlock *EntryBB =
1006         &MergePotentials.front().getBlock()->getParent()->front();
1007     unsigned commonTailIndex = SameTails.size();
1008     // If there are two blocks, check to see if one can be made to fall through
1009     // into the other.
1010     if (SameTails.size() == 2 &&
1011         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
1012         SameTails[1].tailIsWholeBlock())
1013       commonTailIndex = 1;
1014     else if (SameTails.size() == 2 &&
1015              SameTails[1].getBlock()->isLayoutSuccessor(
1016                                                      SameTails[0].getBlock()) &&
1017              SameTails[0].tailIsWholeBlock())
1018       commonTailIndex = 0;
1019     else {
1020       // Otherwise just pick one, favoring the fall-through predecessor if
1021       // there is one.
1022       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
1023         MachineBasicBlock *MBB = SameTails[i].getBlock();
1024         if (MBB == EntryBB && SameTails[i].tailIsWholeBlock())
1025           continue;
1026         if (MBB == PredBB) {
1027           commonTailIndex = i;
1028           break;
1029         }
1030         if (SameTails[i].tailIsWholeBlock())
1031           commonTailIndex = i;
1032       }
1033     }
1034 
1035     if (commonTailIndex == SameTails.size() ||
1036         (SameTails[commonTailIndex].getBlock() == PredBB &&
1037          !SameTails[commonTailIndex].tailIsWholeBlock())) {
1038       // None of the blocks consist entirely of the common tail.
1039       // Split a block so that one does.
1040       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
1041                                      maxCommonTailLength, commonTailIndex)) {
1042         RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
1043         continue;
1044       }
1045     }
1046 
1047     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
1048 
1049     // Recompute common tail MBB's edge weights and block frequency.
1050     setCommonTailEdgeWeights(*MBB);
1051 
1052     // Merge debug locations, MMOs and undef flags across identical instructions
1053     // for common tail.
1054     mergeCommonTails(commonTailIndex);
1055 
1056     // MBB is common tail.  Adjust all other BB's to jump to this one.
1057     // Traversal must be forwards so erases work.
1058     LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
1059                       << " for ");
1060     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
1061       if (commonTailIndex == i)
1062         continue;
1063       LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
1064                         << (i == e - 1 ? "" : ", "));
1065       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
1066       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
1067       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
1068       MergePotentials.erase(SameTails[i].getMPIter());
1069     }
1070     LLVM_DEBUG(dbgs() << "\n");
1071     // We leave commonTailIndex in the worklist in case there are other blocks
1072     // that match it with a smaller number of instructions.
1073     MadeChange = true;
1074   }
1075   return MadeChange;
1076 }
1077 
1078 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1079   bool MadeChange = false;
1080   if (!EnableTailMerge)
1081     return MadeChange;
1082 
1083   // First find blocks with no successors.
1084   // Block placement may create new tail merging opportunities for these blocks.
1085   MergePotentials.clear();
1086   for (MachineBasicBlock &MBB : MF) {
1087     if (MergePotentials.size() == TailMergeThreshold)
1088       break;
1089     if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1090       MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1091   }
1092 
1093   // If this is a large problem, avoid visiting the same basic blocks
1094   // multiple times.
1095   if (MergePotentials.size() == TailMergeThreshold)
1096     for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1097       TriedMerging.insert(MergePotentials[i].getBlock());
1098 
1099   // See if we can do any tail merging on those.
1100   if (MergePotentials.size() >= 2)
1101     MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1102 
1103   // Look at blocks (IBB) with multiple predecessors (PBB).
1104   // We change each predecessor to a canonical form, by
1105   // (1) temporarily removing any unconditional branch from the predecessor
1106   // to IBB, and
1107   // (2) alter conditional branches so they branch to the other block
1108   // not IBB; this may require adding back an unconditional branch to IBB
1109   // later, where there wasn't one coming in.  E.g.
1110   //   Bcc IBB
1111   //   fallthrough to QBB
1112   // here becomes
1113   //   Bncc QBB
1114   // with a conceptual B to IBB after that, which never actually exists.
1115   // With those changes, we see whether the predecessors' tails match,
1116   // and merge them if so.  We change things out of canonical form and
1117   // back to the way they were later in the process.  (OptimizeBranches
1118   // would undo some of this, but we can't use it, because we'd get into
1119   // a compile-time infinite loop repeatedly doing and undoing the same
1120   // transformations.)
1121 
1122   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1123        I != E; ++I) {
1124     if (I->pred_size() < 2) continue;
1125     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1126     MachineBasicBlock *IBB = &*I;
1127     MachineBasicBlock *PredBB = &*std::prev(I);
1128     MergePotentials.clear();
1129     MachineLoop *ML;
1130 
1131     // Bail if merging after placement and IBB is the loop header because
1132     // -- If merging predecessors that belong to the same loop as IBB, the
1133     // common tail of merged predecessors may become the loop top if block
1134     // placement is called again and the predecessors may branch to this common
1135     // tail and require more branches. This can be relaxed if
1136     // MachineBlockPlacement::findBestLoopTop is more flexible.
1137     // --If merging predecessors that do not belong to the same loop as IBB, the
1138     // loop info of IBB's loop and the other loops may be affected. Calling the
1139     // block placement again may make big change to the layout and eliminate the
1140     // reason to do tail merging here.
1141     if (AfterBlockPlacement && MLI) {
1142       ML = MLI->getLoopFor(IBB);
1143       if (ML && IBB == ML->getHeader())
1144         continue;
1145     }
1146 
1147     for (MachineBasicBlock *PBB : I->predecessors()) {
1148       if (MergePotentials.size() == TailMergeThreshold)
1149         break;
1150 
1151       if (TriedMerging.count(PBB))
1152         continue;
1153 
1154       // Skip blocks that loop to themselves, can't tail merge these.
1155       if (PBB == IBB)
1156         continue;
1157 
1158       // Visit each predecessor only once.
1159       if (!UniquePreds.insert(PBB).second)
1160         continue;
1161 
1162       // Skip blocks which may jump to a landing pad. Can't tail merge these.
1163       if (PBB->hasEHPadSuccessor())
1164         continue;
1165 
1166       // After block placement, only consider predecessors that belong to the
1167       // same loop as IBB.  The reason is the same as above when skipping loop
1168       // header.
1169       if (AfterBlockPlacement && MLI)
1170         if (ML != MLI->getLoopFor(PBB))
1171           continue;
1172 
1173       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1174       SmallVector<MachineOperand, 4> Cond;
1175       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1176         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1177         // branch.
1178         SmallVector<MachineOperand, 4> NewCond(Cond);
1179         if (!Cond.empty() && TBB == IBB) {
1180           if (TII->reverseBranchCondition(NewCond))
1181             continue;
1182           // This is the QBB case described above
1183           if (!FBB) {
1184             auto Next = ++PBB->getIterator();
1185             if (Next != MF.end())
1186               FBB = &*Next;
1187           }
1188         }
1189 
1190         // Remove the unconditional branch at the end, if any.
1191         if (TBB && (Cond.empty() || FBB)) {
1192           DebugLoc dl = PBB->findBranchDebugLoc();
1193           TII->removeBranch(*PBB);
1194           if (!Cond.empty())
1195             // reinsert conditional branch only, for now
1196             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1197                               NewCond, dl);
1198         }
1199 
1200         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1201       }
1202     }
1203 
1204     // If this is a large problem, avoid visiting the same basic blocks multiple
1205     // times.
1206     if (MergePotentials.size() == TailMergeThreshold)
1207       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1208         TriedMerging.insert(MergePotentials[i].getBlock());
1209 
1210     if (MergePotentials.size() >= 2)
1211       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1212 
1213     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1214     // result of removing blocks in TryTailMergeBlocks.
1215     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1216     if (MergePotentials.size() == 1 &&
1217         MergePotentials.begin()->getBlock() != PredBB)
1218       FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1219   }
1220 
1221   return MadeChange;
1222 }
1223 
1224 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1225   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1226   BlockFrequency AccumulatedMBBFreq;
1227 
1228   // Aggregate edge frequency of successor edge j:
1229   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1230   //  where bb is a basic block that is in SameTails.
1231   for (const auto &Src : SameTails) {
1232     const MachineBasicBlock *SrcMBB = Src.getBlock();
1233     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1234     AccumulatedMBBFreq += BlockFreq;
1235 
1236     // It is not necessary to recompute edge weights if TailBB has less than two
1237     // successors.
1238     if (TailMBB.succ_size() <= 1)
1239       continue;
1240 
1241     auto EdgeFreq = EdgeFreqLs.begin();
1242 
1243     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1244          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1245       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1246   }
1247 
1248   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1249 
1250   if (TailMBB.succ_size() <= 1)
1251     return;
1252 
1253   auto SumEdgeFreq =
1254       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1255           .getFrequency();
1256   auto EdgeFreq = EdgeFreqLs.begin();
1257 
1258   if (SumEdgeFreq > 0) {
1259     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1260          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1261       auto Prob = BranchProbability::getBranchProbability(
1262           EdgeFreq->getFrequency(), SumEdgeFreq);
1263       TailMBB.setSuccProbability(SuccI, Prob);
1264     }
1265   }
1266 }
1267 
1268 //===----------------------------------------------------------------------===//
1269 //  Branch Optimization
1270 //===----------------------------------------------------------------------===//
1271 
1272 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1273   bool MadeChange = false;
1274 
1275   // Make sure blocks are numbered in order
1276   MF.RenumberBlocks();
1277   // Renumbering blocks alters EH scope membership, recalculate it.
1278   EHScopeMembership = getEHScopeMembership(MF);
1279 
1280   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1281        I != E; ) {
1282     MachineBasicBlock *MBB = &*I++;
1283     MadeChange |= OptimizeBlock(MBB);
1284 
1285     // If it is dead, remove it.
1286     if (MBB->pred_empty()) {
1287       RemoveDeadBlock(MBB);
1288       MadeChange = true;
1289       ++NumDeadBlocks;
1290     }
1291   }
1292 
1293   return MadeChange;
1294 }
1295 
1296 // Blocks should be considered empty if they contain only debug info;
1297 // else the debug info would affect codegen.
1298 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1299   return MBB->getFirstNonDebugInstr() == MBB->end();
1300 }
1301 
1302 // Blocks with only debug info and branches should be considered the same
1303 // as blocks with only branches.
1304 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1305   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1306   assert(I != MBB->end() && "empty block!");
1307   return I->isBranch();
1308 }
1309 
1310 /// IsBetterFallthrough - Return true if it would be clearly better to
1311 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1312 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1313 /// result in infinite loops.
1314 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1315                                 MachineBasicBlock *MBB2) {
1316   assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1317 
1318   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1319   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1320   // optimize branches that branch to either a return block or an assert block
1321   // into a fallthrough to the return.
1322   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1323   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1324   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1325     return false;
1326 
1327   // If there is a clear successor ordering we make sure that one block
1328   // will fall through to the next
1329   if (MBB1->isSuccessor(MBB2)) return true;
1330   if (MBB2->isSuccessor(MBB1)) return false;
1331 
1332   return MBB2I->isCall() && !MBB1I->isCall();
1333 }
1334 
1335 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1336 /// instructions on the block.
1337 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1338   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1339   if (I != MBB.end() && I->isBranch())
1340     return I->getDebugLoc();
1341   return DebugLoc();
1342 }
1343 
1344 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1345                                        MachineBasicBlock &MBB,
1346                                        MachineBasicBlock &PredMBB) {
1347   auto InsertBefore = PredMBB.getFirstTerminator();
1348   for (MachineInstr &MI : MBB.instrs())
1349     if (MI.isDebugInstr()) {
1350       TII->duplicate(PredMBB, InsertBefore, MI);
1351       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1352                         << MI);
1353     }
1354 }
1355 
1356 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1357                                      MachineBasicBlock &MBB,
1358                                      MachineBasicBlock &SuccMBB) {
1359   auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1360   for (MachineInstr &MI : MBB.instrs())
1361     if (MI.isDebugInstr()) {
1362       TII->duplicate(SuccMBB, InsertBefore, MI);
1363       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1364                         << MI);
1365     }
1366 }
1367 
1368 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1369 // a basic block is removed we would lose the debug information unless we have
1370 // copied the information to a predecessor/successor.
1371 //
1372 // TODO: This function only handles some simple cases. An alternative would be
1373 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1374 // branch folding.
1375 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1376                                            MachineBasicBlock &MBB) {
1377   assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1378   // If this MBB is the only predecessor of a successor it is legal to copy
1379   // DBG_VALUE instructions to the beginning of the successor.
1380   for (MachineBasicBlock *SuccBB : MBB.successors())
1381     if (SuccBB->pred_size() == 1)
1382       copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1383   // If this MBB is the only successor of a predecessor it is legal to copy the
1384   // DBG_VALUE instructions to the end of the predecessor (just before the
1385   // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1386   for (MachineBasicBlock *PredBB : MBB.predecessors())
1387     if (PredBB->succ_size() == 1)
1388       copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1389 }
1390 
1391 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1392   bool MadeChange = false;
1393   MachineFunction &MF = *MBB->getParent();
1394 ReoptimizeBlock:
1395 
1396   MachineFunction::iterator FallThrough = MBB->getIterator();
1397   ++FallThrough;
1398 
1399   // Make sure MBB and FallThrough belong to the same EH scope.
1400   bool SameEHScope = true;
1401   if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1402     auto MBBEHScope = EHScopeMembership.find(MBB);
1403     assert(MBBEHScope != EHScopeMembership.end());
1404     auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1405     assert(FallThroughEHScope != EHScopeMembership.end());
1406     SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1407   }
1408 
1409   // If this block is empty, make everyone use its fall-through, not the block
1410   // explicitly.  Landing pads should not do this since the landing-pad table
1411   // points to this block.  Blocks with their addresses taken shouldn't be
1412   // optimized away.
1413   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1414       SameEHScope) {
1415     salvageDebugInfoFromEmptyBlock(TII, *MBB);
1416     // Dead block?  Leave for cleanup later.
1417     if (MBB->pred_empty()) return MadeChange;
1418 
1419     if (FallThrough == MF.end()) {
1420       // TODO: Simplify preds to not branch here if possible!
1421     } else if (FallThrough->isEHPad()) {
1422       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1423       // where a BB jumps to more than one landing pad.
1424       // TODO: Is it ever worth rewriting predecessors which don't already
1425       // jump to a landing pad, and so can safely jump to the fallthrough?
1426     } else if (MBB->isSuccessor(&*FallThrough)) {
1427       // Rewrite all predecessors of the old block to go to the fallthrough
1428       // instead.
1429       while (!MBB->pred_empty()) {
1430         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1431         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1432       }
1433       // If MBB was the target of a jump table, update jump tables to go to the
1434       // fallthrough instead.
1435       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1436         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1437       MadeChange = true;
1438     }
1439     return MadeChange;
1440   }
1441 
1442   // Check to see if we can simplify the terminator of the block before this
1443   // one.
1444   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1445 
1446   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1447   SmallVector<MachineOperand, 4> PriorCond;
1448   bool PriorUnAnalyzable =
1449       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1450   if (!PriorUnAnalyzable) {
1451     // If the CFG for the prior block has extra edges, remove them.
1452     MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
1453                                               !PriorCond.empty());
1454 
1455     // If the previous branch is conditional and both conditions go to the same
1456     // destination, remove the branch, replacing it with an unconditional one or
1457     // a fall-through.
1458     if (PriorTBB && PriorTBB == PriorFBB) {
1459       DebugLoc dl = getBranchDebugLoc(PrevBB);
1460       TII->removeBranch(PrevBB);
1461       PriorCond.clear();
1462       if (PriorTBB != MBB)
1463         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1464       MadeChange = true;
1465       ++NumBranchOpts;
1466       goto ReoptimizeBlock;
1467     }
1468 
1469     // If the previous block unconditionally falls through to this block and
1470     // this block has no other predecessors, move the contents of this block
1471     // into the prior block. This doesn't usually happen when SimplifyCFG
1472     // has been used, but it can happen if tail merging splits a fall-through
1473     // predecessor of a block.
1474     // This has to check PrevBB->succ_size() because EH edges are ignored by
1475     // AnalyzeBranch.
1476     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1477         PrevBB.succ_size() == 1 &&
1478         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1479       LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1480                         << "From MBB: " << *MBB);
1481       // Remove redundant DBG_VALUEs first.
1482       if (PrevBB.begin() != PrevBB.end()) {
1483         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1484         --PrevBBIter;
1485         MachineBasicBlock::iterator MBBIter = MBB->begin();
1486         // Check if DBG_VALUE at the end of PrevBB is identical to the
1487         // DBG_VALUE at the beginning of MBB.
1488         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1489                && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1490           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1491             break;
1492           MachineInstr &DuplicateDbg = *MBBIter;
1493           ++MBBIter; -- PrevBBIter;
1494           DuplicateDbg.eraseFromParent();
1495         }
1496       }
1497       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1498       PrevBB.removeSuccessor(PrevBB.succ_begin());
1499       assert(PrevBB.succ_empty());
1500       PrevBB.transferSuccessors(MBB);
1501       MadeChange = true;
1502       return MadeChange;
1503     }
1504 
1505     // If the previous branch *only* branches to *this* block (conditional or
1506     // not) remove the branch.
1507     if (PriorTBB == MBB && !PriorFBB) {
1508       TII->removeBranch(PrevBB);
1509       MadeChange = true;
1510       ++NumBranchOpts;
1511       goto ReoptimizeBlock;
1512     }
1513 
1514     // If the prior block branches somewhere else on the condition and here if
1515     // the condition is false, remove the uncond second branch.
1516     if (PriorFBB == MBB) {
1517       DebugLoc dl = getBranchDebugLoc(PrevBB);
1518       TII->removeBranch(PrevBB);
1519       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1520       MadeChange = true;
1521       ++NumBranchOpts;
1522       goto ReoptimizeBlock;
1523     }
1524 
1525     // If the prior block branches here on true and somewhere else on false, and
1526     // if the branch condition is reversible, reverse the branch to create a
1527     // fall-through.
1528     if (PriorTBB == MBB) {
1529       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1530       if (!TII->reverseBranchCondition(NewPriorCond)) {
1531         DebugLoc dl = getBranchDebugLoc(PrevBB);
1532         TII->removeBranch(PrevBB);
1533         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1534         MadeChange = true;
1535         ++NumBranchOpts;
1536         goto ReoptimizeBlock;
1537       }
1538     }
1539 
1540     // If this block has no successors (e.g. it is a return block or ends with
1541     // a call to a no-return function like abort or __cxa_throw) and if the pred
1542     // falls through into this block, and if it would otherwise fall through
1543     // into the block after this, move this block to the end of the function.
1544     //
1545     // We consider it more likely that execution will stay in the function (e.g.
1546     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1547     // the assert condition out of the loop body.
1548     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1549         MachineFunction::iterator(PriorTBB) == FallThrough &&
1550         !MBB->canFallThrough()) {
1551       bool DoTransform = true;
1552 
1553       // We have to be careful that the succs of PredBB aren't both no-successor
1554       // blocks.  If neither have successors and if PredBB is the second from
1555       // last block in the function, we'd just keep swapping the two blocks for
1556       // last.  Only do the swap if one is clearly better to fall through than
1557       // the other.
1558       if (FallThrough == --MF.end() &&
1559           !IsBetterFallthrough(PriorTBB, MBB))
1560         DoTransform = false;
1561 
1562       if (DoTransform) {
1563         // Reverse the branch so we will fall through on the previous true cond.
1564         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1565         if (!TII->reverseBranchCondition(NewPriorCond)) {
1566           LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1567                             << "To make fallthrough to: " << *PriorTBB << "\n");
1568 
1569           DebugLoc dl = getBranchDebugLoc(PrevBB);
1570           TII->removeBranch(PrevBB);
1571           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1572 
1573           // Move this block to the end of the function.
1574           MBB->moveAfter(&MF.back());
1575           MadeChange = true;
1576           ++NumBranchOpts;
1577           return MadeChange;
1578         }
1579       }
1580     }
1581   }
1582 
1583   if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 &&
1584       MF.getFunction().hasOptSize()) {
1585     // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1586     // direction, thereby defeating careful block placement and regressing
1587     // performance. Therefore, only consider this for optsize functions.
1588     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1589     if (TII->isUnconditionalTailCall(TailCall)) {
1590       MachineBasicBlock *Pred = *MBB->pred_begin();
1591       MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1592       SmallVector<MachineOperand, 4> PredCond;
1593       bool PredAnalyzable =
1594           !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1595 
1596       if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1597           PredTBB != PredFBB) {
1598         // The predecessor has a conditional branch to this block which consists
1599         // of only a tail call. Try to fold the tail call into the conditional
1600         // branch.
1601         if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1602           // TODO: It would be nice if analyzeBranch() could provide a pointer
1603           // to the branch instruction so replaceBranchWithTailCall() doesn't
1604           // have to search for it.
1605           TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1606           ++NumTailCalls;
1607           Pred->removeSuccessor(MBB);
1608           MadeChange = true;
1609           return MadeChange;
1610         }
1611       }
1612       // If the predecessor is falling through to this block, we could reverse
1613       // the branch condition and fold the tail call into that. However, after
1614       // that we might have to re-arrange the CFG to fall through to the other
1615       // block and there is a high risk of regressing code size rather than
1616       // improving it.
1617     }
1618   }
1619 
1620   // Analyze the branch in the current block.
1621   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1622   SmallVector<MachineOperand, 4> CurCond;
1623   bool CurUnAnalyzable =
1624       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1625   if (!CurUnAnalyzable) {
1626     // If the CFG for the prior block has extra edges, remove them.
1627     MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());
1628 
1629     // If this is a two-way branch, and the FBB branches to this block, reverse
1630     // the condition so the single-basic-block loop is faster.  Instead of:
1631     //    Loop: xxx; jcc Out; jmp Loop
1632     // we want:
1633     //    Loop: xxx; jncc Loop; jmp Out
1634     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1635       SmallVector<MachineOperand, 4> NewCond(CurCond);
1636       if (!TII->reverseBranchCondition(NewCond)) {
1637         DebugLoc dl = getBranchDebugLoc(*MBB);
1638         TII->removeBranch(*MBB);
1639         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1640         MadeChange = true;
1641         ++NumBranchOpts;
1642         goto ReoptimizeBlock;
1643       }
1644     }
1645 
1646     // If this branch is the only thing in its block, see if we can forward
1647     // other blocks across it.
1648     if (CurTBB && CurCond.empty() && !CurFBB &&
1649         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1650         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1651       DebugLoc dl = getBranchDebugLoc(*MBB);
1652       // This block may contain just an unconditional branch.  Because there can
1653       // be 'non-branch terminators' in the block, try removing the branch and
1654       // then seeing if the block is empty.
1655       TII->removeBranch(*MBB);
1656       // If the only things remaining in the block are debug info, remove these
1657       // as well, so this will behave the same as an empty block in non-debug
1658       // mode.
1659       if (IsEmptyBlock(MBB)) {
1660         // Make the block empty, losing the debug info (we could probably
1661         // improve this in some cases.)
1662         MBB->erase(MBB->begin(), MBB->end());
1663       }
1664       // If this block is just an unconditional branch to CurTBB, we can
1665       // usually completely eliminate the block.  The only case we cannot
1666       // completely eliminate the block is when the block before this one
1667       // falls through into MBB and we can't understand the prior block's branch
1668       // condition.
1669       if (MBB->empty()) {
1670         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1671         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1672             !PrevBB.isSuccessor(MBB)) {
1673           // If the prior block falls through into us, turn it into an
1674           // explicit branch to us to make updates simpler.
1675           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1676               PriorTBB != MBB && PriorFBB != MBB) {
1677             if (!PriorTBB) {
1678               assert(PriorCond.empty() && !PriorFBB &&
1679                      "Bad branch analysis");
1680               PriorTBB = MBB;
1681             } else {
1682               assert(!PriorFBB && "Machine CFG out of date!");
1683               PriorFBB = MBB;
1684             }
1685             DebugLoc pdl = getBranchDebugLoc(PrevBB);
1686             TII->removeBranch(PrevBB);
1687             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1688           }
1689 
1690           // Iterate through all the predecessors, revectoring each in-turn.
1691           size_t PI = 0;
1692           bool DidChange = false;
1693           bool HasBranchToSelf = false;
1694           while(PI != MBB->pred_size()) {
1695             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1696             if (PMBB == MBB) {
1697               // If this block has an uncond branch to itself, leave it.
1698               ++PI;
1699               HasBranchToSelf = true;
1700             } else {
1701               DidChange = true;
1702               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1703               // If this change resulted in PMBB ending in a conditional
1704               // branch where both conditions go to the same destination,
1705               // change this to an unconditional branch (and fix the CFG).
1706               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1707               SmallVector<MachineOperand, 4> NewCurCond;
1708               bool NewCurUnAnalyzable = TII->analyzeBranch(
1709                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1710               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1711                 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1712                 TII->removeBranch(*PMBB);
1713                 NewCurCond.clear();
1714                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1715                 MadeChange = true;
1716                 ++NumBranchOpts;
1717                 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
1718               }
1719             }
1720           }
1721 
1722           // Change any jumptables to go to the new MBB.
1723           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1724             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1725           if (DidChange) {
1726             ++NumBranchOpts;
1727             MadeChange = true;
1728             if (!HasBranchToSelf) return MadeChange;
1729           }
1730         }
1731       }
1732 
1733       // Add the branch back if the block is more than just an uncond branch.
1734       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1735     }
1736   }
1737 
1738   // If the prior block doesn't fall through into this block, and if this
1739   // block doesn't fall through into some other block, see if we can find a
1740   // place to move this block where a fall-through will happen.
1741   if (!PrevBB.canFallThrough()) {
1742     // Now we know that there was no fall-through into this block, check to
1743     // see if it has a fall-through into its successor.
1744     bool CurFallsThru = MBB->canFallThrough();
1745 
1746     if (!MBB->isEHPad()) {
1747       // Check all the predecessors of this block.  If one of them has no fall
1748       // throughs, move this block right after it.
1749       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1750         // Analyze the branch at the end of the pred.
1751         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1752         SmallVector<MachineOperand, 4> PredCond;
1753         if (PredBB != MBB && !PredBB->canFallThrough() &&
1754             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1755             (!CurFallsThru || !CurTBB || !CurFBB) &&
1756             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1757           // If the current block doesn't fall through, just move it.
1758           // If the current block can fall through and does not end with a
1759           // conditional branch, we need to append an unconditional jump to
1760           // the (current) next block.  To avoid a possible compile-time
1761           // infinite loop, move blocks only backward in this case.
1762           // Also, if there are already 2 branches here, we cannot add a third;
1763           // this means we have the case
1764           // Bcc next
1765           // B elsewhere
1766           // next:
1767           if (CurFallsThru) {
1768             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1769             CurCond.clear();
1770             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1771           }
1772           MBB->moveAfter(PredBB);
1773           MadeChange = true;
1774           goto ReoptimizeBlock;
1775         }
1776       }
1777     }
1778 
1779     if (!CurFallsThru) {
1780       // Check all successors to see if we can move this block before it.
1781       for (MachineBasicBlock *SuccBB : MBB->successors()) {
1782         // Analyze the branch at the end of the block before the succ.
1783         MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1784 
1785         // If this block doesn't already fall-through to that successor, and if
1786         // the succ doesn't already have a block that can fall through into it,
1787         // and if the successor isn't an EH destination, we can arrange for the
1788         // fallthrough to happen.
1789         if (SuccBB != MBB && &*SuccPrev != MBB &&
1790             !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
1791             !SuccBB->isEHPad()) {
1792           MBB->moveBefore(SuccBB);
1793           MadeChange = true;
1794           goto ReoptimizeBlock;
1795         }
1796       }
1797 
1798       // Okay, there is no really great place to put this block.  If, however,
1799       // the block before this one would be a fall-through if this block were
1800       // removed, move this block to the end of the function. There is no real
1801       // advantage in "falling through" to an EH block, so we don't want to
1802       // perform this transformation for that case.
1803       //
1804       // Also, Windows EH introduced the possibility of an arbitrary number of
1805       // successors to a given block.  The analyzeBranch call does not consider
1806       // exception handling and so we can get in a state where a block
1807       // containing a call is followed by multiple EH blocks that would be
1808       // rotated infinitely at the end of the function if the transformation
1809       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1810       // that appears not to be happening anymore, we should assume that it is
1811       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1812       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1813       SmallVector<MachineOperand, 4> PrevCond;
1814       if (FallThrough != MF.end() &&
1815           !FallThrough->isEHPad() &&
1816           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1817           PrevBB.isSuccessor(&*FallThrough)) {
1818         MBB->moveAfter(&MF.back());
1819         MadeChange = true;
1820         return MadeChange;
1821       }
1822     }
1823   }
1824 
1825   return MadeChange;
1826 }
1827 
1828 //===----------------------------------------------------------------------===//
1829 //  Hoist Common Code
1830 //===----------------------------------------------------------------------===//
1831 
1832 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1833   bool MadeChange = false;
1834   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1835     MachineBasicBlock *MBB = &*I++;
1836     MadeChange |= HoistCommonCodeInSuccs(MBB);
1837   }
1838 
1839   return MadeChange;
1840 }
1841 
1842 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1843 /// its 'true' successor.
1844 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1845                                          MachineBasicBlock *TrueBB) {
1846   for (MachineBasicBlock *SuccBB : BB->successors())
1847     if (SuccBB != TrueBB)
1848       return SuccBB;
1849   return nullptr;
1850 }
1851 
1852 template <class Container>
1853 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
1854                                 Container &Set) {
1855   if (Register::isPhysicalRegister(Reg)) {
1856     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1857       Set.insert(*AI);
1858   } else {
1859     Set.insert(Reg);
1860   }
1861 }
1862 
1863 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1864 /// in successors to. The location is usually just before the terminator,
1865 /// however if the terminator is a conditional branch and its previous
1866 /// instruction is the flag setting instruction, the previous instruction is
1867 /// the preferred location. This function also gathers uses and defs of the
1868 /// instructions from the insertion point to the end of the block. The data is
1869 /// used by HoistCommonCodeInSuccs to ensure safety.
1870 static
1871 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1872                                                   const TargetInstrInfo *TII,
1873                                                   const TargetRegisterInfo *TRI,
1874                                                   SmallSet<unsigned,4> &Uses,
1875                                                   SmallSet<unsigned,4> &Defs) {
1876   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1877   if (!TII->isUnpredicatedTerminator(*Loc))
1878     return MBB->end();
1879 
1880   for (const MachineOperand &MO : Loc->operands()) {
1881     if (!MO.isReg())
1882       continue;
1883     Register Reg = MO.getReg();
1884     if (!Reg)
1885       continue;
1886     if (MO.isUse()) {
1887       addRegAndItsAliases(Reg, TRI, Uses);
1888     } else {
1889       if (!MO.isDead())
1890         // Don't try to hoist code in the rare case the terminator defines a
1891         // register that is later used.
1892         return MBB->end();
1893 
1894       // If the terminator defines a register, make sure we don't hoist
1895       // the instruction whose def might be clobbered by the terminator.
1896       addRegAndItsAliases(Reg, TRI, Defs);
1897     }
1898   }
1899 
1900   if (Uses.empty())
1901     return Loc;
1902   // If the terminator is the only instruction in the block and Uses is not
1903   // empty (or we would have returned above), we can still safely hoist
1904   // instructions just before the terminator as long as the Defs/Uses are not
1905   // violated (which is checked in HoistCommonCodeInSuccs).
1906   if (Loc == MBB->begin())
1907     return Loc;
1908 
1909   // The terminator is probably a conditional branch, try not to separate the
1910   // branch from condition setting instruction.
1911   MachineBasicBlock::iterator PI =
1912     skipDebugInstructionsBackward(std::prev(Loc), MBB->begin());
1913 
1914   bool IsDef = false;
1915   for (const MachineOperand &MO : PI->operands()) {
1916     // If PI has a regmask operand, it is probably a call. Separate away.
1917     if (MO.isRegMask())
1918       return Loc;
1919     if (!MO.isReg() || MO.isUse())
1920       continue;
1921     Register Reg = MO.getReg();
1922     if (!Reg)
1923       continue;
1924     if (Uses.count(Reg)) {
1925       IsDef = true;
1926       break;
1927     }
1928   }
1929   if (!IsDef)
1930     // The condition setting instruction is not just before the conditional
1931     // branch.
1932     return Loc;
1933 
1934   // Be conservative, don't insert instruction above something that may have
1935   // side-effects. And since it's potentially bad to separate flag setting
1936   // instruction from the conditional branch, just abort the optimization
1937   // completely.
1938   // Also avoid moving code above predicated instruction since it's hard to
1939   // reason about register liveness with predicated instruction.
1940   bool DontMoveAcrossStore = true;
1941   if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1942     return MBB->end();
1943 
1944   // Find out what registers are live. Note this routine is ignoring other live
1945   // registers which are only used by instructions in successor blocks.
1946   for (const MachineOperand &MO : PI->operands()) {
1947     if (!MO.isReg())
1948       continue;
1949     Register Reg = MO.getReg();
1950     if (!Reg)
1951       continue;
1952     if (MO.isUse()) {
1953       addRegAndItsAliases(Reg, TRI, Uses);
1954     } else {
1955       if (Uses.erase(Reg)) {
1956         if (Register::isPhysicalRegister(Reg)) {
1957           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1958             Uses.erase(*SubRegs); // Use sub-registers to be conservative
1959         }
1960       }
1961       addRegAndItsAliases(Reg, TRI, Defs);
1962     }
1963   }
1964 
1965   return PI;
1966 }
1967 
1968 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1969   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1970   SmallVector<MachineOperand, 4> Cond;
1971   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1972     return false;
1973 
1974   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1975   if (!FBB)
1976     // Malformed bcc? True and false blocks are the same?
1977     return false;
1978 
1979   // Restrict the optimization to cases where MBB is the only predecessor,
1980   // it is an obvious win.
1981   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1982     return false;
1983 
1984   // Find a suitable position to hoist the common instructions to. Also figure
1985   // out which registers are used or defined by instructions from the insertion
1986   // point to the end of the block.
1987   SmallSet<unsigned, 4> Uses, Defs;
1988   MachineBasicBlock::iterator Loc =
1989     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1990   if (Loc == MBB->end())
1991     return false;
1992 
1993   bool HasDups = false;
1994   SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
1995   MachineBasicBlock::iterator TIB = TBB->begin();
1996   MachineBasicBlock::iterator FIB = FBB->begin();
1997   MachineBasicBlock::iterator TIE = TBB->end();
1998   MachineBasicBlock::iterator FIE = FBB->end();
1999   while (TIB != TIE && FIB != FIE) {
2000     // Skip dbg_value instructions. These do not count.
2001     TIB = skipDebugInstructionsForward(TIB, TIE);
2002     FIB = skipDebugInstructionsForward(FIB, FIE);
2003     if (TIB == TIE || FIB == FIE)
2004       break;
2005 
2006     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
2007       break;
2008 
2009     if (TII->isPredicated(*TIB))
2010       // Hard to reason about register liveness with predicated instruction.
2011       break;
2012 
2013     bool IsSafe = true;
2014     for (MachineOperand &MO : TIB->operands()) {
2015       // Don't attempt to hoist instructions with register masks.
2016       if (MO.isRegMask()) {
2017         IsSafe = false;
2018         break;
2019       }
2020       if (!MO.isReg())
2021         continue;
2022       Register Reg = MO.getReg();
2023       if (!Reg)
2024         continue;
2025       if (MO.isDef()) {
2026         if (Uses.count(Reg)) {
2027           // Avoid clobbering a register that's used by the instruction at
2028           // the point of insertion.
2029           IsSafe = false;
2030           break;
2031         }
2032 
2033         if (Defs.count(Reg) && !MO.isDead()) {
2034           // Don't hoist the instruction if the def would be clobber by the
2035           // instruction at the point insertion. FIXME: This is overly
2036           // conservative. It should be possible to hoist the instructions
2037           // in BB2 in the following example:
2038           // BB1:
2039           // r1, eflag = op1 r2, r3
2040           // brcc eflag
2041           //
2042           // BB2:
2043           // r1 = op2, ...
2044           //    = op3, killed r1
2045           IsSafe = false;
2046           break;
2047         }
2048       } else if (!ActiveDefsSet.count(Reg)) {
2049         if (Defs.count(Reg)) {
2050           // Use is defined by the instruction at the point of insertion.
2051           IsSafe = false;
2052           break;
2053         }
2054 
2055         if (MO.isKill() && Uses.count(Reg))
2056           // Kills a register that's read by the instruction at the point of
2057           // insertion. Remove the kill marker.
2058           MO.setIsKill(false);
2059       }
2060     }
2061     if (!IsSafe)
2062       break;
2063 
2064     bool DontMoveAcrossStore = true;
2065     if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
2066       break;
2067 
2068     // Remove kills from ActiveDefsSet, these registers had short live ranges.
2069     for (const MachineOperand &MO : TIB->operands()) {
2070       if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2071         continue;
2072       Register Reg = MO.getReg();
2073       if (!Reg)
2074         continue;
2075       if (!AllDefsSet.count(Reg)) {
2076         continue;
2077       }
2078       if (Register::isPhysicalRegister(Reg)) {
2079         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2080           ActiveDefsSet.erase(*AI);
2081       } else {
2082         ActiveDefsSet.erase(Reg);
2083       }
2084     }
2085 
2086     // Track local defs so we can update liveins.
2087     for (const MachineOperand &MO : TIB->operands()) {
2088       if (!MO.isReg() || !MO.isDef() || MO.isDead())
2089         continue;
2090       Register Reg = MO.getReg();
2091       if (!Reg || Register::isVirtualRegister(Reg))
2092         continue;
2093       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2094       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2095     }
2096 
2097     HasDups = true;
2098     ++TIB;
2099     ++FIB;
2100   }
2101 
2102   if (!HasDups)
2103     return false;
2104 
2105   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2106   FBB->erase(FBB->begin(), FIB);
2107 
2108   if (UpdateLiveIns) {
2109     recomputeLiveIns(*TBB);
2110     recomputeLiveIns(*FBB);
2111   }
2112 
2113   ++NumHoist;
2114   return true;
2115 }
2116