1 //===-- BranchFolding.cpp - Fold machine code branch instructions ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass forwards branches to unconditional branches to make them branch 11 // directly to the target block. This pass often results in dead MBB's, which 12 // it then removes. 13 // 14 // Note that this pass must be run after register allocation, it cannot handle 15 // SSA form. It also must handle virtual registers for targets that emit virtual 16 // ISA (e.g. NVPTX). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "BranchFolding.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetInstrInfo.h" 42 #include "llvm/Target/TargetRegisterInfo.h" 43 #include "llvm/Target/TargetSubtargetInfo.h" 44 #include <algorithm> 45 using namespace llvm; 46 47 #define DEBUG_TYPE "branchfolding" 48 49 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 50 STATISTIC(NumBranchOpts, "Number of branches optimized"); 51 STATISTIC(NumTailMerge , "Number of block tails merged"); 52 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 53 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 54 55 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 56 cl::init(cl::BOU_UNSET), cl::Hidden); 57 58 // Throttle for huge numbers of predecessors (compile speed problems) 59 static cl::opt<unsigned> 60 TailMergeThreshold("tail-merge-threshold", 61 cl::desc("Max number of predecessors to consider tail merging"), 62 cl::init(150), cl::Hidden); 63 64 // Heuristic for tail merging (and, inversely, tail duplication). 65 // TODO: This should be replaced with a target query. 66 static cl::opt<unsigned> 67 TailMergeSize("tail-merge-size", 68 cl::desc("Min number of instructions to consider tail merging"), 69 cl::init(3), cl::Hidden); 70 71 namespace { 72 /// BranchFolderPass - Wrap branch folder in a machine function pass. 73 class BranchFolderPass : public MachineFunctionPass { 74 public: 75 static char ID; 76 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 77 78 bool runOnMachineFunction(MachineFunction &MF) override; 79 80 void getAnalysisUsage(AnalysisUsage &AU) const override { 81 AU.addRequired<MachineBlockFrequencyInfo>(); 82 AU.addRequired<MachineBranchProbabilityInfo>(); 83 AU.addRequired<TargetPassConfig>(); 84 MachineFunctionPass::getAnalysisUsage(AU); 85 } 86 }; 87 } 88 89 char BranchFolderPass::ID = 0; 90 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 91 92 INITIALIZE_PASS(BranchFolderPass, "branch-folder", 93 "Control Flow Optimizer", false, false) 94 95 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 96 if (skipFunction(*MF.getFunction())) 97 return false; 98 99 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 100 // TailMerge can create jump into if branches that make CFG irreducible for 101 // HW that requires structurized CFG. 102 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 103 PassConfig->getEnableTailMerge(); 104 BranchFolder::MBFIWrapper MBBFreqInfo( 105 getAnalysis<MachineBlockFrequencyInfo>()); 106 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 107 getAnalysis<MachineBranchProbabilityInfo>()); 108 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), 109 MF.getSubtarget().getRegisterInfo(), 110 getAnalysisIfAvailable<MachineModuleInfo>()); 111 } 112 113 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, 114 MBFIWrapper &FreqInfo, 115 const MachineBranchProbabilityInfo &ProbInfo, 116 unsigned MinTailLength) 117 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 118 MBBFreqInfo(FreqInfo), MBPI(ProbInfo) { 119 if (MinCommonTailLength == 0) 120 MinCommonTailLength = TailMergeSize; 121 switch (FlagEnableTailMerge) { 122 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; 123 case cl::BOU_TRUE: EnableTailMerge = true; break; 124 case cl::BOU_FALSE: EnableTailMerge = false; break; 125 } 126 } 127 128 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 129 assert(MBB->pred_empty() && "MBB must be dead!"); 130 DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 131 132 MachineFunction *MF = MBB->getParent(); 133 // drop all successors. 134 while (!MBB->succ_empty()) 135 MBB->removeSuccessor(MBB->succ_end()-1); 136 137 // Avoid matching if this pointer gets reused. 138 TriedMerging.erase(MBB); 139 140 // Remove the block. 141 MF->erase(MBB); 142 FuncletMembership.erase(MBB); 143 if (MLI) 144 MLI->removeBlock(MBB); 145 } 146 147 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 148 const TargetInstrInfo *tii, 149 const TargetRegisterInfo *tri, 150 MachineModuleInfo *mmi, 151 MachineLoopInfo *mli, bool AfterPlacement) { 152 if (!tii) return false; 153 154 TriedMerging.clear(); 155 156 AfterBlockPlacement = AfterPlacement; 157 TII = tii; 158 TRI = tri; 159 MMI = mmi; 160 MLI = mli; 161 162 MachineRegisterInfo &MRI = MF.getRegInfo(); 163 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 164 if (!UpdateLiveIns) 165 MRI.invalidateLiveness(); 166 167 // Fix CFG. The later algorithms expect it to be right. 168 bool MadeChange = false; 169 for (MachineBasicBlock &MBB : MF) { 170 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 171 SmallVector<MachineOperand, 4> Cond; 172 if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true)) 173 MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 174 } 175 176 // Recalculate funclet membership. 177 FuncletMembership = getFuncletMembership(MF); 178 179 bool MadeChangeThisIteration = true; 180 while (MadeChangeThisIteration) { 181 MadeChangeThisIteration = TailMergeBlocks(MF); 182 // No need to clean up if tail merging does not change anything after the 183 // block placement. 184 if (!AfterBlockPlacement || MadeChangeThisIteration) 185 MadeChangeThisIteration |= OptimizeBranches(MF); 186 if (EnableHoistCommonCode) 187 MadeChangeThisIteration |= HoistCommonCode(MF); 188 MadeChange |= MadeChangeThisIteration; 189 } 190 191 // See if any jump tables have become dead as the code generator 192 // did its thing. 193 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 194 if (!JTI) 195 return MadeChange; 196 197 // Walk the function to find jump tables that are live. 198 BitVector JTIsLive(JTI->getJumpTables().size()); 199 for (const MachineBasicBlock &BB : MF) { 200 for (const MachineInstr &I : BB) 201 for (const MachineOperand &Op : I.operands()) { 202 if (!Op.isJTI()) continue; 203 204 // Remember that this JT is live. 205 JTIsLive.set(Op.getIndex()); 206 } 207 } 208 209 // Finally, remove dead jump tables. This happens when the 210 // indirect jump was unreachable (and thus deleted). 211 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 212 if (!JTIsLive.test(i)) { 213 JTI->RemoveJumpTable(i); 214 MadeChange = true; 215 } 216 217 return MadeChange; 218 } 219 220 //===----------------------------------------------------------------------===// 221 // Tail Merging of Blocks 222 //===----------------------------------------------------------------------===// 223 224 /// HashMachineInstr - Compute a hash value for MI and its operands. 225 static unsigned HashMachineInstr(const MachineInstr &MI) { 226 unsigned Hash = MI.getOpcode(); 227 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 228 const MachineOperand &Op = MI.getOperand(i); 229 230 // Merge in bits from the operand if easy. We can't use MachineOperand's 231 // hash_code here because it's not deterministic and we sort by hash value 232 // later. 233 unsigned OperandHash = 0; 234 switch (Op.getType()) { 235 case MachineOperand::MO_Register: 236 OperandHash = Op.getReg(); 237 break; 238 case MachineOperand::MO_Immediate: 239 OperandHash = Op.getImm(); 240 break; 241 case MachineOperand::MO_MachineBasicBlock: 242 OperandHash = Op.getMBB()->getNumber(); 243 break; 244 case MachineOperand::MO_FrameIndex: 245 case MachineOperand::MO_ConstantPoolIndex: 246 case MachineOperand::MO_JumpTableIndex: 247 OperandHash = Op.getIndex(); 248 break; 249 case MachineOperand::MO_GlobalAddress: 250 case MachineOperand::MO_ExternalSymbol: 251 // Global address / external symbol are too hard, don't bother, but do 252 // pull in the offset. 253 OperandHash = Op.getOffset(); 254 break; 255 default: 256 break; 257 } 258 259 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 260 } 261 return Hash; 262 } 263 264 /// HashEndOfMBB - Hash the last instruction in the MBB. 265 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 266 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 267 if (I == MBB.end()) 268 return 0; 269 270 return HashMachineInstr(*I); 271 } 272 273 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number 274 /// of instructions they actually have in common together at their end. Return 275 /// iterators for the first shared instruction in each block. 276 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 277 MachineBasicBlock *MBB2, 278 MachineBasicBlock::iterator &I1, 279 MachineBasicBlock::iterator &I2) { 280 I1 = MBB1->end(); 281 I2 = MBB2->end(); 282 283 unsigned TailLen = 0; 284 while (I1 != MBB1->begin() && I2 != MBB2->begin()) { 285 --I1; --I2; 286 // Skip debugging pseudos; necessary to avoid changing the code. 287 while (I1->isDebugValue()) { 288 if (I1==MBB1->begin()) { 289 while (I2->isDebugValue()) { 290 if (I2==MBB2->begin()) 291 // I1==DBG at begin; I2==DBG at begin 292 return TailLen; 293 --I2; 294 } 295 ++I2; 296 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin 297 return TailLen; 298 } 299 --I1; 300 } 301 // I1==first (untested) non-DBG preceding known match 302 while (I2->isDebugValue()) { 303 if (I2==MBB2->begin()) { 304 ++I1; 305 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin 306 return TailLen; 307 } 308 --I2; 309 } 310 // I1, I2==first (untested) non-DBGs preceding known match 311 if (!I1->isIdenticalTo(*I2) || 312 // FIXME: This check is dubious. It's used to get around a problem where 313 // people incorrectly expect inline asm directives to remain in the same 314 // relative order. This is untenable because normal compiler 315 // optimizations (like this one) may reorder and/or merge these 316 // directives. 317 I1->isInlineAsm()) { 318 ++I1; ++I2; 319 break; 320 } 321 ++TailLen; 322 } 323 // Back past possible debugging pseudos at beginning of block. This matters 324 // when one block differs from the other only by whether debugging pseudos 325 // are present at the beginning. (This way, the various checks later for 326 // I1==MBB1->begin() work as expected.) 327 if (I1 == MBB1->begin() && I2 != MBB2->begin()) { 328 --I2; 329 while (I2->isDebugValue()) { 330 if (I2 == MBB2->begin()) 331 return TailLen; 332 --I2; 333 } 334 ++I2; 335 } 336 if (I2 == MBB2->begin() && I1 != MBB1->begin()) { 337 --I1; 338 while (I1->isDebugValue()) { 339 if (I1 == MBB1->begin()) 340 return TailLen; 341 --I1; 342 } 343 ++I1; 344 } 345 return TailLen; 346 } 347 348 void BranchFolder::ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 349 MachineBasicBlock *NewDest) { 350 TII->ReplaceTailWithBranchTo(OldInst, NewDest); 351 352 if (UpdateLiveIns) { 353 NewDest->clearLiveIns(); 354 computeLiveIns(LiveRegs, *TRI, *NewDest); 355 } 356 357 ++NumTailMerge; 358 } 359 360 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 361 MachineBasicBlock::iterator BBI1, 362 const BasicBlock *BB) { 363 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 364 return nullptr; 365 366 MachineFunction &MF = *CurMBB.getParent(); 367 368 // Create the fall-through block. 369 MachineFunction::iterator MBBI = CurMBB.getIterator(); 370 MachineBasicBlock *NewMBB =MF.CreateMachineBasicBlock(BB); 371 CurMBB.getParent()->insert(++MBBI, NewMBB); 372 373 // Move all the successors of this block to the specified block. 374 NewMBB->transferSuccessors(&CurMBB); 375 376 // Add an edge from CurMBB to NewMBB for the fall-through. 377 CurMBB.addSuccessor(NewMBB); 378 379 // Splice the code over. 380 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 381 382 // NewMBB belongs to the same loop as CurMBB. 383 if (MLI) 384 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 385 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 386 387 // NewMBB inherits CurMBB's block frequency. 388 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 389 390 if (UpdateLiveIns) 391 computeLiveIns(LiveRegs, *TRI, *NewMBB); 392 393 // Add the new block to the funclet. 394 const auto &FuncletI = FuncletMembership.find(&CurMBB); 395 if (FuncletI != FuncletMembership.end()) { 396 auto n = FuncletI->second; 397 FuncletMembership[NewMBB] = n; 398 } 399 400 return NewMBB; 401 } 402 403 /// EstimateRuntime - Make a rough estimate for how long it will take to run 404 /// the specified code. 405 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 406 MachineBasicBlock::iterator E) { 407 unsigned Time = 0; 408 for (; I != E; ++I) { 409 if (I->isDebugValue()) 410 continue; 411 if (I->isCall()) 412 Time += 10; 413 else if (I->mayLoad() || I->mayStore()) 414 Time += 2; 415 else 416 ++Time; 417 } 418 return Time; 419 } 420 421 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 422 // branches temporarily for tail merging). In the case where CurMBB ends 423 // with a conditional branch to the next block, optimize by reversing the 424 // test and conditionally branching to SuccMBB instead. 425 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 426 const TargetInstrInfo *TII) { 427 MachineFunction *MF = CurMBB->getParent(); 428 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 429 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 430 SmallVector<MachineOperand, 4> Cond; 431 DebugLoc dl = CurMBB->findBranchDebugLoc(); 432 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 433 MachineBasicBlock *NextBB = &*I; 434 if (TBB == NextBB && !Cond.empty() && !FBB) { 435 if (!TII->reverseBranchCondition(Cond)) { 436 TII->removeBranch(*CurMBB); 437 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 438 return; 439 } 440 } 441 } 442 TII->insertBranch(*CurMBB, SuccBB, nullptr, 443 SmallVector<MachineOperand, 0>(), dl); 444 } 445 446 bool 447 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 448 if (getHash() < o.getHash()) 449 return true; 450 if (getHash() > o.getHash()) 451 return false; 452 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 453 return true; 454 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 455 return false; 456 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 457 // an object with itself. 458 #ifndef _GLIBCXX_DEBUG 459 llvm_unreachable("Predecessor appears twice"); 460 #else 461 return false; 462 #endif 463 } 464 465 BlockFrequency 466 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const { 467 auto I = MergedBBFreq.find(MBB); 468 469 if (I != MergedBBFreq.end()) 470 return I->second; 471 472 return MBFI.getBlockFreq(MBB); 473 } 474 475 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB, 476 BlockFrequency F) { 477 MergedBBFreq[MBB] = F; 478 } 479 480 raw_ostream & 481 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 482 const MachineBasicBlock *MBB) const { 483 return MBFI.printBlockFreq(OS, getBlockFreq(MBB)); 484 } 485 486 raw_ostream & 487 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 488 const BlockFrequency Freq) const { 489 return MBFI.printBlockFreq(OS, Freq); 490 } 491 492 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) { 493 MBFI.view(Name, isSimple); 494 } 495 496 uint64_t 497 BranchFolder::MBFIWrapper::getEntryFreq() const { 498 return MBFI.getEntryFreq(); 499 } 500 501 /// CountTerminators - Count the number of terminators in the given 502 /// block and set I to the position of the first non-terminator, if there 503 /// is one, or MBB->end() otherwise. 504 static unsigned CountTerminators(MachineBasicBlock *MBB, 505 MachineBasicBlock::iterator &I) { 506 I = MBB->end(); 507 unsigned NumTerms = 0; 508 for (;;) { 509 if (I == MBB->begin()) { 510 I = MBB->end(); 511 break; 512 } 513 --I; 514 if (!I->isTerminator()) break; 515 ++NumTerms; 516 } 517 return NumTerms; 518 } 519 520 /// A no successor, non-return block probably ends in unreachable and is cold. 521 /// Also consider a block that ends in an indirect branch to be a return block, 522 /// since many targets use plain indirect branches to return. 523 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 524 if (!MBB->succ_empty()) 525 return false; 526 if (MBB->empty()) 527 return true; 528 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 529 } 530 531 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 532 /// and decide if it would be profitable to merge those tails. Return the 533 /// length of the common tail and iterators to the first common instruction 534 /// in each block. 535 /// MBB1, MBB2 The blocks to check 536 /// MinCommonTailLength Minimum size of tail block to be merged. 537 /// CommonTailLen Out parameter to record the size of the shared tail between 538 /// MBB1 and MBB2 539 /// I1, I2 Iterator references that will be changed to point to the first 540 /// instruction in the common tail shared by MBB1,MBB2 541 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 542 /// relative to SuccBB 543 /// PredBB The layout predecessor of SuccBB, if any. 544 /// FuncletMembership map from block to funclet #. 545 /// AfterPlacement True if we are merging blocks after layout. Stricter 546 /// thresholds apply to prevent undoing tail-duplication. 547 static bool 548 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 549 unsigned MinCommonTailLength, unsigned &CommonTailLen, 550 MachineBasicBlock::iterator &I1, 551 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 552 MachineBasicBlock *PredBB, 553 DenseMap<const MachineBasicBlock *, int> &FuncletMembership, 554 bool AfterPlacement) { 555 // It is never profitable to tail-merge blocks from two different funclets. 556 if (!FuncletMembership.empty()) { 557 auto Funclet1 = FuncletMembership.find(MBB1); 558 assert(Funclet1 != FuncletMembership.end()); 559 auto Funclet2 = FuncletMembership.find(MBB2); 560 assert(Funclet2 != FuncletMembership.end()); 561 if (Funclet1->second != Funclet2->second) 562 return false; 563 } 564 565 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 566 if (CommonTailLen == 0) 567 return false; 568 DEBUG(dbgs() << "Common tail length of BB#" << MBB1->getNumber() 569 << " and BB#" << MBB2->getNumber() << " is " << CommonTailLen 570 << '\n'); 571 572 // It's almost always profitable to merge any number of non-terminator 573 // instructions with the block that falls through into the common successor. 574 // This is true only for a single successor. For multiple successors, we are 575 // trading a conditional branch for an unconditional one. 576 // TODO: Re-visit successor size for non-layout tail merging. 577 if ((MBB1 == PredBB || MBB2 == PredBB) && 578 (!AfterPlacement || MBB1->succ_size() == 1)) { 579 MachineBasicBlock::iterator I; 580 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 581 if (CommonTailLen > NumTerms) 582 return true; 583 } 584 585 // If these are identical non-return blocks with no successors, merge them. 586 // Such blocks are typically cold calls to noreturn functions like abort, and 587 // are unlikely to become a fallthrough target after machine block placement. 588 // Tail merging these blocks is unlikely to create additional unconditional 589 // branches, and will reduce the size of this cold code. 590 if (I1 == MBB1->begin() && I2 == MBB2->begin() && 591 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 592 return true; 593 594 // If one of the blocks can be completely merged and happens to be in 595 // a position where the other could fall through into it, merge any number 596 // of instructions, because it can be done without a branch. 597 // TODO: If the blocks are not adjacent, move one of them so that they are? 598 if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin()) 599 return true; 600 if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin()) 601 return true; 602 603 // If both blocks have an unconditional branch temporarily stripped out, 604 // count that as an additional common instruction for the following 605 // heuristics. This heuristic is only accurate for single-succ blocks, so to 606 // make sure that during layout merging and duplicating don't crash, we check 607 // for that when merging during layout. 608 unsigned EffectiveTailLen = CommonTailLen; 609 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 610 (MBB1->succ_size() == 1 || !AfterPlacement) && 611 !MBB1->back().isBarrier() && 612 !MBB2->back().isBarrier()) 613 ++EffectiveTailLen; 614 615 // Check if the common tail is long enough to be worthwhile. 616 if (EffectiveTailLen >= MinCommonTailLength) 617 return true; 618 619 // If we are optimizing for code size, 2 instructions in common is enough if 620 // we don't have to split a block. At worst we will be introducing 1 new 621 // branch instruction, which is likely to be smaller than the 2 622 // instructions that would be deleted in the merge. 623 MachineFunction *MF = MBB1->getParent(); 624 return EffectiveTailLen >= 2 && MF->getFunction()->optForSize() && 625 (I1 == MBB1->begin() || I2 == MBB2->begin()); 626 } 627 628 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 629 unsigned MinCommonTailLength, 630 MachineBasicBlock *SuccBB, 631 MachineBasicBlock *PredBB) { 632 unsigned maxCommonTailLength = 0U; 633 SameTails.clear(); 634 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 635 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 636 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 637 B = MergePotentials.begin(); 638 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 639 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 640 unsigned CommonTailLen; 641 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 642 MinCommonTailLength, 643 CommonTailLen, TrialBBI1, TrialBBI2, 644 SuccBB, PredBB, 645 FuncletMembership, 646 AfterBlockPlacement)) { 647 if (CommonTailLen > maxCommonTailLength) { 648 SameTails.clear(); 649 maxCommonTailLength = CommonTailLen; 650 HighestMPIter = CurMPIter; 651 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 652 } 653 if (HighestMPIter == CurMPIter && 654 CommonTailLen == maxCommonTailLength) 655 SameTails.push_back(SameTailElt(I, TrialBBI2)); 656 } 657 if (I == B) 658 break; 659 } 660 } 661 return maxCommonTailLength; 662 } 663 664 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 665 MachineBasicBlock *SuccBB, 666 MachineBasicBlock *PredBB) { 667 MPIterator CurMPIter, B; 668 for (CurMPIter = std::prev(MergePotentials.end()), 669 B = MergePotentials.begin(); 670 CurMPIter->getHash() == CurHash; --CurMPIter) { 671 // Put the unconditional branch back, if we need one. 672 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 673 if (SuccBB && CurMBB != PredBB) 674 FixTail(CurMBB, SuccBB, TII); 675 if (CurMPIter == B) 676 break; 677 } 678 if (CurMPIter->getHash() != CurHash) 679 CurMPIter++; 680 MergePotentials.erase(CurMPIter, MergePotentials.end()); 681 } 682 683 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 684 MachineBasicBlock *SuccBB, 685 unsigned maxCommonTailLength, 686 unsigned &commonTailIndex) { 687 commonTailIndex = 0; 688 unsigned TimeEstimate = ~0U; 689 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 690 // Use PredBB if possible; that doesn't require a new branch. 691 if (SameTails[i].getBlock() == PredBB) { 692 commonTailIndex = i; 693 break; 694 } 695 // Otherwise, make a (fairly bogus) choice based on estimate of 696 // how long it will take the various blocks to execute. 697 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 698 SameTails[i].getTailStartPos()); 699 if (t <= TimeEstimate) { 700 TimeEstimate = t; 701 commonTailIndex = i; 702 } 703 } 704 705 MachineBasicBlock::iterator BBI = 706 SameTails[commonTailIndex].getTailStartPos(); 707 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 708 709 DEBUG(dbgs() << "\nSplitting BB#" << MBB->getNumber() << ", size " 710 << maxCommonTailLength); 711 712 // If the split block unconditionally falls-thru to SuccBB, it will be 713 // merged. In control flow terms it should then take SuccBB's name. e.g. If 714 // SuccBB is an inner loop, the common tail is still part of the inner loop. 715 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 716 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 717 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 718 if (!newMBB) { 719 DEBUG(dbgs() << "... failed!"); 720 return false; 721 } 722 723 SameTails[commonTailIndex].setBlock(newMBB); 724 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 725 726 // If we split PredBB, newMBB is the new predecessor. 727 if (PredBB == MBB) 728 PredBB = newMBB; 729 730 return true; 731 } 732 733 void BranchFolder::MergeCommonTailDebugLocs(unsigned commonTailIndex) { 734 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 735 736 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 737 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 738 if (i != commonTailIndex) 739 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 740 else { 741 assert(SameTails[i].getTailStartPos() == MBB->begin() && 742 "MBB is not a common tail only block"); 743 } 744 } 745 746 for (auto &MI : *MBB) { 747 if (MI.isDebugValue()) 748 continue; 749 DebugLoc DL = MI.getDebugLoc(); 750 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 751 if (i == commonTailIndex) 752 continue; 753 754 auto &Pos = NextCommonInsts[i]; 755 assert(Pos != SameTails[i].getBlock()->end() && 756 "Reached BB end within common tail"); 757 while (Pos->isDebugValue()) { 758 ++Pos; 759 assert(Pos != SameTails[i].getBlock()->end() && 760 "Reached BB end within common tail"); 761 } 762 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 763 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 764 NextCommonInsts[i] = ++Pos; 765 } 766 MI.setDebugLoc(DL); 767 } 768 } 769 770 static void 771 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 772 MachineBasicBlock &MBBCommon) { 773 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 774 // Note CommonTailLen does not necessarily matches the size of 775 // the common BB nor all its instructions because of debug 776 // instructions differences. 777 unsigned CommonTailLen = 0; 778 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 779 ++CommonTailLen; 780 781 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 782 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 783 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 784 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 785 786 while (CommonTailLen--) { 787 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 788 (void)MBBIE; 789 790 if (MBBI->isDebugValue()) { 791 ++MBBI; 792 continue; 793 } 794 795 while ((MBBICommon != MBBIECommon) && MBBICommon->isDebugValue()) 796 ++MBBICommon; 797 798 assert(MBBICommon != MBBIECommon && 799 "Reached BB end within common tail length!"); 800 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 801 802 // Merge MMOs from memory operations in the common block. 803 if (MBBICommon->mayLoad() || MBBICommon->mayStore()) 804 MBBICommon->setMemRefs(MBBICommon->mergeMemRefsWith(*MBBI)); 805 // Drop undef flags if they aren't present in all merged instructions. 806 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 807 MachineOperand &MO = MBBICommon->getOperand(I); 808 if (MO.isReg() && MO.isUndef()) { 809 const MachineOperand &OtherMO = MBBI->getOperand(I); 810 if (!OtherMO.isUndef()) 811 MO.setIsUndef(false); 812 } 813 } 814 815 ++MBBI; 816 ++MBBICommon; 817 } 818 } 819 820 // See if any of the blocks in MergePotentials (which all have SuccBB as a 821 // successor, or all have no successor if it is null) can be tail-merged. 822 // If there is a successor, any blocks in MergePotentials that are not 823 // tail-merged and are not immediately before Succ must have an unconditional 824 // branch to Succ added (but the predecessor/successor lists need no 825 // adjustment). The lone predecessor of Succ that falls through into Succ, 826 // if any, is given in PredBB. 827 // MinCommonTailLength - Except for the special cases below, tail-merge if 828 // there are at least this many instructions in common. 829 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 830 MachineBasicBlock *PredBB, 831 unsigned MinCommonTailLength) { 832 bool MadeChange = false; 833 834 DEBUG(dbgs() << "\nTryTailMergeBlocks: "; 835 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 836 dbgs() << "BB#" << MergePotentials[i].getBlock()->getNumber() 837 << (i == e-1 ? "" : ", "); 838 dbgs() << "\n"; 839 if (SuccBB) { 840 dbgs() << " with successor BB#" << SuccBB->getNumber() << '\n'; 841 if (PredBB) 842 dbgs() << " which has fall-through from BB#" 843 << PredBB->getNumber() << "\n"; 844 } 845 dbgs() << "Looking for common tails of at least " 846 << MinCommonTailLength << " instruction" 847 << (MinCommonTailLength == 1 ? "" : "s") << '\n'; 848 ); 849 850 // Sort by hash value so that blocks with identical end sequences sort 851 // together. 852 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 853 854 // Walk through equivalence sets looking for actual exact matches. 855 while (MergePotentials.size() > 1) { 856 unsigned CurHash = MergePotentials.back().getHash(); 857 858 // Build SameTails, identifying the set of blocks with this hash code 859 // and with the maximum number of instructions in common. 860 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 861 MinCommonTailLength, 862 SuccBB, PredBB); 863 864 // If we didn't find any pair that has at least MinCommonTailLength 865 // instructions in common, remove all blocks with this hash code and retry. 866 if (SameTails.empty()) { 867 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 868 continue; 869 } 870 871 // If one of the blocks is the entire common tail (and not the entry 872 // block, which we can't jump to), we can treat all blocks with this same 873 // tail at once. Use PredBB if that is one of the possibilities, as that 874 // will not introduce any extra branches. 875 MachineBasicBlock *EntryBB = 876 &MergePotentials.front().getBlock()->getParent()->front(); 877 unsigned commonTailIndex = SameTails.size(); 878 // If there are two blocks, check to see if one can be made to fall through 879 // into the other. 880 if (SameTails.size() == 2 && 881 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 882 SameTails[1].tailIsWholeBlock()) 883 commonTailIndex = 1; 884 else if (SameTails.size() == 2 && 885 SameTails[1].getBlock()->isLayoutSuccessor( 886 SameTails[0].getBlock()) && 887 SameTails[0].tailIsWholeBlock()) 888 commonTailIndex = 0; 889 else { 890 // Otherwise just pick one, favoring the fall-through predecessor if 891 // there is one. 892 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 893 MachineBasicBlock *MBB = SameTails[i].getBlock(); 894 if (MBB == EntryBB && SameTails[i].tailIsWholeBlock()) 895 continue; 896 if (MBB == PredBB) { 897 commonTailIndex = i; 898 break; 899 } 900 if (SameTails[i].tailIsWholeBlock()) 901 commonTailIndex = i; 902 } 903 } 904 905 if (commonTailIndex == SameTails.size() || 906 (SameTails[commonTailIndex].getBlock() == PredBB && 907 !SameTails[commonTailIndex].tailIsWholeBlock())) { 908 // None of the blocks consist entirely of the common tail. 909 // Split a block so that one does. 910 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 911 maxCommonTailLength, commonTailIndex)) { 912 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 913 continue; 914 } 915 } 916 917 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 918 919 // Recompute common tail MBB's edge weights and block frequency. 920 setCommonTailEdgeWeights(*MBB); 921 922 // Merge debug locations across identical instructions for common tail. 923 MergeCommonTailDebugLocs(commonTailIndex); 924 925 // MBB is common tail. Adjust all other BB's to jump to this one. 926 // Traversal must be forwards so erases work. 927 DEBUG(dbgs() << "\nUsing common tail in BB#" << MBB->getNumber() 928 << " for "); 929 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 930 if (commonTailIndex == i) 931 continue; 932 DEBUG(dbgs() << "BB#" << SameTails[i].getBlock()->getNumber() 933 << (i == e-1 ? "" : ", ")); 934 // Merge operations (MMOs, undef flags) 935 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 936 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 937 ReplaceTailWithBranchTo(SameTails[i].getTailStartPos(), MBB); 938 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 939 MergePotentials.erase(SameTails[i].getMPIter()); 940 } 941 DEBUG(dbgs() << "\n"); 942 // We leave commonTailIndex in the worklist in case there are other blocks 943 // that match it with a smaller number of instructions. 944 MadeChange = true; 945 } 946 return MadeChange; 947 } 948 949 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 950 bool MadeChange = false; 951 if (!EnableTailMerge) return MadeChange; 952 953 // First find blocks with no successors. 954 // Block placement does not create new tail merging opportunities for these 955 // blocks. 956 if (!AfterBlockPlacement) { 957 MergePotentials.clear(); 958 for (MachineBasicBlock &MBB : MF) { 959 if (MergePotentials.size() == TailMergeThreshold) 960 break; 961 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 962 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 963 } 964 965 // If this is a large problem, avoid visiting the same basic blocks 966 // multiple times. 967 if (MergePotentials.size() == TailMergeThreshold) 968 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 969 TriedMerging.insert(MergePotentials[i].getBlock()); 970 971 // See if we can do any tail merging on those. 972 if (MergePotentials.size() >= 2) 973 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 974 } 975 976 // Look at blocks (IBB) with multiple predecessors (PBB). 977 // We change each predecessor to a canonical form, by 978 // (1) temporarily removing any unconditional branch from the predecessor 979 // to IBB, and 980 // (2) alter conditional branches so they branch to the other block 981 // not IBB; this may require adding back an unconditional branch to IBB 982 // later, where there wasn't one coming in. E.g. 983 // Bcc IBB 984 // fallthrough to QBB 985 // here becomes 986 // Bncc QBB 987 // with a conceptual B to IBB after that, which never actually exists. 988 // With those changes, we see whether the predecessors' tails match, 989 // and merge them if so. We change things out of canonical form and 990 // back to the way they were later in the process. (OptimizeBranches 991 // would undo some of this, but we can't use it, because we'd get into 992 // a compile-time infinite loop repeatedly doing and undoing the same 993 // transformations.) 994 995 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 996 I != E; ++I) { 997 if (I->pred_size() < 2) continue; 998 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 999 MachineBasicBlock *IBB = &*I; 1000 MachineBasicBlock *PredBB = &*std::prev(I); 1001 MergePotentials.clear(); 1002 MachineLoop *ML; 1003 1004 // Bail if merging after placement and IBB is the loop header because 1005 // -- If merging predecessors that belong to the same loop as IBB, the 1006 // common tail of merged predecessors may become the loop top if block 1007 // placement is called again and the predecessors may branch to this common 1008 // tail and require more branches. This can be relaxed if 1009 // MachineBlockPlacement::findBestLoopTop is more flexible. 1010 // --If merging predecessors that do not belong to the same loop as IBB, the 1011 // loop info of IBB's loop and the other loops may be affected. Calling the 1012 // block placement again may make big change to the layout and eliminate the 1013 // reason to do tail merging here. 1014 if (AfterBlockPlacement && MLI) { 1015 ML = MLI->getLoopFor(IBB); 1016 if (ML && IBB == ML->getHeader()) 1017 continue; 1018 } 1019 1020 for (MachineBasicBlock *PBB : I->predecessors()) { 1021 if (MergePotentials.size() == TailMergeThreshold) 1022 break; 1023 1024 if (TriedMerging.count(PBB)) 1025 continue; 1026 1027 // Skip blocks that loop to themselves, can't tail merge these. 1028 if (PBB == IBB) 1029 continue; 1030 1031 // Visit each predecessor only once. 1032 if (!UniquePreds.insert(PBB).second) 1033 continue; 1034 1035 // Skip blocks which may jump to a landing pad. Can't tail merge these. 1036 if (PBB->hasEHPadSuccessor()) 1037 continue; 1038 1039 // After block placement, only consider predecessors that belong to the 1040 // same loop as IBB. The reason is the same as above when skipping loop 1041 // header. 1042 if (AfterBlockPlacement && MLI) 1043 if (ML != MLI->getLoopFor(PBB)) 1044 continue; 1045 1046 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1047 SmallVector<MachineOperand, 4> Cond; 1048 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1049 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1050 // branch. 1051 SmallVector<MachineOperand, 4> NewCond(Cond); 1052 if (!Cond.empty() && TBB == IBB) { 1053 if (TII->reverseBranchCondition(NewCond)) 1054 continue; 1055 // This is the QBB case described above 1056 if (!FBB) { 1057 auto Next = ++PBB->getIterator(); 1058 if (Next != MF.end()) 1059 FBB = &*Next; 1060 } 1061 } 1062 1063 // Failing case: the only way IBB can be reached from PBB is via 1064 // exception handling. Happens for landing pads. Would be nice to have 1065 // a bit in the edge so we didn't have to do all this. 1066 if (IBB->isEHPad()) { 1067 MachineFunction::iterator IP = ++PBB->getIterator(); 1068 MachineBasicBlock *PredNextBB = nullptr; 1069 if (IP != MF.end()) 1070 PredNextBB = &*IP; 1071 if (!TBB) { 1072 if (IBB != PredNextBB) // fallthrough 1073 continue; 1074 } else if (FBB) { 1075 if (TBB != IBB && FBB != IBB) // cbr then ubr 1076 continue; 1077 } else if (Cond.empty()) { 1078 if (TBB != IBB) // ubr 1079 continue; 1080 } else { 1081 if (TBB != IBB && IBB != PredNextBB) // cbr 1082 continue; 1083 } 1084 } 1085 1086 // Remove the unconditional branch at the end, if any. 1087 if (TBB && (Cond.empty() || FBB)) { 1088 DebugLoc dl = PBB->findBranchDebugLoc(); 1089 TII->removeBranch(*PBB); 1090 if (!Cond.empty()) 1091 // reinsert conditional branch only, for now 1092 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1093 NewCond, dl); 1094 } 1095 1096 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1097 } 1098 } 1099 1100 // If this is a large problem, avoid visiting the same basic blocks multiple 1101 // times. 1102 if (MergePotentials.size() == TailMergeThreshold) 1103 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1104 TriedMerging.insert(MergePotentials[i].getBlock()); 1105 1106 if (MergePotentials.size() >= 2) 1107 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1108 1109 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1110 // result of removing blocks in TryTailMergeBlocks. 1111 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1112 if (MergePotentials.size() == 1 && 1113 MergePotentials.begin()->getBlock() != PredBB) 1114 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1115 } 1116 1117 return MadeChange; 1118 } 1119 1120 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1121 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1122 BlockFrequency AccumulatedMBBFreq; 1123 1124 // Aggregate edge frequency of successor edge j: 1125 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1126 // where bb is a basic block that is in SameTails. 1127 for (const auto &Src : SameTails) { 1128 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1129 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1130 AccumulatedMBBFreq += BlockFreq; 1131 1132 // It is not necessary to recompute edge weights if TailBB has less than two 1133 // successors. 1134 if (TailMBB.succ_size() <= 1) 1135 continue; 1136 1137 auto EdgeFreq = EdgeFreqLs.begin(); 1138 1139 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1140 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1141 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1142 } 1143 1144 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1145 1146 if (TailMBB.succ_size() <= 1) 1147 return; 1148 1149 auto SumEdgeFreq = 1150 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1151 .getFrequency(); 1152 auto EdgeFreq = EdgeFreqLs.begin(); 1153 1154 if (SumEdgeFreq > 0) { 1155 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1156 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1157 auto Prob = BranchProbability::getBranchProbability( 1158 EdgeFreq->getFrequency(), SumEdgeFreq); 1159 TailMBB.setSuccProbability(SuccI, Prob); 1160 } 1161 } 1162 } 1163 1164 //===----------------------------------------------------------------------===// 1165 // Branch Optimization 1166 //===----------------------------------------------------------------------===// 1167 1168 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1169 bool MadeChange = false; 1170 1171 // Make sure blocks are numbered in order 1172 MF.RenumberBlocks(); 1173 // Renumbering blocks alters funclet membership, recalculate it. 1174 FuncletMembership = getFuncletMembership(MF); 1175 1176 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1177 I != E; ) { 1178 MachineBasicBlock *MBB = &*I++; 1179 MadeChange |= OptimizeBlock(MBB); 1180 1181 // If it is dead, remove it. 1182 if (MBB->pred_empty()) { 1183 RemoveDeadBlock(MBB); 1184 MadeChange = true; 1185 ++NumDeadBlocks; 1186 } 1187 } 1188 1189 return MadeChange; 1190 } 1191 1192 // Blocks should be considered empty if they contain only debug info; 1193 // else the debug info would affect codegen. 1194 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1195 return MBB->getFirstNonDebugInstr() == MBB->end(); 1196 } 1197 1198 // Blocks with only debug info and branches should be considered the same 1199 // as blocks with only branches. 1200 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1201 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1202 assert(I != MBB->end() && "empty block!"); 1203 return I->isBranch(); 1204 } 1205 1206 /// IsBetterFallthrough - Return true if it would be clearly better to 1207 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1208 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1209 /// result in infinite loops. 1210 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1211 MachineBasicBlock *MBB2) { 1212 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1213 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1214 // optimize branches that branch to either a return block or an assert block 1215 // into a fallthrough to the return. 1216 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1217 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1218 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1219 return false; 1220 1221 // If there is a clear successor ordering we make sure that one block 1222 // will fall through to the next 1223 if (MBB1->isSuccessor(MBB2)) return true; 1224 if (MBB2->isSuccessor(MBB1)) return false; 1225 1226 return MBB2I->isCall() && !MBB1I->isCall(); 1227 } 1228 1229 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1230 /// instructions on the block. 1231 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1232 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1233 if (I != MBB.end() && I->isBranch()) 1234 return I->getDebugLoc(); 1235 return DebugLoc(); 1236 } 1237 1238 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1239 bool MadeChange = false; 1240 MachineFunction &MF = *MBB->getParent(); 1241 ReoptimizeBlock: 1242 1243 MachineFunction::iterator FallThrough = MBB->getIterator(); 1244 ++FallThrough; 1245 1246 // Make sure MBB and FallThrough belong to the same funclet. 1247 bool SameFunclet = true; 1248 if (!FuncletMembership.empty() && FallThrough != MF.end()) { 1249 auto MBBFunclet = FuncletMembership.find(MBB); 1250 assert(MBBFunclet != FuncletMembership.end()); 1251 auto FallThroughFunclet = FuncletMembership.find(&*FallThrough); 1252 assert(FallThroughFunclet != FuncletMembership.end()); 1253 SameFunclet = MBBFunclet->second == FallThroughFunclet->second; 1254 } 1255 1256 // If this block is empty, make everyone use its fall-through, not the block 1257 // explicitly. Landing pads should not do this since the landing-pad table 1258 // points to this block. Blocks with their addresses taken shouldn't be 1259 // optimized away. 1260 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1261 SameFunclet) { 1262 // Dead block? Leave for cleanup later. 1263 if (MBB->pred_empty()) return MadeChange; 1264 1265 if (FallThrough == MF.end()) { 1266 // TODO: Simplify preds to not branch here if possible! 1267 } else if (FallThrough->isEHPad()) { 1268 // Don't rewrite to a landing pad fallthough. That could lead to the case 1269 // where a BB jumps to more than one landing pad. 1270 // TODO: Is it ever worth rewriting predecessors which don't already 1271 // jump to a landing pad, and so can safely jump to the fallthrough? 1272 } else if (MBB->isSuccessor(&*FallThrough)) { 1273 // Rewrite all predecessors of the old block to go to the fallthrough 1274 // instead. 1275 while (!MBB->pred_empty()) { 1276 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1277 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1278 } 1279 // If MBB was the target of a jump table, update jump tables to go to the 1280 // fallthrough instead. 1281 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1282 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1283 MadeChange = true; 1284 } 1285 return MadeChange; 1286 } 1287 1288 // Check to see if we can simplify the terminator of the block before this 1289 // one. 1290 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1291 1292 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1293 SmallVector<MachineOperand, 4> PriorCond; 1294 bool PriorUnAnalyzable = 1295 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1296 if (!PriorUnAnalyzable) { 1297 // If the CFG for the prior block has extra edges, remove them. 1298 MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB, 1299 !PriorCond.empty()); 1300 1301 // If the previous branch is conditional and both conditions go to the same 1302 // destination, remove the branch, replacing it with an unconditional one or 1303 // a fall-through. 1304 if (PriorTBB && PriorTBB == PriorFBB) { 1305 DebugLoc dl = getBranchDebugLoc(PrevBB); 1306 TII->removeBranch(PrevBB); 1307 PriorCond.clear(); 1308 if (PriorTBB != MBB) 1309 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1310 MadeChange = true; 1311 ++NumBranchOpts; 1312 goto ReoptimizeBlock; 1313 } 1314 1315 // If the previous block unconditionally falls through to this block and 1316 // this block has no other predecessors, move the contents of this block 1317 // into the prior block. This doesn't usually happen when SimplifyCFG 1318 // has been used, but it can happen if tail merging splits a fall-through 1319 // predecessor of a block. 1320 // This has to check PrevBB->succ_size() because EH edges are ignored by 1321 // AnalyzeBranch. 1322 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1323 PrevBB.succ_size() == 1 && 1324 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1325 DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1326 << "From MBB: " << *MBB); 1327 // Remove redundant DBG_VALUEs first. 1328 if (PrevBB.begin() != PrevBB.end()) { 1329 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1330 --PrevBBIter; 1331 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1332 // Check if DBG_VALUE at the end of PrevBB is identical to the 1333 // DBG_VALUE at the beginning of MBB. 1334 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1335 && PrevBBIter->isDebugValue() && MBBIter->isDebugValue()) { 1336 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1337 break; 1338 MachineInstr &DuplicateDbg = *MBBIter; 1339 ++MBBIter; -- PrevBBIter; 1340 DuplicateDbg.eraseFromParent(); 1341 } 1342 } 1343 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1344 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1345 assert(PrevBB.succ_empty()); 1346 PrevBB.transferSuccessors(MBB); 1347 MadeChange = true; 1348 return MadeChange; 1349 } 1350 1351 // If the previous branch *only* branches to *this* block (conditional or 1352 // not) remove the branch. 1353 if (PriorTBB == MBB && !PriorFBB) { 1354 TII->removeBranch(PrevBB); 1355 MadeChange = true; 1356 ++NumBranchOpts; 1357 goto ReoptimizeBlock; 1358 } 1359 1360 // If the prior block branches somewhere else on the condition and here if 1361 // the condition is false, remove the uncond second branch. 1362 if (PriorFBB == MBB) { 1363 DebugLoc dl = getBranchDebugLoc(PrevBB); 1364 TII->removeBranch(PrevBB); 1365 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1366 MadeChange = true; 1367 ++NumBranchOpts; 1368 goto ReoptimizeBlock; 1369 } 1370 1371 // If the prior block branches here on true and somewhere else on false, and 1372 // if the branch condition is reversible, reverse the branch to create a 1373 // fall-through. 1374 if (PriorTBB == MBB) { 1375 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1376 if (!TII->reverseBranchCondition(NewPriorCond)) { 1377 DebugLoc dl = getBranchDebugLoc(PrevBB); 1378 TII->removeBranch(PrevBB); 1379 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1380 MadeChange = true; 1381 ++NumBranchOpts; 1382 goto ReoptimizeBlock; 1383 } 1384 } 1385 1386 // If this block has no successors (e.g. it is a return block or ends with 1387 // a call to a no-return function like abort or __cxa_throw) and if the pred 1388 // falls through into this block, and if it would otherwise fall through 1389 // into the block after this, move this block to the end of the function. 1390 // 1391 // We consider it more likely that execution will stay in the function (e.g. 1392 // due to loops) than it is to exit it. This asserts in loops etc, moving 1393 // the assert condition out of the loop body. 1394 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1395 MachineFunction::iterator(PriorTBB) == FallThrough && 1396 !MBB->canFallThrough()) { 1397 bool DoTransform = true; 1398 1399 // We have to be careful that the succs of PredBB aren't both no-successor 1400 // blocks. If neither have successors and if PredBB is the second from 1401 // last block in the function, we'd just keep swapping the two blocks for 1402 // last. Only do the swap if one is clearly better to fall through than 1403 // the other. 1404 if (FallThrough == --MF.end() && 1405 !IsBetterFallthrough(PriorTBB, MBB)) 1406 DoTransform = false; 1407 1408 if (DoTransform) { 1409 // Reverse the branch so we will fall through on the previous true cond. 1410 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1411 if (!TII->reverseBranchCondition(NewPriorCond)) { 1412 DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1413 << "To make fallthrough to: " << *PriorTBB << "\n"); 1414 1415 DebugLoc dl = getBranchDebugLoc(PrevBB); 1416 TII->removeBranch(PrevBB); 1417 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1418 1419 // Move this block to the end of the function. 1420 MBB->moveAfter(&MF.back()); 1421 MadeChange = true; 1422 ++NumBranchOpts; 1423 return MadeChange; 1424 } 1425 } 1426 } 1427 } 1428 1429 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && 1430 MF.getFunction()->optForSize()) { 1431 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1432 // direction, thereby defeating careful block placement and regressing 1433 // performance. Therefore, only consider this for optsize functions. 1434 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1435 if (TII->isUnconditionalTailCall(TailCall)) { 1436 MachineBasicBlock *Pred = *MBB->pred_begin(); 1437 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1438 SmallVector<MachineOperand, 4> PredCond; 1439 bool PredAnalyzable = 1440 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1441 1442 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB) { 1443 // The predecessor has a conditional branch to this block which consists 1444 // of only a tail call. Try to fold the tail call into the conditional 1445 // branch. 1446 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1447 // TODO: It would be nice if analyzeBranch() could provide a pointer 1448 // to the branch insturction so replaceBranchWithTailCall() doesn't 1449 // have to search for it. 1450 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1451 ++NumTailCalls; 1452 Pred->removeSuccessor(MBB); 1453 MadeChange = true; 1454 return MadeChange; 1455 } 1456 } 1457 // If the predecessor is falling through to this block, we could reverse 1458 // the branch condition and fold the tail call into that. However, after 1459 // that we might have to re-arrange the CFG to fall through to the other 1460 // block and there is a high risk of regressing code size rather than 1461 // improving it. 1462 } 1463 } 1464 1465 // Analyze the branch in the current block. 1466 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1467 SmallVector<MachineOperand, 4> CurCond; 1468 bool CurUnAnalyzable = 1469 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1470 if (!CurUnAnalyzable) { 1471 // If the CFG for the prior block has extra edges, remove them. 1472 MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty()); 1473 1474 // If this is a two-way branch, and the FBB branches to this block, reverse 1475 // the condition so the single-basic-block loop is faster. Instead of: 1476 // Loop: xxx; jcc Out; jmp Loop 1477 // we want: 1478 // Loop: xxx; jncc Loop; jmp Out 1479 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1480 SmallVector<MachineOperand, 4> NewCond(CurCond); 1481 if (!TII->reverseBranchCondition(NewCond)) { 1482 DebugLoc dl = getBranchDebugLoc(*MBB); 1483 TII->removeBranch(*MBB); 1484 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1485 MadeChange = true; 1486 ++NumBranchOpts; 1487 goto ReoptimizeBlock; 1488 } 1489 } 1490 1491 // If this branch is the only thing in its block, see if we can forward 1492 // other blocks across it. 1493 if (CurTBB && CurCond.empty() && !CurFBB && 1494 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1495 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1496 DebugLoc dl = getBranchDebugLoc(*MBB); 1497 // This block may contain just an unconditional branch. Because there can 1498 // be 'non-branch terminators' in the block, try removing the branch and 1499 // then seeing if the block is empty. 1500 TII->removeBranch(*MBB); 1501 // If the only things remaining in the block are debug info, remove these 1502 // as well, so this will behave the same as an empty block in non-debug 1503 // mode. 1504 if (IsEmptyBlock(MBB)) { 1505 // Make the block empty, losing the debug info (we could probably 1506 // improve this in some cases.) 1507 MBB->erase(MBB->begin(), MBB->end()); 1508 } 1509 // If this block is just an unconditional branch to CurTBB, we can 1510 // usually completely eliminate the block. The only case we cannot 1511 // completely eliminate the block is when the block before this one 1512 // falls through into MBB and we can't understand the prior block's branch 1513 // condition. 1514 if (MBB->empty()) { 1515 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1516 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1517 !PrevBB.isSuccessor(MBB)) { 1518 // If the prior block falls through into us, turn it into an 1519 // explicit branch to us to make updates simpler. 1520 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1521 PriorTBB != MBB && PriorFBB != MBB) { 1522 if (!PriorTBB) { 1523 assert(PriorCond.empty() && !PriorFBB && 1524 "Bad branch analysis"); 1525 PriorTBB = MBB; 1526 } else { 1527 assert(!PriorFBB && "Machine CFG out of date!"); 1528 PriorFBB = MBB; 1529 } 1530 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1531 TII->removeBranch(PrevBB); 1532 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1533 } 1534 1535 // Iterate through all the predecessors, revectoring each in-turn. 1536 size_t PI = 0; 1537 bool DidChange = false; 1538 bool HasBranchToSelf = false; 1539 while(PI != MBB->pred_size()) { 1540 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1541 if (PMBB == MBB) { 1542 // If this block has an uncond branch to itself, leave it. 1543 ++PI; 1544 HasBranchToSelf = true; 1545 } else { 1546 DidChange = true; 1547 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1548 // If this change resulted in PMBB ending in a conditional 1549 // branch where both conditions go to the same destination, 1550 // change this to an unconditional branch (and fix the CFG). 1551 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1552 SmallVector<MachineOperand, 4> NewCurCond; 1553 bool NewCurUnAnalyzable = TII->analyzeBranch( 1554 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1555 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1556 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1557 TII->removeBranch(*PMBB); 1558 NewCurCond.clear(); 1559 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1560 MadeChange = true; 1561 ++NumBranchOpts; 1562 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false); 1563 } 1564 } 1565 } 1566 1567 // Change any jumptables to go to the new MBB. 1568 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1569 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1570 if (DidChange) { 1571 ++NumBranchOpts; 1572 MadeChange = true; 1573 if (!HasBranchToSelf) return MadeChange; 1574 } 1575 } 1576 } 1577 1578 // Add the branch back if the block is more than just an uncond branch. 1579 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1580 } 1581 } 1582 1583 // If the prior block doesn't fall through into this block, and if this 1584 // block doesn't fall through into some other block, see if we can find a 1585 // place to move this block where a fall-through will happen. 1586 if (!PrevBB.canFallThrough()) { 1587 1588 // Now we know that there was no fall-through into this block, check to 1589 // see if it has a fall-through into its successor. 1590 bool CurFallsThru = MBB->canFallThrough(); 1591 1592 if (!MBB->isEHPad()) { 1593 // Check all the predecessors of this block. If one of them has no fall 1594 // throughs, move this block right after it. 1595 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1596 // Analyze the branch at the end of the pred. 1597 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1598 SmallVector<MachineOperand, 4> PredCond; 1599 if (PredBB != MBB && !PredBB->canFallThrough() && 1600 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1601 (!CurFallsThru || !CurTBB || !CurFBB) && 1602 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1603 // If the current block doesn't fall through, just move it. 1604 // If the current block can fall through and does not end with a 1605 // conditional branch, we need to append an unconditional jump to 1606 // the (current) next block. To avoid a possible compile-time 1607 // infinite loop, move blocks only backward in this case. 1608 // Also, if there are already 2 branches here, we cannot add a third; 1609 // this means we have the case 1610 // Bcc next 1611 // B elsewhere 1612 // next: 1613 if (CurFallsThru) { 1614 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1615 CurCond.clear(); 1616 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1617 } 1618 MBB->moveAfter(PredBB); 1619 MadeChange = true; 1620 goto ReoptimizeBlock; 1621 } 1622 } 1623 } 1624 1625 if (!CurFallsThru) { 1626 // Check all successors to see if we can move this block before it. 1627 for (MachineBasicBlock *SuccBB : MBB->successors()) { 1628 // Analyze the branch at the end of the block before the succ. 1629 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1630 1631 // If this block doesn't already fall-through to that successor, and if 1632 // the succ doesn't already have a block that can fall through into it, 1633 // and if the successor isn't an EH destination, we can arrange for the 1634 // fallthrough to happen. 1635 if (SuccBB != MBB && &*SuccPrev != MBB && 1636 !SuccPrev->canFallThrough() && !CurUnAnalyzable && 1637 !SuccBB->isEHPad()) { 1638 MBB->moveBefore(SuccBB); 1639 MadeChange = true; 1640 goto ReoptimizeBlock; 1641 } 1642 } 1643 1644 // Okay, there is no really great place to put this block. If, however, 1645 // the block before this one would be a fall-through if this block were 1646 // removed, move this block to the end of the function. There is no real 1647 // advantage in "falling through" to an EH block, so we don't want to 1648 // perform this transformation for that case. 1649 // 1650 // Also, Windows EH introduced the possibility of an arbitrary number of 1651 // successors to a given block. The analyzeBranch call does not consider 1652 // exception handling and so we can get in a state where a block 1653 // containing a call is followed by multiple EH blocks that would be 1654 // rotated infinitely at the end of the function if the transformation 1655 // below were performed for EH "FallThrough" blocks. Therefore, even if 1656 // that appears not to be happening anymore, we should assume that it is 1657 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1658 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1659 SmallVector<MachineOperand, 4> PrevCond; 1660 if (FallThrough != MF.end() && 1661 !FallThrough->isEHPad() && 1662 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1663 PrevBB.isSuccessor(&*FallThrough)) { 1664 MBB->moveAfter(&MF.back()); 1665 MadeChange = true; 1666 return MadeChange; 1667 } 1668 } 1669 } 1670 1671 return MadeChange; 1672 } 1673 1674 //===----------------------------------------------------------------------===// 1675 // Hoist Common Code 1676 //===----------------------------------------------------------------------===// 1677 1678 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1679 bool MadeChange = false; 1680 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1681 MachineBasicBlock *MBB = &*I++; 1682 MadeChange |= HoistCommonCodeInSuccs(MBB); 1683 } 1684 1685 return MadeChange; 1686 } 1687 1688 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1689 /// its 'true' successor. 1690 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1691 MachineBasicBlock *TrueBB) { 1692 for (MachineBasicBlock *SuccBB : BB->successors()) 1693 if (SuccBB != TrueBB) 1694 return SuccBB; 1695 return nullptr; 1696 } 1697 1698 template <class Container> 1699 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, 1700 Container &Set) { 1701 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1702 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1703 Set.insert(*AI); 1704 } else { 1705 Set.insert(Reg); 1706 } 1707 } 1708 1709 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1710 /// in successors to. The location is usually just before the terminator, 1711 /// however if the terminator is a conditional branch and its previous 1712 /// instruction is the flag setting instruction, the previous instruction is 1713 /// the preferred location. This function also gathers uses and defs of the 1714 /// instructions from the insertion point to the end of the block. The data is 1715 /// used by HoistCommonCodeInSuccs to ensure safety. 1716 static 1717 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1718 const TargetInstrInfo *TII, 1719 const TargetRegisterInfo *TRI, 1720 SmallSet<unsigned,4> &Uses, 1721 SmallSet<unsigned,4> &Defs) { 1722 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1723 if (!TII->isUnpredicatedTerminator(*Loc)) 1724 return MBB->end(); 1725 1726 for (const MachineOperand &MO : Loc->operands()) { 1727 if (!MO.isReg()) 1728 continue; 1729 unsigned Reg = MO.getReg(); 1730 if (!Reg) 1731 continue; 1732 if (MO.isUse()) { 1733 addRegAndItsAliases(Reg, TRI, Uses); 1734 } else { 1735 if (!MO.isDead()) 1736 // Don't try to hoist code in the rare case the terminator defines a 1737 // register that is later used. 1738 return MBB->end(); 1739 1740 // If the terminator defines a register, make sure we don't hoist 1741 // the instruction whose def might be clobbered by the terminator. 1742 addRegAndItsAliases(Reg, TRI, Defs); 1743 } 1744 } 1745 1746 if (Uses.empty()) 1747 return Loc; 1748 if (Loc == MBB->begin()) 1749 return MBB->end(); 1750 1751 // The terminator is probably a conditional branch, try not to separate the 1752 // branch from condition setting instruction. 1753 MachineBasicBlock::iterator PI = 1754 skipDebugInstructionsBackward(std::prev(Loc), MBB->begin()); 1755 1756 bool IsDef = false; 1757 for (const MachineOperand &MO : PI->operands()) { 1758 // If PI has a regmask operand, it is probably a call. Separate away. 1759 if (MO.isRegMask()) 1760 return Loc; 1761 if (!MO.isReg() || MO.isUse()) 1762 continue; 1763 unsigned Reg = MO.getReg(); 1764 if (!Reg) 1765 continue; 1766 if (Uses.count(Reg)) { 1767 IsDef = true; 1768 break; 1769 } 1770 } 1771 if (!IsDef) 1772 // The condition setting instruction is not just before the conditional 1773 // branch. 1774 return Loc; 1775 1776 // Be conservative, don't insert instruction above something that may have 1777 // side-effects. And since it's potentially bad to separate flag setting 1778 // instruction from the conditional branch, just abort the optimization 1779 // completely. 1780 // Also avoid moving code above predicated instruction since it's hard to 1781 // reason about register liveness with predicated instruction. 1782 bool DontMoveAcrossStore = true; 1783 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1784 return MBB->end(); 1785 1786 1787 // Find out what registers are live. Note this routine is ignoring other live 1788 // registers which are only used by instructions in successor blocks. 1789 for (const MachineOperand &MO : PI->operands()) { 1790 if (!MO.isReg()) 1791 continue; 1792 unsigned Reg = MO.getReg(); 1793 if (!Reg) 1794 continue; 1795 if (MO.isUse()) { 1796 addRegAndItsAliases(Reg, TRI, Uses); 1797 } else { 1798 if (Uses.erase(Reg)) { 1799 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1800 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1801 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1802 } 1803 } 1804 addRegAndItsAliases(Reg, TRI, Defs); 1805 } 1806 } 1807 1808 return PI; 1809 } 1810 1811 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1812 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1813 SmallVector<MachineOperand, 4> Cond; 1814 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1815 return false; 1816 1817 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1818 if (!FBB) 1819 // Malformed bcc? True and false blocks are the same? 1820 return false; 1821 1822 // Restrict the optimization to cases where MBB is the only predecessor, 1823 // it is an obvious win. 1824 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1825 return false; 1826 1827 // Find a suitable position to hoist the common instructions to. Also figure 1828 // out which registers are used or defined by instructions from the insertion 1829 // point to the end of the block. 1830 SmallSet<unsigned, 4> Uses, Defs; 1831 MachineBasicBlock::iterator Loc = 1832 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 1833 if (Loc == MBB->end()) 1834 return false; 1835 1836 bool HasDups = false; 1837 SmallVector<unsigned, 4> LocalDefs; 1838 SmallSet<unsigned, 4> LocalDefsSet; 1839 MachineBasicBlock::iterator TIB = TBB->begin(); 1840 MachineBasicBlock::iterator FIB = FBB->begin(); 1841 MachineBasicBlock::iterator TIE = TBB->end(); 1842 MachineBasicBlock::iterator FIE = FBB->end(); 1843 while (TIB != TIE && FIB != FIE) { 1844 // Skip dbg_value instructions. These do not count. 1845 TIB = skipDebugInstructionsForward(TIB, TIE); 1846 FIB = skipDebugInstructionsForward(FIB, FIE); 1847 if (TIB == TIE || FIB == FIE) 1848 break; 1849 1850 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 1851 break; 1852 1853 if (TII->isPredicated(*TIB)) 1854 // Hard to reason about register liveness with predicated instruction. 1855 break; 1856 1857 bool IsSafe = true; 1858 for (MachineOperand &MO : TIB->operands()) { 1859 // Don't attempt to hoist instructions with register masks. 1860 if (MO.isRegMask()) { 1861 IsSafe = false; 1862 break; 1863 } 1864 if (!MO.isReg()) 1865 continue; 1866 unsigned Reg = MO.getReg(); 1867 if (!Reg) 1868 continue; 1869 if (MO.isDef()) { 1870 if (Uses.count(Reg)) { 1871 // Avoid clobbering a register that's used by the instruction at 1872 // the point of insertion. 1873 IsSafe = false; 1874 break; 1875 } 1876 1877 if (Defs.count(Reg) && !MO.isDead()) { 1878 // Don't hoist the instruction if the def would be clobber by the 1879 // instruction at the point insertion. FIXME: This is overly 1880 // conservative. It should be possible to hoist the instructions 1881 // in BB2 in the following example: 1882 // BB1: 1883 // r1, eflag = op1 r2, r3 1884 // brcc eflag 1885 // 1886 // BB2: 1887 // r1 = op2, ... 1888 // = op3, r1<kill> 1889 IsSafe = false; 1890 break; 1891 } 1892 } else if (!LocalDefsSet.count(Reg)) { 1893 if (Defs.count(Reg)) { 1894 // Use is defined by the instruction at the point of insertion. 1895 IsSafe = false; 1896 break; 1897 } 1898 1899 if (MO.isKill() && Uses.count(Reg)) 1900 // Kills a register that's read by the instruction at the point of 1901 // insertion. Remove the kill marker. 1902 MO.setIsKill(false); 1903 } 1904 } 1905 if (!IsSafe) 1906 break; 1907 1908 bool DontMoveAcrossStore = true; 1909 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 1910 break; 1911 1912 // Remove kills from LocalDefsSet, these registers had short live ranges. 1913 for (const MachineOperand &MO : TIB->operands()) { 1914 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1915 continue; 1916 unsigned Reg = MO.getReg(); 1917 if (!Reg || !LocalDefsSet.count(Reg)) 1918 continue; 1919 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1920 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1921 LocalDefsSet.erase(*AI); 1922 } else { 1923 LocalDefsSet.erase(Reg); 1924 } 1925 } 1926 1927 // Track local defs so we can update liveins. 1928 for (const MachineOperand &MO : TIB->operands()) { 1929 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1930 continue; 1931 unsigned Reg = MO.getReg(); 1932 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg)) 1933 continue; 1934 LocalDefs.push_back(Reg); 1935 addRegAndItsAliases(Reg, TRI, LocalDefsSet); 1936 } 1937 1938 HasDups = true; 1939 ++TIB; 1940 ++FIB; 1941 } 1942 1943 if (!HasDups) 1944 return false; 1945 1946 MBB->splice(Loc, TBB, TBB->begin(), TIB); 1947 FBB->erase(FBB->begin(), FIB); 1948 1949 // Update livein's. 1950 bool AddedLiveIns = false; 1951 for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) { 1952 unsigned Def = LocalDefs[i]; 1953 if (LocalDefsSet.count(Def)) { 1954 TBB->addLiveIn(Def); 1955 FBB->addLiveIn(Def); 1956 AddedLiveIns = true; 1957 } 1958 } 1959 1960 if (AddedLiveIns) { 1961 TBB->sortUniqueLiveIns(); 1962 FBB->sortUniqueLiveIns(); 1963 } 1964 1965 ++NumHoist; 1966 return true; 1967 } 1968