1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass forwards branches to unconditional branches to make them branch 10 // directly to the target block. This pass often results in dead MBB's, which 11 // it then removes. 12 // 13 // Note that this pass must be run after register allocation, it cannot handle 14 // SSA form. It also must handle virtual registers for targets that emit virtual 15 // ISA (e.g. NVPTX). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "BranchFolding.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/LivePhysRegs.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineJumpTableInfo.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineModuleInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetOpcodes.h" 43 #include "llvm/CodeGen/TargetPassConfig.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/MC/LaneBitmask.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BlockFrequency.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <cassert> 60 #include <cstddef> 61 #include <iterator> 62 #include <numeric> 63 #include <vector> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "branch-folder" 68 69 STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); 70 STATISTIC(NumBranchOpts, "Number of branches optimized"); 71 STATISTIC(NumTailMerge , "Number of block tails merged"); 72 STATISTIC(NumHoist , "Number of times common instructions are hoisted"); 73 STATISTIC(NumTailCalls, "Number of tail calls optimized"); 74 75 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", 76 cl::init(cl::BOU_UNSET), cl::Hidden); 77 78 // Throttle for huge numbers of predecessors (compile speed problems) 79 static cl::opt<unsigned> 80 TailMergeThreshold("tail-merge-threshold", 81 cl::desc("Max number of predecessors to consider tail merging"), 82 cl::init(150), cl::Hidden); 83 84 // Heuristic for tail merging (and, inversely, tail duplication). 85 // TODO: This should be replaced with a target query. 86 static cl::opt<unsigned> 87 TailMergeSize("tail-merge-size", 88 cl::desc("Min number of instructions to consider tail merging"), 89 cl::init(3), cl::Hidden); 90 91 namespace { 92 93 /// BranchFolderPass - Wrap branch folder in a machine function pass. 94 class BranchFolderPass : public MachineFunctionPass { 95 public: 96 static char ID; 97 98 explicit BranchFolderPass(): MachineFunctionPass(ID) {} 99 100 bool runOnMachineFunction(MachineFunction &MF) override; 101 102 void getAnalysisUsage(AnalysisUsage &AU) const override { 103 AU.addRequired<MachineBlockFrequencyInfo>(); 104 AU.addRequired<MachineBranchProbabilityInfo>(); 105 AU.addRequired<TargetPassConfig>(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 }; 109 110 } // end anonymous namespace 111 112 char BranchFolderPass::ID = 0; 113 114 char &llvm::BranchFolderPassID = BranchFolderPass::ID; 115 116 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, 117 "Control Flow Optimizer", false, false) 118 119 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { 120 if (skipFunction(MF.getFunction())) 121 return false; 122 123 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 124 // TailMerge can create jump into if branches that make CFG irreducible for 125 // HW that requires structurized CFG. 126 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 127 PassConfig->getEnableTailMerge(); 128 BranchFolder::MBFIWrapper MBBFreqInfo( 129 getAnalysis<MachineBlockFrequencyInfo>()); 130 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, 131 getAnalysis<MachineBranchProbabilityInfo>()); 132 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), 133 MF.getSubtarget().getRegisterInfo(), 134 getAnalysisIfAvailable<MachineModuleInfo>()); 135 } 136 137 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, 138 MBFIWrapper &FreqInfo, 139 const MachineBranchProbabilityInfo &ProbInfo, 140 unsigned MinTailLength) 141 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), 142 MBBFreqInfo(FreqInfo), MBPI(ProbInfo) { 143 if (MinCommonTailLength == 0) 144 MinCommonTailLength = TailMergeSize; 145 switch (FlagEnableTailMerge) { 146 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; 147 case cl::BOU_TRUE: EnableTailMerge = true; break; 148 case cl::BOU_FALSE: EnableTailMerge = false; break; 149 } 150 } 151 152 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { 153 assert(MBB->pred_empty() && "MBB must be dead!"); 154 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); 155 156 MachineFunction *MF = MBB->getParent(); 157 // drop all successors. 158 while (!MBB->succ_empty()) 159 MBB->removeSuccessor(MBB->succ_end()-1); 160 161 // Avoid matching if this pointer gets reused. 162 TriedMerging.erase(MBB); 163 164 // Remove the block. 165 MF->erase(MBB); 166 EHScopeMembership.erase(MBB); 167 if (MLI) 168 MLI->removeBlock(MBB); 169 } 170 171 bool BranchFolder::OptimizeFunction(MachineFunction &MF, 172 const TargetInstrInfo *tii, 173 const TargetRegisterInfo *tri, 174 MachineModuleInfo *mmi, 175 MachineLoopInfo *mli, bool AfterPlacement) { 176 if (!tii) return false; 177 178 TriedMerging.clear(); 179 180 MachineRegisterInfo &MRI = MF.getRegInfo(); 181 AfterBlockPlacement = AfterPlacement; 182 TII = tii; 183 TRI = tri; 184 MMI = mmi; 185 MLI = mli; 186 this->MRI = &MRI; 187 188 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); 189 if (!UpdateLiveIns) 190 MRI.invalidateLiveness(); 191 192 // Fix CFG. The later algorithms expect it to be right. 193 bool MadeChange = false; 194 for (MachineBasicBlock &MBB : MF) { 195 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 196 SmallVector<MachineOperand, 4> Cond; 197 if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true)) 198 MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); 199 } 200 201 // Recalculate EH scope membership. 202 EHScopeMembership = getEHScopeMembership(MF); 203 204 bool MadeChangeThisIteration = true; 205 while (MadeChangeThisIteration) { 206 MadeChangeThisIteration = TailMergeBlocks(MF); 207 // No need to clean up if tail merging does not change anything after the 208 // block placement. 209 if (!AfterBlockPlacement || MadeChangeThisIteration) 210 MadeChangeThisIteration |= OptimizeBranches(MF); 211 if (EnableHoistCommonCode) 212 MadeChangeThisIteration |= HoistCommonCode(MF); 213 MadeChange |= MadeChangeThisIteration; 214 } 215 216 // See if any jump tables have become dead as the code generator 217 // did its thing. 218 MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); 219 if (!JTI) 220 return MadeChange; 221 222 // Walk the function to find jump tables that are live. 223 BitVector JTIsLive(JTI->getJumpTables().size()); 224 for (const MachineBasicBlock &BB : MF) { 225 for (const MachineInstr &I : BB) 226 for (const MachineOperand &Op : I.operands()) { 227 if (!Op.isJTI()) continue; 228 229 // Remember that this JT is live. 230 JTIsLive.set(Op.getIndex()); 231 } 232 } 233 234 // Finally, remove dead jump tables. This happens when the 235 // indirect jump was unreachable (and thus deleted). 236 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) 237 if (!JTIsLive.test(i)) { 238 JTI->RemoveJumpTable(i); 239 MadeChange = true; 240 } 241 242 return MadeChange; 243 } 244 245 //===----------------------------------------------------------------------===// 246 // Tail Merging of Blocks 247 //===----------------------------------------------------------------------===// 248 249 /// HashMachineInstr - Compute a hash value for MI and its operands. 250 static unsigned HashMachineInstr(const MachineInstr &MI) { 251 unsigned Hash = MI.getOpcode(); 252 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 253 const MachineOperand &Op = MI.getOperand(i); 254 255 // Merge in bits from the operand if easy. We can't use MachineOperand's 256 // hash_code here because it's not deterministic and we sort by hash value 257 // later. 258 unsigned OperandHash = 0; 259 switch (Op.getType()) { 260 case MachineOperand::MO_Register: 261 OperandHash = Op.getReg(); 262 break; 263 case MachineOperand::MO_Immediate: 264 OperandHash = Op.getImm(); 265 break; 266 case MachineOperand::MO_MachineBasicBlock: 267 OperandHash = Op.getMBB()->getNumber(); 268 break; 269 case MachineOperand::MO_FrameIndex: 270 case MachineOperand::MO_ConstantPoolIndex: 271 case MachineOperand::MO_JumpTableIndex: 272 OperandHash = Op.getIndex(); 273 break; 274 case MachineOperand::MO_GlobalAddress: 275 case MachineOperand::MO_ExternalSymbol: 276 // Global address / external symbol are too hard, don't bother, but do 277 // pull in the offset. 278 OperandHash = Op.getOffset(); 279 break; 280 default: 281 break; 282 } 283 284 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); 285 } 286 return Hash; 287 } 288 289 /// HashEndOfMBB - Hash the last instruction in the MBB. 290 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { 291 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); 292 if (I == MBB.end()) 293 return 0; 294 295 return HashMachineInstr(*I); 296 } 297 298 /// Whether MI should be counted as an instruction when calculating common tail. 299 static bool countsAsInstruction(const MachineInstr &MI) { 300 return !(MI.isDebugInstr() || MI.isCFIInstruction()); 301 } 302 303 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number 304 /// of instructions they actually have in common together at their end. Return 305 /// iterators for the first shared instruction in each block. 306 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, 307 MachineBasicBlock *MBB2, 308 MachineBasicBlock::iterator &I1, 309 MachineBasicBlock::iterator &I2) { 310 I1 = MBB1->end(); 311 I2 = MBB2->end(); 312 313 unsigned TailLen = 0; 314 while (I1 != MBB1->begin() && I2 != MBB2->begin()) { 315 --I1; --I2; 316 // Skip debugging pseudos; necessary to avoid changing the code. 317 while (!countsAsInstruction(*I1)) { 318 if (I1==MBB1->begin()) { 319 while (!countsAsInstruction(*I2)) { 320 if (I2==MBB2->begin()) { 321 // I1==DBG at begin; I2==DBG at begin 322 goto SkipTopCFIAndReturn; 323 } 324 --I2; 325 } 326 ++I2; 327 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin 328 goto SkipTopCFIAndReturn; 329 } 330 --I1; 331 } 332 // I1==first (untested) non-DBG preceding known match 333 while (!countsAsInstruction(*I2)) { 334 if (I2==MBB2->begin()) { 335 ++I1; 336 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin 337 goto SkipTopCFIAndReturn; 338 } 339 --I2; 340 } 341 // I1, I2==first (untested) non-DBGs preceding known match 342 if (!I1->isIdenticalTo(*I2) || 343 // FIXME: This check is dubious. It's used to get around a problem where 344 // people incorrectly expect inline asm directives to remain in the same 345 // relative order. This is untenable because normal compiler 346 // optimizations (like this one) may reorder and/or merge these 347 // directives. 348 I1->isInlineAsm()) { 349 ++I1; ++I2; 350 break; 351 } 352 ++TailLen; 353 } 354 // Back past possible debugging pseudos at beginning of block. This matters 355 // when one block differs from the other only by whether debugging pseudos 356 // are present at the beginning. (This way, the various checks later for 357 // I1==MBB1->begin() work as expected.) 358 if (I1 == MBB1->begin() && I2 != MBB2->begin()) { 359 --I2; 360 while (I2->isDebugInstr()) { 361 if (I2 == MBB2->begin()) 362 return TailLen; 363 --I2; 364 } 365 ++I2; 366 } 367 if (I2 == MBB2->begin() && I1 != MBB1->begin()) { 368 --I1; 369 while (I1->isDebugInstr()) { 370 if (I1 == MBB1->begin()) 371 return TailLen; 372 --I1; 373 } 374 ++I1; 375 } 376 377 SkipTopCFIAndReturn: 378 // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if 379 // I1 and I2 are non-identical when compared and then one or both of them ends 380 // up pointing to a CFI instruction after being incremented. For example: 381 /* 382 BB1: 383 ... 384 INSTRUCTION_A 385 ADD32ri8 <- last common instruction 386 ... 387 BB2: 388 ... 389 INSTRUCTION_B 390 CFI_INSTRUCTION 391 ADD32ri8 <- last common instruction 392 ... 393 */ 394 // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after 395 // incrementing the iterators, I1 will point to ADD, however I2 will point to 396 // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the 397 // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI 398 // instruction. 399 while (I1 != MBB1->end() && I1->isCFIInstruction()) { 400 ++I1; 401 } 402 403 while (I2 != MBB2->end() && I2->isCFIInstruction()) { 404 ++I2; 405 } 406 407 return TailLen; 408 } 409 410 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, 411 MachineBasicBlock &NewDest) { 412 if (UpdateLiveIns) { 413 // OldInst should always point to an instruction. 414 MachineBasicBlock &OldMBB = *OldInst->getParent(); 415 LiveRegs.clear(); 416 LiveRegs.addLiveOuts(OldMBB); 417 // Move backward to the place where will insert the jump. 418 MachineBasicBlock::iterator I = OldMBB.end(); 419 do { 420 --I; 421 LiveRegs.stepBackward(*I); 422 } while (I != OldInst); 423 424 // Merging the tails may have switched some undef operand to non-undef ones. 425 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the 426 // register. 427 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { 428 // We computed the liveins with computeLiveIn earlier and should only see 429 // full registers: 430 assert(P.LaneMask == LaneBitmask::getAll() && 431 "Can only handle full register."); 432 MCPhysReg Reg = P.PhysReg; 433 if (!LiveRegs.available(*MRI, Reg)) 434 continue; 435 DebugLoc DL; 436 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); 437 } 438 } 439 440 TII->ReplaceTailWithBranchTo(OldInst, &NewDest); 441 ++NumTailMerge; 442 } 443 444 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, 445 MachineBasicBlock::iterator BBI1, 446 const BasicBlock *BB) { 447 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) 448 return nullptr; 449 450 MachineFunction &MF = *CurMBB.getParent(); 451 452 // Create the fall-through block. 453 MachineFunction::iterator MBBI = CurMBB.getIterator(); 454 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); 455 CurMBB.getParent()->insert(++MBBI, NewMBB); 456 457 // Move all the successors of this block to the specified block. 458 NewMBB->transferSuccessors(&CurMBB); 459 460 // Add an edge from CurMBB to NewMBB for the fall-through. 461 CurMBB.addSuccessor(NewMBB); 462 463 // Splice the code over. 464 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); 465 466 // NewMBB belongs to the same loop as CurMBB. 467 if (MLI) 468 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) 469 ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); 470 471 // NewMBB inherits CurMBB's block frequency. 472 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); 473 474 if (UpdateLiveIns) 475 computeAndAddLiveIns(LiveRegs, *NewMBB); 476 477 // Add the new block to the EH scope. 478 const auto &EHScopeI = EHScopeMembership.find(&CurMBB); 479 if (EHScopeI != EHScopeMembership.end()) { 480 auto n = EHScopeI->second; 481 EHScopeMembership[NewMBB] = n; 482 } 483 484 return NewMBB; 485 } 486 487 /// EstimateRuntime - Make a rough estimate for how long it will take to run 488 /// the specified code. 489 static unsigned EstimateRuntime(MachineBasicBlock::iterator I, 490 MachineBasicBlock::iterator E) { 491 unsigned Time = 0; 492 for (; I != E; ++I) { 493 if (!countsAsInstruction(*I)) 494 continue; 495 if (I->isCall()) 496 Time += 10; 497 else if (I->mayLoad() || I->mayStore()) 498 Time += 2; 499 else 500 ++Time; 501 } 502 return Time; 503 } 504 505 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these 506 // branches temporarily for tail merging). In the case where CurMBB ends 507 // with a conditional branch to the next block, optimize by reversing the 508 // test and conditionally branching to SuccMBB instead. 509 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, 510 const TargetInstrInfo *TII) { 511 MachineFunction *MF = CurMBB->getParent(); 512 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); 513 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 514 SmallVector<MachineOperand, 4> Cond; 515 DebugLoc dl = CurMBB->findBranchDebugLoc(); 516 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { 517 MachineBasicBlock *NextBB = &*I; 518 if (TBB == NextBB && !Cond.empty() && !FBB) { 519 if (!TII->reverseBranchCondition(Cond)) { 520 TII->removeBranch(*CurMBB); 521 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); 522 return; 523 } 524 } 525 } 526 TII->insertBranch(*CurMBB, SuccBB, nullptr, 527 SmallVector<MachineOperand, 0>(), dl); 528 } 529 530 bool 531 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { 532 if (getHash() < o.getHash()) 533 return true; 534 if (getHash() > o.getHash()) 535 return false; 536 if (getBlock()->getNumber() < o.getBlock()->getNumber()) 537 return true; 538 if (getBlock()->getNumber() > o.getBlock()->getNumber()) 539 return false; 540 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing 541 // an object with itself. 542 #ifndef _GLIBCXX_DEBUG 543 llvm_unreachable("Predecessor appears twice"); 544 #else 545 return false; 546 #endif 547 } 548 549 BlockFrequency 550 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const { 551 auto I = MergedBBFreq.find(MBB); 552 553 if (I != MergedBBFreq.end()) 554 return I->second; 555 556 return MBFI.getBlockFreq(MBB); 557 } 558 559 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB, 560 BlockFrequency F) { 561 MergedBBFreq[MBB] = F; 562 } 563 564 raw_ostream & 565 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 566 const MachineBasicBlock *MBB) const { 567 return MBFI.printBlockFreq(OS, getBlockFreq(MBB)); 568 } 569 570 raw_ostream & 571 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, 572 const BlockFrequency Freq) const { 573 return MBFI.printBlockFreq(OS, Freq); 574 } 575 576 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) { 577 MBFI.view(Name, isSimple); 578 } 579 580 uint64_t 581 BranchFolder::MBFIWrapper::getEntryFreq() const { 582 return MBFI.getEntryFreq(); 583 } 584 585 /// CountTerminators - Count the number of terminators in the given 586 /// block and set I to the position of the first non-terminator, if there 587 /// is one, or MBB->end() otherwise. 588 static unsigned CountTerminators(MachineBasicBlock *MBB, 589 MachineBasicBlock::iterator &I) { 590 I = MBB->end(); 591 unsigned NumTerms = 0; 592 while (true) { 593 if (I == MBB->begin()) { 594 I = MBB->end(); 595 break; 596 } 597 --I; 598 if (!I->isTerminator()) break; 599 ++NumTerms; 600 } 601 return NumTerms; 602 } 603 604 /// A no successor, non-return block probably ends in unreachable and is cold. 605 /// Also consider a block that ends in an indirect branch to be a return block, 606 /// since many targets use plain indirect branches to return. 607 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { 608 if (!MBB->succ_empty()) 609 return false; 610 if (MBB->empty()) 611 return true; 612 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); 613 } 614 615 /// ProfitableToMerge - Check if two machine basic blocks have a common tail 616 /// and decide if it would be profitable to merge those tails. Return the 617 /// length of the common tail and iterators to the first common instruction 618 /// in each block. 619 /// MBB1, MBB2 The blocks to check 620 /// MinCommonTailLength Minimum size of tail block to be merged. 621 /// CommonTailLen Out parameter to record the size of the shared tail between 622 /// MBB1 and MBB2 623 /// I1, I2 Iterator references that will be changed to point to the first 624 /// instruction in the common tail shared by MBB1,MBB2 625 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form 626 /// relative to SuccBB 627 /// PredBB The layout predecessor of SuccBB, if any. 628 /// EHScopeMembership map from block to EH scope #. 629 /// AfterPlacement True if we are merging blocks after layout. Stricter 630 /// thresholds apply to prevent undoing tail-duplication. 631 static bool 632 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, 633 unsigned MinCommonTailLength, unsigned &CommonTailLen, 634 MachineBasicBlock::iterator &I1, 635 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, 636 MachineBasicBlock *PredBB, 637 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, 638 bool AfterPlacement) { 639 // It is never profitable to tail-merge blocks from two different EH scopes. 640 if (!EHScopeMembership.empty()) { 641 auto EHScope1 = EHScopeMembership.find(MBB1); 642 assert(EHScope1 != EHScopeMembership.end()); 643 auto EHScope2 = EHScopeMembership.find(MBB2); 644 assert(EHScope2 != EHScopeMembership.end()); 645 if (EHScope1->second != EHScope2->second) 646 return false; 647 } 648 649 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); 650 if (CommonTailLen == 0) 651 return false; 652 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) 653 << " and " << printMBBReference(*MBB2) << " is " 654 << CommonTailLen << '\n'); 655 656 // It's almost always profitable to merge any number of non-terminator 657 // instructions with the block that falls through into the common successor. 658 // This is true only for a single successor. For multiple successors, we are 659 // trading a conditional branch for an unconditional one. 660 // TODO: Re-visit successor size for non-layout tail merging. 661 if ((MBB1 == PredBB || MBB2 == PredBB) && 662 (!AfterPlacement || MBB1->succ_size() == 1)) { 663 MachineBasicBlock::iterator I; 664 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); 665 if (CommonTailLen > NumTerms) 666 return true; 667 } 668 669 // If these are identical non-return blocks with no successors, merge them. 670 // Such blocks are typically cold calls to noreturn functions like abort, and 671 // are unlikely to become a fallthrough target after machine block placement. 672 // Tail merging these blocks is unlikely to create additional unconditional 673 // branches, and will reduce the size of this cold code. 674 if (I1 == MBB1->begin() && I2 == MBB2->begin() && 675 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) 676 return true; 677 678 // If one of the blocks can be completely merged and happens to be in 679 // a position where the other could fall through into it, merge any number 680 // of instructions, because it can be done without a branch. 681 // TODO: If the blocks are not adjacent, move one of them so that they are? 682 if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin()) 683 return true; 684 if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin()) 685 return true; 686 687 // If both blocks are identical and end in a branch, merge them unless they 688 // both have a fallthrough predecessor and successor. 689 // We can only do this after block placement because it depends on whether 690 // there are fallthroughs, and we don't know until after layout. 691 if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) { 692 auto BothFallThrough = [](MachineBasicBlock *MBB) { 693 if (MBB->succ_size() != 0 && !MBB->canFallThrough()) 694 return false; 695 MachineFunction::iterator I(MBB); 696 MachineFunction *MF = MBB->getParent(); 697 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); 698 }; 699 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) 700 return true; 701 } 702 703 // If both blocks have an unconditional branch temporarily stripped out, 704 // count that as an additional common instruction for the following 705 // heuristics. This heuristic is only accurate for single-succ blocks, so to 706 // make sure that during layout merging and duplicating don't crash, we check 707 // for that when merging during layout. 708 unsigned EffectiveTailLen = CommonTailLen; 709 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && 710 (MBB1->succ_size() == 1 || !AfterPlacement) && 711 !MBB1->back().isBarrier() && 712 !MBB2->back().isBarrier()) 713 ++EffectiveTailLen; 714 715 // Check if the common tail is long enough to be worthwhile. 716 if (EffectiveTailLen >= MinCommonTailLength) 717 return true; 718 719 // If we are optimizing for code size, 2 instructions in common is enough if 720 // we don't have to split a block. At worst we will be introducing 1 new 721 // branch instruction, which is likely to be smaller than the 2 722 // instructions that would be deleted in the merge. 723 MachineFunction *MF = MBB1->getParent(); 724 return EffectiveTailLen >= 2 && MF->getFunction().optForSize() && 725 (I1 == MBB1->begin() || I2 == MBB2->begin()); 726 } 727 728 unsigned BranchFolder::ComputeSameTails(unsigned CurHash, 729 unsigned MinCommonTailLength, 730 MachineBasicBlock *SuccBB, 731 MachineBasicBlock *PredBB) { 732 unsigned maxCommonTailLength = 0U; 733 SameTails.clear(); 734 MachineBasicBlock::iterator TrialBBI1, TrialBBI2; 735 MPIterator HighestMPIter = std::prev(MergePotentials.end()); 736 for (MPIterator CurMPIter = std::prev(MergePotentials.end()), 737 B = MergePotentials.begin(); 738 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { 739 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { 740 unsigned CommonTailLen; 741 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), 742 MinCommonTailLength, 743 CommonTailLen, TrialBBI1, TrialBBI2, 744 SuccBB, PredBB, 745 EHScopeMembership, 746 AfterBlockPlacement)) { 747 if (CommonTailLen > maxCommonTailLength) { 748 SameTails.clear(); 749 maxCommonTailLength = CommonTailLen; 750 HighestMPIter = CurMPIter; 751 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); 752 } 753 if (HighestMPIter == CurMPIter && 754 CommonTailLen == maxCommonTailLength) 755 SameTails.push_back(SameTailElt(I, TrialBBI2)); 756 } 757 if (I == B) 758 break; 759 } 760 } 761 return maxCommonTailLength; 762 } 763 764 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, 765 MachineBasicBlock *SuccBB, 766 MachineBasicBlock *PredBB) { 767 MPIterator CurMPIter, B; 768 for (CurMPIter = std::prev(MergePotentials.end()), 769 B = MergePotentials.begin(); 770 CurMPIter->getHash() == CurHash; --CurMPIter) { 771 // Put the unconditional branch back, if we need one. 772 MachineBasicBlock *CurMBB = CurMPIter->getBlock(); 773 if (SuccBB && CurMBB != PredBB) 774 FixTail(CurMBB, SuccBB, TII); 775 if (CurMPIter == B) 776 break; 777 } 778 if (CurMPIter->getHash() != CurHash) 779 CurMPIter++; 780 MergePotentials.erase(CurMPIter, MergePotentials.end()); 781 } 782 783 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, 784 MachineBasicBlock *SuccBB, 785 unsigned maxCommonTailLength, 786 unsigned &commonTailIndex) { 787 commonTailIndex = 0; 788 unsigned TimeEstimate = ~0U; 789 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 790 // Use PredBB if possible; that doesn't require a new branch. 791 if (SameTails[i].getBlock() == PredBB) { 792 commonTailIndex = i; 793 break; 794 } 795 // Otherwise, make a (fairly bogus) choice based on estimate of 796 // how long it will take the various blocks to execute. 797 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), 798 SameTails[i].getTailStartPos()); 799 if (t <= TimeEstimate) { 800 TimeEstimate = t; 801 commonTailIndex = i; 802 } 803 } 804 805 MachineBasicBlock::iterator BBI = 806 SameTails[commonTailIndex].getTailStartPos(); 807 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 808 809 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " 810 << maxCommonTailLength); 811 812 // If the split block unconditionally falls-thru to SuccBB, it will be 813 // merged. In control flow terms it should then take SuccBB's name. e.g. If 814 // SuccBB is an inner loop, the common tail is still part of the inner loop. 815 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? 816 SuccBB->getBasicBlock() : MBB->getBasicBlock(); 817 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); 818 if (!newMBB) { 819 LLVM_DEBUG(dbgs() << "... failed!"); 820 return false; 821 } 822 823 SameTails[commonTailIndex].setBlock(newMBB); 824 SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); 825 826 // If we split PredBB, newMBB is the new predecessor. 827 if (PredBB == MBB) 828 PredBB = newMBB; 829 830 return true; 831 } 832 833 static void 834 mergeOperations(MachineBasicBlock::iterator MBBIStartPos, 835 MachineBasicBlock &MBBCommon) { 836 MachineBasicBlock *MBB = MBBIStartPos->getParent(); 837 // Note CommonTailLen does not necessarily matches the size of 838 // the common BB nor all its instructions because of debug 839 // instructions differences. 840 unsigned CommonTailLen = 0; 841 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) 842 ++CommonTailLen; 843 844 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); 845 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); 846 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); 847 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); 848 849 while (CommonTailLen--) { 850 assert(MBBI != MBBIE && "Reached BB end within common tail length!"); 851 (void)MBBIE; 852 853 if (!countsAsInstruction(*MBBI)) { 854 ++MBBI; 855 continue; 856 } 857 858 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) 859 ++MBBICommon; 860 861 assert(MBBICommon != MBBIECommon && 862 "Reached BB end within common tail length!"); 863 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); 864 865 // Merge MMOs from memory operations in the common block. 866 if (MBBICommon->mayLoad() || MBBICommon->mayStore()) 867 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); 868 // Drop undef flags if they aren't present in all merged instructions. 869 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { 870 MachineOperand &MO = MBBICommon->getOperand(I); 871 if (MO.isReg() && MO.isUndef()) { 872 const MachineOperand &OtherMO = MBBI->getOperand(I); 873 if (!OtherMO.isUndef()) 874 MO.setIsUndef(false); 875 } 876 } 877 878 ++MBBI; 879 ++MBBICommon; 880 } 881 } 882 883 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { 884 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 885 886 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); 887 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { 888 if (i != commonTailIndex) { 889 NextCommonInsts[i] = SameTails[i].getTailStartPos(); 890 mergeOperations(SameTails[i].getTailStartPos(), *MBB); 891 } else { 892 assert(SameTails[i].getTailStartPos() == MBB->begin() && 893 "MBB is not a common tail only block"); 894 } 895 } 896 897 for (auto &MI : *MBB) { 898 if (!countsAsInstruction(MI)) 899 continue; 900 DebugLoc DL = MI.getDebugLoc(); 901 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { 902 if (i == commonTailIndex) 903 continue; 904 905 auto &Pos = NextCommonInsts[i]; 906 assert(Pos != SameTails[i].getBlock()->end() && 907 "Reached BB end within common tail"); 908 while (!countsAsInstruction(*Pos)) { 909 ++Pos; 910 assert(Pos != SameTails[i].getBlock()->end() && 911 "Reached BB end within common tail"); 912 } 913 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); 914 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); 915 NextCommonInsts[i] = ++Pos; 916 } 917 MI.setDebugLoc(DL); 918 } 919 920 if (UpdateLiveIns) { 921 LivePhysRegs NewLiveIns(*TRI); 922 computeLiveIns(NewLiveIns, *MBB); 923 LiveRegs.init(*TRI); 924 925 // The flag merging may lead to some register uses no longer using the 926 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. 927 for (MachineBasicBlock *Pred : MBB->predecessors()) { 928 LiveRegs.clear(); 929 LiveRegs.addLiveOuts(*Pred); 930 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); 931 for (unsigned Reg : NewLiveIns) { 932 if (!LiveRegs.available(*MRI, Reg)) 933 continue; 934 DebugLoc DL; 935 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), 936 Reg); 937 } 938 } 939 940 MBB->clearLiveIns(); 941 addLiveIns(*MBB, NewLiveIns); 942 } 943 } 944 945 // See if any of the blocks in MergePotentials (which all have SuccBB as a 946 // successor, or all have no successor if it is null) can be tail-merged. 947 // If there is a successor, any blocks in MergePotentials that are not 948 // tail-merged and are not immediately before Succ must have an unconditional 949 // branch to Succ added (but the predecessor/successor lists need no 950 // adjustment). The lone predecessor of Succ that falls through into Succ, 951 // if any, is given in PredBB. 952 // MinCommonTailLength - Except for the special cases below, tail-merge if 953 // there are at least this many instructions in common. 954 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, 955 MachineBasicBlock *PredBB, 956 unsigned MinCommonTailLength) { 957 bool MadeChange = false; 958 959 LLVM_DEBUG( 960 dbgs() << "\nTryTailMergeBlocks: "; 961 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs() 962 << printMBBReference(*MergePotentials[i].getBlock()) 963 << (i == e - 1 ? "" : ", "); 964 dbgs() << "\n"; if (SuccBB) { 965 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; 966 if (PredBB) 967 dbgs() << " which has fall-through from " 968 << printMBBReference(*PredBB) << "\n"; 969 } dbgs() << "Looking for common tails of at least " 970 << MinCommonTailLength << " instruction" 971 << (MinCommonTailLength == 1 ? "" : "s") << '\n';); 972 973 // Sort by hash value so that blocks with identical end sequences sort 974 // together. 975 array_pod_sort(MergePotentials.begin(), MergePotentials.end()); 976 977 // Walk through equivalence sets looking for actual exact matches. 978 while (MergePotentials.size() > 1) { 979 unsigned CurHash = MergePotentials.back().getHash(); 980 981 // Build SameTails, identifying the set of blocks with this hash code 982 // and with the maximum number of instructions in common. 983 unsigned maxCommonTailLength = ComputeSameTails(CurHash, 984 MinCommonTailLength, 985 SuccBB, PredBB); 986 987 // If we didn't find any pair that has at least MinCommonTailLength 988 // instructions in common, remove all blocks with this hash code and retry. 989 if (SameTails.empty()) { 990 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 991 continue; 992 } 993 994 // If one of the blocks is the entire common tail (and not the entry 995 // block, which we can't jump to), we can treat all blocks with this same 996 // tail at once. Use PredBB if that is one of the possibilities, as that 997 // will not introduce any extra branches. 998 MachineBasicBlock *EntryBB = 999 &MergePotentials.front().getBlock()->getParent()->front(); 1000 unsigned commonTailIndex = SameTails.size(); 1001 // If there are two blocks, check to see if one can be made to fall through 1002 // into the other. 1003 if (SameTails.size() == 2 && 1004 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && 1005 SameTails[1].tailIsWholeBlock()) 1006 commonTailIndex = 1; 1007 else if (SameTails.size() == 2 && 1008 SameTails[1].getBlock()->isLayoutSuccessor( 1009 SameTails[0].getBlock()) && 1010 SameTails[0].tailIsWholeBlock()) 1011 commonTailIndex = 0; 1012 else { 1013 // Otherwise just pick one, favoring the fall-through predecessor if 1014 // there is one. 1015 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { 1016 MachineBasicBlock *MBB = SameTails[i].getBlock(); 1017 if (MBB == EntryBB && SameTails[i].tailIsWholeBlock()) 1018 continue; 1019 if (MBB == PredBB) { 1020 commonTailIndex = i; 1021 break; 1022 } 1023 if (SameTails[i].tailIsWholeBlock()) 1024 commonTailIndex = i; 1025 } 1026 } 1027 1028 if (commonTailIndex == SameTails.size() || 1029 (SameTails[commonTailIndex].getBlock() == PredBB && 1030 !SameTails[commonTailIndex].tailIsWholeBlock())) { 1031 // None of the blocks consist entirely of the common tail. 1032 // Split a block so that one does. 1033 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, 1034 maxCommonTailLength, commonTailIndex)) { 1035 RemoveBlocksWithHash(CurHash, SuccBB, PredBB); 1036 continue; 1037 } 1038 } 1039 1040 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); 1041 1042 // Recompute common tail MBB's edge weights and block frequency. 1043 setCommonTailEdgeWeights(*MBB); 1044 1045 // Merge debug locations, MMOs and undef flags across identical instructions 1046 // for common tail. 1047 mergeCommonTails(commonTailIndex); 1048 1049 // MBB is common tail. Adjust all other BB's to jump to this one. 1050 // Traversal must be forwards so erases work. 1051 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) 1052 << " for "); 1053 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { 1054 if (commonTailIndex == i) 1055 continue; 1056 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) 1057 << (i == e - 1 ? "" : ", ")); 1058 // Hack the end off BB i, making it jump to BB commonTailIndex instead. 1059 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); 1060 // BB i is no longer a predecessor of SuccBB; remove it from the worklist. 1061 MergePotentials.erase(SameTails[i].getMPIter()); 1062 } 1063 LLVM_DEBUG(dbgs() << "\n"); 1064 // We leave commonTailIndex in the worklist in case there are other blocks 1065 // that match it with a smaller number of instructions. 1066 MadeChange = true; 1067 } 1068 return MadeChange; 1069 } 1070 1071 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { 1072 bool MadeChange = false; 1073 if (!EnableTailMerge) return MadeChange; 1074 1075 // First find blocks with no successors. 1076 // Block placement does not create new tail merging opportunities for these 1077 // blocks. 1078 if (!AfterBlockPlacement) { 1079 MergePotentials.clear(); 1080 for (MachineBasicBlock &MBB : MF) { 1081 if (MergePotentials.size() == TailMergeThreshold) 1082 break; 1083 if (!TriedMerging.count(&MBB) && MBB.succ_empty()) 1084 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); 1085 } 1086 1087 // If this is a large problem, avoid visiting the same basic blocks 1088 // multiple times. 1089 if (MergePotentials.size() == TailMergeThreshold) 1090 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1091 TriedMerging.insert(MergePotentials[i].getBlock()); 1092 1093 // See if we can do any tail merging on those. 1094 if (MergePotentials.size() >= 2) 1095 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); 1096 } 1097 1098 // Look at blocks (IBB) with multiple predecessors (PBB). 1099 // We change each predecessor to a canonical form, by 1100 // (1) temporarily removing any unconditional branch from the predecessor 1101 // to IBB, and 1102 // (2) alter conditional branches so they branch to the other block 1103 // not IBB; this may require adding back an unconditional branch to IBB 1104 // later, where there wasn't one coming in. E.g. 1105 // Bcc IBB 1106 // fallthrough to QBB 1107 // here becomes 1108 // Bncc QBB 1109 // with a conceptual B to IBB after that, which never actually exists. 1110 // With those changes, we see whether the predecessors' tails match, 1111 // and merge them if so. We change things out of canonical form and 1112 // back to the way they were later in the process. (OptimizeBranches 1113 // would undo some of this, but we can't use it, because we'd get into 1114 // a compile-time infinite loop repeatedly doing and undoing the same 1115 // transformations.) 1116 1117 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1118 I != E; ++I) { 1119 if (I->pred_size() < 2) continue; 1120 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; 1121 MachineBasicBlock *IBB = &*I; 1122 MachineBasicBlock *PredBB = &*std::prev(I); 1123 MergePotentials.clear(); 1124 MachineLoop *ML; 1125 1126 // Bail if merging after placement and IBB is the loop header because 1127 // -- If merging predecessors that belong to the same loop as IBB, the 1128 // common tail of merged predecessors may become the loop top if block 1129 // placement is called again and the predecessors may branch to this common 1130 // tail and require more branches. This can be relaxed if 1131 // MachineBlockPlacement::findBestLoopTop is more flexible. 1132 // --If merging predecessors that do not belong to the same loop as IBB, the 1133 // loop info of IBB's loop and the other loops may be affected. Calling the 1134 // block placement again may make big change to the layout and eliminate the 1135 // reason to do tail merging here. 1136 if (AfterBlockPlacement && MLI) { 1137 ML = MLI->getLoopFor(IBB); 1138 if (ML && IBB == ML->getHeader()) 1139 continue; 1140 } 1141 1142 for (MachineBasicBlock *PBB : I->predecessors()) { 1143 if (MergePotentials.size() == TailMergeThreshold) 1144 break; 1145 1146 if (TriedMerging.count(PBB)) 1147 continue; 1148 1149 // Skip blocks that loop to themselves, can't tail merge these. 1150 if (PBB == IBB) 1151 continue; 1152 1153 // Visit each predecessor only once. 1154 if (!UniquePreds.insert(PBB).second) 1155 continue; 1156 1157 // Skip blocks which may jump to a landing pad. Can't tail merge these. 1158 if (PBB->hasEHPadSuccessor()) 1159 continue; 1160 1161 // After block placement, only consider predecessors that belong to the 1162 // same loop as IBB. The reason is the same as above when skipping loop 1163 // header. 1164 if (AfterBlockPlacement && MLI) 1165 if (ML != MLI->getLoopFor(PBB)) 1166 continue; 1167 1168 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1169 SmallVector<MachineOperand, 4> Cond; 1170 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { 1171 // Failing case: IBB is the target of a cbr, and we cannot reverse the 1172 // branch. 1173 SmallVector<MachineOperand, 4> NewCond(Cond); 1174 if (!Cond.empty() && TBB == IBB) { 1175 if (TII->reverseBranchCondition(NewCond)) 1176 continue; 1177 // This is the QBB case described above 1178 if (!FBB) { 1179 auto Next = ++PBB->getIterator(); 1180 if (Next != MF.end()) 1181 FBB = &*Next; 1182 } 1183 } 1184 1185 // Failing case: the only way IBB can be reached from PBB is via 1186 // exception handling. Happens for landing pads. Would be nice to have 1187 // a bit in the edge so we didn't have to do all this. 1188 if (IBB->isEHPad()) { 1189 MachineFunction::iterator IP = ++PBB->getIterator(); 1190 MachineBasicBlock *PredNextBB = nullptr; 1191 if (IP != MF.end()) 1192 PredNextBB = &*IP; 1193 if (!TBB) { 1194 if (IBB != PredNextBB) // fallthrough 1195 continue; 1196 } else if (FBB) { 1197 if (TBB != IBB && FBB != IBB) // cbr then ubr 1198 continue; 1199 } else if (Cond.empty()) { 1200 if (TBB != IBB) // ubr 1201 continue; 1202 } else { 1203 if (TBB != IBB && IBB != PredNextBB) // cbr 1204 continue; 1205 } 1206 } 1207 1208 // Remove the unconditional branch at the end, if any. 1209 if (TBB && (Cond.empty() || FBB)) { 1210 DebugLoc dl = PBB->findBranchDebugLoc(); 1211 TII->removeBranch(*PBB); 1212 if (!Cond.empty()) 1213 // reinsert conditional branch only, for now 1214 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, 1215 NewCond, dl); 1216 } 1217 1218 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); 1219 } 1220 } 1221 1222 // If this is a large problem, avoid visiting the same basic blocks multiple 1223 // times. 1224 if (MergePotentials.size() == TailMergeThreshold) 1225 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) 1226 TriedMerging.insert(MergePotentials[i].getBlock()); 1227 1228 if (MergePotentials.size() >= 2) 1229 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); 1230 1231 // Reinsert an unconditional branch if needed. The 1 below can occur as a 1232 // result of removing blocks in TryTailMergeBlocks. 1233 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks 1234 if (MergePotentials.size() == 1 && 1235 MergePotentials.begin()->getBlock() != PredBB) 1236 FixTail(MergePotentials.begin()->getBlock(), IBB, TII); 1237 } 1238 1239 return MadeChange; 1240 } 1241 1242 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { 1243 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); 1244 BlockFrequency AccumulatedMBBFreq; 1245 1246 // Aggregate edge frequency of successor edge j: 1247 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), 1248 // where bb is a basic block that is in SameTails. 1249 for (const auto &Src : SameTails) { 1250 const MachineBasicBlock *SrcMBB = Src.getBlock(); 1251 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); 1252 AccumulatedMBBFreq += BlockFreq; 1253 1254 // It is not necessary to recompute edge weights if TailBB has less than two 1255 // successors. 1256 if (TailMBB.succ_size() <= 1) 1257 continue; 1258 1259 auto EdgeFreq = EdgeFreqLs.begin(); 1260 1261 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1262 SuccI != SuccE; ++SuccI, ++EdgeFreq) 1263 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); 1264 } 1265 1266 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); 1267 1268 if (TailMBB.succ_size() <= 1) 1269 return; 1270 1271 auto SumEdgeFreq = 1272 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) 1273 .getFrequency(); 1274 auto EdgeFreq = EdgeFreqLs.begin(); 1275 1276 if (SumEdgeFreq > 0) { 1277 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); 1278 SuccI != SuccE; ++SuccI, ++EdgeFreq) { 1279 auto Prob = BranchProbability::getBranchProbability( 1280 EdgeFreq->getFrequency(), SumEdgeFreq); 1281 TailMBB.setSuccProbability(SuccI, Prob); 1282 } 1283 } 1284 } 1285 1286 //===----------------------------------------------------------------------===// 1287 // Branch Optimization 1288 //===----------------------------------------------------------------------===// 1289 1290 bool BranchFolder::OptimizeBranches(MachineFunction &MF) { 1291 bool MadeChange = false; 1292 1293 // Make sure blocks are numbered in order 1294 MF.RenumberBlocks(); 1295 // Renumbering blocks alters EH scope membership, recalculate it. 1296 EHScopeMembership = getEHScopeMembership(MF); 1297 1298 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); 1299 I != E; ) { 1300 MachineBasicBlock *MBB = &*I++; 1301 MadeChange |= OptimizeBlock(MBB); 1302 1303 // If it is dead, remove it. 1304 if (MBB->pred_empty()) { 1305 RemoveDeadBlock(MBB); 1306 MadeChange = true; 1307 ++NumDeadBlocks; 1308 } 1309 } 1310 1311 return MadeChange; 1312 } 1313 1314 // Blocks should be considered empty if they contain only debug info; 1315 // else the debug info would affect codegen. 1316 static bool IsEmptyBlock(MachineBasicBlock *MBB) { 1317 return MBB->getFirstNonDebugInstr() == MBB->end(); 1318 } 1319 1320 // Blocks with only debug info and branches should be considered the same 1321 // as blocks with only branches. 1322 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { 1323 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); 1324 assert(I != MBB->end() && "empty block!"); 1325 return I->isBranch(); 1326 } 1327 1328 /// IsBetterFallthrough - Return true if it would be clearly better to 1329 /// fall-through to MBB1 than to fall through into MBB2. This has to return 1330 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will 1331 /// result in infinite loops. 1332 static bool IsBetterFallthrough(MachineBasicBlock *MBB1, 1333 MachineBasicBlock *MBB2) { 1334 // Right now, we use a simple heuristic. If MBB2 ends with a call, and 1335 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to 1336 // optimize branches that branch to either a return block or an assert block 1337 // into a fallthrough to the return. 1338 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); 1339 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); 1340 if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) 1341 return false; 1342 1343 // If there is a clear successor ordering we make sure that one block 1344 // will fall through to the next 1345 if (MBB1->isSuccessor(MBB2)) return true; 1346 if (MBB2->isSuccessor(MBB1)) return false; 1347 1348 return MBB2I->isCall() && !MBB1I->isCall(); 1349 } 1350 1351 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch 1352 /// instructions on the block. 1353 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { 1354 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 1355 if (I != MBB.end() && I->isBranch()) 1356 return I->getDebugLoc(); 1357 return DebugLoc(); 1358 } 1359 1360 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, 1361 MachineBasicBlock &MBB, 1362 MachineBasicBlock &PredMBB) { 1363 auto InsertBefore = PredMBB.getFirstTerminator(); 1364 for (MachineInstr &MI : MBB.instrs()) 1365 if (MI.isDebugInstr()) { 1366 TII->duplicate(PredMBB, InsertBefore, MI); 1367 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: " 1368 << MI); 1369 } 1370 } 1371 1372 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, 1373 MachineBasicBlock &MBB, 1374 MachineBasicBlock &SuccMBB) { 1375 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); 1376 for (MachineInstr &MI : MBB.instrs()) 1377 if (MI.isDebugInstr()) { 1378 TII->duplicate(SuccMBB, InsertBefore, MI); 1379 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: " 1380 << MI); 1381 } 1382 } 1383 1384 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such 1385 // a basic block is removed we would lose the debug information unless we have 1386 // copied the information to a predecessor/successor. 1387 // 1388 // TODO: This function only handles some simple cases. An alternative would be 1389 // to run a heavier analysis, such as the LiveDebugValues pass, before we do 1390 // branch folding. 1391 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, 1392 MachineBasicBlock &MBB) { 1393 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); 1394 // If this MBB is the only predecessor of a successor it is legal to copy 1395 // DBG_VALUE instructions to the beginning of the successor. 1396 for (MachineBasicBlock *SuccBB : MBB.successors()) 1397 if (SuccBB->pred_size() == 1) 1398 copyDebugInfoToSuccessor(TII, MBB, *SuccBB); 1399 // If this MBB is the only successor of a predecessor it is legal to copy the 1400 // DBG_VALUE instructions to the end of the predecessor (just before the 1401 // terminators, assuming that the terminator isn't affecting the DBG_VALUE). 1402 for (MachineBasicBlock *PredBB : MBB.predecessors()) 1403 if (PredBB->succ_size() == 1) 1404 copyDebugInfoToPredecessor(TII, MBB, *PredBB); 1405 } 1406 1407 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { 1408 bool MadeChange = false; 1409 MachineFunction &MF = *MBB->getParent(); 1410 ReoptimizeBlock: 1411 1412 MachineFunction::iterator FallThrough = MBB->getIterator(); 1413 ++FallThrough; 1414 1415 // Make sure MBB and FallThrough belong to the same EH scope. 1416 bool SameEHScope = true; 1417 if (!EHScopeMembership.empty() && FallThrough != MF.end()) { 1418 auto MBBEHScope = EHScopeMembership.find(MBB); 1419 assert(MBBEHScope != EHScopeMembership.end()); 1420 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); 1421 assert(FallThroughEHScope != EHScopeMembership.end()); 1422 SameEHScope = MBBEHScope->second == FallThroughEHScope->second; 1423 } 1424 1425 // If this block is empty, make everyone use its fall-through, not the block 1426 // explicitly. Landing pads should not do this since the landing-pad table 1427 // points to this block. Blocks with their addresses taken shouldn't be 1428 // optimized away. 1429 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && 1430 SameEHScope) { 1431 salvageDebugInfoFromEmptyBlock(TII, *MBB); 1432 // Dead block? Leave for cleanup later. 1433 if (MBB->pred_empty()) return MadeChange; 1434 1435 if (FallThrough == MF.end()) { 1436 // TODO: Simplify preds to not branch here if possible! 1437 } else if (FallThrough->isEHPad()) { 1438 // Don't rewrite to a landing pad fallthough. That could lead to the case 1439 // where a BB jumps to more than one landing pad. 1440 // TODO: Is it ever worth rewriting predecessors which don't already 1441 // jump to a landing pad, and so can safely jump to the fallthrough? 1442 } else if (MBB->isSuccessor(&*FallThrough)) { 1443 // Rewrite all predecessors of the old block to go to the fallthrough 1444 // instead. 1445 while (!MBB->pred_empty()) { 1446 MachineBasicBlock *Pred = *(MBB->pred_end()-1); 1447 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); 1448 } 1449 // If MBB was the target of a jump table, update jump tables to go to the 1450 // fallthrough instead. 1451 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1452 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); 1453 MadeChange = true; 1454 } 1455 return MadeChange; 1456 } 1457 1458 // Check to see if we can simplify the terminator of the block before this 1459 // one. 1460 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); 1461 1462 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; 1463 SmallVector<MachineOperand, 4> PriorCond; 1464 bool PriorUnAnalyzable = 1465 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); 1466 if (!PriorUnAnalyzable) { 1467 // If the CFG for the prior block has extra edges, remove them. 1468 MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB, 1469 !PriorCond.empty()); 1470 1471 // If the previous branch is conditional and both conditions go to the same 1472 // destination, remove the branch, replacing it with an unconditional one or 1473 // a fall-through. 1474 if (PriorTBB && PriorTBB == PriorFBB) { 1475 DebugLoc dl = getBranchDebugLoc(PrevBB); 1476 TII->removeBranch(PrevBB); 1477 PriorCond.clear(); 1478 if (PriorTBB != MBB) 1479 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1480 MadeChange = true; 1481 ++NumBranchOpts; 1482 goto ReoptimizeBlock; 1483 } 1484 1485 // If the previous block unconditionally falls through to this block and 1486 // this block has no other predecessors, move the contents of this block 1487 // into the prior block. This doesn't usually happen when SimplifyCFG 1488 // has been used, but it can happen if tail merging splits a fall-through 1489 // predecessor of a block. 1490 // This has to check PrevBB->succ_size() because EH edges are ignored by 1491 // AnalyzeBranch. 1492 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && 1493 PrevBB.succ_size() == 1 && 1494 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1495 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB 1496 << "From MBB: " << *MBB); 1497 // Remove redundant DBG_VALUEs first. 1498 if (PrevBB.begin() != PrevBB.end()) { 1499 MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); 1500 --PrevBBIter; 1501 MachineBasicBlock::iterator MBBIter = MBB->begin(); 1502 // Check if DBG_VALUE at the end of PrevBB is identical to the 1503 // DBG_VALUE at the beginning of MBB. 1504 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() 1505 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { 1506 if (!MBBIter->isIdenticalTo(*PrevBBIter)) 1507 break; 1508 MachineInstr &DuplicateDbg = *MBBIter; 1509 ++MBBIter; -- PrevBBIter; 1510 DuplicateDbg.eraseFromParent(); 1511 } 1512 } 1513 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); 1514 PrevBB.removeSuccessor(PrevBB.succ_begin()); 1515 assert(PrevBB.succ_empty()); 1516 PrevBB.transferSuccessors(MBB); 1517 MadeChange = true; 1518 return MadeChange; 1519 } 1520 1521 // If the previous branch *only* branches to *this* block (conditional or 1522 // not) remove the branch. 1523 if (PriorTBB == MBB && !PriorFBB) { 1524 TII->removeBranch(PrevBB); 1525 MadeChange = true; 1526 ++NumBranchOpts; 1527 goto ReoptimizeBlock; 1528 } 1529 1530 // If the prior block branches somewhere else on the condition and here if 1531 // the condition is false, remove the uncond second branch. 1532 if (PriorFBB == MBB) { 1533 DebugLoc dl = getBranchDebugLoc(PrevBB); 1534 TII->removeBranch(PrevBB); 1535 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); 1536 MadeChange = true; 1537 ++NumBranchOpts; 1538 goto ReoptimizeBlock; 1539 } 1540 1541 // If the prior block branches here on true and somewhere else on false, and 1542 // if the branch condition is reversible, reverse the branch to create a 1543 // fall-through. 1544 if (PriorTBB == MBB) { 1545 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1546 if (!TII->reverseBranchCondition(NewPriorCond)) { 1547 DebugLoc dl = getBranchDebugLoc(PrevBB); 1548 TII->removeBranch(PrevBB); 1549 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); 1550 MadeChange = true; 1551 ++NumBranchOpts; 1552 goto ReoptimizeBlock; 1553 } 1554 } 1555 1556 // If this block has no successors (e.g. it is a return block or ends with 1557 // a call to a no-return function like abort or __cxa_throw) and if the pred 1558 // falls through into this block, and if it would otherwise fall through 1559 // into the block after this, move this block to the end of the function. 1560 // 1561 // We consider it more likely that execution will stay in the function (e.g. 1562 // due to loops) than it is to exit it. This asserts in loops etc, moving 1563 // the assert condition out of the loop body. 1564 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && 1565 MachineFunction::iterator(PriorTBB) == FallThrough && 1566 !MBB->canFallThrough()) { 1567 bool DoTransform = true; 1568 1569 // We have to be careful that the succs of PredBB aren't both no-successor 1570 // blocks. If neither have successors and if PredBB is the second from 1571 // last block in the function, we'd just keep swapping the two blocks for 1572 // last. Only do the swap if one is clearly better to fall through than 1573 // the other. 1574 if (FallThrough == --MF.end() && 1575 !IsBetterFallthrough(PriorTBB, MBB)) 1576 DoTransform = false; 1577 1578 if (DoTransform) { 1579 // Reverse the branch so we will fall through on the previous true cond. 1580 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); 1581 if (!TII->reverseBranchCondition(NewPriorCond)) { 1582 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB 1583 << "To make fallthrough to: " << *PriorTBB << "\n"); 1584 1585 DebugLoc dl = getBranchDebugLoc(PrevBB); 1586 TII->removeBranch(PrevBB); 1587 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); 1588 1589 // Move this block to the end of the function. 1590 MBB->moveAfter(&MF.back()); 1591 MadeChange = true; 1592 ++NumBranchOpts; 1593 return MadeChange; 1594 } 1595 } 1596 } 1597 } 1598 1599 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && 1600 MF.getFunction().optForSize()) { 1601 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch 1602 // direction, thereby defeating careful block placement and regressing 1603 // performance. Therefore, only consider this for optsize functions. 1604 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); 1605 if (TII->isUnconditionalTailCall(TailCall)) { 1606 MachineBasicBlock *Pred = *MBB->pred_begin(); 1607 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1608 SmallVector<MachineOperand, 4> PredCond; 1609 bool PredAnalyzable = 1610 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); 1611 1612 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && 1613 PredTBB != PredFBB) { 1614 // The predecessor has a conditional branch to this block which consists 1615 // of only a tail call. Try to fold the tail call into the conditional 1616 // branch. 1617 if (TII->canMakeTailCallConditional(PredCond, TailCall)) { 1618 // TODO: It would be nice if analyzeBranch() could provide a pointer 1619 // to the branch instruction so replaceBranchWithTailCall() doesn't 1620 // have to search for it. 1621 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); 1622 ++NumTailCalls; 1623 Pred->removeSuccessor(MBB); 1624 MadeChange = true; 1625 return MadeChange; 1626 } 1627 } 1628 // If the predecessor is falling through to this block, we could reverse 1629 // the branch condition and fold the tail call into that. However, after 1630 // that we might have to re-arrange the CFG to fall through to the other 1631 // block and there is a high risk of regressing code size rather than 1632 // improving it. 1633 } 1634 } 1635 1636 // Analyze the branch in the current block. 1637 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; 1638 SmallVector<MachineOperand, 4> CurCond; 1639 bool CurUnAnalyzable = 1640 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); 1641 if (!CurUnAnalyzable) { 1642 // If the CFG for the prior block has extra edges, remove them. 1643 MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty()); 1644 1645 // If this is a two-way branch, and the FBB branches to this block, reverse 1646 // the condition so the single-basic-block loop is faster. Instead of: 1647 // Loop: xxx; jcc Out; jmp Loop 1648 // we want: 1649 // Loop: xxx; jncc Loop; jmp Out 1650 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { 1651 SmallVector<MachineOperand, 4> NewCond(CurCond); 1652 if (!TII->reverseBranchCondition(NewCond)) { 1653 DebugLoc dl = getBranchDebugLoc(*MBB); 1654 TII->removeBranch(*MBB); 1655 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); 1656 MadeChange = true; 1657 ++NumBranchOpts; 1658 goto ReoptimizeBlock; 1659 } 1660 } 1661 1662 // If this branch is the only thing in its block, see if we can forward 1663 // other blocks across it. 1664 if (CurTBB && CurCond.empty() && !CurFBB && 1665 IsBranchOnlyBlock(MBB) && CurTBB != MBB && 1666 !MBB->hasAddressTaken() && !MBB->isEHPad()) { 1667 DebugLoc dl = getBranchDebugLoc(*MBB); 1668 // This block may contain just an unconditional branch. Because there can 1669 // be 'non-branch terminators' in the block, try removing the branch and 1670 // then seeing if the block is empty. 1671 TII->removeBranch(*MBB); 1672 // If the only things remaining in the block are debug info, remove these 1673 // as well, so this will behave the same as an empty block in non-debug 1674 // mode. 1675 if (IsEmptyBlock(MBB)) { 1676 // Make the block empty, losing the debug info (we could probably 1677 // improve this in some cases.) 1678 MBB->erase(MBB->begin(), MBB->end()); 1679 } 1680 // If this block is just an unconditional branch to CurTBB, we can 1681 // usually completely eliminate the block. The only case we cannot 1682 // completely eliminate the block is when the block before this one 1683 // falls through into MBB and we can't understand the prior block's branch 1684 // condition. 1685 if (MBB->empty()) { 1686 bool PredHasNoFallThrough = !PrevBB.canFallThrough(); 1687 if (PredHasNoFallThrough || !PriorUnAnalyzable || 1688 !PrevBB.isSuccessor(MBB)) { 1689 // If the prior block falls through into us, turn it into an 1690 // explicit branch to us to make updates simpler. 1691 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && 1692 PriorTBB != MBB && PriorFBB != MBB) { 1693 if (!PriorTBB) { 1694 assert(PriorCond.empty() && !PriorFBB && 1695 "Bad branch analysis"); 1696 PriorTBB = MBB; 1697 } else { 1698 assert(!PriorFBB && "Machine CFG out of date!"); 1699 PriorFBB = MBB; 1700 } 1701 DebugLoc pdl = getBranchDebugLoc(PrevBB); 1702 TII->removeBranch(PrevBB); 1703 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); 1704 } 1705 1706 // Iterate through all the predecessors, revectoring each in-turn. 1707 size_t PI = 0; 1708 bool DidChange = false; 1709 bool HasBranchToSelf = false; 1710 while(PI != MBB->pred_size()) { 1711 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); 1712 if (PMBB == MBB) { 1713 // If this block has an uncond branch to itself, leave it. 1714 ++PI; 1715 HasBranchToSelf = true; 1716 } else { 1717 DidChange = true; 1718 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); 1719 // If this change resulted in PMBB ending in a conditional 1720 // branch where both conditions go to the same destination, 1721 // change this to an unconditional branch (and fix the CFG). 1722 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; 1723 SmallVector<MachineOperand, 4> NewCurCond; 1724 bool NewCurUnAnalyzable = TII->analyzeBranch( 1725 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); 1726 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { 1727 DebugLoc pdl = getBranchDebugLoc(*PMBB); 1728 TII->removeBranch(*PMBB); 1729 NewCurCond.clear(); 1730 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); 1731 MadeChange = true; 1732 ++NumBranchOpts; 1733 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false); 1734 } 1735 } 1736 } 1737 1738 // Change any jumptables to go to the new MBB. 1739 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) 1740 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); 1741 if (DidChange) { 1742 ++NumBranchOpts; 1743 MadeChange = true; 1744 if (!HasBranchToSelf) return MadeChange; 1745 } 1746 } 1747 } 1748 1749 // Add the branch back if the block is more than just an uncond branch. 1750 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); 1751 } 1752 } 1753 1754 // If the prior block doesn't fall through into this block, and if this 1755 // block doesn't fall through into some other block, see if we can find a 1756 // place to move this block where a fall-through will happen. 1757 if (!PrevBB.canFallThrough()) { 1758 // Now we know that there was no fall-through into this block, check to 1759 // see if it has a fall-through into its successor. 1760 bool CurFallsThru = MBB->canFallThrough(); 1761 1762 if (!MBB->isEHPad()) { 1763 // Check all the predecessors of this block. If one of them has no fall 1764 // throughs, move this block right after it. 1765 for (MachineBasicBlock *PredBB : MBB->predecessors()) { 1766 // Analyze the branch at the end of the pred. 1767 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; 1768 SmallVector<MachineOperand, 4> PredCond; 1769 if (PredBB != MBB && !PredBB->canFallThrough() && 1770 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && 1771 (!CurFallsThru || !CurTBB || !CurFBB) && 1772 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { 1773 // If the current block doesn't fall through, just move it. 1774 // If the current block can fall through and does not end with a 1775 // conditional branch, we need to append an unconditional jump to 1776 // the (current) next block. To avoid a possible compile-time 1777 // infinite loop, move blocks only backward in this case. 1778 // Also, if there are already 2 branches here, we cannot add a third; 1779 // this means we have the case 1780 // Bcc next 1781 // B elsewhere 1782 // next: 1783 if (CurFallsThru) { 1784 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); 1785 CurCond.clear(); 1786 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); 1787 } 1788 MBB->moveAfter(PredBB); 1789 MadeChange = true; 1790 goto ReoptimizeBlock; 1791 } 1792 } 1793 } 1794 1795 if (!CurFallsThru) { 1796 // Check all successors to see if we can move this block before it. 1797 for (MachineBasicBlock *SuccBB : MBB->successors()) { 1798 // Analyze the branch at the end of the block before the succ. 1799 MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); 1800 1801 // If this block doesn't already fall-through to that successor, and if 1802 // the succ doesn't already have a block that can fall through into it, 1803 // and if the successor isn't an EH destination, we can arrange for the 1804 // fallthrough to happen. 1805 if (SuccBB != MBB && &*SuccPrev != MBB && 1806 !SuccPrev->canFallThrough() && !CurUnAnalyzable && 1807 !SuccBB->isEHPad()) { 1808 MBB->moveBefore(SuccBB); 1809 MadeChange = true; 1810 goto ReoptimizeBlock; 1811 } 1812 } 1813 1814 // Okay, there is no really great place to put this block. If, however, 1815 // the block before this one would be a fall-through if this block were 1816 // removed, move this block to the end of the function. There is no real 1817 // advantage in "falling through" to an EH block, so we don't want to 1818 // perform this transformation for that case. 1819 // 1820 // Also, Windows EH introduced the possibility of an arbitrary number of 1821 // successors to a given block. The analyzeBranch call does not consider 1822 // exception handling and so we can get in a state where a block 1823 // containing a call is followed by multiple EH blocks that would be 1824 // rotated infinitely at the end of the function if the transformation 1825 // below were performed for EH "FallThrough" blocks. Therefore, even if 1826 // that appears not to be happening anymore, we should assume that it is 1827 // possible and not remove the "!FallThrough()->isEHPad" condition below. 1828 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; 1829 SmallVector<MachineOperand, 4> PrevCond; 1830 if (FallThrough != MF.end() && 1831 !FallThrough->isEHPad() && 1832 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && 1833 PrevBB.isSuccessor(&*FallThrough)) { 1834 MBB->moveAfter(&MF.back()); 1835 MadeChange = true; 1836 return MadeChange; 1837 } 1838 } 1839 } 1840 1841 return MadeChange; 1842 } 1843 1844 //===----------------------------------------------------------------------===// 1845 // Hoist Common Code 1846 //===----------------------------------------------------------------------===// 1847 1848 bool BranchFolder::HoistCommonCode(MachineFunction &MF) { 1849 bool MadeChange = false; 1850 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { 1851 MachineBasicBlock *MBB = &*I++; 1852 MadeChange |= HoistCommonCodeInSuccs(MBB); 1853 } 1854 1855 return MadeChange; 1856 } 1857 1858 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given 1859 /// its 'true' successor. 1860 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 1861 MachineBasicBlock *TrueBB) { 1862 for (MachineBasicBlock *SuccBB : BB->successors()) 1863 if (SuccBB != TrueBB) 1864 return SuccBB; 1865 return nullptr; 1866 } 1867 1868 template <class Container> 1869 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, 1870 Container &Set) { 1871 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1872 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1873 Set.insert(*AI); 1874 } else { 1875 Set.insert(Reg); 1876 } 1877 } 1878 1879 /// findHoistingInsertPosAndDeps - Find the location to move common instructions 1880 /// in successors to. The location is usually just before the terminator, 1881 /// however if the terminator is a conditional branch and its previous 1882 /// instruction is the flag setting instruction, the previous instruction is 1883 /// the preferred location. This function also gathers uses and defs of the 1884 /// instructions from the insertion point to the end of the block. The data is 1885 /// used by HoistCommonCodeInSuccs to ensure safety. 1886 static 1887 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, 1888 const TargetInstrInfo *TII, 1889 const TargetRegisterInfo *TRI, 1890 SmallSet<unsigned,4> &Uses, 1891 SmallSet<unsigned,4> &Defs) { 1892 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); 1893 if (!TII->isUnpredicatedTerminator(*Loc)) 1894 return MBB->end(); 1895 1896 for (const MachineOperand &MO : Loc->operands()) { 1897 if (!MO.isReg()) 1898 continue; 1899 unsigned Reg = MO.getReg(); 1900 if (!Reg) 1901 continue; 1902 if (MO.isUse()) { 1903 addRegAndItsAliases(Reg, TRI, Uses); 1904 } else { 1905 if (!MO.isDead()) 1906 // Don't try to hoist code in the rare case the terminator defines a 1907 // register that is later used. 1908 return MBB->end(); 1909 1910 // If the terminator defines a register, make sure we don't hoist 1911 // the instruction whose def might be clobbered by the terminator. 1912 addRegAndItsAliases(Reg, TRI, Defs); 1913 } 1914 } 1915 1916 if (Uses.empty()) 1917 return Loc; 1918 // If the terminator is the only instruction in the block and Uses is not 1919 // empty (or we would have returned above), we can still safely hoist 1920 // instructions just before the terminator as long as the Defs/Uses are not 1921 // violated (which is checked in HoistCommonCodeInSuccs). 1922 if (Loc == MBB->begin()) 1923 return Loc; 1924 1925 // The terminator is probably a conditional branch, try not to separate the 1926 // branch from condition setting instruction. 1927 MachineBasicBlock::iterator PI = 1928 skipDebugInstructionsBackward(std::prev(Loc), MBB->begin()); 1929 1930 bool IsDef = false; 1931 for (const MachineOperand &MO : PI->operands()) { 1932 // If PI has a regmask operand, it is probably a call. Separate away. 1933 if (MO.isRegMask()) 1934 return Loc; 1935 if (!MO.isReg() || MO.isUse()) 1936 continue; 1937 unsigned Reg = MO.getReg(); 1938 if (!Reg) 1939 continue; 1940 if (Uses.count(Reg)) { 1941 IsDef = true; 1942 break; 1943 } 1944 } 1945 if (!IsDef) 1946 // The condition setting instruction is not just before the conditional 1947 // branch. 1948 return Loc; 1949 1950 // Be conservative, don't insert instruction above something that may have 1951 // side-effects. And since it's potentially bad to separate flag setting 1952 // instruction from the conditional branch, just abort the optimization 1953 // completely. 1954 // Also avoid moving code above predicated instruction since it's hard to 1955 // reason about register liveness with predicated instruction. 1956 bool DontMoveAcrossStore = true; 1957 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) 1958 return MBB->end(); 1959 1960 // Find out what registers are live. Note this routine is ignoring other live 1961 // registers which are only used by instructions in successor blocks. 1962 for (const MachineOperand &MO : PI->operands()) { 1963 if (!MO.isReg()) 1964 continue; 1965 unsigned Reg = MO.getReg(); 1966 if (!Reg) 1967 continue; 1968 if (MO.isUse()) { 1969 addRegAndItsAliases(Reg, TRI, Uses); 1970 } else { 1971 if (Uses.erase(Reg)) { 1972 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1973 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 1974 Uses.erase(*SubRegs); // Use sub-registers to be conservative 1975 } 1976 } 1977 addRegAndItsAliases(Reg, TRI, Defs); 1978 } 1979 } 1980 1981 return PI; 1982 } 1983 1984 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { 1985 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1986 SmallVector<MachineOperand, 4> Cond; 1987 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) 1988 return false; 1989 1990 if (!FBB) FBB = findFalseBlock(MBB, TBB); 1991 if (!FBB) 1992 // Malformed bcc? True and false blocks are the same? 1993 return false; 1994 1995 // Restrict the optimization to cases where MBB is the only predecessor, 1996 // it is an obvious win. 1997 if (TBB->pred_size() > 1 || FBB->pred_size() > 1) 1998 return false; 1999 2000 // Find a suitable position to hoist the common instructions to. Also figure 2001 // out which registers are used or defined by instructions from the insertion 2002 // point to the end of the block. 2003 SmallSet<unsigned, 4> Uses, Defs; 2004 MachineBasicBlock::iterator Loc = 2005 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); 2006 if (Loc == MBB->end()) 2007 return false; 2008 2009 bool HasDups = false; 2010 SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet; 2011 MachineBasicBlock::iterator TIB = TBB->begin(); 2012 MachineBasicBlock::iterator FIB = FBB->begin(); 2013 MachineBasicBlock::iterator TIE = TBB->end(); 2014 MachineBasicBlock::iterator FIE = FBB->end(); 2015 while (TIB != TIE && FIB != FIE) { 2016 // Skip dbg_value instructions. These do not count. 2017 TIB = skipDebugInstructionsForward(TIB, TIE); 2018 FIB = skipDebugInstructionsForward(FIB, FIE); 2019 if (TIB == TIE || FIB == FIE) 2020 break; 2021 2022 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) 2023 break; 2024 2025 if (TII->isPredicated(*TIB)) 2026 // Hard to reason about register liveness with predicated instruction. 2027 break; 2028 2029 bool IsSafe = true; 2030 for (MachineOperand &MO : TIB->operands()) { 2031 // Don't attempt to hoist instructions with register masks. 2032 if (MO.isRegMask()) { 2033 IsSafe = false; 2034 break; 2035 } 2036 if (!MO.isReg()) 2037 continue; 2038 unsigned Reg = MO.getReg(); 2039 if (!Reg) 2040 continue; 2041 if (MO.isDef()) { 2042 if (Uses.count(Reg)) { 2043 // Avoid clobbering a register that's used by the instruction at 2044 // the point of insertion. 2045 IsSafe = false; 2046 break; 2047 } 2048 2049 if (Defs.count(Reg) && !MO.isDead()) { 2050 // Don't hoist the instruction if the def would be clobber by the 2051 // instruction at the point insertion. FIXME: This is overly 2052 // conservative. It should be possible to hoist the instructions 2053 // in BB2 in the following example: 2054 // BB1: 2055 // r1, eflag = op1 r2, r3 2056 // brcc eflag 2057 // 2058 // BB2: 2059 // r1 = op2, ... 2060 // = op3, killed r1 2061 IsSafe = false; 2062 break; 2063 } 2064 } else if (!ActiveDefsSet.count(Reg)) { 2065 if (Defs.count(Reg)) { 2066 // Use is defined by the instruction at the point of insertion. 2067 IsSafe = false; 2068 break; 2069 } 2070 2071 if (MO.isKill() && Uses.count(Reg)) 2072 // Kills a register that's read by the instruction at the point of 2073 // insertion. Remove the kill marker. 2074 MO.setIsKill(false); 2075 } 2076 } 2077 if (!IsSafe) 2078 break; 2079 2080 bool DontMoveAcrossStore = true; 2081 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) 2082 break; 2083 2084 // Remove kills from ActiveDefsSet, these registers had short live ranges. 2085 for (const MachineOperand &MO : TIB->operands()) { 2086 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 2087 continue; 2088 unsigned Reg = MO.getReg(); 2089 if (!Reg) 2090 continue; 2091 if (!AllDefsSet.count(Reg)) { 2092 continue; 2093 } 2094 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 2095 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 2096 ActiveDefsSet.erase(*AI); 2097 } else { 2098 ActiveDefsSet.erase(Reg); 2099 } 2100 } 2101 2102 // Track local defs so we can update liveins. 2103 for (const MachineOperand &MO : TIB->operands()) { 2104 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 2105 continue; 2106 unsigned Reg = MO.getReg(); 2107 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg)) 2108 continue; 2109 addRegAndItsAliases(Reg, TRI, ActiveDefsSet); 2110 addRegAndItsAliases(Reg, TRI, AllDefsSet); 2111 } 2112 2113 HasDups = true; 2114 ++TIB; 2115 ++FIB; 2116 } 2117 2118 if (!HasDups) 2119 return false; 2120 2121 MBB->splice(Loc, TBB, TBB->begin(), TIB); 2122 FBB->erase(FBB->begin(), FIB); 2123 2124 if (UpdateLiveIns) { 2125 recomputeLiveIns(*TBB); 2126 recomputeLiveIns(*FBB); 2127 } 2128 2129 ++NumHoist; 2130 return true; 2131 } 2132