1 //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file provides the implementation of a basic TargetTransformInfo pass 11 /// predicated on the target abstractions present in the target independent 12 /// code generator. It uses these (primarily TargetLowering) to model as much 13 /// of the TTI query interface as possible. It is included by most targets so 14 /// that they can specialize only a small subset of the query space. 15 /// 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "basictti" 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Target/TargetLowering.h" 22 #include <utility> 23 24 using namespace llvm; 25 26 namespace { 27 28 class BasicTTI : public ImmutablePass, public TargetTransformInfo { 29 const TargetLoweringBase *TLI; 30 31 /// Estimate the overhead of scalarizing an instruction. Insert and Extract 32 /// are set if the result needs to be inserted and/or extracted from vectors. 33 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; 34 35 public: 36 BasicTTI() : ImmutablePass(ID), TLI(0) { 37 llvm_unreachable("This pass cannot be directly constructed"); 38 } 39 40 BasicTTI(const TargetLoweringBase *TLI) : ImmutablePass(ID), TLI(TLI) { 41 initializeBasicTTIPass(*PassRegistry::getPassRegistry()); 42 } 43 44 virtual void initializePass() { 45 pushTTIStack(this); 46 } 47 48 virtual void finalizePass() { 49 popTTIStack(); 50 } 51 52 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 53 TargetTransformInfo::getAnalysisUsage(AU); 54 } 55 56 /// Pass identification. 57 static char ID; 58 59 /// Provide necessary pointer adjustments for the two base classes. 60 virtual void *getAdjustedAnalysisPointer(const void *ID) { 61 if (ID == &TargetTransformInfo::ID) 62 return (TargetTransformInfo*)this; 63 return this; 64 } 65 66 /// \name Scalar TTI Implementations 67 /// @{ 68 69 virtual bool isLegalAddImmediate(int64_t imm) const; 70 virtual bool isLegalICmpImmediate(int64_t imm) const; 71 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 72 int64_t BaseOffset, bool HasBaseReg, 73 int64_t Scale) const; 74 virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 75 int64_t BaseOffset, bool HasBaseReg, 76 int64_t Scale) const; 77 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const; 78 virtual bool isTypeLegal(Type *Ty) const; 79 virtual unsigned getJumpBufAlignment() const; 80 virtual unsigned getJumpBufSize() const; 81 virtual bool shouldBuildLookupTables() const; 82 83 /// @} 84 85 /// \name Vector TTI Implementations 86 /// @{ 87 88 virtual unsigned getNumberOfRegisters(bool Vector) const; 89 virtual unsigned getMaximumUnrollFactor() const; 90 virtual unsigned getRegisterBitWidth(bool Vector) const; 91 virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, 92 OperandValueKind, 93 OperandValueKind) const; 94 virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, 95 int Index, Type *SubTp) const; 96 virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 97 Type *Src) const; 98 virtual unsigned getCFInstrCost(unsigned Opcode) const; 99 virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 100 Type *CondTy) const; 101 virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 102 unsigned Index) const; 103 virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, 104 unsigned Alignment, 105 unsigned AddressSpace) const; 106 virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, 107 ArrayRef<Type*> Tys) const; 108 virtual unsigned getNumberOfParts(Type *Tp) const; 109 virtual unsigned getAddressComputationCost(Type *Ty) const; 110 111 /// @} 112 }; 113 114 } 115 116 INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti", 117 "Target independent code generator's TTI", true, true, false) 118 char BasicTTI::ID = 0; 119 120 ImmutablePass * 121 llvm::createBasicTargetTransformInfoPass(const TargetLoweringBase *TLI) { 122 return new BasicTTI(TLI); 123 } 124 125 126 bool BasicTTI::isLegalAddImmediate(int64_t imm) const { 127 return TLI->isLegalAddImmediate(imm); 128 } 129 130 bool BasicTTI::isLegalICmpImmediate(int64_t imm) const { 131 return TLI->isLegalICmpImmediate(imm); 132 } 133 134 bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 135 int64_t BaseOffset, bool HasBaseReg, 136 int64_t Scale) const { 137 TargetLoweringBase::AddrMode AM; 138 AM.BaseGV = BaseGV; 139 AM.BaseOffs = BaseOffset; 140 AM.HasBaseReg = HasBaseReg; 141 AM.Scale = Scale; 142 return TLI->isLegalAddressingMode(AM, Ty); 143 } 144 145 int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 146 int64_t BaseOffset, bool HasBaseReg, 147 int64_t Scale) const { 148 TargetLoweringBase::AddrMode AM; 149 AM.BaseGV = BaseGV; 150 AM.BaseOffs = BaseOffset; 151 AM.HasBaseReg = HasBaseReg; 152 AM.Scale = Scale; 153 return TLI->getScalingFactorCost(AM, Ty); 154 } 155 156 bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const { 157 return TLI->isTruncateFree(Ty1, Ty2); 158 } 159 160 bool BasicTTI::isTypeLegal(Type *Ty) const { 161 EVT T = TLI->getValueType(Ty); 162 return TLI->isTypeLegal(T); 163 } 164 165 unsigned BasicTTI::getJumpBufAlignment() const { 166 return TLI->getJumpBufAlignment(); 167 } 168 169 unsigned BasicTTI::getJumpBufSize() const { 170 return TLI->getJumpBufSize(); 171 } 172 173 bool BasicTTI::shouldBuildLookupTables() const { 174 return TLI->supportJumpTables() && 175 (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 176 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 177 } 178 179 //===----------------------------------------------------------------------===// 180 // 181 // Calls used by the vectorizers. 182 // 183 //===----------------------------------------------------------------------===// 184 185 unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert, 186 bool Extract) const { 187 assert (Ty->isVectorTy() && "Can only scalarize vectors"); 188 unsigned Cost = 0; 189 190 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 191 if (Insert) 192 Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 193 if (Extract) 194 Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i); 195 } 196 197 return Cost; 198 } 199 200 unsigned BasicTTI::getNumberOfRegisters(bool Vector) const { 201 return 1; 202 } 203 204 unsigned BasicTTI::getRegisterBitWidth(bool Vector) const { 205 return 32; 206 } 207 208 unsigned BasicTTI::getMaximumUnrollFactor() const { 209 return 1; 210 } 211 212 unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 213 OperandValueKind, 214 OperandValueKind) const { 215 // Check if any of the operands are vector operands. 216 int ISD = TLI->InstructionOpcodeToISD(Opcode); 217 assert(ISD && "Invalid opcode"); 218 219 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); 220 221 bool IsFloat = Ty->getScalarType()->isFloatingPointTy(); 222 // Assume that floating point arithmetic operations cost twice as much as 223 // integer operations. 224 unsigned OpCost = (IsFloat ? 2 : 1); 225 226 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 227 // The operation is legal. Assume it costs 1. 228 // If the type is split to multiple registers, assume that there is some 229 // overhead to this. 230 // TODO: Once we have extract/insert subvector cost we need to use them. 231 if (LT.first > 1) 232 return LT.first * 2 * OpCost; 233 return LT.first * 1 * OpCost; 234 } 235 236 if (!TLI->isOperationExpand(ISD, LT.second)) { 237 // If the operation is custom lowered then assume 238 // thare the code is twice as expensive. 239 return LT.first * 2 * OpCost; 240 } 241 242 // Else, assume that we need to scalarize this op. 243 if (Ty->isVectorTy()) { 244 unsigned Num = Ty->getVectorNumElements(); 245 unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType()); 246 // return the cost of multiple scalar invocation plus the cost of inserting 247 // and extracting the values. 248 return getScalarizationOverhead(Ty, true, true) + Num * Cost; 249 } 250 251 // We don't know anything about this scalar instruction. 252 return OpCost; 253 } 254 255 unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, 256 Type *SubTp) const { 257 return 1; 258 } 259 260 unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst, 261 Type *Src) const { 262 int ISD = TLI->InstructionOpcodeToISD(Opcode); 263 assert(ISD && "Invalid opcode"); 264 265 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src); 266 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst); 267 268 // Check for NOOP conversions. 269 if (SrcLT.first == DstLT.first && 270 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 271 272 // Bitcast between types that are legalized to the same type are free. 273 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) 274 return 0; 275 } 276 277 if (Opcode == Instruction::Trunc && 278 TLI->isTruncateFree(SrcLT.second, DstLT.second)) 279 return 0; 280 281 if (Opcode == Instruction::ZExt && 282 TLI->isZExtFree(SrcLT.second, DstLT.second)) 283 return 0; 284 285 // If the cast is marked as legal (or promote) then assume low cost. 286 if (TLI->isOperationLegalOrPromote(ISD, DstLT.second)) 287 return 1; 288 289 // Handle scalar conversions. 290 if (!Src->isVectorTy() && !Dst->isVectorTy()) { 291 292 // Scalar bitcasts are usually free. 293 if (Opcode == Instruction::BitCast) 294 return 0; 295 296 // Just check the op cost. If the operation is legal then assume it costs 1. 297 if (!TLI->isOperationExpand(ISD, DstLT.second)) 298 return 1; 299 300 // Assume that illegal scalar instruction are expensive. 301 return 4; 302 } 303 304 // Check vector-to-vector casts. 305 if (Dst->isVectorTy() && Src->isVectorTy()) { 306 307 // If the cast is between same-sized registers, then the check is simple. 308 if (SrcLT.first == DstLT.first && 309 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 310 311 // Assume that Zext is done using AND. 312 if (Opcode == Instruction::ZExt) 313 return 1; 314 315 // Assume that sext is done using SHL and SRA. 316 if (Opcode == Instruction::SExt) 317 return 2; 318 319 // Just check the op cost. If the operation is legal then assume it costs 320 // 1 and multiply by the type-legalization overhead. 321 if (!TLI->isOperationExpand(ISD, DstLT.second)) 322 return SrcLT.first * 1; 323 } 324 325 // If we are converting vectors and the operation is illegal, or 326 // if the vectors are legalized to different types, estimate the 327 // scalarization costs. 328 unsigned Num = Dst->getVectorNumElements(); 329 unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(), 330 Src->getScalarType()); 331 332 // Return the cost of multiple scalar invocation plus the cost of 333 // inserting and extracting the values. 334 return getScalarizationOverhead(Dst, true, true) + Num * Cost; 335 } 336 337 // We already handled vector-to-vector and scalar-to-scalar conversions. This 338 // is where we handle bitcast between vectors and scalars. We need to assume 339 // that the conversion is scalarized in one way or another. 340 if (Opcode == Instruction::BitCast) 341 // Illegal bitcasts are done by storing and loading from a stack slot. 342 return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) + 343 (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0); 344 345 llvm_unreachable("Unhandled cast"); 346 } 347 348 unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const { 349 // Branches are assumed to be predicted. 350 return 0; 351 } 352 353 unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 354 Type *CondTy) const { 355 int ISD = TLI->InstructionOpcodeToISD(Opcode); 356 assert(ISD && "Invalid opcode"); 357 358 // Selects on vectors are actually vector selects. 359 if (ISD == ISD::SELECT) { 360 assert(CondTy && "CondTy must exist"); 361 if (CondTy->isVectorTy()) 362 ISD = ISD::VSELECT; 363 } 364 365 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); 366 367 if (!TLI->isOperationExpand(ISD, LT.second)) { 368 // The operation is legal. Assume it costs 1. Multiply 369 // by the type-legalization overhead. 370 return LT.first * 1; 371 } 372 373 // Otherwise, assume that the cast is scalarized. 374 if (ValTy->isVectorTy()) { 375 unsigned Num = ValTy->getVectorNumElements(); 376 if (CondTy) 377 CondTy = CondTy->getScalarType(); 378 unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 379 CondTy); 380 381 // Return the cost of multiple scalar invocation plus the cost of inserting 382 // and extracting the values. 383 return getScalarizationOverhead(ValTy, true, false) + Num * Cost; 384 } 385 386 // Unknown scalar opcode. 387 return 1; 388 } 389 390 unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val, 391 unsigned Index) const { 392 return 1; 393 } 394 395 unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src, 396 unsigned Alignment, 397 unsigned AddressSpace) const { 398 assert(!Src->isVoidTy() && "Invalid type"); 399 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); 400 401 // Assume that all loads of legal types cost 1. 402 return LT.first; 403 } 404 405 unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, 406 ArrayRef<Type *> Tys) const { 407 unsigned ISD = 0; 408 switch (IID) { 409 default: { 410 // Assume that we need to scalarize this intrinsic. 411 unsigned ScalarizationCost = 0; 412 unsigned ScalarCalls = 1; 413 if (RetTy->isVectorTy()) { 414 ScalarizationCost = getScalarizationOverhead(RetTy, true, false); 415 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 416 } 417 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { 418 if (Tys[i]->isVectorTy()) { 419 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); 420 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 421 } 422 } 423 424 return ScalarCalls + ScalarizationCost; 425 } 426 // Look for intrinsics that can be lowered directly or turned into a scalar 427 // intrinsic call. 428 case Intrinsic::sqrt: ISD = ISD::FSQRT; break; 429 case Intrinsic::sin: ISD = ISD::FSIN; break; 430 case Intrinsic::cos: ISD = ISD::FCOS; break; 431 case Intrinsic::exp: ISD = ISD::FEXP; break; 432 case Intrinsic::exp2: ISD = ISD::FEXP2; break; 433 case Intrinsic::log: ISD = ISD::FLOG; break; 434 case Intrinsic::log10: ISD = ISD::FLOG10; break; 435 case Intrinsic::log2: ISD = ISD::FLOG2; break; 436 case Intrinsic::fabs: ISD = ISD::FABS; break; 437 case Intrinsic::floor: ISD = ISD::FFLOOR; break; 438 case Intrinsic::ceil: ISD = ISD::FCEIL; break; 439 case Intrinsic::trunc: ISD = ISD::FTRUNC; break; 440 case Intrinsic::rint: ISD = ISD::FRINT; break; 441 case Intrinsic::pow: ISD = ISD::FPOW; break; 442 case Intrinsic::fma: ISD = ISD::FMA; break; 443 case Intrinsic::fmuladd: ISD = ISD::FMA; break; // FIXME: mul + add? 444 } 445 446 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy); 447 448 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 449 // The operation is legal. Assume it costs 1. 450 // If the type is split to multiple registers, assume that thre is some 451 // overhead to this. 452 // TODO: Once we have extract/insert subvector cost we need to use them. 453 if (LT.first > 1) 454 return LT.first * 2; 455 return LT.first * 1; 456 } 457 458 if (!TLI->isOperationExpand(ISD, LT.second)) { 459 // If the operation is custom lowered then assume 460 // thare the code is twice as expensive. 461 return LT.first * 2; 462 } 463 464 // Else, assume that we need to scalarize this intrinsic. For math builtins 465 // this will emit a costly libcall, adding call overhead and spills. Make it 466 // very expensive. 467 if (RetTy->isVectorTy()) { 468 unsigned Num = RetTy->getVectorNumElements(); 469 unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(), 470 Tys); 471 return 10 * Cost * Num; 472 } 473 474 // This is going to be turned into a library call, make it expensive. 475 return 10; 476 } 477 478 unsigned BasicTTI::getNumberOfParts(Type *Tp) const { 479 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp); 480 return LT.first; 481 } 482 483 unsigned BasicTTI::getAddressComputationCost(Type *Ty) const { 484 return 0; 485 } 486