1 //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file provides the implementation of a basic TargetTransformInfo pass 11 /// predicated on the target abstractions present in the target independent 12 /// code generator. It uses these (primarily TargetLowering) to model as much 13 /// of the TTI query interface as possible. It is included by most targets so 14 /// that they can specialize only a small subset of the query space. 15 /// 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "basictti" 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Target/TargetLowering.h" 22 #include <utility> 23 24 using namespace llvm; 25 26 namespace { 27 28 class BasicTTI LLVM_FINAL : public ImmutablePass, public TargetTransformInfo { 29 const TargetMachine *TM; 30 31 /// Estimate the overhead of scalarizing an instruction. Insert and Extract 32 /// are set if the result needs to be inserted and/or extracted from vectors. 33 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; 34 35 const TargetLoweringBase *getTLI() const { return TM->getTargetLowering(); } 36 37 public: 38 BasicTTI() : ImmutablePass(ID), TM(0) { 39 llvm_unreachable("This pass cannot be directly constructed"); 40 } 41 42 BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) { 43 initializeBasicTTIPass(*PassRegistry::getPassRegistry()); 44 } 45 46 virtual void initializePass() LLVM_OVERRIDE { 47 pushTTIStack(this); 48 } 49 50 virtual void finalizePass() { 51 popTTIStack(); 52 } 53 54 virtual void getAnalysisUsage(AnalysisUsage &AU) const LLVM_OVERRIDE { 55 TargetTransformInfo::getAnalysisUsage(AU); 56 } 57 58 /// Pass identification. 59 static char ID; 60 61 /// Provide necessary pointer adjustments for the two base classes. 62 virtual void *getAdjustedAnalysisPointer(const void *ID) LLVM_OVERRIDE { 63 if (ID == &TargetTransformInfo::ID) 64 return (TargetTransformInfo*)this; 65 return this; 66 } 67 68 virtual bool hasBranchDivergence() const LLVM_OVERRIDE; 69 70 /// \name Scalar TTI Implementations 71 /// @{ 72 73 virtual bool isLegalAddImmediate(int64_t imm) const LLVM_OVERRIDE; 74 virtual bool isLegalICmpImmediate(int64_t imm) const LLVM_OVERRIDE; 75 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 76 int64_t BaseOffset, bool HasBaseReg, 77 int64_t Scale) const LLVM_OVERRIDE; 78 virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 79 int64_t BaseOffset, bool HasBaseReg, 80 int64_t Scale) const LLVM_OVERRIDE; 81 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const LLVM_OVERRIDE; 82 virtual bool isTypeLegal(Type *Ty) const LLVM_OVERRIDE; 83 virtual unsigned getJumpBufAlignment() const LLVM_OVERRIDE; 84 virtual unsigned getJumpBufSize() const LLVM_OVERRIDE; 85 virtual bool shouldBuildLookupTables() const LLVM_OVERRIDE; 86 virtual bool haveFastSqrt(Type *Ty) const LLVM_OVERRIDE; 87 virtual void getUnrollingPreferences( 88 Loop *L, UnrollingPreferences &UP) const LLVM_OVERRIDE; 89 90 /// @} 91 92 /// \name Vector TTI Implementations 93 /// @{ 94 95 virtual unsigned getNumberOfRegisters(bool Vector) const LLVM_OVERRIDE; 96 virtual unsigned getMaximumUnrollFactor() const LLVM_OVERRIDE; 97 virtual unsigned getRegisterBitWidth(bool Vector) const LLVM_OVERRIDE; 98 virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, 99 OperandValueKind, 100 OperandValueKind) const LLVM_OVERRIDE; 101 virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, 102 int Index, Type *SubTp) const LLVM_OVERRIDE; 103 virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 104 Type *Src) const LLVM_OVERRIDE; 105 virtual unsigned getCFInstrCost(unsigned Opcode) const LLVM_OVERRIDE; 106 virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 107 Type *CondTy) const LLVM_OVERRIDE; 108 virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 109 unsigned Index) const LLVM_OVERRIDE; 110 virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, 111 unsigned Alignment, 112 unsigned AddressSpace) const LLVM_OVERRIDE; 113 virtual unsigned getIntrinsicInstrCost( 114 Intrinsic::ID, Type *RetTy, ArrayRef<Type*> Tys) const LLVM_OVERRIDE; 115 virtual unsigned getNumberOfParts(Type *Tp) const LLVM_OVERRIDE; 116 virtual unsigned getAddressComputationCost( 117 Type *Ty, bool IsComplex) const LLVM_OVERRIDE; 118 virtual unsigned getReductionCost(unsigned Opcode, Type *Ty, 119 bool IsPairwise) const LLVM_OVERRIDE; 120 121 /// @} 122 }; 123 124 } 125 126 INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti", 127 "Target independent code generator's TTI", true, true, false) 128 char BasicTTI::ID = 0; 129 130 ImmutablePass * 131 llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) { 132 return new BasicTTI(TM); 133 } 134 135 bool BasicTTI::hasBranchDivergence() const { return false; } 136 137 bool BasicTTI::isLegalAddImmediate(int64_t imm) const { 138 return getTLI()->isLegalAddImmediate(imm); 139 } 140 141 bool BasicTTI::isLegalICmpImmediate(int64_t imm) const { 142 return getTLI()->isLegalICmpImmediate(imm); 143 } 144 145 bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 146 int64_t BaseOffset, bool HasBaseReg, 147 int64_t Scale) const { 148 TargetLoweringBase::AddrMode AM; 149 AM.BaseGV = BaseGV; 150 AM.BaseOffs = BaseOffset; 151 AM.HasBaseReg = HasBaseReg; 152 AM.Scale = Scale; 153 return getTLI()->isLegalAddressingMode(AM, Ty); 154 } 155 156 int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 157 int64_t BaseOffset, bool HasBaseReg, 158 int64_t Scale) const { 159 TargetLoweringBase::AddrMode AM; 160 AM.BaseGV = BaseGV; 161 AM.BaseOffs = BaseOffset; 162 AM.HasBaseReg = HasBaseReg; 163 AM.Scale = Scale; 164 return getTLI()->getScalingFactorCost(AM, Ty); 165 } 166 167 bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const { 168 return getTLI()->isTruncateFree(Ty1, Ty2); 169 } 170 171 bool BasicTTI::isTypeLegal(Type *Ty) const { 172 EVT T = getTLI()->getValueType(Ty); 173 return getTLI()->isTypeLegal(T); 174 } 175 176 unsigned BasicTTI::getJumpBufAlignment() const { 177 return getTLI()->getJumpBufAlignment(); 178 } 179 180 unsigned BasicTTI::getJumpBufSize() const { 181 return getTLI()->getJumpBufSize(); 182 } 183 184 bool BasicTTI::shouldBuildLookupTables() const { 185 const TargetLoweringBase *TLI = getTLI(); 186 return TLI->supportJumpTables() && 187 (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 188 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 189 } 190 191 bool BasicTTI::haveFastSqrt(Type *Ty) const { 192 const TargetLoweringBase *TLI = getTLI(); 193 EVT VT = TLI->getValueType(Ty); 194 return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT); 195 } 196 197 void BasicTTI::getUnrollingPreferences(Loop *, UnrollingPreferences &) const { } 198 199 //===----------------------------------------------------------------------===// 200 // 201 // Calls used by the vectorizers. 202 // 203 //===----------------------------------------------------------------------===// 204 205 unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert, 206 bool Extract) const { 207 assert (Ty->isVectorTy() && "Can only scalarize vectors"); 208 unsigned Cost = 0; 209 210 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 211 if (Insert) 212 Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 213 if (Extract) 214 Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i); 215 } 216 217 return Cost; 218 } 219 220 unsigned BasicTTI::getNumberOfRegisters(bool Vector) const { 221 return 1; 222 } 223 224 unsigned BasicTTI::getRegisterBitWidth(bool Vector) const { 225 return 32; 226 } 227 228 unsigned BasicTTI::getMaximumUnrollFactor() const { 229 return 1; 230 } 231 232 unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 233 OperandValueKind, 234 OperandValueKind) const { 235 // Check if any of the operands are vector operands. 236 const TargetLoweringBase *TLI = getTLI(); 237 int ISD = TLI->InstructionOpcodeToISD(Opcode); 238 assert(ISD && "Invalid opcode"); 239 240 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); 241 242 bool IsFloat = Ty->getScalarType()->isFloatingPointTy(); 243 // Assume that floating point arithmetic operations cost twice as much as 244 // integer operations. 245 unsigned OpCost = (IsFloat ? 2 : 1); 246 247 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 248 // The operation is legal. Assume it costs 1. 249 // If the type is split to multiple registers, assume that there is some 250 // overhead to this. 251 // TODO: Once we have extract/insert subvector cost we need to use them. 252 if (LT.first > 1) 253 return LT.first * 2 * OpCost; 254 return LT.first * 1 * OpCost; 255 } 256 257 if (!TLI->isOperationExpand(ISD, LT.second)) { 258 // If the operation is custom lowered then assume 259 // thare the code is twice as expensive. 260 return LT.first * 2 * OpCost; 261 } 262 263 // Else, assume that we need to scalarize this op. 264 if (Ty->isVectorTy()) { 265 unsigned Num = Ty->getVectorNumElements(); 266 unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType()); 267 // return the cost of multiple scalar invocation plus the cost of inserting 268 // and extracting the values. 269 return getScalarizationOverhead(Ty, true, true) + Num * Cost; 270 } 271 272 // We don't know anything about this scalar instruction. 273 return OpCost; 274 } 275 276 unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, 277 Type *SubTp) const { 278 return 1; 279 } 280 281 unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst, 282 Type *Src) const { 283 const TargetLoweringBase *TLI = getTLI(); 284 int ISD = TLI->InstructionOpcodeToISD(Opcode); 285 assert(ISD && "Invalid opcode"); 286 287 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src); 288 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst); 289 290 // Check for NOOP conversions. 291 if (SrcLT.first == DstLT.first && 292 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 293 294 // Bitcast between types that are legalized to the same type are free. 295 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) 296 return 0; 297 } 298 299 if (Opcode == Instruction::Trunc && 300 TLI->isTruncateFree(SrcLT.second, DstLT.second)) 301 return 0; 302 303 if (Opcode == Instruction::ZExt && 304 TLI->isZExtFree(SrcLT.second, DstLT.second)) 305 return 0; 306 307 // If the cast is marked as legal (or promote) then assume low cost. 308 if (TLI->isOperationLegalOrPromote(ISD, DstLT.second)) 309 return 1; 310 311 // Handle scalar conversions. 312 if (!Src->isVectorTy() && !Dst->isVectorTy()) { 313 314 // Scalar bitcasts are usually free. 315 if (Opcode == Instruction::BitCast) 316 return 0; 317 318 // Just check the op cost. If the operation is legal then assume it costs 1. 319 if (!TLI->isOperationExpand(ISD, DstLT.second)) 320 return 1; 321 322 // Assume that illegal scalar instruction are expensive. 323 return 4; 324 } 325 326 // Check vector-to-vector casts. 327 if (Dst->isVectorTy() && Src->isVectorTy()) { 328 329 // If the cast is between same-sized registers, then the check is simple. 330 if (SrcLT.first == DstLT.first && 331 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 332 333 // Assume that Zext is done using AND. 334 if (Opcode == Instruction::ZExt) 335 return 1; 336 337 // Assume that sext is done using SHL and SRA. 338 if (Opcode == Instruction::SExt) 339 return 2; 340 341 // Just check the op cost. If the operation is legal then assume it costs 342 // 1 and multiply by the type-legalization overhead. 343 if (!TLI->isOperationExpand(ISD, DstLT.second)) 344 return SrcLT.first * 1; 345 } 346 347 // If we are converting vectors and the operation is illegal, or 348 // if the vectors are legalized to different types, estimate the 349 // scalarization costs. 350 unsigned Num = Dst->getVectorNumElements(); 351 unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(), 352 Src->getScalarType()); 353 354 // Return the cost of multiple scalar invocation plus the cost of 355 // inserting and extracting the values. 356 return getScalarizationOverhead(Dst, true, true) + Num * Cost; 357 } 358 359 // We already handled vector-to-vector and scalar-to-scalar conversions. This 360 // is where we handle bitcast between vectors and scalars. We need to assume 361 // that the conversion is scalarized in one way or another. 362 if (Opcode == Instruction::BitCast) 363 // Illegal bitcasts are done by storing and loading from a stack slot. 364 return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) + 365 (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0); 366 367 llvm_unreachable("Unhandled cast"); 368 } 369 370 unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const { 371 // Branches are assumed to be predicted. 372 return 0; 373 } 374 375 unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 376 Type *CondTy) const { 377 const TargetLoweringBase *TLI = getTLI(); 378 int ISD = TLI->InstructionOpcodeToISD(Opcode); 379 assert(ISD && "Invalid opcode"); 380 381 // Selects on vectors are actually vector selects. 382 if (ISD == ISD::SELECT) { 383 assert(CondTy && "CondTy must exist"); 384 if (CondTy->isVectorTy()) 385 ISD = ISD::VSELECT; 386 } 387 388 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); 389 390 if (!TLI->isOperationExpand(ISD, LT.second)) { 391 // The operation is legal. Assume it costs 1. Multiply 392 // by the type-legalization overhead. 393 return LT.first * 1; 394 } 395 396 // Otherwise, assume that the cast is scalarized. 397 if (ValTy->isVectorTy()) { 398 unsigned Num = ValTy->getVectorNumElements(); 399 if (CondTy) 400 CondTy = CondTy->getScalarType(); 401 unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 402 CondTy); 403 404 // Return the cost of multiple scalar invocation plus the cost of inserting 405 // and extracting the values. 406 return getScalarizationOverhead(ValTy, true, false) + Num * Cost; 407 } 408 409 // Unknown scalar opcode. 410 return 1; 411 } 412 413 unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val, 414 unsigned Index) const { 415 return 1; 416 } 417 418 unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src, 419 unsigned Alignment, 420 unsigned AddressSpace) const { 421 assert(!Src->isVoidTy() && "Invalid type"); 422 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src); 423 424 // Assume that all loads of legal types cost 1. 425 return LT.first; 426 } 427 428 unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, 429 ArrayRef<Type *> Tys) const { 430 unsigned ISD = 0; 431 switch (IID) { 432 default: { 433 // Assume that we need to scalarize this intrinsic. 434 unsigned ScalarizationCost = 0; 435 unsigned ScalarCalls = 1; 436 if (RetTy->isVectorTy()) { 437 ScalarizationCost = getScalarizationOverhead(RetTy, true, false); 438 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 439 } 440 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { 441 if (Tys[i]->isVectorTy()) { 442 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); 443 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 444 } 445 } 446 447 return ScalarCalls + ScalarizationCost; 448 } 449 // Look for intrinsics that can be lowered directly or turned into a scalar 450 // intrinsic call. 451 case Intrinsic::sqrt: ISD = ISD::FSQRT; break; 452 case Intrinsic::sin: ISD = ISD::FSIN; break; 453 case Intrinsic::cos: ISD = ISD::FCOS; break; 454 case Intrinsic::exp: ISD = ISD::FEXP; break; 455 case Intrinsic::exp2: ISD = ISD::FEXP2; break; 456 case Intrinsic::log: ISD = ISD::FLOG; break; 457 case Intrinsic::log10: ISD = ISD::FLOG10; break; 458 case Intrinsic::log2: ISD = ISD::FLOG2; break; 459 case Intrinsic::fabs: ISD = ISD::FABS; break; 460 case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break; 461 case Intrinsic::floor: ISD = ISD::FFLOOR; break; 462 case Intrinsic::ceil: ISD = ISD::FCEIL; break; 463 case Intrinsic::trunc: ISD = ISD::FTRUNC; break; 464 case Intrinsic::nearbyint: 465 ISD = ISD::FNEARBYINT; break; 466 case Intrinsic::rint: ISD = ISD::FRINT; break; 467 case Intrinsic::round: ISD = ISD::FROUND; break; 468 case Intrinsic::pow: ISD = ISD::FPOW; break; 469 case Intrinsic::fma: ISD = ISD::FMA; break; 470 case Intrinsic::fmuladd: ISD = ISD::FMA; break; // FIXME: mul + add? 471 case Intrinsic::lifetime_start: 472 case Intrinsic::lifetime_end: 473 return 0; 474 } 475 476 const TargetLoweringBase *TLI = getTLI(); 477 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy); 478 479 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 480 // The operation is legal. Assume it costs 1. 481 // If the type is split to multiple registers, assume that thre is some 482 // overhead to this. 483 // TODO: Once we have extract/insert subvector cost we need to use them. 484 if (LT.first > 1) 485 return LT.first * 2; 486 return LT.first * 1; 487 } 488 489 if (!TLI->isOperationExpand(ISD, LT.second)) { 490 // If the operation is custom lowered then assume 491 // thare the code is twice as expensive. 492 return LT.first * 2; 493 } 494 495 // Else, assume that we need to scalarize this intrinsic. For math builtins 496 // this will emit a costly libcall, adding call overhead and spills. Make it 497 // very expensive. 498 if (RetTy->isVectorTy()) { 499 unsigned Num = RetTy->getVectorNumElements(); 500 unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(), 501 Tys); 502 return 10 * Cost * Num; 503 } 504 505 // This is going to be turned into a library call, make it expensive. 506 return 10; 507 } 508 509 unsigned BasicTTI::getNumberOfParts(Type *Tp) const { 510 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp); 511 return LT.first; 512 } 513 514 unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const { 515 return 0; 516 } 517 518 unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty, 519 bool IsPairwise) const { 520 assert(Ty->isVectorTy() && "Expect a vector type"); 521 unsigned NumVecElts = Ty->getVectorNumElements(); 522 unsigned NumReduxLevels = Log2_32(NumVecElts); 523 unsigned ArithCost = NumReduxLevels * 524 TopTTI->getArithmeticInstrCost(Opcode, Ty); 525 // Assume the pairwise shuffles add a cost. 526 unsigned ShuffleCost = 527 NumReduxLevels * (IsPairwise + 1) * 528 TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty); 529 return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true); 530 } 531