1 //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file provides the implementation of a basic TargetTransformInfo pass 11 /// predicated on the target abstractions present in the target independent 12 /// code generator. It uses these (primarily TargetLowering) to model as much 13 /// of the TTI query interface as possible. It is included by most targets so 14 /// that they can specialize only a small subset of the query space. 15 /// 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "basictti" 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Target/TargetLowering.h" 22 #include <utility> 23 24 using namespace llvm; 25 26 namespace { 27 28 class BasicTTI : public ImmutablePass, public TargetTransformInfo { 29 const TargetLowering *TLI; 30 31 /// Estimate the overhead of scalarizing an instruction. Insert and Extract 32 /// are set if the result needs to be inserted and/or extracted from vectors. 33 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; 34 35 public: 36 BasicTTI() : ImmutablePass(ID), TLI(0) { 37 llvm_unreachable("This pass cannot be directly constructed"); 38 } 39 40 BasicTTI(const TargetLowering *TLI) : ImmutablePass(ID), TLI(TLI) { 41 initializeBasicTTIPass(*PassRegistry::getPassRegistry()); 42 } 43 44 virtual void initializePass() { 45 pushTTIStack(this); 46 } 47 48 virtual void finalizePass() { 49 popTTIStack(); 50 } 51 52 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 53 TargetTransformInfo::getAnalysisUsage(AU); 54 } 55 56 /// Pass identification. 57 static char ID; 58 59 /// Provide necessary pointer adjustments for the two base classes. 60 virtual void *getAdjustedAnalysisPointer(const void *ID) { 61 if (ID == &TargetTransformInfo::ID) 62 return (TargetTransformInfo*)this; 63 return this; 64 } 65 66 /// \name Scalar TTI Implementations 67 /// @{ 68 69 virtual bool isLegalAddImmediate(int64_t imm) const; 70 virtual bool isLegalICmpImmediate(int64_t imm) const; 71 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 72 int64_t BaseOffset, bool HasBaseReg, 73 int64_t Scale) const; 74 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const; 75 virtual bool isTypeLegal(Type *Ty) const; 76 virtual unsigned getJumpBufAlignment() const; 77 virtual unsigned getJumpBufSize() const; 78 virtual bool shouldBuildLookupTables() const; 79 80 /// @} 81 82 /// \name Vector TTI Implementations 83 /// @{ 84 85 virtual unsigned getNumberOfRegisters(bool Vector) const; 86 virtual unsigned getMaximumUnrollFactor() const; 87 virtual unsigned getRegisterBitWidth(bool Vector) const; 88 virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const; 89 virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, 90 int Index, Type *SubTp) const; 91 virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 92 Type *Src) const; 93 virtual unsigned getCFInstrCost(unsigned Opcode) const; 94 virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 95 Type *CondTy) const; 96 virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 97 unsigned Index) const; 98 virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, 99 unsigned Alignment, 100 unsigned AddressSpace) const; 101 virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, 102 ArrayRef<Type*> Tys) const; 103 virtual unsigned getNumberOfParts(Type *Tp) const; 104 105 /// @} 106 }; 107 108 } 109 110 INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti", 111 "Target independent code generator's TTI", true, true, false) 112 char BasicTTI::ID = 0; 113 114 ImmutablePass * 115 llvm::createBasicTargetTransformInfoPass(const TargetLowering *TLI) { 116 return new BasicTTI(TLI); 117 } 118 119 120 bool BasicTTI::isLegalAddImmediate(int64_t imm) const { 121 return TLI->isLegalAddImmediate(imm); 122 } 123 124 bool BasicTTI::isLegalICmpImmediate(int64_t imm) const { 125 return TLI->isLegalICmpImmediate(imm); 126 } 127 128 bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 129 int64_t BaseOffset, bool HasBaseReg, 130 int64_t Scale) const { 131 TargetLowering::AddrMode AM; 132 AM.BaseGV = BaseGV; 133 AM.BaseOffs = BaseOffset; 134 AM.HasBaseReg = HasBaseReg; 135 AM.Scale = Scale; 136 return TLI->isLegalAddressingMode(AM, Ty); 137 } 138 139 bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const { 140 return TLI->isTruncateFree(Ty1, Ty2); 141 } 142 143 bool BasicTTI::isTypeLegal(Type *Ty) const { 144 EVT T = TLI->getValueType(Ty); 145 return TLI->isTypeLegal(T); 146 } 147 148 unsigned BasicTTI::getJumpBufAlignment() const { 149 return TLI->getJumpBufAlignment(); 150 } 151 152 unsigned BasicTTI::getJumpBufSize() const { 153 return TLI->getJumpBufSize(); 154 } 155 156 bool BasicTTI::shouldBuildLookupTables() const { 157 return TLI->supportJumpTables() && 158 (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 159 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 160 } 161 162 //===----------------------------------------------------------------------===// 163 // 164 // Calls used by the vectorizers. 165 // 166 //===----------------------------------------------------------------------===// 167 168 unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert, 169 bool Extract) const { 170 assert (Ty->isVectorTy() && "Can only scalarize vectors"); 171 unsigned Cost = 0; 172 173 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 174 if (Insert) 175 Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 176 if (Extract) 177 Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i); 178 } 179 180 return Cost; 181 } 182 183 unsigned BasicTTI::getNumberOfRegisters(bool Vector) const { 184 return 1; 185 } 186 187 unsigned BasicTTI::getRegisterBitWidth(bool Vector) const { 188 return 32; 189 } 190 191 unsigned BasicTTI::getMaximumUnrollFactor() const { 192 return 1; 193 } 194 195 unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const { 196 // Check if any of the operands are vector operands. 197 int ISD = TLI->InstructionOpcodeToISD(Opcode); 198 assert(ISD && "Invalid opcode"); 199 200 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); 201 202 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 203 // The operation is legal. Assume it costs 1. 204 // If the type is split to multiple registers, assume that thre is some 205 // overhead to this. 206 // TODO: Once we have extract/insert subvector cost we need to use them. 207 if (LT.first > 1) 208 return LT.first * 2; 209 return LT.first * 1; 210 } 211 212 if (!TLI->isOperationExpand(ISD, LT.second)) { 213 // If the operation is custom lowered then assume 214 // thare the code is twice as expensive. 215 return LT.first * 2; 216 } 217 218 // Else, assume that we need to scalarize this op. 219 if (Ty->isVectorTy()) { 220 unsigned Num = Ty->getVectorNumElements(); 221 unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType()); 222 // return the cost of multiple scalar invocation plus the cost of inserting 223 // and extracting the values. 224 return getScalarizationOverhead(Ty, true, true) + Num * Cost; 225 } 226 227 // We don't know anything about this scalar instruction. 228 return 1; 229 } 230 231 unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, 232 Type *SubTp) const { 233 return 1; 234 } 235 236 unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst, 237 Type *Src) const { 238 int ISD = TLI->InstructionOpcodeToISD(Opcode); 239 assert(ISD && "Invalid opcode"); 240 241 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src); 242 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst); 243 244 // Handle scalar conversions. 245 if (!Src->isVectorTy() && !Dst->isVectorTy()) { 246 247 // Scalar bitcasts are usually free. 248 if (Opcode == Instruction::BitCast) 249 return 0; 250 251 if (Opcode == Instruction::Trunc && 252 TLI->isTruncateFree(SrcLT.second, DstLT.second)) 253 return 0; 254 255 if (Opcode == Instruction::ZExt && 256 TLI->isZExtFree(SrcLT.second, DstLT.second)) 257 return 0; 258 259 // Just check the op cost. If the operation is legal then assume it costs 1. 260 if (!TLI->isOperationExpand(ISD, DstLT.second)) 261 return 1; 262 263 // Assume that illegal scalar instruction are expensive. 264 return 4; 265 } 266 267 // Check vector-to-vector casts. 268 if (Dst->isVectorTy() && Src->isVectorTy()) { 269 270 // If the cast is between same-sized registers, then the check is simple. 271 if (SrcLT.first == DstLT.first && 272 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 273 274 // Bitcast between types that are legalized to the same type are free. 275 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) 276 return 0; 277 278 // Assume that Zext is done using AND. 279 if (Opcode == Instruction::ZExt) 280 return 1; 281 282 // Assume that sext is done using SHL and SRA. 283 if (Opcode == Instruction::SExt) 284 return 2; 285 286 // Just check the op cost. If the operation is legal then assume it costs 287 // 1 and multiply by the type-legalization overhead. 288 if (!TLI->isOperationExpand(ISD, DstLT.second)) 289 return SrcLT.first * 1; 290 } 291 292 // If we are converting vectors and the operation is illegal, or 293 // if the vectors are legalized to different types, estimate the 294 // scalarization costs. 295 unsigned Num = Dst->getVectorNumElements(); 296 unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(), 297 Src->getScalarType()); 298 299 // Return the cost of multiple scalar invocation plus the cost of 300 // inserting and extracting the values. 301 return getScalarizationOverhead(Dst, true, true) + Num * Cost; 302 } 303 304 // We already handled vector-to-vector and scalar-to-scalar conversions. This 305 // is where we handle bitcast between vectors and scalars. We need to assume 306 // that the conversion is scalarized in one way or another. 307 if (Opcode == Instruction::BitCast) 308 // Illegal bitcasts are done by storing and loading from a stack slot. 309 return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) + 310 (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0); 311 312 llvm_unreachable("Unhandled cast"); 313 } 314 315 unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const { 316 // Branches are assumed to be predicted. 317 return 0; 318 } 319 320 unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 321 Type *CondTy) const { 322 int ISD = TLI->InstructionOpcodeToISD(Opcode); 323 assert(ISD && "Invalid opcode"); 324 325 // Selects on vectors are actually vector selects. 326 if (ISD == ISD::SELECT) { 327 assert(CondTy && "CondTy must exist"); 328 if (CondTy->isVectorTy()) 329 ISD = ISD::VSELECT; 330 } 331 332 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); 333 334 if (!TLI->isOperationExpand(ISD, LT.second)) { 335 // The operation is legal. Assume it costs 1. Multiply 336 // by the type-legalization overhead. 337 return LT.first * 1; 338 } 339 340 // Otherwise, assume that the cast is scalarized. 341 if (ValTy->isVectorTy()) { 342 unsigned Num = ValTy->getVectorNumElements(); 343 if (CondTy) 344 CondTy = CondTy->getScalarType(); 345 unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 346 CondTy); 347 348 // Return the cost of multiple scalar invocation plus the cost of inserting 349 // and extracting the values. 350 return getScalarizationOverhead(ValTy, true, false) + Num * Cost; 351 } 352 353 // Unknown scalar opcode. 354 return 1; 355 } 356 357 unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val, 358 unsigned Index) const { 359 return 1; 360 } 361 362 unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src, 363 unsigned Alignment, 364 unsigned AddressSpace) const { 365 assert(!Src->isVoidTy() && "Invalid type"); 366 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); 367 368 // Assume that all loads of legal types cost 1. 369 return LT.first; 370 } 371 372 unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, 373 ArrayRef<Type *> Tys) const { 374 // assume that we need to scalarize this intrinsic. 375 unsigned ScalarizationCost = 0; 376 unsigned ScalarCalls = 1; 377 if (RetTy->isVectorTy()) { 378 ScalarizationCost = getScalarizationOverhead(RetTy, true, false); 379 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 380 } 381 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { 382 if (Tys[i]->isVectorTy()) { 383 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); 384 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 385 } 386 } 387 return ScalarCalls + ScalarizationCost; 388 } 389 390 unsigned BasicTTI::getNumberOfParts(Type *Tp) const { 391 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp); 392 return LT.first; 393 } 394