1 //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file provides the implementation of a basic TargetTransformInfo pass 11 /// predicated on the target abstractions present in the target independent 12 /// code generator. It uses these (primarily TargetLowering) to model as much 13 /// of the TTI query interface as possible. It is included by most targets so 14 /// that they can specialize only a small subset of the query space. 15 /// 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "basictti" 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Target/TargetLowering.h" 22 #include <utility> 23 24 using namespace llvm; 25 26 namespace { 27 28 class BasicTTI : public ImmutablePass, public TargetTransformInfo { 29 const TargetLowering *TLI; 30 31 /// Estimate the overhead of scalarizing an instruction. Insert and Extract 32 /// are set if the result needs to be inserted and/or extracted from vectors. 33 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; 34 35 public: 36 BasicTTI() : ImmutablePass(ID), TLI(0) { 37 llvm_unreachable("This pass cannot be directly constructed"); 38 } 39 40 BasicTTI(const TargetLowering *TLI) : ImmutablePass(ID), TLI(TLI) { 41 initializeBasicTTIPass(*PassRegistry::getPassRegistry()); 42 } 43 44 virtual void initializePass() { 45 pushTTIStack(this); 46 } 47 48 virtual void finalizePass() { 49 popTTIStack(); 50 } 51 52 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 53 TargetTransformInfo::getAnalysisUsage(AU); 54 } 55 56 /// Pass identification. 57 static char ID; 58 59 /// Provide necessary pointer adjustments for the two base classes. 60 virtual void *getAdjustedAnalysisPointer(const void *ID) { 61 if (ID == &TargetTransformInfo::ID) 62 return (TargetTransformInfo*)this; 63 return this; 64 } 65 66 /// \name Scalar TTI Implementations 67 /// @{ 68 69 virtual bool isLegalAddImmediate(int64_t imm) const; 70 virtual bool isLegalICmpImmediate(int64_t imm) const; 71 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 72 int64_t BaseOffset, bool HasBaseReg, 73 int64_t Scale) const; 74 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const; 75 virtual bool isTypeLegal(Type *Ty) const; 76 virtual unsigned getJumpBufAlignment() const; 77 virtual unsigned getJumpBufSize() const; 78 virtual bool shouldBuildLookupTables() const; 79 80 /// @} 81 82 /// \name Vector TTI Implementations 83 /// @{ 84 85 virtual unsigned getNumberOfRegisters(bool Vector) const; 86 virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const; 87 virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, 88 int Index, Type *SubTp) const; 89 virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 90 Type *Src) const; 91 virtual unsigned getCFInstrCost(unsigned Opcode) const; 92 virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 93 Type *CondTy) const; 94 virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 95 unsigned Index) const; 96 virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, 97 unsigned Alignment, 98 unsigned AddressSpace) const; 99 virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, 100 ArrayRef<Type*> Tys) const; 101 virtual unsigned getNumberOfParts(Type *Tp) const; 102 103 /// @} 104 }; 105 106 } 107 108 INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti", 109 "Target independent code generator's TTI", true, true, false) 110 char BasicTTI::ID = 0; 111 112 ImmutablePass * 113 llvm::createBasicTargetTransformInfoPass(const TargetLowering *TLI) { 114 return new BasicTTI(TLI); 115 } 116 117 118 bool BasicTTI::isLegalAddImmediate(int64_t imm) const { 119 return TLI->isLegalAddImmediate(imm); 120 } 121 122 bool BasicTTI::isLegalICmpImmediate(int64_t imm) const { 123 return TLI->isLegalICmpImmediate(imm); 124 } 125 126 bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 127 int64_t BaseOffset, bool HasBaseReg, 128 int64_t Scale) const { 129 TargetLowering::AddrMode AM; 130 AM.BaseGV = BaseGV; 131 AM.BaseOffs = BaseOffset; 132 AM.HasBaseReg = HasBaseReg; 133 AM.Scale = Scale; 134 return TLI->isLegalAddressingMode(AM, Ty); 135 } 136 137 bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const { 138 return TLI->isTruncateFree(Ty1, Ty2); 139 } 140 141 bool BasicTTI::isTypeLegal(Type *Ty) const { 142 EVT T = TLI->getValueType(Ty); 143 return TLI->isTypeLegal(T); 144 } 145 146 unsigned BasicTTI::getJumpBufAlignment() const { 147 return TLI->getJumpBufAlignment(); 148 } 149 150 unsigned BasicTTI::getJumpBufSize() const { 151 return TLI->getJumpBufSize(); 152 } 153 154 bool BasicTTI::shouldBuildLookupTables() const { 155 return TLI->supportJumpTables() && 156 (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 157 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 158 } 159 160 //===----------------------------------------------------------------------===// 161 // 162 // Calls used by the vectorizers. 163 // 164 //===----------------------------------------------------------------------===// 165 166 unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert, 167 bool Extract) const { 168 assert (Ty->isVectorTy() && "Can only scalarize vectors"); 169 unsigned Cost = 0; 170 171 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 172 if (Insert) 173 Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 174 if (Extract) 175 Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i); 176 } 177 178 return Cost; 179 } 180 181 unsigned BasicTTI::getNumberOfRegisters(bool Vector) const { 182 return 1; 183 } 184 185 unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const { 186 // Check if any of the operands are vector operands. 187 int ISD = TLI->InstructionOpcodeToISD(Opcode); 188 assert(ISD && "Invalid opcode"); 189 190 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); 191 192 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 193 // The operation is legal. Assume it costs 1. 194 // If the type is split to multiple registers, assume that thre is some 195 // overhead to this. 196 // TODO: Once we have extract/insert subvector cost we need to use them. 197 if (LT.first > 1) 198 return LT.first * 2; 199 return LT.first * 1; 200 } 201 202 if (!TLI->isOperationExpand(ISD, LT.second)) { 203 // If the operation is custom lowered then assume 204 // thare the code is twice as expensive. 205 return LT.first * 2; 206 } 207 208 // Else, assume that we need to scalarize this op. 209 if (Ty->isVectorTy()) { 210 unsigned Num = Ty->getVectorNumElements(); 211 unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType()); 212 // return the cost of multiple scalar invocation plus the cost of inserting 213 // and extracting the values. 214 return getScalarizationOverhead(Ty, true, true) + Num * Cost; 215 } 216 217 // We don't know anything about this scalar instruction. 218 return 1; 219 } 220 221 unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, 222 Type *SubTp) const { 223 return 1; 224 } 225 226 unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst, 227 Type *Src) const { 228 int ISD = TLI->InstructionOpcodeToISD(Opcode); 229 assert(ISD && "Invalid opcode"); 230 231 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src); 232 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst); 233 234 // Handle scalar conversions. 235 if (!Src->isVectorTy() && !Dst->isVectorTy()) { 236 237 // Scalar bitcasts are usually free. 238 if (Opcode == Instruction::BitCast) 239 return 0; 240 241 if (Opcode == Instruction::Trunc && 242 TLI->isTruncateFree(SrcLT.second, DstLT.second)) 243 return 0; 244 245 if (Opcode == Instruction::ZExt && 246 TLI->isZExtFree(SrcLT.second, DstLT.second)) 247 return 0; 248 249 // Just check the op cost. If the operation is legal then assume it costs 1. 250 if (!TLI->isOperationExpand(ISD, DstLT.second)) 251 return 1; 252 253 // Assume that illegal scalar instruction are expensive. 254 return 4; 255 } 256 257 // Check vector-to-vector casts. 258 if (Dst->isVectorTy() && Src->isVectorTy()) { 259 260 // If the cast is between same-sized registers, then the check is simple. 261 if (SrcLT.first == DstLT.first && 262 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 263 264 // Bitcast between types that are legalized to the same type are free. 265 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) 266 return 0; 267 268 // Assume that Zext is done using AND. 269 if (Opcode == Instruction::ZExt) 270 return 1; 271 272 // Assume that sext is done using SHL and SRA. 273 if (Opcode == Instruction::SExt) 274 return 2; 275 276 // Just check the op cost. If the operation is legal then assume it costs 277 // 1 and multiply by the type-legalization overhead. 278 if (!TLI->isOperationExpand(ISD, DstLT.second)) 279 return SrcLT.first * 1; 280 } 281 282 // If we are converting vectors and the operation is illegal, or 283 // if the vectors are legalized to different types, estimate the 284 // scalarization costs. 285 unsigned Num = Dst->getVectorNumElements(); 286 unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(), 287 Src->getScalarType()); 288 289 // Return the cost of multiple scalar invocation plus the cost of 290 // inserting and extracting the values. 291 return getScalarizationOverhead(Dst, true, true) + Num * Cost; 292 } 293 294 // We already handled vector-to-vector and scalar-to-scalar conversions. This 295 // is where we handle bitcast between vectors and scalars. We need to assume 296 // that the conversion is scalarized in one way or another. 297 if (Opcode == Instruction::BitCast) 298 // Illegal bitcasts are done by storing and loading from a stack slot. 299 return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) + 300 (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0); 301 302 llvm_unreachable("Unhandled cast"); 303 } 304 305 unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const { 306 // Branches are assumed to be predicted. 307 return 0; 308 } 309 310 unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 311 Type *CondTy) const { 312 int ISD = TLI->InstructionOpcodeToISD(Opcode); 313 assert(ISD && "Invalid opcode"); 314 315 // Selects on vectors are actually vector selects. 316 if (ISD == ISD::SELECT) { 317 assert(CondTy && "CondTy must exist"); 318 if (CondTy->isVectorTy()) 319 ISD = ISD::VSELECT; 320 } 321 322 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); 323 324 if (!TLI->isOperationExpand(ISD, LT.second)) { 325 // The operation is legal. Assume it costs 1. Multiply 326 // by the type-legalization overhead. 327 return LT.first * 1; 328 } 329 330 // Otherwise, assume that the cast is scalarized. 331 if (ValTy->isVectorTy()) { 332 unsigned Num = ValTy->getVectorNumElements(); 333 if (CondTy) 334 CondTy = CondTy->getScalarType(); 335 unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 336 CondTy); 337 338 // Return the cost of multiple scalar invocation plus the cost of inserting 339 // and extracting the values. 340 return getScalarizationOverhead(ValTy, true, false) + Num * Cost; 341 } 342 343 // Unknown scalar opcode. 344 return 1; 345 } 346 347 unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val, 348 unsigned Index) const { 349 return 1; 350 } 351 352 unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src, 353 unsigned Alignment, 354 unsigned AddressSpace) const { 355 assert(!Src->isVoidTy() && "Invalid type"); 356 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); 357 358 // Assume that all loads of legal types cost 1. 359 return LT.first; 360 } 361 362 unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, 363 ArrayRef<Type *> Tys) const { 364 // assume that we need to scalarize this intrinsic. 365 unsigned ScalarizationCost = 0; 366 unsigned ScalarCalls = 1; 367 if (RetTy->isVectorTy()) { 368 ScalarizationCost = getScalarizationOverhead(RetTy, true, false); 369 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 370 } 371 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { 372 if (Tys[i]->isVectorTy()) { 373 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); 374 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 375 } 376 } 377 return ScalarCalls + ScalarizationCost; 378 } 379 380 unsigned BasicTTI::getNumberOfParts(Type *Tp) const { 381 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp); 382 return LT.first; 383 } 384