1 //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file provides the implementation of a basic TargetTransformInfo pass 11 /// predicated on the target abstractions present in the target independent 12 /// code generator. It uses these (primarily TargetLowering) to model as much 13 /// of the TTI query interface as possible. It is included by most targets so 14 /// that they can specialize only a small subset of the query space. 15 /// 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "basictti" 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Target/TargetLowering.h" 22 #include <utility> 23 24 using namespace llvm; 25 26 namespace { 27 28 class BasicTTI : public ImmutablePass, public TargetTransformInfo { 29 const TargetMachine *TM; 30 31 /// Estimate the overhead of scalarizing an instruction. Insert and Extract 32 /// are set if the result needs to be inserted and/or extracted from vectors. 33 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; 34 35 const TargetLoweringBase *getTLI() const { return TM->getTargetLowering(); } 36 37 public: 38 BasicTTI() : ImmutablePass(ID), TM(0) { 39 llvm_unreachable("This pass cannot be directly constructed"); 40 } 41 42 BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) { 43 initializeBasicTTIPass(*PassRegistry::getPassRegistry()); 44 } 45 46 virtual void initializePass() { 47 pushTTIStack(this); 48 } 49 50 virtual void finalizePass() { 51 popTTIStack(); 52 } 53 54 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 55 TargetTransformInfo::getAnalysisUsage(AU); 56 } 57 58 /// Pass identification. 59 static char ID; 60 61 /// Provide necessary pointer adjustments for the two base classes. 62 virtual void *getAdjustedAnalysisPointer(const void *ID) { 63 if (ID == &TargetTransformInfo::ID) 64 return (TargetTransformInfo*)this; 65 return this; 66 } 67 68 virtual bool hasBranchDivergence() const; 69 70 /// \name Scalar TTI Implementations 71 /// @{ 72 73 virtual bool isLegalAddImmediate(int64_t imm) const; 74 virtual bool isLegalICmpImmediate(int64_t imm) const; 75 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 76 int64_t BaseOffset, bool HasBaseReg, 77 int64_t Scale) const; 78 virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 79 int64_t BaseOffset, bool HasBaseReg, 80 int64_t Scale) const; 81 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const; 82 virtual bool isTypeLegal(Type *Ty) const; 83 virtual unsigned getJumpBufAlignment() const; 84 virtual unsigned getJumpBufSize() const; 85 virtual bool shouldBuildLookupTables() const; 86 virtual bool haveFastSqrt(Type *Ty) const; 87 virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const; 88 89 /// @} 90 91 /// \name Vector TTI Implementations 92 /// @{ 93 94 virtual unsigned getNumberOfRegisters(bool Vector) const; 95 virtual unsigned getMaximumUnrollFactor() const; 96 virtual unsigned getRegisterBitWidth(bool Vector) const; 97 virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, 98 OperandValueKind, 99 OperandValueKind) const; 100 virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, 101 int Index, Type *SubTp) const; 102 virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 103 Type *Src) const; 104 virtual unsigned getCFInstrCost(unsigned Opcode) const; 105 virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 106 Type *CondTy) const; 107 virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 108 unsigned Index) const; 109 virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, 110 unsigned Alignment, 111 unsigned AddressSpace) const; 112 virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, 113 ArrayRef<Type*> Tys) const; 114 virtual unsigned getNumberOfParts(Type *Tp) const; 115 virtual unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const; 116 117 /// @} 118 }; 119 120 } 121 122 INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti", 123 "Target independent code generator's TTI", true, true, false) 124 char BasicTTI::ID = 0; 125 126 ImmutablePass * 127 llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) { 128 return new BasicTTI(TM); 129 } 130 131 bool BasicTTI::hasBranchDivergence() const { return false; } 132 133 bool BasicTTI::isLegalAddImmediate(int64_t imm) const { 134 return getTLI()->isLegalAddImmediate(imm); 135 } 136 137 bool BasicTTI::isLegalICmpImmediate(int64_t imm) const { 138 return getTLI()->isLegalICmpImmediate(imm); 139 } 140 141 bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 142 int64_t BaseOffset, bool HasBaseReg, 143 int64_t Scale) const { 144 TargetLoweringBase::AddrMode AM; 145 AM.BaseGV = BaseGV; 146 AM.BaseOffs = BaseOffset; 147 AM.HasBaseReg = HasBaseReg; 148 AM.Scale = Scale; 149 return getTLI()->isLegalAddressingMode(AM, Ty); 150 } 151 152 int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 153 int64_t BaseOffset, bool HasBaseReg, 154 int64_t Scale) const { 155 TargetLoweringBase::AddrMode AM; 156 AM.BaseGV = BaseGV; 157 AM.BaseOffs = BaseOffset; 158 AM.HasBaseReg = HasBaseReg; 159 AM.Scale = Scale; 160 return getTLI()->getScalingFactorCost(AM, Ty); 161 } 162 163 bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const { 164 return getTLI()->isTruncateFree(Ty1, Ty2); 165 } 166 167 bool BasicTTI::isTypeLegal(Type *Ty) const { 168 EVT T = getTLI()->getValueType(Ty); 169 return getTLI()->isTypeLegal(T); 170 } 171 172 unsigned BasicTTI::getJumpBufAlignment() const { 173 return getTLI()->getJumpBufAlignment(); 174 } 175 176 unsigned BasicTTI::getJumpBufSize() const { 177 return getTLI()->getJumpBufSize(); 178 } 179 180 bool BasicTTI::shouldBuildLookupTables() const { 181 const TargetLoweringBase *TLI = getTLI(); 182 return TLI->supportJumpTables() && 183 (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 184 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 185 } 186 187 bool BasicTTI::haveFastSqrt(Type *Ty) const { 188 const TargetLoweringBase *TLI = getTLI(); 189 EVT VT = TLI->getValueType(Ty); 190 return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT); 191 } 192 193 void BasicTTI::getUnrollingPreferences(Loop *, UnrollingPreferences &) const { } 194 195 //===----------------------------------------------------------------------===// 196 // 197 // Calls used by the vectorizers. 198 // 199 //===----------------------------------------------------------------------===// 200 201 unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert, 202 bool Extract) const { 203 assert (Ty->isVectorTy() && "Can only scalarize vectors"); 204 unsigned Cost = 0; 205 206 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 207 if (Insert) 208 Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 209 if (Extract) 210 Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i); 211 } 212 213 return Cost; 214 } 215 216 unsigned BasicTTI::getNumberOfRegisters(bool Vector) const { 217 return 1; 218 } 219 220 unsigned BasicTTI::getRegisterBitWidth(bool Vector) const { 221 return 32; 222 } 223 224 unsigned BasicTTI::getMaximumUnrollFactor() const { 225 return 1; 226 } 227 228 unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 229 OperandValueKind, 230 OperandValueKind) const { 231 // Check if any of the operands are vector operands. 232 const TargetLoweringBase *TLI = getTLI(); 233 int ISD = TLI->InstructionOpcodeToISD(Opcode); 234 assert(ISD && "Invalid opcode"); 235 236 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); 237 238 bool IsFloat = Ty->getScalarType()->isFloatingPointTy(); 239 // Assume that floating point arithmetic operations cost twice as much as 240 // integer operations. 241 unsigned OpCost = (IsFloat ? 2 : 1); 242 243 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 244 // The operation is legal. Assume it costs 1. 245 // If the type is split to multiple registers, assume that there is some 246 // overhead to this. 247 // TODO: Once we have extract/insert subvector cost we need to use them. 248 if (LT.first > 1) 249 return LT.first * 2 * OpCost; 250 return LT.first * 1 * OpCost; 251 } 252 253 if (!TLI->isOperationExpand(ISD, LT.second)) { 254 // If the operation is custom lowered then assume 255 // thare the code is twice as expensive. 256 return LT.first * 2 * OpCost; 257 } 258 259 // Else, assume that we need to scalarize this op. 260 if (Ty->isVectorTy()) { 261 unsigned Num = Ty->getVectorNumElements(); 262 unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType()); 263 // return the cost of multiple scalar invocation plus the cost of inserting 264 // and extracting the values. 265 return getScalarizationOverhead(Ty, true, true) + Num * Cost; 266 } 267 268 // We don't know anything about this scalar instruction. 269 return OpCost; 270 } 271 272 unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, 273 Type *SubTp) const { 274 return 1; 275 } 276 277 unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst, 278 Type *Src) const { 279 const TargetLoweringBase *TLI = getTLI(); 280 int ISD = TLI->InstructionOpcodeToISD(Opcode); 281 assert(ISD && "Invalid opcode"); 282 283 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src); 284 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst); 285 286 // Check for NOOP conversions. 287 if (SrcLT.first == DstLT.first && 288 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 289 290 // Bitcast between types that are legalized to the same type are free. 291 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) 292 return 0; 293 } 294 295 if (Opcode == Instruction::Trunc && 296 TLI->isTruncateFree(SrcLT.second, DstLT.second)) 297 return 0; 298 299 if (Opcode == Instruction::ZExt && 300 TLI->isZExtFree(SrcLT.second, DstLT.second)) 301 return 0; 302 303 // If the cast is marked as legal (or promote) then assume low cost. 304 if (TLI->isOperationLegalOrPromote(ISD, DstLT.second)) 305 return 1; 306 307 // Handle scalar conversions. 308 if (!Src->isVectorTy() && !Dst->isVectorTy()) { 309 310 // Scalar bitcasts are usually free. 311 if (Opcode == Instruction::BitCast) 312 return 0; 313 314 // Just check the op cost. If the operation is legal then assume it costs 1. 315 if (!TLI->isOperationExpand(ISD, DstLT.second)) 316 return 1; 317 318 // Assume that illegal scalar instruction are expensive. 319 return 4; 320 } 321 322 // Check vector-to-vector casts. 323 if (Dst->isVectorTy() && Src->isVectorTy()) { 324 325 // If the cast is between same-sized registers, then the check is simple. 326 if (SrcLT.first == DstLT.first && 327 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 328 329 // Assume that Zext is done using AND. 330 if (Opcode == Instruction::ZExt) 331 return 1; 332 333 // Assume that sext is done using SHL and SRA. 334 if (Opcode == Instruction::SExt) 335 return 2; 336 337 // Just check the op cost. If the operation is legal then assume it costs 338 // 1 and multiply by the type-legalization overhead. 339 if (!TLI->isOperationExpand(ISD, DstLT.second)) 340 return SrcLT.first * 1; 341 } 342 343 // If we are converting vectors and the operation is illegal, or 344 // if the vectors are legalized to different types, estimate the 345 // scalarization costs. 346 unsigned Num = Dst->getVectorNumElements(); 347 unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(), 348 Src->getScalarType()); 349 350 // Return the cost of multiple scalar invocation plus the cost of 351 // inserting and extracting the values. 352 return getScalarizationOverhead(Dst, true, true) + Num * Cost; 353 } 354 355 // We already handled vector-to-vector and scalar-to-scalar conversions. This 356 // is where we handle bitcast between vectors and scalars. We need to assume 357 // that the conversion is scalarized in one way or another. 358 if (Opcode == Instruction::BitCast) 359 // Illegal bitcasts are done by storing and loading from a stack slot. 360 return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) + 361 (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0); 362 363 llvm_unreachable("Unhandled cast"); 364 } 365 366 unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const { 367 // Branches are assumed to be predicted. 368 return 0; 369 } 370 371 unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 372 Type *CondTy) const { 373 const TargetLoweringBase *TLI = getTLI(); 374 int ISD = TLI->InstructionOpcodeToISD(Opcode); 375 assert(ISD && "Invalid opcode"); 376 377 // Selects on vectors are actually vector selects. 378 if (ISD == ISD::SELECT) { 379 assert(CondTy && "CondTy must exist"); 380 if (CondTy->isVectorTy()) 381 ISD = ISD::VSELECT; 382 } 383 384 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); 385 386 if (!TLI->isOperationExpand(ISD, LT.second)) { 387 // The operation is legal. Assume it costs 1. Multiply 388 // by the type-legalization overhead. 389 return LT.first * 1; 390 } 391 392 // Otherwise, assume that the cast is scalarized. 393 if (ValTy->isVectorTy()) { 394 unsigned Num = ValTy->getVectorNumElements(); 395 if (CondTy) 396 CondTy = CondTy->getScalarType(); 397 unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 398 CondTy); 399 400 // Return the cost of multiple scalar invocation plus the cost of inserting 401 // and extracting the values. 402 return getScalarizationOverhead(ValTy, true, false) + Num * Cost; 403 } 404 405 // Unknown scalar opcode. 406 return 1; 407 } 408 409 unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val, 410 unsigned Index) const { 411 return 1; 412 } 413 414 unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src, 415 unsigned Alignment, 416 unsigned AddressSpace) const { 417 assert(!Src->isVoidTy() && "Invalid type"); 418 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src); 419 420 // Assume that all loads of legal types cost 1. 421 return LT.first; 422 } 423 424 unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, 425 ArrayRef<Type *> Tys) const { 426 unsigned ISD = 0; 427 switch (IID) { 428 default: { 429 // Assume that we need to scalarize this intrinsic. 430 unsigned ScalarizationCost = 0; 431 unsigned ScalarCalls = 1; 432 if (RetTy->isVectorTy()) { 433 ScalarizationCost = getScalarizationOverhead(RetTy, true, false); 434 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 435 } 436 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { 437 if (Tys[i]->isVectorTy()) { 438 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); 439 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 440 } 441 } 442 443 return ScalarCalls + ScalarizationCost; 444 } 445 // Look for intrinsics that can be lowered directly or turned into a scalar 446 // intrinsic call. 447 case Intrinsic::sqrt: ISD = ISD::FSQRT; break; 448 case Intrinsic::sin: ISD = ISD::FSIN; break; 449 case Intrinsic::cos: ISD = ISD::FCOS; break; 450 case Intrinsic::exp: ISD = ISD::FEXP; break; 451 case Intrinsic::exp2: ISD = ISD::FEXP2; break; 452 case Intrinsic::log: ISD = ISD::FLOG; break; 453 case Intrinsic::log10: ISD = ISD::FLOG10; break; 454 case Intrinsic::log2: ISD = ISD::FLOG2; break; 455 case Intrinsic::fabs: ISD = ISD::FABS; break; 456 case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break; 457 case Intrinsic::floor: ISD = ISD::FFLOOR; break; 458 case Intrinsic::ceil: ISD = ISD::FCEIL; break; 459 case Intrinsic::trunc: ISD = ISD::FTRUNC; break; 460 case Intrinsic::nearbyint: 461 ISD = ISD::FNEARBYINT; break; 462 case Intrinsic::rint: ISD = ISD::FRINT; break; 463 case Intrinsic::round: ISD = ISD::FROUND; break; 464 case Intrinsic::pow: ISD = ISD::FPOW; break; 465 case Intrinsic::fma: ISD = ISD::FMA; break; 466 case Intrinsic::fmuladd: ISD = ISD::FMA; break; // FIXME: mul + add? 467 case Intrinsic::lifetime_start: 468 case Intrinsic::lifetime_end: 469 return 0; 470 } 471 472 const TargetLoweringBase *TLI = getTLI(); 473 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy); 474 475 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 476 // The operation is legal. Assume it costs 1. 477 // If the type is split to multiple registers, assume that thre is some 478 // overhead to this. 479 // TODO: Once we have extract/insert subvector cost we need to use them. 480 if (LT.first > 1) 481 return LT.first * 2; 482 return LT.first * 1; 483 } 484 485 if (!TLI->isOperationExpand(ISD, LT.second)) { 486 // If the operation is custom lowered then assume 487 // thare the code is twice as expensive. 488 return LT.first * 2; 489 } 490 491 // Else, assume that we need to scalarize this intrinsic. For math builtins 492 // this will emit a costly libcall, adding call overhead and spills. Make it 493 // very expensive. 494 if (RetTy->isVectorTy()) { 495 unsigned Num = RetTy->getVectorNumElements(); 496 unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(), 497 Tys); 498 return 10 * Cost * Num; 499 } 500 501 // This is going to be turned into a library call, make it expensive. 502 return 10; 503 } 504 505 unsigned BasicTTI::getNumberOfParts(Type *Tp) const { 506 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp); 507 return LT.first; 508 } 509 510 unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const { 511 return 0; 512 } 513