1 //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file provides the implementation of a basic TargetTransformInfo pass 11 /// predicated on the target abstractions present in the target independent 12 /// code generator. It uses these (primarily TargetLowering) to model as much 13 /// of the TTI query interface as possible. It is included by most targets so 14 /// that they can specialize only a small subset of the query space. 15 /// 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/CodeGen/Passes.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/Target/TargetLowering.h" 21 #include <utility> 22 using namespace llvm; 23 24 #define DEBUG_TYPE "basictti" 25 26 namespace { 27 28 class BasicTTI final : public ImmutablePass, public TargetTransformInfo { 29 const TargetMachine *TM; 30 31 /// Estimate the overhead of scalarizing an instruction. Insert and Extract 32 /// are set if the result needs to be inserted and/or extracted from vectors. 33 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; 34 35 const TargetLoweringBase *getTLI() const { return TM->getTargetLowering(); } 36 37 public: 38 BasicTTI() : ImmutablePass(ID), TM(nullptr) { 39 llvm_unreachable("This pass cannot be directly constructed"); 40 } 41 42 BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) { 43 initializeBasicTTIPass(*PassRegistry::getPassRegistry()); 44 } 45 46 void initializePass() override { 47 pushTTIStack(this); 48 } 49 50 void getAnalysisUsage(AnalysisUsage &AU) const override { 51 TargetTransformInfo::getAnalysisUsage(AU); 52 } 53 54 /// Pass identification. 55 static char ID; 56 57 /// Provide necessary pointer adjustments for the two base classes. 58 void *getAdjustedAnalysisPointer(const void *ID) override { 59 if (ID == &TargetTransformInfo::ID) 60 return (TargetTransformInfo*)this; 61 return this; 62 } 63 64 bool hasBranchDivergence() const override; 65 66 /// \name Scalar TTI Implementations 67 /// @{ 68 69 bool isLegalAddImmediate(int64_t imm) const override; 70 bool isLegalICmpImmediate(int64_t imm) const override; 71 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 72 int64_t BaseOffset, bool HasBaseReg, 73 int64_t Scale) const override; 74 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 75 int64_t BaseOffset, bool HasBaseReg, 76 int64_t Scale) const override; 77 bool isTruncateFree(Type *Ty1, Type *Ty2) const override; 78 bool isTypeLegal(Type *Ty) const override; 79 unsigned getJumpBufAlignment() const override; 80 unsigned getJumpBufSize() const override; 81 bool shouldBuildLookupTables() const override; 82 bool haveFastSqrt(Type *Ty) const override; 83 void getUnrollingPreferences(Loop *L, 84 UnrollingPreferences &UP) const override; 85 86 /// @} 87 88 /// \name Vector TTI Implementations 89 /// @{ 90 91 unsigned getNumberOfRegisters(bool Vector) const override; 92 unsigned getMaximumUnrollFactor() const override; 93 unsigned getRegisterBitWidth(bool Vector) const override; 94 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind, 95 OperandValueKind) const override; 96 unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, 97 int Index, Type *SubTp) const override; 98 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 99 Type *Src) const override; 100 unsigned getCFInstrCost(unsigned Opcode) const override; 101 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 102 Type *CondTy) const override; 103 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 104 unsigned Index) const override; 105 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 106 unsigned AddressSpace) const override; 107 unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, 108 ArrayRef<Type*> Tys) const override; 109 unsigned getNumberOfParts(Type *Tp) const override; 110 unsigned getAddressComputationCost( Type *Ty, bool IsComplex) const override; 111 unsigned getReductionCost(unsigned Opcode, Type *Ty, 112 bool IsPairwise) const override; 113 114 /// @} 115 }; 116 117 } 118 119 INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti", 120 "Target independent code generator's TTI", true, true, false) 121 char BasicTTI::ID = 0; 122 123 ImmutablePass * 124 llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) { 125 return new BasicTTI(TM); 126 } 127 128 bool BasicTTI::hasBranchDivergence() const { return false; } 129 130 bool BasicTTI::isLegalAddImmediate(int64_t imm) const { 131 return getTLI()->isLegalAddImmediate(imm); 132 } 133 134 bool BasicTTI::isLegalICmpImmediate(int64_t imm) const { 135 return getTLI()->isLegalICmpImmediate(imm); 136 } 137 138 bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 139 int64_t BaseOffset, bool HasBaseReg, 140 int64_t Scale) const { 141 TargetLoweringBase::AddrMode AM; 142 AM.BaseGV = BaseGV; 143 AM.BaseOffs = BaseOffset; 144 AM.HasBaseReg = HasBaseReg; 145 AM.Scale = Scale; 146 return getTLI()->isLegalAddressingMode(AM, Ty); 147 } 148 149 int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 150 int64_t BaseOffset, bool HasBaseReg, 151 int64_t Scale) const { 152 TargetLoweringBase::AddrMode AM; 153 AM.BaseGV = BaseGV; 154 AM.BaseOffs = BaseOffset; 155 AM.HasBaseReg = HasBaseReg; 156 AM.Scale = Scale; 157 return getTLI()->getScalingFactorCost(AM, Ty); 158 } 159 160 bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const { 161 return getTLI()->isTruncateFree(Ty1, Ty2); 162 } 163 164 bool BasicTTI::isTypeLegal(Type *Ty) const { 165 EVT T = getTLI()->getValueType(Ty); 166 return getTLI()->isTypeLegal(T); 167 } 168 169 unsigned BasicTTI::getJumpBufAlignment() const { 170 return getTLI()->getJumpBufAlignment(); 171 } 172 173 unsigned BasicTTI::getJumpBufSize() const { 174 return getTLI()->getJumpBufSize(); 175 } 176 177 bool BasicTTI::shouldBuildLookupTables() const { 178 const TargetLoweringBase *TLI = getTLI(); 179 return TLI->supportJumpTables() && 180 (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 181 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 182 } 183 184 bool BasicTTI::haveFastSqrt(Type *Ty) const { 185 const TargetLoweringBase *TLI = getTLI(); 186 EVT VT = TLI->getValueType(Ty); 187 return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT); 188 } 189 190 void BasicTTI::getUnrollingPreferences(Loop *, UnrollingPreferences &) const { } 191 192 //===----------------------------------------------------------------------===// 193 // 194 // Calls used by the vectorizers. 195 // 196 //===----------------------------------------------------------------------===// 197 198 unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert, 199 bool Extract) const { 200 assert (Ty->isVectorTy() && "Can only scalarize vectors"); 201 unsigned Cost = 0; 202 203 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 204 if (Insert) 205 Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 206 if (Extract) 207 Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i); 208 } 209 210 return Cost; 211 } 212 213 unsigned BasicTTI::getNumberOfRegisters(bool Vector) const { 214 return 1; 215 } 216 217 unsigned BasicTTI::getRegisterBitWidth(bool Vector) const { 218 return 32; 219 } 220 221 unsigned BasicTTI::getMaximumUnrollFactor() const { 222 return 1; 223 } 224 225 unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 226 OperandValueKind, 227 OperandValueKind) const { 228 // Check if any of the operands are vector operands. 229 const TargetLoweringBase *TLI = getTLI(); 230 int ISD = TLI->InstructionOpcodeToISD(Opcode); 231 assert(ISD && "Invalid opcode"); 232 233 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); 234 235 bool IsFloat = Ty->getScalarType()->isFloatingPointTy(); 236 // Assume that floating point arithmetic operations cost twice as much as 237 // integer operations. 238 unsigned OpCost = (IsFloat ? 2 : 1); 239 240 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 241 // The operation is legal. Assume it costs 1. 242 // If the type is split to multiple registers, assume that there is some 243 // overhead to this. 244 // TODO: Once we have extract/insert subvector cost we need to use them. 245 if (LT.first > 1) 246 return LT.first * 2 * OpCost; 247 return LT.first * 1 * OpCost; 248 } 249 250 if (!TLI->isOperationExpand(ISD, LT.second)) { 251 // If the operation is custom lowered then assume 252 // thare the code is twice as expensive. 253 return LT.first * 2 * OpCost; 254 } 255 256 // Else, assume that we need to scalarize this op. 257 if (Ty->isVectorTy()) { 258 unsigned Num = Ty->getVectorNumElements(); 259 unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType()); 260 // return the cost of multiple scalar invocation plus the cost of inserting 261 // and extracting the values. 262 return getScalarizationOverhead(Ty, true, true) + Num * Cost; 263 } 264 265 // We don't know anything about this scalar instruction. 266 return OpCost; 267 } 268 269 unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, 270 Type *SubTp) const { 271 return 1; 272 } 273 274 unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst, 275 Type *Src) const { 276 const TargetLoweringBase *TLI = getTLI(); 277 int ISD = TLI->InstructionOpcodeToISD(Opcode); 278 assert(ISD && "Invalid opcode"); 279 280 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src); 281 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst); 282 283 // Check for NOOP conversions. 284 if (SrcLT.first == DstLT.first && 285 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 286 287 // Bitcast between types that are legalized to the same type are free. 288 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) 289 return 0; 290 } 291 292 if (Opcode == Instruction::Trunc && 293 TLI->isTruncateFree(SrcLT.second, DstLT.second)) 294 return 0; 295 296 if (Opcode == Instruction::ZExt && 297 TLI->isZExtFree(SrcLT.second, DstLT.second)) 298 return 0; 299 300 // If the cast is marked as legal (or promote) then assume low cost. 301 if (SrcLT.first == DstLT.first && 302 TLI->isOperationLegalOrPromote(ISD, DstLT.second)) 303 return 1; 304 305 // Handle scalar conversions. 306 if (!Src->isVectorTy() && !Dst->isVectorTy()) { 307 308 // Scalar bitcasts are usually free. 309 if (Opcode == Instruction::BitCast) 310 return 0; 311 312 // Just check the op cost. If the operation is legal then assume it costs 1. 313 if (!TLI->isOperationExpand(ISD, DstLT.second)) 314 return 1; 315 316 // Assume that illegal scalar instruction are expensive. 317 return 4; 318 } 319 320 // Check vector-to-vector casts. 321 if (Dst->isVectorTy() && Src->isVectorTy()) { 322 323 // If the cast is between same-sized registers, then the check is simple. 324 if (SrcLT.first == DstLT.first && 325 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 326 327 // Assume that Zext is done using AND. 328 if (Opcode == Instruction::ZExt) 329 return 1; 330 331 // Assume that sext is done using SHL and SRA. 332 if (Opcode == Instruction::SExt) 333 return 2; 334 335 // Just check the op cost. If the operation is legal then assume it costs 336 // 1 and multiply by the type-legalization overhead. 337 if (!TLI->isOperationExpand(ISD, DstLT.second)) 338 return SrcLT.first * 1; 339 } 340 341 // If we are converting vectors and the operation is illegal, or 342 // if the vectors are legalized to different types, estimate the 343 // scalarization costs. 344 unsigned Num = Dst->getVectorNumElements(); 345 unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(), 346 Src->getScalarType()); 347 348 // Return the cost of multiple scalar invocation plus the cost of 349 // inserting and extracting the values. 350 return getScalarizationOverhead(Dst, true, true) + Num * Cost; 351 } 352 353 // We already handled vector-to-vector and scalar-to-scalar conversions. This 354 // is where we handle bitcast between vectors and scalars. We need to assume 355 // that the conversion is scalarized in one way or another. 356 if (Opcode == Instruction::BitCast) 357 // Illegal bitcasts are done by storing and loading from a stack slot. 358 return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) + 359 (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0); 360 361 llvm_unreachable("Unhandled cast"); 362 } 363 364 unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const { 365 // Branches are assumed to be predicted. 366 return 0; 367 } 368 369 unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 370 Type *CondTy) const { 371 const TargetLoweringBase *TLI = getTLI(); 372 int ISD = TLI->InstructionOpcodeToISD(Opcode); 373 assert(ISD && "Invalid opcode"); 374 375 // Selects on vectors are actually vector selects. 376 if (ISD == ISD::SELECT) { 377 assert(CondTy && "CondTy must exist"); 378 if (CondTy->isVectorTy()) 379 ISD = ISD::VSELECT; 380 } 381 382 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); 383 384 if (!TLI->isOperationExpand(ISD, LT.second)) { 385 // The operation is legal. Assume it costs 1. Multiply 386 // by the type-legalization overhead. 387 return LT.first * 1; 388 } 389 390 // Otherwise, assume that the cast is scalarized. 391 if (ValTy->isVectorTy()) { 392 unsigned Num = ValTy->getVectorNumElements(); 393 if (CondTy) 394 CondTy = CondTy->getScalarType(); 395 unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 396 CondTy); 397 398 // Return the cost of multiple scalar invocation plus the cost of inserting 399 // and extracting the values. 400 return getScalarizationOverhead(ValTy, true, false) + Num * Cost; 401 } 402 403 // Unknown scalar opcode. 404 return 1; 405 } 406 407 unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val, 408 unsigned Index) const { 409 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Val->getScalarType()); 410 411 return LT.first; 412 } 413 414 unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src, 415 unsigned Alignment, 416 unsigned AddressSpace) const { 417 assert(!Src->isVoidTy() && "Invalid type"); 418 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src); 419 420 // Assuming that all loads of legal types cost 1. 421 unsigned Cost = LT.first; 422 423 if (Src->isVectorTy() && 424 Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) { 425 // This is a vector load that legalizes to a larger type than the vector 426 // itself. Unless the corresponding extending load or truncating store is 427 // legal, then this will scalarize. 428 TargetLowering::LegalizeAction LA = TargetLowering::Expand; 429 EVT MemVT = getTLI()->getValueType(Src, true); 430 if (MemVT.isSimple() && MemVT != MVT::Other) { 431 if (Opcode == Instruction::Store) 432 LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT()); 433 else 434 LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, MemVT.getSimpleVT()); 435 } 436 437 if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) { 438 // This is a vector load/store for some illegal type that is scalarized. 439 // We must account for the cost of building or decomposing the vector. 440 Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store, 441 Opcode == Instruction::Store); 442 } 443 } 444 445 return Cost; 446 } 447 448 unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, 449 ArrayRef<Type *> Tys) const { 450 unsigned ISD = 0; 451 switch (IID) { 452 default: { 453 // Assume that we need to scalarize this intrinsic. 454 unsigned ScalarizationCost = 0; 455 unsigned ScalarCalls = 1; 456 if (RetTy->isVectorTy()) { 457 ScalarizationCost = getScalarizationOverhead(RetTy, true, false); 458 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 459 } 460 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { 461 if (Tys[i]->isVectorTy()) { 462 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); 463 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 464 } 465 } 466 467 return ScalarCalls + ScalarizationCost; 468 } 469 // Look for intrinsics that can be lowered directly or turned into a scalar 470 // intrinsic call. 471 case Intrinsic::sqrt: ISD = ISD::FSQRT; break; 472 case Intrinsic::sin: ISD = ISD::FSIN; break; 473 case Intrinsic::cos: ISD = ISD::FCOS; break; 474 case Intrinsic::exp: ISD = ISD::FEXP; break; 475 case Intrinsic::exp2: ISD = ISD::FEXP2; break; 476 case Intrinsic::log: ISD = ISD::FLOG; break; 477 case Intrinsic::log10: ISD = ISD::FLOG10; break; 478 case Intrinsic::log2: ISD = ISD::FLOG2; break; 479 case Intrinsic::fabs: ISD = ISD::FABS; break; 480 case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break; 481 case Intrinsic::floor: ISD = ISD::FFLOOR; break; 482 case Intrinsic::ceil: ISD = ISD::FCEIL; break; 483 case Intrinsic::trunc: ISD = ISD::FTRUNC; break; 484 case Intrinsic::nearbyint: 485 ISD = ISD::FNEARBYINT; break; 486 case Intrinsic::rint: ISD = ISD::FRINT; break; 487 case Intrinsic::round: ISD = ISD::FROUND; break; 488 case Intrinsic::pow: ISD = ISD::FPOW; break; 489 case Intrinsic::fma: ISD = ISD::FMA; break; 490 case Intrinsic::fmuladd: ISD = ISD::FMA; break; // FIXME: mul + add? 491 case Intrinsic::lifetime_start: 492 case Intrinsic::lifetime_end: 493 return 0; 494 } 495 496 const TargetLoweringBase *TLI = getTLI(); 497 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy); 498 499 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 500 // The operation is legal. Assume it costs 1. 501 // If the type is split to multiple registers, assume that thre is some 502 // overhead to this. 503 // TODO: Once we have extract/insert subvector cost we need to use them. 504 if (LT.first > 1) 505 return LT.first * 2; 506 return LT.first * 1; 507 } 508 509 if (!TLI->isOperationExpand(ISD, LT.second)) { 510 // If the operation is custom lowered then assume 511 // thare the code is twice as expensive. 512 return LT.first * 2; 513 } 514 515 // Else, assume that we need to scalarize this intrinsic. For math builtins 516 // this will emit a costly libcall, adding call overhead and spills. Make it 517 // very expensive. 518 if (RetTy->isVectorTy()) { 519 unsigned Num = RetTy->getVectorNumElements(); 520 unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(), 521 Tys); 522 return 10 * Cost * Num; 523 } 524 525 // This is going to be turned into a library call, make it expensive. 526 return 10; 527 } 528 529 unsigned BasicTTI::getNumberOfParts(Type *Tp) const { 530 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp); 531 return LT.first; 532 } 533 534 unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const { 535 return 0; 536 } 537 538 unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty, 539 bool IsPairwise) const { 540 assert(Ty->isVectorTy() && "Expect a vector type"); 541 unsigned NumVecElts = Ty->getVectorNumElements(); 542 unsigned NumReduxLevels = Log2_32(NumVecElts); 543 unsigned ArithCost = NumReduxLevels * 544 TopTTI->getArithmeticInstrCost(Opcode, Ty); 545 // Assume the pairwise shuffles add a cost. 546 unsigned ShuffleCost = 547 NumReduxLevels * (IsPairwise + 1) * 548 TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty); 549 return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true); 550 } 551