1 //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file provides the implementation of a basic TargetTransformInfo pass 11 /// predicated on the target abstractions present in the target independent 12 /// code generator. It uses these (primarily TargetLowering) to model as much 13 /// of the TTI query interface as possible. It is included by most targets so 14 /// that they can specialize only a small subset of the query space. 15 /// 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "basictti" 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Target/TargetLowering.h" 22 #include <utility> 23 24 using namespace llvm; 25 26 namespace { 27 28 class BasicTTI : public ImmutablePass, public TargetTransformInfo { 29 const TargetMachine *TM; 30 31 /// Estimate the overhead of scalarizing an instruction. Insert and Extract 32 /// are set if the result needs to be inserted and/or extracted from vectors. 33 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; 34 35 const TargetLoweringBase *getTLI() const { return TM->getTargetLowering(); } 36 37 public: 38 BasicTTI() : ImmutablePass(ID), TM(0) { 39 llvm_unreachable("This pass cannot be directly constructed"); 40 } 41 42 BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) { 43 initializeBasicTTIPass(*PassRegistry::getPassRegistry()); 44 } 45 46 virtual void initializePass() { 47 pushTTIStack(this); 48 } 49 50 virtual void finalizePass() { 51 popTTIStack(); 52 } 53 54 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 55 TargetTransformInfo::getAnalysisUsage(AU); 56 } 57 58 /// Pass identification. 59 static char ID; 60 61 /// Provide necessary pointer adjustments for the two base classes. 62 virtual void *getAdjustedAnalysisPointer(const void *ID) { 63 if (ID == &TargetTransformInfo::ID) 64 return (TargetTransformInfo*)this; 65 return this; 66 } 67 68 virtual bool hasBranchDivergence() const; 69 70 /// \name Scalar TTI Implementations 71 /// @{ 72 73 virtual bool isLegalAddImmediate(int64_t imm) const; 74 virtual bool isLegalICmpImmediate(int64_t imm) const; 75 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 76 int64_t BaseOffset, bool HasBaseReg, 77 int64_t Scale) const; 78 virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 79 int64_t BaseOffset, bool HasBaseReg, 80 int64_t Scale) const; 81 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const; 82 virtual bool isTypeLegal(Type *Ty) const; 83 virtual unsigned getJumpBufAlignment() const; 84 virtual unsigned getJumpBufSize() const; 85 virtual bool shouldBuildLookupTables() const; 86 virtual bool haveFastSqrt(Type *Ty) const; 87 88 /// @} 89 90 /// \name Vector TTI Implementations 91 /// @{ 92 93 virtual unsigned getNumberOfRegisters(bool Vector) const; 94 virtual unsigned getMaximumUnrollFactor() const; 95 virtual unsigned getRegisterBitWidth(bool Vector) const; 96 virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, 97 OperandValueKind, 98 OperandValueKind) const; 99 virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, 100 int Index, Type *SubTp) const; 101 virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 102 Type *Src) const; 103 virtual unsigned getCFInstrCost(unsigned Opcode) const; 104 virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 105 Type *CondTy) const; 106 virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 107 unsigned Index) const; 108 virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, 109 unsigned Alignment, 110 unsigned AddressSpace) const; 111 virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, 112 ArrayRef<Type*> Tys) const; 113 virtual unsigned getNumberOfParts(Type *Tp) const; 114 virtual unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const; 115 116 /// @} 117 }; 118 119 } 120 121 INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti", 122 "Target independent code generator's TTI", true, true, false) 123 char BasicTTI::ID = 0; 124 125 ImmutablePass * 126 llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) { 127 return new BasicTTI(TM); 128 } 129 130 bool BasicTTI::hasBranchDivergence() const { return false; } 131 132 bool BasicTTI::isLegalAddImmediate(int64_t imm) const { 133 return getTLI()->isLegalAddImmediate(imm); 134 } 135 136 bool BasicTTI::isLegalICmpImmediate(int64_t imm) const { 137 return getTLI()->isLegalICmpImmediate(imm); 138 } 139 140 bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 141 int64_t BaseOffset, bool HasBaseReg, 142 int64_t Scale) const { 143 TargetLoweringBase::AddrMode AM; 144 AM.BaseGV = BaseGV; 145 AM.BaseOffs = BaseOffset; 146 AM.HasBaseReg = HasBaseReg; 147 AM.Scale = Scale; 148 return getTLI()->isLegalAddressingMode(AM, Ty); 149 } 150 151 int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 152 int64_t BaseOffset, bool HasBaseReg, 153 int64_t Scale) const { 154 TargetLoweringBase::AddrMode AM; 155 AM.BaseGV = BaseGV; 156 AM.BaseOffs = BaseOffset; 157 AM.HasBaseReg = HasBaseReg; 158 AM.Scale = Scale; 159 return getTLI()->getScalingFactorCost(AM, Ty); 160 } 161 162 bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const { 163 return getTLI()->isTruncateFree(Ty1, Ty2); 164 } 165 166 bool BasicTTI::isTypeLegal(Type *Ty) const { 167 EVT T = getTLI()->getValueType(Ty); 168 return getTLI()->isTypeLegal(T); 169 } 170 171 unsigned BasicTTI::getJumpBufAlignment() const { 172 return getTLI()->getJumpBufAlignment(); 173 } 174 175 unsigned BasicTTI::getJumpBufSize() const { 176 return getTLI()->getJumpBufSize(); 177 } 178 179 bool BasicTTI::shouldBuildLookupTables() const { 180 const TargetLoweringBase *TLI = getTLI(); 181 return TLI->supportJumpTables() && 182 (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 183 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 184 } 185 186 bool BasicTTI::haveFastSqrt(Type *Ty) const { 187 const TargetLoweringBase *TLI = getTLI(); 188 EVT VT = TLI->getValueType(Ty); 189 return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT); 190 } 191 192 //===----------------------------------------------------------------------===// 193 // 194 // Calls used by the vectorizers. 195 // 196 //===----------------------------------------------------------------------===// 197 198 unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert, 199 bool Extract) const { 200 assert (Ty->isVectorTy() && "Can only scalarize vectors"); 201 unsigned Cost = 0; 202 203 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 204 if (Insert) 205 Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 206 if (Extract) 207 Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i); 208 } 209 210 return Cost; 211 } 212 213 unsigned BasicTTI::getNumberOfRegisters(bool Vector) const { 214 return 1; 215 } 216 217 unsigned BasicTTI::getRegisterBitWidth(bool Vector) const { 218 return 32; 219 } 220 221 unsigned BasicTTI::getMaximumUnrollFactor() const { 222 return 1; 223 } 224 225 unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 226 OperandValueKind, 227 OperandValueKind) const { 228 // Check if any of the operands are vector operands. 229 const TargetLoweringBase *TLI = getTLI(); 230 int ISD = TLI->InstructionOpcodeToISD(Opcode); 231 assert(ISD && "Invalid opcode"); 232 233 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); 234 235 bool IsFloat = Ty->getScalarType()->isFloatingPointTy(); 236 // Assume that floating point arithmetic operations cost twice as much as 237 // integer operations. 238 unsigned OpCost = (IsFloat ? 2 : 1); 239 240 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 241 // The operation is legal. Assume it costs 1. 242 // If the type is split to multiple registers, assume that there is some 243 // overhead to this. 244 // TODO: Once we have extract/insert subvector cost we need to use them. 245 if (LT.first > 1) 246 return LT.first * 2 * OpCost; 247 return LT.first * 1 * OpCost; 248 } 249 250 if (!TLI->isOperationExpand(ISD, LT.second)) { 251 // If the operation is custom lowered then assume 252 // thare the code is twice as expensive. 253 return LT.first * 2 * OpCost; 254 } 255 256 // Else, assume that we need to scalarize this op. 257 if (Ty->isVectorTy()) { 258 unsigned Num = Ty->getVectorNumElements(); 259 unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType()); 260 // return the cost of multiple scalar invocation plus the cost of inserting 261 // and extracting the values. 262 return getScalarizationOverhead(Ty, true, true) + Num * Cost; 263 } 264 265 // We don't know anything about this scalar instruction. 266 return OpCost; 267 } 268 269 unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, 270 Type *SubTp) const { 271 return 1; 272 } 273 274 unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst, 275 Type *Src) const { 276 const TargetLoweringBase *TLI = getTLI(); 277 int ISD = TLI->InstructionOpcodeToISD(Opcode); 278 assert(ISD && "Invalid opcode"); 279 280 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src); 281 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst); 282 283 // Check for NOOP conversions. 284 if (SrcLT.first == DstLT.first && 285 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 286 287 // Bitcast between types that are legalized to the same type are free. 288 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) 289 return 0; 290 } 291 292 if (Opcode == Instruction::Trunc && 293 TLI->isTruncateFree(SrcLT.second, DstLT.second)) 294 return 0; 295 296 if (Opcode == Instruction::ZExt && 297 TLI->isZExtFree(SrcLT.second, DstLT.second)) 298 return 0; 299 300 // If the cast is marked as legal (or promote) then assume low cost. 301 if (TLI->isOperationLegalOrPromote(ISD, DstLT.second)) 302 return 1; 303 304 // Handle scalar conversions. 305 if (!Src->isVectorTy() && !Dst->isVectorTy()) { 306 307 // Scalar bitcasts are usually free. 308 if (Opcode == Instruction::BitCast) 309 return 0; 310 311 // Just check the op cost. If the operation is legal then assume it costs 1. 312 if (!TLI->isOperationExpand(ISD, DstLT.second)) 313 return 1; 314 315 // Assume that illegal scalar instruction are expensive. 316 return 4; 317 } 318 319 // Check vector-to-vector casts. 320 if (Dst->isVectorTy() && Src->isVectorTy()) { 321 322 // If the cast is between same-sized registers, then the check is simple. 323 if (SrcLT.first == DstLT.first && 324 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 325 326 // Assume that Zext is done using AND. 327 if (Opcode == Instruction::ZExt) 328 return 1; 329 330 // Assume that sext is done using SHL and SRA. 331 if (Opcode == Instruction::SExt) 332 return 2; 333 334 // Just check the op cost. If the operation is legal then assume it costs 335 // 1 and multiply by the type-legalization overhead. 336 if (!TLI->isOperationExpand(ISD, DstLT.second)) 337 return SrcLT.first * 1; 338 } 339 340 // If we are converting vectors and the operation is illegal, or 341 // if the vectors are legalized to different types, estimate the 342 // scalarization costs. 343 unsigned Num = Dst->getVectorNumElements(); 344 unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(), 345 Src->getScalarType()); 346 347 // Return the cost of multiple scalar invocation plus the cost of 348 // inserting and extracting the values. 349 return getScalarizationOverhead(Dst, true, true) + Num * Cost; 350 } 351 352 // We already handled vector-to-vector and scalar-to-scalar conversions. This 353 // is where we handle bitcast between vectors and scalars. We need to assume 354 // that the conversion is scalarized in one way or another. 355 if (Opcode == Instruction::BitCast) 356 // Illegal bitcasts are done by storing and loading from a stack slot. 357 return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) + 358 (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0); 359 360 llvm_unreachable("Unhandled cast"); 361 } 362 363 unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const { 364 // Branches are assumed to be predicted. 365 return 0; 366 } 367 368 unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 369 Type *CondTy) const { 370 const TargetLoweringBase *TLI = getTLI(); 371 int ISD = TLI->InstructionOpcodeToISD(Opcode); 372 assert(ISD && "Invalid opcode"); 373 374 // Selects on vectors are actually vector selects. 375 if (ISD == ISD::SELECT) { 376 assert(CondTy && "CondTy must exist"); 377 if (CondTy->isVectorTy()) 378 ISD = ISD::VSELECT; 379 } 380 381 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); 382 383 if (!TLI->isOperationExpand(ISD, LT.second)) { 384 // The operation is legal. Assume it costs 1. Multiply 385 // by the type-legalization overhead. 386 return LT.first * 1; 387 } 388 389 // Otherwise, assume that the cast is scalarized. 390 if (ValTy->isVectorTy()) { 391 unsigned Num = ValTy->getVectorNumElements(); 392 if (CondTy) 393 CondTy = CondTy->getScalarType(); 394 unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 395 CondTy); 396 397 // Return the cost of multiple scalar invocation plus the cost of inserting 398 // and extracting the values. 399 return getScalarizationOverhead(ValTy, true, false) + Num * Cost; 400 } 401 402 // Unknown scalar opcode. 403 return 1; 404 } 405 406 unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val, 407 unsigned Index) const { 408 return 1; 409 } 410 411 unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src, 412 unsigned Alignment, 413 unsigned AddressSpace) const { 414 assert(!Src->isVoidTy() && "Invalid type"); 415 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src); 416 417 // Assume that all loads of legal types cost 1. 418 return LT.first; 419 } 420 421 unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, 422 ArrayRef<Type *> Tys) const { 423 unsigned ISD = 0; 424 switch (IID) { 425 default: { 426 // Assume that we need to scalarize this intrinsic. 427 unsigned ScalarizationCost = 0; 428 unsigned ScalarCalls = 1; 429 if (RetTy->isVectorTy()) { 430 ScalarizationCost = getScalarizationOverhead(RetTy, true, false); 431 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 432 } 433 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { 434 if (Tys[i]->isVectorTy()) { 435 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); 436 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 437 } 438 } 439 440 return ScalarCalls + ScalarizationCost; 441 } 442 // Look for intrinsics that can be lowered directly or turned into a scalar 443 // intrinsic call. 444 case Intrinsic::sqrt: ISD = ISD::FSQRT; break; 445 case Intrinsic::sin: ISD = ISD::FSIN; break; 446 case Intrinsic::cos: ISD = ISD::FCOS; break; 447 case Intrinsic::exp: ISD = ISD::FEXP; break; 448 case Intrinsic::exp2: ISD = ISD::FEXP2; break; 449 case Intrinsic::log: ISD = ISD::FLOG; break; 450 case Intrinsic::log10: ISD = ISD::FLOG10; break; 451 case Intrinsic::log2: ISD = ISD::FLOG2; break; 452 case Intrinsic::fabs: ISD = ISD::FABS; break; 453 case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break; 454 case Intrinsic::floor: ISD = ISD::FFLOOR; break; 455 case Intrinsic::ceil: ISD = ISD::FCEIL; break; 456 case Intrinsic::trunc: ISD = ISD::FTRUNC; break; 457 case Intrinsic::nearbyint: 458 ISD = ISD::FNEARBYINT; break; 459 case Intrinsic::rint: ISD = ISD::FRINT; break; 460 case Intrinsic::round: ISD = ISD::FROUND; break; 461 case Intrinsic::pow: ISD = ISD::FPOW; break; 462 case Intrinsic::fma: ISD = ISD::FMA; break; 463 case Intrinsic::fmuladd: ISD = ISD::FMA; break; // FIXME: mul + add? 464 case Intrinsic::lifetime_start: 465 case Intrinsic::lifetime_end: 466 return 0; 467 } 468 469 const TargetLoweringBase *TLI = getTLI(); 470 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy); 471 472 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 473 // The operation is legal. Assume it costs 1. 474 // If the type is split to multiple registers, assume that thre is some 475 // overhead to this. 476 // TODO: Once we have extract/insert subvector cost we need to use them. 477 if (LT.first > 1) 478 return LT.first * 2; 479 return LT.first * 1; 480 } 481 482 if (!TLI->isOperationExpand(ISD, LT.second)) { 483 // If the operation is custom lowered then assume 484 // thare the code is twice as expensive. 485 return LT.first * 2; 486 } 487 488 // Else, assume that we need to scalarize this intrinsic. For math builtins 489 // this will emit a costly libcall, adding call overhead and spills. Make it 490 // very expensive. 491 if (RetTy->isVectorTy()) { 492 unsigned Num = RetTy->getVectorNumElements(); 493 unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(), 494 Tys); 495 return 10 * Cost * Num; 496 } 497 498 // This is going to be turned into a library call, make it expensive. 499 return 10; 500 } 501 502 unsigned BasicTTI::getNumberOfParts(Type *Tp) const { 503 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp); 504 return LT.first; 505 } 506 507 unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const { 508 return 0; 509 } 510