1 //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file provides the implementation of a basic TargetTransformInfo pass 11 /// predicated on the target abstractions present in the target independent 12 /// code generator. It uses these (primarily TargetLowering) to model as much 13 /// of the TTI query interface as possible. It is included by most targets so 14 /// that they can specialize only a small subset of the query space. 15 /// 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "basictti" 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Target/TargetLowering.h" 22 #include <utility> 23 24 using namespace llvm; 25 26 namespace { 27 28 class BasicTTI : public ImmutablePass, public TargetTransformInfo { 29 const TargetMachine *TM; 30 31 /// Estimate the overhead of scalarizing an instruction. Insert and Extract 32 /// are set if the result needs to be inserted and/or extracted from vectors. 33 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; 34 35 const TargetLoweringBase *getTLI() const { return TM->getTargetLowering(); } 36 37 public: 38 BasicTTI() : ImmutablePass(ID), TM(0) { 39 llvm_unreachable("This pass cannot be directly constructed"); 40 } 41 42 BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) { 43 initializeBasicTTIPass(*PassRegistry::getPassRegistry()); 44 } 45 46 virtual void initializePass() { 47 pushTTIStack(this); 48 } 49 50 virtual void finalizePass() { 51 popTTIStack(); 52 } 53 54 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 55 TargetTransformInfo::getAnalysisUsage(AU); 56 } 57 58 /// Pass identification. 59 static char ID; 60 61 /// Provide necessary pointer adjustments for the two base classes. 62 virtual void *getAdjustedAnalysisPointer(const void *ID) { 63 if (ID == &TargetTransformInfo::ID) 64 return (TargetTransformInfo*)this; 65 return this; 66 } 67 68 virtual bool hasBranchDivergence() const; 69 70 /// \name Scalar TTI Implementations 71 /// @{ 72 73 virtual bool isLegalAddImmediate(int64_t imm) const; 74 virtual bool isLegalICmpImmediate(int64_t imm) const; 75 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 76 int64_t BaseOffset, bool HasBaseReg, 77 int64_t Scale) const; 78 virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 79 int64_t BaseOffset, bool HasBaseReg, 80 int64_t Scale) const; 81 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const; 82 virtual bool isTypeLegal(Type *Ty) const; 83 virtual unsigned getJumpBufAlignment() const; 84 virtual unsigned getJumpBufSize() const; 85 virtual bool shouldBuildLookupTables() const; 86 virtual bool haveFastSqrt(Type *Ty) const; 87 virtual bool getUnrollingPreferences(UnrollingPreferences &UP) const; 88 89 /// @} 90 91 /// \name Vector TTI Implementations 92 /// @{ 93 94 virtual unsigned getNumberOfRegisters(bool Vector) const; 95 virtual unsigned getMaximumUnrollFactor() const; 96 virtual unsigned getRegisterBitWidth(bool Vector) const; 97 virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, 98 OperandValueKind, 99 OperandValueKind) const; 100 virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, 101 int Index, Type *SubTp) const; 102 virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, 103 Type *Src) const; 104 virtual unsigned getCFInstrCost(unsigned Opcode) const; 105 virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 106 Type *CondTy) const; 107 virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, 108 unsigned Index) const; 109 virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, 110 unsigned Alignment, 111 unsigned AddressSpace) const; 112 virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, 113 ArrayRef<Type*> Tys) const; 114 virtual unsigned getNumberOfParts(Type *Tp) const; 115 virtual unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const; 116 117 /// @} 118 }; 119 120 } 121 122 INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti", 123 "Target independent code generator's TTI", true, true, false) 124 char BasicTTI::ID = 0; 125 126 ImmutablePass * 127 llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) { 128 return new BasicTTI(TM); 129 } 130 131 bool BasicTTI::hasBranchDivergence() const { return false; } 132 133 bool BasicTTI::isLegalAddImmediate(int64_t imm) const { 134 return getTLI()->isLegalAddImmediate(imm); 135 } 136 137 bool BasicTTI::isLegalICmpImmediate(int64_t imm) const { 138 return getTLI()->isLegalICmpImmediate(imm); 139 } 140 141 bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 142 int64_t BaseOffset, bool HasBaseReg, 143 int64_t Scale) const { 144 TargetLoweringBase::AddrMode AM; 145 AM.BaseGV = BaseGV; 146 AM.BaseOffs = BaseOffset; 147 AM.HasBaseReg = HasBaseReg; 148 AM.Scale = Scale; 149 return getTLI()->isLegalAddressingMode(AM, Ty); 150 } 151 152 int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 153 int64_t BaseOffset, bool HasBaseReg, 154 int64_t Scale) const { 155 TargetLoweringBase::AddrMode AM; 156 AM.BaseGV = BaseGV; 157 AM.BaseOffs = BaseOffset; 158 AM.HasBaseReg = HasBaseReg; 159 AM.Scale = Scale; 160 return getTLI()->getScalingFactorCost(AM, Ty); 161 } 162 163 bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const { 164 return getTLI()->isTruncateFree(Ty1, Ty2); 165 } 166 167 bool BasicTTI::isTypeLegal(Type *Ty) const { 168 EVT T = getTLI()->getValueType(Ty); 169 return getTLI()->isTypeLegal(T); 170 } 171 172 unsigned BasicTTI::getJumpBufAlignment() const { 173 return getTLI()->getJumpBufAlignment(); 174 } 175 176 unsigned BasicTTI::getJumpBufSize() const { 177 return getTLI()->getJumpBufSize(); 178 } 179 180 bool BasicTTI::shouldBuildLookupTables() const { 181 const TargetLoweringBase *TLI = getTLI(); 182 return TLI->supportJumpTables() && 183 (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 184 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 185 } 186 187 bool BasicTTI::haveFastSqrt(Type *Ty) const { 188 const TargetLoweringBase *TLI = getTLI(); 189 EVT VT = TLI->getValueType(Ty); 190 return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT); 191 } 192 193 bool BasicTTI::getUnrollingPreferences(UnrollingPreferences &) const { 194 return false; 195 } 196 197 //===----------------------------------------------------------------------===// 198 // 199 // Calls used by the vectorizers. 200 // 201 //===----------------------------------------------------------------------===// 202 203 unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert, 204 bool Extract) const { 205 assert (Ty->isVectorTy() && "Can only scalarize vectors"); 206 unsigned Cost = 0; 207 208 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 209 if (Insert) 210 Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 211 if (Extract) 212 Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i); 213 } 214 215 return Cost; 216 } 217 218 unsigned BasicTTI::getNumberOfRegisters(bool Vector) const { 219 return 1; 220 } 221 222 unsigned BasicTTI::getRegisterBitWidth(bool Vector) const { 223 return 32; 224 } 225 226 unsigned BasicTTI::getMaximumUnrollFactor() const { 227 return 1; 228 } 229 230 unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 231 OperandValueKind, 232 OperandValueKind) const { 233 // Check if any of the operands are vector operands. 234 const TargetLoweringBase *TLI = getTLI(); 235 int ISD = TLI->InstructionOpcodeToISD(Opcode); 236 assert(ISD && "Invalid opcode"); 237 238 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); 239 240 bool IsFloat = Ty->getScalarType()->isFloatingPointTy(); 241 // Assume that floating point arithmetic operations cost twice as much as 242 // integer operations. 243 unsigned OpCost = (IsFloat ? 2 : 1); 244 245 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 246 // The operation is legal. Assume it costs 1. 247 // If the type is split to multiple registers, assume that there is some 248 // overhead to this. 249 // TODO: Once we have extract/insert subvector cost we need to use them. 250 if (LT.first > 1) 251 return LT.first * 2 * OpCost; 252 return LT.first * 1 * OpCost; 253 } 254 255 if (!TLI->isOperationExpand(ISD, LT.second)) { 256 // If the operation is custom lowered then assume 257 // thare the code is twice as expensive. 258 return LT.first * 2 * OpCost; 259 } 260 261 // Else, assume that we need to scalarize this op. 262 if (Ty->isVectorTy()) { 263 unsigned Num = Ty->getVectorNumElements(); 264 unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType()); 265 // return the cost of multiple scalar invocation plus the cost of inserting 266 // and extracting the values. 267 return getScalarizationOverhead(Ty, true, true) + Num * Cost; 268 } 269 270 // We don't know anything about this scalar instruction. 271 return OpCost; 272 } 273 274 unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, 275 Type *SubTp) const { 276 return 1; 277 } 278 279 unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst, 280 Type *Src) const { 281 const TargetLoweringBase *TLI = getTLI(); 282 int ISD = TLI->InstructionOpcodeToISD(Opcode); 283 assert(ISD && "Invalid opcode"); 284 285 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src); 286 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst); 287 288 // Check for NOOP conversions. 289 if (SrcLT.first == DstLT.first && 290 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 291 292 // Bitcast between types that are legalized to the same type are free. 293 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) 294 return 0; 295 } 296 297 if (Opcode == Instruction::Trunc && 298 TLI->isTruncateFree(SrcLT.second, DstLT.second)) 299 return 0; 300 301 if (Opcode == Instruction::ZExt && 302 TLI->isZExtFree(SrcLT.second, DstLT.second)) 303 return 0; 304 305 // If the cast is marked as legal (or promote) then assume low cost. 306 if (TLI->isOperationLegalOrPromote(ISD, DstLT.second)) 307 return 1; 308 309 // Handle scalar conversions. 310 if (!Src->isVectorTy() && !Dst->isVectorTy()) { 311 312 // Scalar bitcasts are usually free. 313 if (Opcode == Instruction::BitCast) 314 return 0; 315 316 // Just check the op cost. If the operation is legal then assume it costs 1. 317 if (!TLI->isOperationExpand(ISD, DstLT.second)) 318 return 1; 319 320 // Assume that illegal scalar instruction are expensive. 321 return 4; 322 } 323 324 // Check vector-to-vector casts. 325 if (Dst->isVectorTy() && Src->isVectorTy()) { 326 327 // If the cast is between same-sized registers, then the check is simple. 328 if (SrcLT.first == DstLT.first && 329 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { 330 331 // Assume that Zext is done using AND. 332 if (Opcode == Instruction::ZExt) 333 return 1; 334 335 // Assume that sext is done using SHL and SRA. 336 if (Opcode == Instruction::SExt) 337 return 2; 338 339 // Just check the op cost. If the operation is legal then assume it costs 340 // 1 and multiply by the type-legalization overhead. 341 if (!TLI->isOperationExpand(ISD, DstLT.second)) 342 return SrcLT.first * 1; 343 } 344 345 // If we are converting vectors and the operation is illegal, or 346 // if the vectors are legalized to different types, estimate the 347 // scalarization costs. 348 unsigned Num = Dst->getVectorNumElements(); 349 unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(), 350 Src->getScalarType()); 351 352 // Return the cost of multiple scalar invocation plus the cost of 353 // inserting and extracting the values. 354 return getScalarizationOverhead(Dst, true, true) + Num * Cost; 355 } 356 357 // We already handled vector-to-vector and scalar-to-scalar conversions. This 358 // is where we handle bitcast between vectors and scalars. We need to assume 359 // that the conversion is scalarized in one way or another. 360 if (Opcode == Instruction::BitCast) 361 // Illegal bitcasts are done by storing and loading from a stack slot. 362 return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) + 363 (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0); 364 365 llvm_unreachable("Unhandled cast"); 366 } 367 368 unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const { 369 // Branches are assumed to be predicted. 370 return 0; 371 } 372 373 unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 374 Type *CondTy) const { 375 const TargetLoweringBase *TLI = getTLI(); 376 int ISD = TLI->InstructionOpcodeToISD(Opcode); 377 assert(ISD && "Invalid opcode"); 378 379 // Selects on vectors are actually vector selects. 380 if (ISD == ISD::SELECT) { 381 assert(CondTy && "CondTy must exist"); 382 if (CondTy->isVectorTy()) 383 ISD = ISD::VSELECT; 384 } 385 386 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); 387 388 if (!TLI->isOperationExpand(ISD, LT.second)) { 389 // The operation is legal. Assume it costs 1. Multiply 390 // by the type-legalization overhead. 391 return LT.first * 1; 392 } 393 394 // Otherwise, assume that the cast is scalarized. 395 if (ValTy->isVectorTy()) { 396 unsigned Num = ValTy->getVectorNumElements(); 397 if (CondTy) 398 CondTy = CondTy->getScalarType(); 399 unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 400 CondTy); 401 402 // Return the cost of multiple scalar invocation plus the cost of inserting 403 // and extracting the values. 404 return getScalarizationOverhead(ValTy, true, false) + Num * Cost; 405 } 406 407 // Unknown scalar opcode. 408 return 1; 409 } 410 411 unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val, 412 unsigned Index) const { 413 return 1; 414 } 415 416 unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src, 417 unsigned Alignment, 418 unsigned AddressSpace) const { 419 assert(!Src->isVoidTy() && "Invalid type"); 420 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src); 421 422 // Assume that all loads of legal types cost 1. 423 return LT.first; 424 } 425 426 unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, 427 ArrayRef<Type *> Tys) const { 428 unsigned ISD = 0; 429 switch (IID) { 430 default: { 431 // Assume that we need to scalarize this intrinsic. 432 unsigned ScalarizationCost = 0; 433 unsigned ScalarCalls = 1; 434 if (RetTy->isVectorTy()) { 435 ScalarizationCost = getScalarizationOverhead(RetTy, true, false); 436 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 437 } 438 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { 439 if (Tys[i]->isVectorTy()) { 440 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); 441 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); 442 } 443 } 444 445 return ScalarCalls + ScalarizationCost; 446 } 447 // Look for intrinsics that can be lowered directly or turned into a scalar 448 // intrinsic call. 449 case Intrinsic::sqrt: ISD = ISD::FSQRT; break; 450 case Intrinsic::sin: ISD = ISD::FSIN; break; 451 case Intrinsic::cos: ISD = ISD::FCOS; break; 452 case Intrinsic::exp: ISD = ISD::FEXP; break; 453 case Intrinsic::exp2: ISD = ISD::FEXP2; break; 454 case Intrinsic::log: ISD = ISD::FLOG; break; 455 case Intrinsic::log10: ISD = ISD::FLOG10; break; 456 case Intrinsic::log2: ISD = ISD::FLOG2; break; 457 case Intrinsic::fabs: ISD = ISD::FABS; break; 458 case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break; 459 case Intrinsic::floor: ISD = ISD::FFLOOR; break; 460 case Intrinsic::ceil: ISD = ISD::FCEIL; break; 461 case Intrinsic::trunc: ISD = ISD::FTRUNC; break; 462 case Intrinsic::nearbyint: 463 ISD = ISD::FNEARBYINT; break; 464 case Intrinsic::rint: ISD = ISD::FRINT; break; 465 case Intrinsic::round: ISD = ISD::FROUND; break; 466 case Intrinsic::pow: ISD = ISD::FPOW; break; 467 case Intrinsic::fma: ISD = ISD::FMA; break; 468 case Intrinsic::fmuladd: ISD = ISD::FMA; break; // FIXME: mul + add? 469 case Intrinsic::lifetime_start: 470 case Intrinsic::lifetime_end: 471 return 0; 472 } 473 474 const TargetLoweringBase *TLI = getTLI(); 475 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy); 476 477 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 478 // The operation is legal. Assume it costs 1. 479 // If the type is split to multiple registers, assume that thre is some 480 // overhead to this. 481 // TODO: Once we have extract/insert subvector cost we need to use them. 482 if (LT.first > 1) 483 return LT.first * 2; 484 return LT.first * 1; 485 } 486 487 if (!TLI->isOperationExpand(ISD, LT.second)) { 488 // If the operation is custom lowered then assume 489 // thare the code is twice as expensive. 490 return LT.first * 2; 491 } 492 493 // Else, assume that we need to scalarize this intrinsic. For math builtins 494 // this will emit a costly libcall, adding call overhead and spills. Make it 495 // very expensive. 496 if (RetTy->isVectorTy()) { 497 unsigned Num = RetTy->getVectorNumElements(); 498 unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(), 499 Tys); 500 return 10 * Cost * Num; 501 } 502 503 // This is going to be turned into a library call, make it expensive. 504 return 10; 505 } 506 507 unsigned BasicTTI::getNumberOfParts(Type *Tp) const { 508 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp); 509 return LT.first; 510 } 511 512 unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const { 513 return 0; 514 } 515