1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing exception info into assembly files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "EHStreamer.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/BinaryFormat/Dwarf.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/MachineOperand.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/MC/MCAsmInfo.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCStreamer.h" 27 #include "llvm/MC/MCSymbol.h" 28 #include "llvm/MC/MCTargetOptions.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/LEB128.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstdint> 35 #include <vector> 36 37 using namespace llvm; 38 39 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 40 41 EHStreamer::~EHStreamer() = default; 42 43 /// How many leading type ids two landing pads have in common. 44 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L, 45 const LandingPadInfo *R) { 46 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 47 return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end()) 48 .first - 49 LIds.begin(); 50 } 51 52 /// Compute the actions table and gather the first action index for each landing 53 /// pad site. 54 void EHStreamer::computeActionsTable( 55 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 56 SmallVectorImpl<ActionEntry> &Actions, 57 SmallVectorImpl<unsigned> &FirstActions) { 58 // The action table follows the call-site table in the LSDA. The individual 59 // records are of two types: 60 // 61 // * Catch clause 62 // * Exception specification 63 // 64 // The two record kinds have the same format, with only small differences. 65 // They are distinguished by the "switch value" field: Catch clauses 66 // (TypeInfos) have strictly positive switch values, and exception 67 // specifications (FilterIds) have strictly negative switch values. Value 0 68 // indicates a catch-all clause. 69 // 70 // Negative type IDs index into FilterIds. Positive type IDs index into 71 // TypeInfos. The value written for a positive type ID is just the type ID 72 // itself. For a negative type ID, however, the value written is the 73 // (negative) byte offset of the corresponding FilterIds entry. The byte 74 // offset is usually equal to the type ID (because the FilterIds entries are 75 // written using a variable width encoding, which outputs one byte per entry 76 // as long as the value written is not too large) but can differ. This kind 77 // of complication does not occur for positive type IDs because type infos are 78 // output using a fixed width encoding. FilterOffsets[i] holds the byte 79 // offset corresponding to FilterIds[i]. 80 81 const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds(); 82 SmallVector<int, 16> FilterOffsets; 83 FilterOffsets.reserve(FilterIds.size()); 84 int Offset = -1; 85 86 for (std::vector<unsigned>::const_iterator 87 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { 88 FilterOffsets.push_back(Offset); 89 Offset -= getULEB128Size(*I); 90 } 91 92 FirstActions.reserve(LandingPads.size()); 93 94 int FirstAction = 0; 95 unsigned SizeActions = 0; // Total size of all action entries for a function 96 const LandingPadInfo *PrevLPI = nullptr; 97 98 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator 99 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) { 100 const LandingPadInfo *LPI = *I; 101 const std::vector<int> &TypeIds = LPI->TypeIds; 102 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0; 103 unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad 104 105 if (NumShared < TypeIds.size()) { 106 // Size of one action entry (typeid + next action) 107 unsigned SizeActionEntry = 0; 108 unsigned PrevAction = (unsigned)-1; 109 110 if (NumShared) { 111 unsigned SizePrevIds = PrevLPI->TypeIds.size(); 112 assert(Actions.size()); 113 PrevAction = Actions.size() - 1; 114 SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) + 115 getSLEB128Size(Actions[PrevAction].ValueForTypeID); 116 117 for (unsigned j = NumShared; j != SizePrevIds; ++j) { 118 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!"); 119 SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID); 120 SizeActionEntry += -Actions[PrevAction].NextAction; 121 PrevAction = Actions[PrevAction].Previous; 122 } 123 } 124 125 // Compute the actions. 126 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { 127 int TypeID = TypeIds[J]; 128 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); 129 int ValueForTypeID = 130 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID; 131 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID); 132 133 int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0; 134 SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction); 135 SizeSiteActions += SizeActionEntry; 136 137 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; 138 Actions.push_back(Action); 139 PrevAction = Actions.size() - 1; 140 } 141 142 // Record the first action of the landing pad site. 143 FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1; 144 } // else identical - re-use previous FirstAction 145 146 // Information used when creating the call-site table. The action record 147 // field of the call site record is the offset of the first associated 148 // action record, relative to the start of the actions table. This value is 149 // biased by 1 (1 indicating the start of the actions table), and 0 150 // indicates that there are no actions. 151 FirstActions.push_back(FirstAction); 152 153 // Compute this sites contribution to size. 154 SizeActions += SizeSiteActions; 155 156 PrevLPI = LPI; 157 } 158 } 159 160 /// Return `true' if this is a call to a function marked `nounwind'. Return 161 /// `false' otherwise. 162 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) { 163 assert(MI->isCall() && "This should be a call instruction!"); 164 165 bool MarkedNoUnwind = false; 166 bool SawFunc = false; 167 168 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 169 const MachineOperand &MO = MI->getOperand(I); 170 171 if (!MO.isGlobal()) continue; 172 173 const Function *F = dyn_cast<Function>(MO.getGlobal()); 174 if (!F) continue; 175 176 if (SawFunc) { 177 // Be conservative. If we have more than one function operand for this 178 // call, then we can't make the assumption that it's the callee and 179 // not a parameter to the call. 180 // 181 // FIXME: Determine if there's a way to say that `F' is the callee or 182 // parameter. 183 MarkedNoUnwind = false; 184 break; 185 } 186 187 MarkedNoUnwind = F->doesNotThrow(); 188 SawFunc = true; 189 } 190 191 return MarkedNoUnwind; 192 } 193 194 void EHStreamer::computePadMap( 195 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 196 RangeMapType &PadMap) { 197 // Invokes and nounwind calls have entries in PadMap (due to being bracketed 198 // by try-range labels when lowered). Ordinary calls do not, so appropriate 199 // try-ranges for them need be deduced so we can put them in the LSDA. 200 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 201 const LandingPadInfo *LandingPad = LandingPads[i]; 202 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { 203 MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; 204 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); 205 PadRange P = { i, j }; 206 PadMap[BeginLabel] = P; 207 } 208 } 209 } 210 211 /// Compute the call-site table. The entry for an invoke has a try-range 212 /// containing the call, a non-zero landing pad, and an appropriate action. The 213 /// entry for an ordinary call has a try-range containing the call and zero for 214 /// the landing pad and the action. Calls marked 'nounwind' have no entry and 215 /// must not be contained in the try-range of any entry - they form gaps in the 216 /// table. Entries must be ordered by try-range address. 217 void EHStreamer:: 218 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, 219 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 220 const SmallVectorImpl<unsigned> &FirstActions) { 221 RangeMapType PadMap; 222 computePadMap(LandingPads, PadMap); 223 224 // The end label of the previous invoke or nounwind try-range. 225 MCSymbol *LastLabel = Asm->getFunctionBegin(); 226 227 // Whether there is a potentially throwing instruction (currently this means 228 // an ordinary call) between the end of the previous try-range and now. 229 bool SawPotentiallyThrowing = false; 230 231 // Whether the last CallSite entry was for an invoke. 232 bool PreviousIsInvoke = false; 233 234 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 235 236 // Visit all instructions in order of address. 237 for (const auto &MBB : *Asm->MF) { 238 for (const auto &MI : MBB) { 239 if (!MI.isEHLabel()) { 240 if (MI.isCall()) 241 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI); 242 continue; 243 } 244 245 // End of the previous try-range? 246 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol(); 247 if (BeginLabel == LastLabel) 248 SawPotentiallyThrowing = false; 249 250 // Beginning of a new try-range? 251 RangeMapType::const_iterator L = PadMap.find(BeginLabel); 252 if (L == PadMap.end()) 253 // Nope, it was just some random label. 254 continue; 255 256 const PadRange &P = L->second; 257 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; 258 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && 259 "Inconsistent landing pad map!"); 260 261 // For Dwarf exception handling (SjLj handling doesn't use this). If some 262 // instruction between the previous try-range and this one may throw, 263 // create a call-site entry with no landing pad for the region between the 264 // try-ranges. 265 if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) { 266 CallSites.push_back({LastLabel, BeginLabel, nullptr, 0}); 267 PreviousIsInvoke = false; 268 } 269 270 LastLabel = LandingPad->EndLabels[P.RangeIndex]; 271 assert(BeginLabel && LastLabel && "Invalid landing pad!"); 272 273 if (!LandingPad->LandingPadLabel) { 274 // Create a gap. 275 PreviousIsInvoke = false; 276 } else { 277 // This try-range is for an invoke. 278 CallSiteEntry Site = { 279 BeginLabel, 280 LastLabel, 281 LandingPad, 282 FirstActions[P.PadIndex] 283 }; 284 285 // Try to merge with the previous call-site. SJLJ doesn't do this 286 if (PreviousIsInvoke && !IsSJLJ) { 287 CallSiteEntry &Prev = CallSites.back(); 288 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) { 289 // Extend the range of the previous entry. 290 Prev.EndLabel = Site.EndLabel; 291 continue; 292 } 293 } 294 295 // Otherwise, create a new call-site. 296 if (!IsSJLJ) 297 CallSites.push_back(Site); 298 else { 299 // SjLj EH must maintain the call sites in the order assigned 300 // to them by the SjLjPrepare pass. 301 unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel); 302 if (CallSites.size() < SiteNo) 303 CallSites.resize(SiteNo); 304 CallSites[SiteNo - 1] = Site; 305 } 306 PreviousIsInvoke = true; 307 } 308 } 309 } 310 311 // If some instruction between the previous try-range and the end of the 312 // function may throw, create a call-site entry with no landing pad for the 313 // region following the try-range. 314 if (SawPotentiallyThrowing && !IsSJLJ) 315 CallSites.push_back({LastLabel, Asm->getFunctionEnd(), nullptr, 0}); 316 } 317 318 /// Emit landing pads and actions. 319 /// 320 /// The general organization of the table is complex, but the basic concepts are 321 /// easy. First there is a header which describes the location and organization 322 /// of the three components that follow. 323 /// 324 /// 1. The landing pad site information describes the range of code covered by 325 /// the try. In our case it's an accumulation of the ranges covered by the 326 /// invokes in the try. There is also a reference to the landing pad that 327 /// handles the exception once processed. Finally an index into the actions 328 /// table. 329 /// 2. The action table, in our case, is composed of pairs of type IDs and next 330 /// action offset. Starting with the action index from the landing pad 331 /// site, each type ID is checked for a match to the current exception. If 332 /// it matches then the exception and type id are passed on to the landing 333 /// pad. Otherwise the next action is looked up. This chain is terminated 334 /// with a next action of zero. If no type id is found then the frame is 335 /// unwound and handling continues. 336 /// 3. Type ID table contains references to all the C++ typeinfo for all 337 /// catches in the function. This tables is reverse indexed base 1. 338 /// 339 /// Returns the starting symbol of an exception table. 340 MCSymbol *EHStreamer::emitExceptionTable() { 341 const MachineFunction *MF = Asm->MF; 342 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos(); 343 const std::vector<unsigned> &FilterIds = MF->getFilterIds(); 344 const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads(); 345 346 // Sort the landing pads in order of their type ids. This is used to fold 347 // duplicate actions. 348 SmallVector<const LandingPadInfo *, 64> LandingPads; 349 LandingPads.reserve(PadInfos.size()); 350 351 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) 352 LandingPads.push_back(&PadInfos[i]); 353 354 // Order landing pads lexicographically by type id. 355 llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) { 356 return L->TypeIds < R->TypeIds; 357 }); 358 359 // Compute the actions table and gather the first action index for each 360 // landing pad site. 361 SmallVector<ActionEntry, 32> Actions; 362 SmallVector<unsigned, 64> FirstActions; 363 computeActionsTable(LandingPads, Actions, FirstActions); 364 365 // Compute the call-site table. 366 SmallVector<CallSiteEntry, 64> CallSites; 367 computeCallSiteTable(CallSites, LandingPads, FirstActions); 368 369 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 370 bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm; 371 unsigned CallSiteEncoding = 372 IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) : 373 Asm->getObjFileLowering().getCallSiteEncoding(); 374 bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty(); 375 376 // Type infos. 377 MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection(); 378 unsigned TTypeEncoding; 379 380 if (!HaveTTData) { 381 // If there is no TypeInfo, then we just explicitly say that we're omitting 382 // that bit. 383 TTypeEncoding = dwarf::DW_EH_PE_omit; 384 } else { 385 // Okay, we have actual filters or typeinfos to emit. As such, we need to 386 // pick a type encoding for them. We're about to emit a list of pointers to 387 // typeinfo objects at the end of the LSDA. However, unless we're in static 388 // mode, this reference will require a relocation by the dynamic linker. 389 // 390 // Because of this, we have a couple of options: 391 // 392 // 1) If we are in -static mode, we can always use an absolute reference 393 // from the LSDA, because the static linker will resolve it. 394 // 395 // 2) Otherwise, if the LSDA section is writable, we can output the direct 396 // reference to the typeinfo and allow the dynamic linker to relocate 397 // it. Since it is in a writable section, the dynamic linker won't 398 // have a problem. 399 // 400 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, 401 // we need to use some form of indirection. For example, on Darwin, 402 // we can output a statically-relocatable reference to a dyld stub. The 403 // offset to the stub is constant, but the contents are in a section 404 // that is updated by the dynamic linker. This is easy enough, but we 405 // need to tell the personality function of the unwinder to indirect 406 // through the dyld stub. 407 // 408 // FIXME: When (3) is actually implemented, we'll have to emit the stubs 409 // somewhere. This predicate should be moved to a shared location that is 410 // in target-independent code. 411 // 412 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding(); 413 } 414 415 // Begin the exception table. 416 // Sometimes we want not to emit the data into separate section (e.g. ARM 417 // EHABI). In this case LSDASection will be NULL. 418 if (LSDASection) 419 Asm->OutStreamer->SwitchSection(LSDASection); 420 Asm->emitAlignment(Align(4)); 421 422 // Emit the LSDA. 423 MCSymbol *GCCETSym = 424 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+ 425 Twine(Asm->getFunctionNumber())); 426 Asm->OutStreamer->emitLabel(GCCETSym); 427 Asm->OutStreamer->emitLabel(Asm->getCurExceptionSym()); 428 429 // Emit the LSDA header. 430 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); 431 Asm->emitEncodingByte(TTypeEncoding, "@TType"); 432 433 MCSymbol *TTBaseLabel = nullptr; 434 if (HaveTTData) { 435 // N.B.: There is a dependency loop between the size of the TTBase uleb128 436 // here and the amount of padding before the aligned type table. The 437 // assembler must sometimes pad this uleb128 or insert extra padding before 438 // the type table. See PR35809 or GNU as bug 4029. 439 MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref"); 440 TTBaseLabel = Asm->createTempSymbol("ttbase"); 441 Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel); 442 Asm->OutStreamer->emitLabel(TTBaseRefLabel); 443 } 444 445 bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 446 447 // Emit the landing pad call site table. 448 MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin"); 449 MCSymbol *CstEndLabel = Asm->createTempSymbol("cst_end"); 450 Asm->emitEncodingByte(CallSiteEncoding, "Call site"); 451 Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel); 452 Asm->OutStreamer->emitLabel(CstBeginLabel); 453 454 // SjLj / Wasm Exception handling 455 if (IsSJLJ || IsWasm) { 456 unsigned idx = 0; 457 for (SmallVectorImpl<CallSiteEntry>::const_iterator 458 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { 459 const CallSiteEntry &S = *I; 460 461 // Index of the call site entry. 462 if (VerboseAsm) { 463 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<"); 464 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx)); 465 } 466 Asm->emitULEB128(idx); 467 468 // Offset of the first associated action record, relative to the start of 469 // the action table. This value is biased by 1 (1 indicates the start of 470 // the action table), and 0 indicates that there are no actions. 471 if (VerboseAsm) { 472 if (S.Action == 0) 473 Asm->OutStreamer->AddComment(" Action: cleanup"); 474 else 475 Asm->OutStreamer->AddComment(" Action: " + 476 Twine((S.Action - 1) / 2 + 1)); 477 } 478 Asm->emitULEB128(S.Action); 479 } 480 } else { 481 // Itanium LSDA exception handling 482 483 // The call-site table is a list of all call sites that may throw an 484 // exception (including C++ 'throw' statements) in the procedure 485 // fragment. It immediately follows the LSDA header. Each entry indicates, 486 // for a given call, the first corresponding action record and corresponding 487 // landing pad. 488 // 489 // The table begins with the number of bytes, stored as an LEB128 490 // compressed, unsigned integer. The records immediately follow the record 491 // count. They are sorted in increasing call-site address. Each record 492 // indicates: 493 // 494 // * The position of the call-site. 495 // * The position of the landing pad. 496 // * The first action record for that call site. 497 // 498 // A missing entry in the call-site table indicates that a call is not 499 // supposed to throw. 500 501 unsigned Entry = 0; 502 for (SmallVectorImpl<CallSiteEntry>::const_iterator 503 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) { 504 const CallSiteEntry &S = *I; 505 506 MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin(); 507 508 // Offset of the call site relative to the start of the procedure. 509 if (VerboseAsm) 510 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<"); 511 Asm->emitCallSiteOffset(S.BeginLabel, EHFuncBeginSym, CallSiteEncoding); 512 if (VerboseAsm) 513 Asm->OutStreamer->AddComment(Twine(" Call between ") + 514 S.BeginLabel->getName() + " and " + 515 S.EndLabel->getName()); 516 Asm->emitCallSiteOffset(S.EndLabel, S.BeginLabel, CallSiteEncoding); 517 518 // Offset of the landing pad relative to the start of the procedure. 519 if (!S.LPad) { 520 if (VerboseAsm) 521 Asm->OutStreamer->AddComment(" has no landing pad"); 522 Asm->emitCallSiteValue(0, CallSiteEncoding); 523 } else { 524 if (VerboseAsm) 525 Asm->OutStreamer->AddComment(Twine(" jumps to ") + 526 S.LPad->LandingPadLabel->getName()); 527 Asm->emitCallSiteOffset(S.LPad->LandingPadLabel, EHFuncBeginSym, 528 CallSiteEncoding); 529 } 530 531 // Offset of the first associated action record, relative to the start of 532 // the action table. This value is biased by 1 (1 indicates the start of 533 // the action table), and 0 indicates that there are no actions. 534 if (VerboseAsm) { 535 if (S.Action == 0) 536 Asm->OutStreamer->AddComment(" On action: cleanup"); 537 else 538 Asm->OutStreamer->AddComment(" On action: " + 539 Twine((S.Action - 1) / 2 + 1)); 540 } 541 Asm->emitULEB128(S.Action); 542 } 543 } 544 Asm->OutStreamer->emitLabel(CstEndLabel); 545 546 // Emit the Action Table. 547 int Entry = 0; 548 for (SmallVectorImpl<ActionEntry>::const_iterator 549 I = Actions.begin(), E = Actions.end(); I != E; ++I) { 550 const ActionEntry &Action = *I; 551 552 if (VerboseAsm) { 553 // Emit comments that decode the action table. 554 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<"); 555 } 556 557 // Type Filter 558 // 559 // Used by the runtime to match the type of the thrown exception to the 560 // type of the catch clauses or the types in the exception specification. 561 if (VerboseAsm) { 562 if (Action.ValueForTypeID > 0) 563 Asm->OutStreamer->AddComment(" Catch TypeInfo " + 564 Twine(Action.ValueForTypeID)); 565 else if (Action.ValueForTypeID < 0) 566 Asm->OutStreamer->AddComment(" Filter TypeInfo " + 567 Twine(Action.ValueForTypeID)); 568 else 569 Asm->OutStreamer->AddComment(" Cleanup"); 570 } 571 Asm->emitSLEB128(Action.ValueForTypeID); 572 573 // Action Record 574 if (VerboseAsm) { 575 if (Action.Previous == unsigned(-1)) { 576 Asm->OutStreamer->AddComment(" No further actions"); 577 } else { 578 Asm->OutStreamer->AddComment(" Continue to action " + 579 Twine(Action.Previous + 1)); 580 } 581 } 582 Asm->emitSLEB128(Action.NextAction); 583 } 584 585 if (HaveTTData) { 586 Asm->emitAlignment(Align(4)); 587 emitTypeInfos(TTypeEncoding, TTBaseLabel); 588 } 589 590 Asm->emitAlignment(Align(4)); 591 return GCCETSym; 592 } 593 594 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) { 595 const MachineFunction *MF = Asm->MF; 596 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos(); 597 const std::vector<unsigned> &FilterIds = MF->getFilterIds(); 598 599 bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 600 601 int Entry = 0; 602 // Emit the Catch TypeInfos. 603 if (VerboseAsm && !TypeInfos.empty()) { 604 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<"); 605 Asm->OutStreamer->AddBlankLine(); 606 Entry = TypeInfos.size(); 607 } 608 609 for (const GlobalValue *GV : make_range(TypeInfos.rbegin(), 610 TypeInfos.rend())) { 611 if (VerboseAsm) 612 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--)); 613 Asm->emitTTypeReference(GV, TTypeEncoding); 614 } 615 616 Asm->OutStreamer->emitLabel(TTBaseLabel); 617 618 // Emit the Exception Specifications. 619 if (VerboseAsm && !FilterIds.empty()) { 620 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<"); 621 Asm->OutStreamer->AddBlankLine(); 622 Entry = 0; 623 } 624 for (std::vector<unsigned>::const_iterator 625 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { 626 unsigned TypeID = *I; 627 if (VerboseAsm) { 628 --Entry; 629 if (isFilterEHSelector(TypeID)) 630 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry)); 631 } 632 633 Asm->emitULEB128(TypeID); 634 } 635 } 636