1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing exception info into assembly files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "EHStreamer.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/CodeGen/AsmPrinter.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineOperand.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFile.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCStreamer.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/MC/MCTargetOptions.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/LEB128.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <vector>
37 
38 using namespace llvm;
39 
40 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
41 
42 EHStreamer::~EHStreamer() = default;
43 
44 /// How many leading type ids two landing pads have in common.
45 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
46                                    const LandingPadInfo *R) {
47   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
48   unsigned LSize = LIds.size(), RSize = RIds.size();
49   unsigned MinSize = LSize < RSize ? LSize : RSize;
50   unsigned Count = 0;
51 
52   for (; Count != MinSize; ++Count)
53     if (LIds[Count] != RIds[Count])
54       return Count;
55 
56   return Count;
57 }
58 
59 /// Compute the actions table and gather the first action index for each landing
60 /// pad site.
61 unsigned EHStreamer::
62 computeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
63                     SmallVectorImpl<ActionEntry> &Actions,
64                     SmallVectorImpl<unsigned> &FirstActions) {
65   // The action table follows the call-site table in the LSDA. The individual
66   // records are of two types:
67   //
68   //   * Catch clause
69   //   * Exception specification
70   //
71   // The two record kinds have the same format, with only small differences.
72   // They are distinguished by the "switch value" field: Catch clauses
73   // (TypeInfos) have strictly positive switch values, and exception
74   // specifications (FilterIds) have strictly negative switch values. Value 0
75   // indicates a catch-all clause.
76   //
77   // Negative type IDs index into FilterIds. Positive type IDs index into
78   // TypeInfos.  The value written for a positive type ID is just the type ID
79   // itself.  For a negative type ID, however, the value written is the
80   // (negative) byte offset of the corresponding FilterIds entry.  The byte
81   // offset is usually equal to the type ID (because the FilterIds entries are
82   // written using a variable width encoding, which outputs one byte per entry
83   // as long as the value written is not too large) but can differ.  This kind
84   // of complication does not occur for positive type IDs because type infos are
85   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
86   // offset corresponding to FilterIds[i].
87 
88   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
89   SmallVector<int, 16> FilterOffsets;
90   FilterOffsets.reserve(FilterIds.size());
91   int Offset = -1;
92 
93   for (std::vector<unsigned>::const_iterator
94          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
95     FilterOffsets.push_back(Offset);
96     Offset -= getULEB128Size(*I);
97   }
98 
99   FirstActions.reserve(LandingPads.size());
100 
101   int FirstAction = 0;
102   unsigned SizeActions = 0;
103   const LandingPadInfo *PrevLPI = nullptr;
104 
105   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
106          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
107     const LandingPadInfo *LPI = *I;
108     const std::vector<int> &TypeIds = LPI->TypeIds;
109     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
110     unsigned SizeSiteActions = 0;
111 
112     if (NumShared < TypeIds.size()) {
113       unsigned SizeAction = 0;
114       unsigned PrevAction = (unsigned)-1;
115 
116       if (NumShared) {
117         unsigned SizePrevIds = PrevLPI->TypeIds.size();
118         assert(Actions.size());
119         PrevAction = Actions.size() - 1;
120         SizeAction = getSLEB128Size(Actions[PrevAction].NextAction) +
121                      getSLEB128Size(Actions[PrevAction].ValueForTypeID);
122 
123         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
124           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
125           SizeAction -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
126           SizeAction += -Actions[PrevAction].NextAction;
127           PrevAction = Actions[PrevAction].Previous;
128         }
129       }
130 
131       // Compute the actions.
132       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
133         int TypeID = TypeIds[J];
134         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
135         int ValueForTypeID =
136             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
137         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
138 
139         int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
140         SizeAction = SizeTypeID + getSLEB128Size(NextAction);
141         SizeSiteActions += SizeAction;
142 
143         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
144         Actions.push_back(Action);
145         PrevAction = Actions.size() - 1;
146       }
147 
148       // Record the first action of the landing pad site.
149       FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
150     } // else identical - re-use previous FirstAction
151 
152     // Information used when creating the call-site table. The action record
153     // field of the call site record is the offset of the first associated
154     // action record, relative to the start of the actions table. This value is
155     // biased by 1 (1 indicating the start of the actions table), and 0
156     // indicates that there are no actions.
157     FirstActions.push_back(FirstAction);
158 
159     // Compute this sites contribution to size.
160     SizeActions += SizeSiteActions;
161 
162     PrevLPI = LPI;
163   }
164 
165   return SizeActions;
166 }
167 
168 /// Return `true' if this is a call to a function marked `nounwind'. Return
169 /// `false' otherwise.
170 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
171   assert(MI->isCall() && "This should be a call instruction!");
172 
173   bool MarkedNoUnwind = false;
174   bool SawFunc = false;
175 
176   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
177     const MachineOperand &MO = MI->getOperand(I);
178 
179     if (!MO.isGlobal()) continue;
180 
181     const Function *F = dyn_cast<Function>(MO.getGlobal());
182     if (!F) continue;
183 
184     if (SawFunc) {
185       // Be conservative. If we have more than one function operand for this
186       // call, then we can't make the assumption that it's the callee and
187       // not a parameter to the call.
188       //
189       // FIXME: Determine if there's a way to say that `F' is the callee or
190       // parameter.
191       MarkedNoUnwind = false;
192       break;
193     }
194 
195     MarkedNoUnwind = F->doesNotThrow();
196     SawFunc = true;
197   }
198 
199   return MarkedNoUnwind;
200 }
201 
202 void EHStreamer::computePadMap(
203     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
204     RangeMapType &PadMap) {
205   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
206   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
207   // try-ranges for them need be deduced so we can put them in the LSDA.
208   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
209     const LandingPadInfo *LandingPad = LandingPads[i];
210     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
211       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
212       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
213       PadRange P = { i, j };
214       PadMap[BeginLabel] = P;
215     }
216   }
217 }
218 
219 /// Compute the call-site table.  The entry for an invoke has a try-range
220 /// containing the call, a non-zero landing pad, and an appropriate action.  The
221 /// entry for an ordinary call has a try-range containing the call and zero for
222 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
223 /// must not be contained in the try-range of any entry - they form gaps in the
224 /// table.  Entries must be ordered by try-range address.
225 void EHStreamer::
226 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
227                      const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
228                      const SmallVectorImpl<unsigned> &FirstActions) {
229   RangeMapType PadMap;
230   computePadMap(LandingPads, PadMap);
231 
232   // The end label of the previous invoke or nounwind try-range.
233   MCSymbol *LastLabel = nullptr;
234 
235   // Whether there is a potentially throwing instruction (currently this means
236   // an ordinary call) between the end of the previous try-range and now.
237   bool SawPotentiallyThrowing = false;
238 
239   // Whether the last CallSite entry was for an invoke.
240   bool PreviousIsInvoke = false;
241 
242   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
243 
244   // Visit all instructions in order of address.
245   for (const auto &MBB : *Asm->MF) {
246     for (const auto &MI : MBB) {
247       if (!MI.isEHLabel()) {
248         if (MI.isCall())
249           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
250         continue;
251       }
252 
253       // End of the previous try-range?
254       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
255       if (BeginLabel == LastLabel)
256         SawPotentiallyThrowing = false;
257 
258       // Beginning of a new try-range?
259       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
260       if (L == PadMap.end())
261         // Nope, it was just some random label.
262         continue;
263 
264       const PadRange &P = L->second;
265       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
266       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
267              "Inconsistent landing pad map!");
268 
269       // For Dwarf exception handling (SjLj handling doesn't use this). If some
270       // instruction between the previous try-range and this one may throw,
271       // create a call-site entry with no landing pad for the region between the
272       // try-ranges.
273       if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
274         CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
275         CallSites.push_back(Site);
276         PreviousIsInvoke = false;
277       }
278 
279       LastLabel = LandingPad->EndLabels[P.RangeIndex];
280       assert(BeginLabel && LastLabel && "Invalid landing pad!");
281 
282       if (!LandingPad->LandingPadLabel) {
283         // Create a gap.
284         PreviousIsInvoke = false;
285       } else {
286         // This try-range is for an invoke.
287         CallSiteEntry Site = {
288           BeginLabel,
289           LastLabel,
290           LandingPad,
291           FirstActions[P.PadIndex]
292         };
293 
294         // Try to merge with the previous call-site. SJLJ doesn't do this
295         if (PreviousIsInvoke && !IsSJLJ) {
296           CallSiteEntry &Prev = CallSites.back();
297           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
298             // Extend the range of the previous entry.
299             Prev.EndLabel = Site.EndLabel;
300             continue;
301           }
302         }
303 
304         // Otherwise, create a new call-site.
305         if (!IsSJLJ)
306           CallSites.push_back(Site);
307         else {
308           // SjLj EH must maintain the call sites in the order assigned
309           // to them by the SjLjPrepare pass.
310           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
311           if (CallSites.size() < SiteNo)
312             CallSites.resize(SiteNo);
313           CallSites[SiteNo - 1] = Site;
314         }
315         PreviousIsInvoke = true;
316       }
317     }
318   }
319 
320   // If some instruction between the previous try-range and the end of the
321   // function may throw, create a call-site entry with no landing pad for the
322   // region following the try-range.
323   if (SawPotentiallyThrowing && !IsSJLJ) {
324     CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
325     CallSites.push_back(Site);
326   }
327 }
328 
329 /// Emit landing pads and actions.
330 ///
331 /// The general organization of the table is complex, but the basic concepts are
332 /// easy.  First there is a header which describes the location and organization
333 /// of the three components that follow.
334 ///
335 ///  1. The landing pad site information describes the range of code covered by
336 ///     the try.  In our case it's an accumulation of the ranges covered by the
337 ///     invokes in the try.  There is also a reference to the landing pad that
338 ///     handles the exception once processed.  Finally an index into the actions
339 ///     table.
340 ///  2. The action table, in our case, is composed of pairs of type IDs and next
341 ///     action offset.  Starting with the action index from the landing pad
342 ///     site, each type ID is checked for a match to the current exception.  If
343 ///     it matches then the exception and type id are passed on to the landing
344 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
345 ///     with a next action of zero.  If no type id is found then the frame is
346 ///     unwound and handling continues.
347 ///  3. Type ID table contains references to all the C++ typeinfo for all
348 ///     catches in the function.  This tables is reverse indexed base 1.
349 void EHStreamer::emitExceptionTable() {
350   const MachineFunction *MF = Asm->MF;
351   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
352   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
353   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
354 
355   // Sort the landing pads in order of their type ids.  This is used to fold
356   // duplicate actions.
357   SmallVector<const LandingPadInfo *, 64> LandingPads;
358   LandingPads.reserve(PadInfos.size());
359 
360   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
361     LandingPads.push_back(&PadInfos[i]);
362 
363   // Order landing pads lexicographically by type id.
364   std::sort(LandingPads.begin(), LandingPads.end(),
365             [](const LandingPadInfo *L,
366                const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; });
367 
368   // Compute the actions table and gather the first action index for each
369   // landing pad site.
370   SmallVector<ActionEntry, 32> Actions;
371   SmallVector<unsigned, 64> FirstActions;
372   unsigned SizeActions =
373     computeActionsTable(LandingPads, Actions, FirstActions);
374 
375   // Compute the call-site table.
376   SmallVector<CallSiteEntry, 64> CallSites;
377   computeCallSiteTable(CallSites, LandingPads, FirstActions);
378 
379   // Final tallies.
380 
381   // Call sites.
382   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
383   bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
384 
385   unsigned CallSiteTableLength;
386   if (IsSJLJ)
387     CallSiteTableLength = 0;
388   else {
389     unsigned SiteStartSize  = 4; // dwarf::DW_EH_PE_udata4
390     unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
391     unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
392     CallSiteTableLength =
393       CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
394   }
395 
396   for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
397     CallSiteTableLength += getULEB128Size(CallSites[i].Action);
398     if (IsSJLJ)
399       CallSiteTableLength += getULEB128Size(i);
400   }
401 
402   // Type infos.
403   MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
404   unsigned TTypeEncoding;
405   unsigned TypeFormatSize;
406 
407   if (!HaveTTData) {
408     // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
409     // that we're omitting that bit.
410     TTypeEncoding = dwarf::DW_EH_PE_omit;
411     // dwarf::DW_EH_PE_absptr
412     TypeFormatSize = Asm->getDataLayout().getPointerSize();
413   } else {
414     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
415     // pick a type encoding for them.  We're about to emit a list of pointers to
416     // typeinfo objects at the end of the LSDA.  However, unless we're in static
417     // mode, this reference will require a relocation by the dynamic linker.
418     //
419     // Because of this, we have a couple of options:
420     //
421     //   1) If we are in -static mode, we can always use an absolute reference
422     //      from the LSDA, because the static linker will resolve it.
423     //
424     //   2) Otherwise, if the LSDA section is writable, we can output the direct
425     //      reference to the typeinfo and allow the dynamic linker to relocate
426     //      it.  Since it is in a writable section, the dynamic linker won't
427     //      have a problem.
428     //
429     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
430     //      we need to use some form of indirection.  For example, on Darwin,
431     //      we can output a statically-relocatable reference to a dyld stub. The
432     //      offset to the stub is constant, but the contents are in a section
433     //      that is updated by the dynamic linker.  This is easy enough, but we
434     //      need to tell the personality function of the unwinder to indirect
435     //      through the dyld stub.
436     //
437     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
438     // somewhere.  This predicate should be moved to a shared location that is
439     // in target-independent code.
440     //
441     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
442     TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
443   }
444 
445   // Begin the exception table.
446   // Sometimes we want not to emit the data into separate section (e.g. ARM
447   // EHABI). In this case LSDASection will be NULL.
448   if (LSDASection)
449     Asm->OutStreamer->SwitchSection(LSDASection);
450   Asm->EmitAlignment(2);
451 
452   // Emit the LSDA.
453   MCSymbol *GCCETSym =
454     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
455                                       Twine(Asm->getFunctionNumber()));
456   Asm->OutStreamer->EmitLabel(GCCETSym);
457   Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym());
458 
459   // Emit the LSDA header.
460   Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
461   Asm->EmitEncodingByte(TTypeEncoding, "@TType");
462 
463   // The type infos need to be aligned. GCC does this by inserting padding just
464   // before the type infos. However, this changes the size of the exception
465   // table, so you need to take this into account when you output the exception
466   // table size. However, the size is output using a variable length encoding.
467   // So by increasing the size by inserting padding, you may increase the number
468   // of bytes used for writing the size. If it increases, say by one byte, then
469   // you now need to output one less byte of padding to get the type infos
470   // aligned. However this decreases the size of the exception table. This
471   // changes the value you have to output for the exception table size. Due to
472   // the variable length encoding, the number of bytes used for writing the
473   // length may decrease. If so, you then have to increase the amount of
474   // padding. And so on. If you look carefully at the GCC code you will see that
475   // it indeed does this in a loop, going on and on until the values stabilize.
476   // We chose another solution: don't output padding inside the table like GCC
477   // does, instead output it before the table.
478   unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
479   unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
480   unsigned TTypeBaseOffset =
481     sizeof(int8_t) +                            // Call site format
482     CallSiteTableLengthSize +                   // Call site table length size
483     CallSiteTableLength +                       // Call site table length
484     SizeActions +                               // Actions size
485     SizeTypes;
486   unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
487   unsigned TotalSize =
488     sizeof(int8_t) +                            // LPStart format
489     sizeof(int8_t) +                            // TType format
490     (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size
491     TTypeBaseOffset;                            // TType base offset
492   unsigned PadBytes = (4 - TotalSize) & 3;
493 
494   if (HaveTTData) {
495     // Account for any extra padding that will be added to the call site table
496     // length.
497     Asm->EmitPaddedULEB128(TTypeBaseOffset, TTypeBaseOffsetSize + PadBytes,
498                            "@TType base offset");
499     PadBytes = 0;
500   }
501 
502   bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
503 
504   // SjLj Exception handling
505   if (IsSJLJ) {
506     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
507 
508     // Add extra padding if it wasn't added to the TType base offset.
509     Asm->EmitPaddedULEB128(CallSiteTableLength,
510                            CallSiteTableLengthSize + PadBytes,
511                            "Call site table length");
512 
513     // Emit the landing pad site information.
514     unsigned idx = 0;
515     for (SmallVectorImpl<CallSiteEntry>::const_iterator
516          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
517       const CallSiteEntry &S = *I;
518 
519       // Offset of the landing pad, counted in 16-byte bundles relative to the
520       // @LPStart address.
521       if (VerboseAsm) {
522         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
523         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
524       }
525       Asm->EmitULEB128(idx);
526 
527       // Offset of the first associated action record, relative to the start of
528       // the action table. This value is biased by 1 (1 indicates the start of
529       // the action table), and 0 indicates that there are no actions.
530       if (VerboseAsm) {
531         if (S.Action == 0)
532           Asm->OutStreamer->AddComment("  Action: cleanup");
533         else
534           Asm->OutStreamer->AddComment("  Action: " +
535                                        Twine((S.Action - 1) / 2 + 1));
536       }
537       Asm->EmitULEB128(S.Action);
538     }
539   } else {
540     // Itanium LSDA exception handling
541 
542     // The call-site table is a list of all call sites that may throw an
543     // exception (including C++ 'throw' statements) in the procedure
544     // fragment. It immediately follows the LSDA header. Each entry indicates,
545     // for a given call, the first corresponding action record and corresponding
546     // landing pad.
547     //
548     // The table begins with the number of bytes, stored as an LEB128
549     // compressed, unsigned integer. The records immediately follow the record
550     // count. They are sorted in increasing call-site address. Each record
551     // indicates:
552     //
553     //   * The position of the call-site.
554     //   * The position of the landing pad.
555     //   * The first action record for that call site.
556     //
557     // A missing entry in the call-site table indicates that a call is not
558     // supposed to throw.
559 
560     // Emit the landing pad call site table.
561     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
562 
563     // Add extra padding if it wasn't added to the TType base offset.
564     Asm->EmitPaddedULEB128(CallSiteTableLength,
565                            CallSiteTableLengthSize + PadBytes,
566                            "Call site table length");
567 
568     unsigned Entry = 0;
569     for (SmallVectorImpl<CallSiteEntry>::const_iterator
570          I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
571       const CallSiteEntry &S = *I;
572 
573       MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin();
574 
575       MCSymbol *BeginLabel = S.BeginLabel;
576       if (!BeginLabel)
577         BeginLabel = EHFuncBeginSym;
578       MCSymbol *EndLabel = S.EndLabel;
579       if (!EndLabel)
580         EndLabel = Asm->getFunctionEnd();
581 
582       // Offset of the call site relative to the previous call site, counted in
583       // number of 16-byte bundles. The first call site is counted relative to
584       // the start of the procedure fragment.
585       if (VerboseAsm)
586         Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<");
587       Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
588       if (VerboseAsm)
589         Asm->OutStreamer->AddComment(Twine("  Call between ") +
590                                      BeginLabel->getName() + " and " +
591                                      EndLabel->getName());
592       Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
593 
594       // Offset of the landing pad, counted in 16-byte bundles relative to the
595       // @LPStart address.
596       if (!S.LPad) {
597         if (VerboseAsm)
598           Asm->OutStreamer->AddComment("    has no landing pad");
599         Asm->OutStreamer->EmitIntValue(0, 4/*size*/);
600       } else {
601         if (VerboseAsm)
602           Asm->OutStreamer->AddComment(Twine("    jumps to ") +
603                                        S.LPad->LandingPadLabel->getName());
604         Asm->EmitLabelDifference(S.LPad->LandingPadLabel, EHFuncBeginSym, 4);
605       }
606 
607       // Offset of the first associated action record, relative to the start of
608       // the action table. This value is biased by 1 (1 indicates the start of
609       // the action table), and 0 indicates that there are no actions.
610       if (VerboseAsm) {
611         if (S.Action == 0)
612           Asm->OutStreamer->AddComment("  On action: cleanup");
613         else
614           Asm->OutStreamer->AddComment("  On action: " +
615                                        Twine((S.Action - 1) / 2 + 1));
616       }
617       Asm->EmitULEB128(S.Action);
618     }
619   }
620 
621   // Emit the Action Table.
622   int Entry = 0;
623   for (SmallVectorImpl<ActionEntry>::const_iterator
624          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
625     const ActionEntry &Action = *I;
626 
627     if (VerboseAsm) {
628       // Emit comments that decode the action table.
629       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
630     }
631 
632     // Type Filter
633     //
634     //   Used by the runtime to match the type of the thrown exception to the
635     //   type of the catch clauses or the types in the exception specification.
636     if (VerboseAsm) {
637       if (Action.ValueForTypeID > 0)
638         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
639                                      Twine(Action.ValueForTypeID));
640       else if (Action.ValueForTypeID < 0)
641         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
642                                      Twine(Action.ValueForTypeID));
643       else
644         Asm->OutStreamer->AddComment("  Cleanup");
645     }
646     Asm->EmitSLEB128(Action.ValueForTypeID);
647 
648     // Action Record
649     //
650     //   Self-relative signed displacement in bytes of the next action record,
651     //   or 0 if there is no next action record.
652     if (VerboseAsm) {
653       if (Action.NextAction == 0) {
654         Asm->OutStreamer->AddComment("  No further actions");
655       } else {
656         unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
657         Asm->OutStreamer->AddComment("  Continue to action "+Twine(NextAction));
658       }
659     }
660     Asm->EmitSLEB128(Action.NextAction);
661   }
662 
663   emitTypeInfos(TTypeEncoding);
664 
665   Asm->EmitAlignment(2);
666 }
667 
668 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) {
669   const MachineFunction *MF = Asm->MF;
670   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
671   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
672 
673   bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
674 
675   int Entry = 0;
676   // Emit the Catch TypeInfos.
677   if (VerboseAsm && !TypeInfos.empty()) {
678     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
679     Asm->OutStreamer->AddBlankLine();
680     Entry = TypeInfos.size();
681   }
682 
683   for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
684                                           TypeInfos.rend())) {
685     if (VerboseAsm)
686       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
687     Asm->EmitTTypeReference(GV, TTypeEncoding);
688   }
689 
690   // Emit the Exception Specifications.
691   if (VerboseAsm && !FilterIds.empty()) {
692     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
693     Asm->OutStreamer->AddBlankLine();
694     Entry = 0;
695   }
696   for (std::vector<unsigned>::const_iterator
697          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
698     unsigned TypeID = *I;
699     if (VerboseAsm) {
700       --Entry;
701       if (isFilterEHSelector(TypeID))
702         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
703     }
704 
705     Asm->EmitULEB128(TypeID);
706   }
707 }
708