1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSymbol.h"
28 #include "llvm/MC/MCTargetOptions.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
40 
41 EHStreamer::~EHStreamer() = default;
42 
43 /// How many leading type ids two landing pads have in common.
44 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
45                                    const LandingPadInfo *R) {
46   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
47   unsigned LSize = LIds.size(), RSize = RIds.size();
48   unsigned MinSize = LSize < RSize ? LSize : RSize;
49   unsigned Count = 0;
50 
51   for (; Count != MinSize; ++Count)
52     if (LIds[Count] != RIds[Count])
53       return Count;
54 
55   return Count;
56 }
57 
58 /// Compute the actions table and gather the first action index for each landing
59 /// pad site.
60 void EHStreamer::computeActionsTable(
61     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
62     SmallVectorImpl<ActionEntry> &Actions,
63     SmallVectorImpl<unsigned> &FirstActions) {
64   // The action table follows the call-site table in the LSDA. The individual
65   // records are of two types:
66   //
67   //   * Catch clause
68   //   * Exception specification
69   //
70   // The two record kinds have the same format, with only small differences.
71   // They are distinguished by the "switch value" field: Catch clauses
72   // (TypeInfos) have strictly positive switch values, and exception
73   // specifications (FilterIds) have strictly negative switch values. Value 0
74   // indicates a catch-all clause.
75   //
76   // Negative type IDs index into FilterIds. Positive type IDs index into
77   // TypeInfos.  The value written for a positive type ID is just the type ID
78   // itself.  For a negative type ID, however, the value written is the
79   // (negative) byte offset of the corresponding FilterIds entry.  The byte
80   // offset is usually equal to the type ID (because the FilterIds entries are
81   // written using a variable width encoding, which outputs one byte per entry
82   // as long as the value written is not too large) but can differ.  This kind
83   // of complication does not occur for positive type IDs because type infos are
84   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
85   // offset corresponding to FilterIds[i].
86 
87   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
88   SmallVector<int, 16> FilterOffsets;
89   FilterOffsets.reserve(FilterIds.size());
90   int Offset = -1;
91 
92   for (std::vector<unsigned>::const_iterator
93          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
94     FilterOffsets.push_back(Offset);
95     Offset -= getULEB128Size(*I);
96   }
97 
98   FirstActions.reserve(LandingPads.size());
99 
100   int FirstAction = 0;
101   unsigned SizeActions = 0; // Total size of all action entries for a function
102   const LandingPadInfo *PrevLPI = nullptr;
103 
104   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
105          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
106     const LandingPadInfo *LPI = *I;
107     const std::vector<int> &TypeIds = LPI->TypeIds;
108     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
109     unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
110 
111     if (NumShared < TypeIds.size()) {
112       // Size of one action entry (typeid + next action)
113       unsigned SizeActionEntry = 0;
114       unsigned PrevAction = (unsigned)-1;
115 
116       if (NumShared) {
117         unsigned SizePrevIds = PrevLPI->TypeIds.size();
118         assert(Actions.size());
119         PrevAction = Actions.size() - 1;
120         SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
121                           getSLEB128Size(Actions[PrevAction].ValueForTypeID);
122 
123         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
124           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
125           SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
126           SizeActionEntry += -Actions[PrevAction].NextAction;
127           PrevAction = Actions[PrevAction].Previous;
128         }
129       }
130 
131       // Compute the actions.
132       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
133         int TypeID = TypeIds[J];
134         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
135         int ValueForTypeID =
136             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
137         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
138 
139         int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
140         SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
141         SizeSiteActions += SizeActionEntry;
142 
143         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
144         Actions.push_back(Action);
145         PrevAction = Actions.size() - 1;
146       }
147 
148       // Record the first action of the landing pad site.
149       FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
150     } // else identical - re-use previous FirstAction
151 
152     // Information used when creating the call-site table. The action record
153     // field of the call site record is the offset of the first associated
154     // action record, relative to the start of the actions table. This value is
155     // biased by 1 (1 indicating the start of the actions table), and 0
156     // indicates that there are no actions.
157     FirstActions.push_back(FirstAction);
158 
159     // Compute this sites contribution to size.
160     SizeActions += SizeSiteActions;
161 
162     PrevLPI = LPI;
163   }
164 }
165 
166 /// Return `true' if this is a call to a function marked `nounwind'. Return
167 /// `false' otherwise.
168 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
169   assert(MI->isCall() && "This should be a call instruction!");
170 
171   bool MarkedNoUnwind = false;
172   bool SawFunc = false;
173 
174   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
175     const MachineOperand &MO = MI->getOperand(I);
176 
177     if (!MO.isGlobal()) continue;
178 
179     const Function *F = dyn_cast<Function>(MO.getGlobal());
180     if (!F) continue;
181 
182     if (SawFunc) {
183       // Be conservative. If we have more than one function operand for this
184       // call, then we can't make the assumption that it's the callee and
185       // not a parameter to the call.
186       //
187       // FIXME: Determine if there's a way to say that `F' is the callee or
188       // parameter.
189       MarkedNoUnwind = false;
190       break;
191     }
192 
193     MarkedNoUnwind = F->doesNotThrow();
194     SawFunc = true;
195   }
196 
197   return MarkedNoUnwind;
198 }
199 
200 void EHStreamer::computePadMap(
201     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
202     RangeMapType &PadMap) {
203   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
204   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
205   // try-ranges for them need be deduced so we can put them in the LSDA.
206   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
207     const LandingPadInfo *LandingPad = LandingPads[i];
208     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
209       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
210       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
211       PadRange P = { i, j };
212       PadMap[BeginLabel] = P;
213     }
214   }
215 }
216 
217 /// Compute the call-site table.  The entry for an invoke has a try-range
218 /// containing the call, a non-zero landing pad, and an appropriate action.  The
219 /// entry for an ordinary call has a try-range containing the call and zero for
220 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
221 /// must not be contained in the try-range of any entry - they form gaps in the
222 /// table.  Entries must be ordered by try-range address.
223 void EHStreamer::
224 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
225                      const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
226                      const SmallVectorImpl<unsigned> &FirstActions) {
227   RangeMapType PadMap;
228   computePadMap(LandingPads, PadMap);
229 
230   // The end label of the previous invoke or nounwind try-range.
231   MCSymbol *LastLabel = nullptr;
232 
233   // Whether there is a potentially throwing instruction (currently this means
234   // an ordinary call) between the end of the previous try-range and now.
235   bool SawPotentiallyThrowing = false;
236 
237   // Whether the last CallSite entry was for an invoke.
238   bool PreviousIsInvoke = false;
239 
240   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
241 
242   // Visit all instructions in order of address.
243   for (const auto &MBB : *Asm->MF) {
244     for (const auto &MI : MBB) {
245       if (!MI.isEHLabel()) {
246         if (MI.isCall())
247           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
248         continue;
249       }
250 
251       // End of the previous try-range?
252       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
253       if (BeginLabel == LastLabel)
254         SawPotentiallyThrowing = false;
255 
256       // Beginning of a new try-range?
257       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
258       if (L == PadMap.end())
259         // Nope, it was just some random label.
260         continue;
261 
262       const PadRange &P = L->second;
263       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
264       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
265              "Inconsistent landing pad map!");
266 
267       // For Dwarf exception handling (SjLj handling doesn't use this). If some
268       // instruction between the previous try-range and this one may throw,
269       // create a call-site entry with no landing pad for the region between the
270       // try-ranges.
271       if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
272         CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
273         CallSites.push_back(Site);
274         PreviousIsInvoke = false;
275       }
276 
277       LastLabel = LandingPad->EndLabels[P.RangeIndex];
278       assert(BeginLabel && LastLabel && "Invalid landing pad!");
279 
280       if (!LandingPad->LandingPadLabel) {
281         // Create a gap.
282         PreviousIsInvoke = false;
283       } else {
284         // This try-range is for an invoke.
285         CallSiteEntry Site = {
286           BeginLabel,
287           LastLabel,
288           LandingPad,
289           FirstActions[P.PadIndex]
290         };
291 
292         // Try to merge with the previous call-site. SJLJ doesn't do this
293         if (PreviousIsInvoke && !IsSJLJ) {
294           CallSiteEntry &Prev = CallSites.back();
295           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
296             // Extend the range of the previous entry.
297             Prev.EndLabel = Site.EndLabel;
298             continue;
299           }
300         }
301 
302         // Otherwise, create a new call-site.
303         if (!IsSJLJ)
304           CallSites.push_back(Site);
305         else {
306           // SjLj EH must maintain the call sites in the order assigned
307           // to them by the SjLjPrepare pass.
308           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
309           if (CallSites.size() < SiteNo)
310             CallSites.resize(SiteNo);
311           CallSites[SiteNo - 1] = Site;
312         }
313         PreviousIsInvoke = true;
314       }
315     }
316   }
317 
318   // If some instruction between the previous try-range and the end of the
319   // function may throw, create a call-site entry with no landing pad for the
320   // region following the try-range.
321   if (SawPotentiallyThrowing && !IsSJLJ) {
322     CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
323     CallSites.push_back(Site);
324   }
325 }
326 
327 /// Emit landing pads and actions.
328 ///
329 /// The general organization of the table is complex, but the basic concepts are
330 /// easy.  First there is a header which describes the location and organization
331 /// of the three components that follow.
332 ///
333 ///  1. The landing pad site information describes the range of code covered by
334 ///     the try.  In our case it's an accumulation of the ranges covered by the
335 ///     invokes in the try.  There is also a reference to the landing pad that
336 ///     handles the exception once processed.  Finally an index into the actions
337 ///     table.
338 ///  2. The action table, in our case, is composed of pairs of type IDs and next
339 ///     action offset.  Starting with the action index from the landing pad
340 ///     site, each type ID is checked for a match to the current exception.  If
341 ///     it matches then the exception and type id are passed on to the landing
342 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
343 ///     with a next action of zero.  If no type id is found then the frame is
344 ///     unwound and handling continues.
345 ///  3. Type ID table contains references to all the C++ typeinfo for all
346 ///     catches in the function.  This tables is reverse indexed base 1.
347 ///
348 /// Returns the starting symbol of an exception table.
349 MCSymbol *EHStreamer::emitExceptionTable() {
350   const MachineFunction *MF = Asm->MF;
351   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
352   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
353   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
354 
355   // Sort the landing pads in order of their type ids.  This is used to fold
356   // duplicate actions.
357   SmallVector<const LandingPadInfo *, 64> LandingPads;
358   LandingPads.reserve(PadInfos.size());
359 
360   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
361     LandingPads.push_back(&PadInfos[i]);
362 
363   // Order landing pads lexicographically by type id.
364   llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
365     return L->TypeIds < R->TypeIds;
366   });
367 
368   // Compute the actions table and gather the first action index for each
369   // landing pad site.
370   SmallVector<ActionEntry, 32> Actions;
371   SmallVector<unsigned, 64> FirstActions;
372   computeActionsTable(LandingPads, Actions, FirstActions);
373 
374   // Compute the call-site table.
375   SmallVector<CallSiteEntry, 64> CallSites;
376   computeCallSiteTable(CallSites, LandingPads, FirstActions);
377 
378   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
379   bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
380   unsigned CallSiteEncoding =
381       IsSJLJ ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_uleb128;
382   bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
383 
384   // Type infos.
385   MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
386   unsigned TTypeEncoding;
387 
388   if (!HaveTTData) {
389     // If there is no TypeInfo, then we just explicitly say that we're omitting
390     // that bit.
391     TTypeEncoding = dwarf::DW_EH_PE_omit;
392   } else {
393     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
394     // pick a type encoding for them.  We're about to emit a list of pointers to
395     // typeinfo objects at the end of the LSDA.  However, unless we're in static
396     // mode, this reference will require a relocation by the dynamic linker.
397     //
398     // Because of this, we have a couple of options:
399     //
400     //   1) If we are in -static mode, we can always use an absolute reference
401     //      from the LSDA, because the static linker will resolve it.
402     //
403     //   2) Otherwise, if the LSDA section is writable, we can output the direct
404     //      reference to the typeinfo and allow the dynamic linker to relocate
405     //      it.  Since it is in a writable section, the dynamic linker won't
406     //      have a problem.
407     //
408     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
409     //      we need to use some form of indirection.  For example, on Darwin,
410     //      we can output a statically-relocatable reference to a dyld stub. The
411     //      offset to the stub is constant, but the contents are in a section
412     //      that is updated by the dynamic linker.  This is easy enough, but we
413     //      need to tell the personality function of the unwinder to indirect
414     //      through the dyld stub.
415     //
416     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
417     // somewhere.  This predicate should be moved to a shared location that is
418     // in target-independent code.
419     //
420     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
421   }
422 
423   // Begin the exception table.
424   // Sometimes we want not to emit the data into separate section (e.g. ARM
425   // EHABI). In this case LSDASection will be NULL.
426   if (LSDASection)
427     Asm->OutStreamer->SwitchSection(LSDASection);
428   Asm->EmitAlignment(2);
429 
430   // Emit the LSDA.
431   MCSymbol *GCCETSym =
432     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
433                                       Twine(Asm->getFunctionNumber()));
434   Asm->OutStreamer->EmitLabel(GCCETSym);
435   Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym());
436 
437   // Emit the LSDA header.
438   Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
439   Asm->EmitEncodingByte(TTypeEncoding, "@TType");
440 
441   MCSymbol *TTBaseLabel = nullptr;
442   if (HaveTTData) {
443     // N.B.: There is a dependency loop between the size of the TTBase uleb128
444     // here and the amount of padding before the aligned type table. The
445     // assembler must sometimes pad this uleb128 or insert extra padding before
446     // the type table. See PR35809 or GNU as bug 4029.
447     MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
448     TTBaseLabel = Asm->createTempSymbol("ttbase");
449     Asm->EmitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
450     Asm->OutStreamer->EmitLabel(TTBaseRefLabel);
451   }
452 
453   bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
454 
455   // Emit the landing pad call site table.
456   MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
457   MCSymbol *CstEndLabel = Asm->createTempSymbol("cst_end");
458   Asm->EmitEncodingByte(CallSiteEncoding, "Call site");
459   Asm->EmitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
460   Asm->OutStreamer->EmitLabel(CstBeginLabel);
461 
462   // SjLj / Wasm Exception handling
463   if (IsSJLJ || IsWasm) {
464     unsigned idx = 0;
465     for (SmallVectorImpl<CallSiteEntry>::const_iterator
466          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
467       const CallSiteEntry &S = *I;
468 
469       // Index of the call site entry.
470       if (VerboseAsm) {
471         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
472         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
473       }
474       Asm->EmitULEB128(idx);
475 
476       // Offset of the first associated action record, relative to the start of
477       // the action table. This value is biased by 1 (1 indicates the start of
478       // the action table), and 0 indicates that there are no actions.
479       if (VerboseAsm) {
480         if (S.Action == 0)
481           Asm->OutStreamer->AddComment("  Action: cleanup");
482         else
483           Asm->OutStreamer->AddComment("  Action: " +
484                                        Twine((S.Action - 1) / 2 + 1));
485       }
486       Asm->EmitULEB128(S.Action);
487     }
488   } else {
489     // Itanium LSDA exception handling
490 
491     // The call-site table is a list of all call sites that may throw an
492     // exception (including C++ 'throw' statements) in the procedure
493     // fragment. It immediately follows the LSDA header. Each entry indicates,
494     // for a given call, the first corresponding action record and corresponding
495     // landing pad.
496     //
497     // The table begins with the number of bytes, stored as an LEB128
498     // compressed, unsigned integer. The records immediately follow the record
499     // count. They are sorted in increasing call-site address. Each record
500     // indicates:
501     //
502     //   * The position of the call-site.
503     //   * The position of the landing pad.
504     //   * The first action record for that call site.
505     //
506     // A missing entry in the call-site table indicates that a call is not
507     // supposed to throw.
508 
509     unsigned Entry = 0;
510     for (SmallVectorImpl<CallSiteEntry>::const_iterator
511          I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
512       const CallSiteEntry &S = *I;
513 
514       MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin();
515 
516       MCSymbol *BeginLabel = S.BeginLabel;
517       if (!BeginLabel)
518         BeginLabel = EHFuncBeginSym;
519       MCSymbol *EndLabel = S.EndLabel;
520       if (!EndLabel)
521         EndLabel = Asm->getFunctionEnd();
522 
523       // Offset of the call site relative to the start of the procedure.
524       if (VerboseAsm)
525         Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<");
526       Asm->EmitLabelDifferenceAsULEB128(BeginLabel, EHFuncBeginSym);
527       if (VerboseAsm)
528         Asm->OutStreamer->AddComment(Twine("  Call between ") +
529                                      BeginLabel->getName() + " and " +
530                                      EndLabel->getName());
531       Asm->EmitLabelDifferenceAsULEB128(EndLabel, BeginLabel);
532 
533       // Offset of the landing pad relative to the start of the procedure.
534       if (!S.LPad) {
535         if (VerboseAsm)
536           Asm->OutStreamer->AddComment("    has no landing pad");
537         Asm->EmitULEB128(0);
538       } else {
539         if (VerboseAsm)
540           Asm->OutStreamer->AddComment(Twine("    jumps to ") +
541                                        S.LPad->LandingPadLabel->getName());
542         Asm->EmitLabelDifferenceAsULEB128(S.LPad->LandingPadLabel,
543                                           EHFuncBeginSym);
544       }
545 
546       // Offset of the first associated action record, relative to the start of
547       // the action table. This value is biased by 1 (1 indicates the start of
548       // the action table), and 0 indicates that there are no actions.
549       if (VerboseAsm) {
550         if (S.Action == 0)
551           Asm->OutStreamer->AddComment("  On action: cleanup");
552         else
553           Asm->OutStreamer->AddComment("  On action: " +
554                                        Twine((S.Action - 1) / 2 + 1));
555       }
556       Asm->EmitULEB128(S.Action);
557     }
558   }
559   Asm->OutStreamer->EmitLabel(CstEndLabel);
560 
561   // Emit the Action Table.
562   int Entry = 0;
563   for (SmallVectorImpl<ActionEntry>::const_iterator
564          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
565     const ActionEntry &Action = *I;
566 
567     if (VerboseAsm) {
568       // Emit comments that decode the action table.
569       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
570     }
571 
572     // Type Filter
573     //
574     //   Used by the runtime to match the type of the thrown exception to the
575     //   type of the catch clauses or the types in the exception specification.
576     if (VerboseAsm) {
577       if (Action.ValueForTypeID > 0)
578         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
579                                      Twine(Action.ValueForTypeID));
580       else if (Action.ValueForTypeID < 0)
581         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
582                                      Twine(Action.ValueForTypeID));
583       else
584         Asm->OutStreamer->AddComment("  Cleanup");
585     }
586     Asm->EmitSLEB128(Action.ValueForTypeID);
587 
588     // Action Record
589     //
590     //   Self-relative signed displacement in bytes of the next action record,
591     //   or 0 if there is no next action record.
592     if (VerboseAsm) {
593       if (Action.NextAction == 0) {
594         Asm->OutStreamer->AddComment("  No further actions");
595       } else {
596         unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
597         Asm->OutStreamer->AddComment("  Continue to action "+Twine(NextAction));
598       }
599     }
600     Asm->EmitSLEB128(Action.NextAction);
601   }
602 
603   if (HaveTTData) {
604     Asm->EmitAlignment(2);
605     emitTypeInfos(TTypeEncoding, TTBaseLabel);
606   }
607 
608   Asm->EmitAlignment(2);
609   return GCCETSym;
610 }
611 
612 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
613   const MachineFunction *MF = Asm->MF;
614   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
615   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
616 
617   bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
618 
619   int Entry = 0;
620   // Emit the Catch TypeInfos.
621   if (VerboseAsm && !TypeInfos.empty()) {
622     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
623     Asm->OutStreamer->AddBlankLine();
624     Entry = TypeInfos.size();
625   }
626 
627   for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
628                                           TypeInfos.rend())) {
629     if (VerboseAsm)
630       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
631     Asm->EmitTTypeReference(GV, TTypeEncoding);
632   }
633 
634   Asm->OutStreamer->EmitLabel(TTBaseLabel);
635 
636   // Emit the Exception Specifications.
637   if (VerboseAsm && !FilterIds.empty()) {
638     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
639     Asm->OutStreamer->AddBlankLine();
640     Entry = 0;
641   }
642   for (std::vector<unsigned>::const_iterator
643          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
644     unsigned TypeID = *I;
645     if (VerboseAsm) {
646       --Entry;
647       if (isFilterEHSelector(TypeID))
648         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
649     }
650 
651     Asm->EmitULEB128(TypeID);
652   }
653 }
654