1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSymbol.h"
28 #include "llvm/MC/MCTargetOptions.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
40 
41 EHStreamer::~EHStreamer() = default;
42 
43 /// How many leading type ids two landing pads have in common.
44 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
45                                    const LandingPadInfo *R) {
46   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
47   return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
48              .first -
49          LIds.begin();
50 }
51 
52 /// Compute the actions table and gather the first action index for each landing
53 /// pad site.
54 void EHStreamer::computeActionsTable(
55     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
56     SmallVectorImpl<ActionEntry> &Actions,
57     SmallVectorImpl<unsigned> &FirstActions) {
58   // The action table follows the call-site table in the LSDA. The individual
59   // records are of two types:
60   //
61   //   * Catch clause
62   //   * Exception specification
63   //
64   // The two record kinds have the same format, with only small differences.
65   // They are distinguished by the "switch value" field: Catch clauses
66   // (TypeInfos) have strictly positive switch values, and exception
67   // specifications (FilterIds) have strictly negative switch values. Value 0
68   // indicates a catch-all clause.
69   //
70   // Negative type IDs index into FilterIds. Positive type IDs index into
71   // TypeInfos.  The value written for a positive type ID is just the type ID
72   // itself.  For a negative type ID, however, the value written is the
73   // (negative) byte offset of the corresponding FilterIds entry.  The byte
74   // offset is usually equal to the type ID (because the FilterIds entries are
75   // written using a variable width encoding, which outputs one byte per entry
76   // as long as the value written is not too large) but can differ.  This kind
77   // of complication does not occur for positive type IDs because type infos are
78   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
79   // offset corresponding to FilterIds[i].
80 
81   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
82   SmallVector<int, 16> FilterOffsets;
83   FilterOffsets.reserve(FilterIds.size());
84   int Offset = -1;
85 
86   for (std::vector<unsigned>::const_iterator
87          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
88     FilterOffsets.push_back(Offset);
89     Offset -= getULEB128Size(*I);
90   }
91 
92   FirstActions.reserve(LandingPads.size());
93 
94   int FirstAction = 0;
95   unsigned SizeActions = 0; // Total size of all action entries for a function
96   const LandingPadInfo *PrevLPI = nullptr;
97 
98   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
99          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
100     const LandingPadInfo *LPI = *I;
101     const std::vector<int> &TypeIds = LPI->TypeIds;
102     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
103     unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
104 
105     if (NumShared < TypeIds.size()) {
106       // Size of one action entry (typeid + next action)
107       unsigned SizeActionEntry = 0;
108       unsigned PrevAction = (unsigned)-1;
109 
110       if (NumShared) {
111         unsigned SizePrevIds = PrevLPI->TypeIds.size();
112         assert(Actions.size());
113         PrevAction = Actions.size() - 1;
114         SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
115                           getSLEB128Size(Actions[PrevAction].ValueForTypeID);
116 
117         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
118           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
119           SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
120           SizeActionEntry += -Actions[PrevAction].NextAction;
121           PrevAction = Actions[PrevAction].Previous;
122         }
123       }
124 
125       // Compute the actions.
126       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
127         int TypeID = TypeIds[J];
128         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
129         int ValueForTypeID =
130             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
131         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
132 
133         int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
134         SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
135         SizeSiteActions += SizeActionEntry;
136 
137         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
138         Actions.push_back(Action);
139         PrevAction = Actions.size() - 1;
140       }
141 
142       // Record the first action of the landing pad site.
143       FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
144     } // else identical - re-use previous FirstAction
145 
146     // Information used when creating the call-site table. The action record
147     // field of the call site record is the offset of the first associated
148     // action record, relative to the start of the actions table. This value is
149     // biased by 1 (1 indicating the start of the actions table), and 0
150     // indicates that there are no actions.
151     FirstActions.push_back(FirstAction);
152 
153     // Compute this sites contribution to size.
154     SizeActions += SizeSiteActions;
155 
156     PrevLPI = LPI;
157   }
158 }
159 
160 /// Return `true' if this is a call to a function marked `nounwind'. Return
161 /// `false' otherwise.
162 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
163   assert(MI->isCall() && "This should be a call instruction!");
164 
165   bool MarkedNoUnwind = false;
166   bool SawFunc = false;
167 
168   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
169     const MachineOperand &MO = MI->getOperand(I);
170 
171     if (!MO.isGlobal()) continue;
172 
173     const Function *F = dyn_cast<Function>(MO.getGlobal());
174     if (!F) continue;
175 
176     if (SawFunc) {
177       // Be conservative. If we have more than one function operand for this
178       // call, then we can't make the assumption that it's the callee and
179       // not a parameter to the call.
180       //
181       // FIXME: Determine if there's a way to say that `F' is the callee or
182       // parameter.
183       MarkedNoUnwind = false;
184       break;
185     }
186 
187     MarkedNoUnwind = F->doesNotThrow();
188     SawFunc = true;
189   }
190 
191   return MarkedNoUnwind;
192 }
193 
194 void EHStreamer::computePadMap(
195     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
196     RangeMapType &PadMap) {
197   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
198   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
199   // try-ranges for them need be deduced so we can put them in the LSDA.
200   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
201     const LandingPadInfo *LandingPad = LandingPads[i];
202     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
203       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
204       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
205       PadRange P = { i, j };
206       PadMap[BeginLabel] = P;
207     }
208   }
209 }
210 
211 /// Compute the call-site table.  The entry for an invoke has a try-range
212 /// containing the call, a non-zero landing pad, and an appropriate action.  The
213 /// entry for an ordinary call has a try-range containing the call and zero for
214 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
215 /// must not be contained in the try-range of any entry - they form gaps in the
216 /// table.  Entries must be ordered by try-range address.
217 ///
218 /// Call-sites are split into one or more call-site ranges associated with
219 /// different sections of the function.
220 ///
221 ///   - Without -basic-block-sections, all call-sites are grouped into one
222 ///     call-site-range corresponding to the function section.
223 ///
224 ///   - With -basic-block-sections, one call-site range is created for each
225 ///     section, with its FragmentBeginLabel and FragmentEndLabel respectively
226 //      set to the beginning and ending of the corresponding section and its
227 //      ExceptionLabel set to the exception symbol dedicated for this section.
228 //      Later, one LSDA header will be emitted for each call-site range with its
229 //      call-sites following. The action table and type info table will be
230 //      shared across all ranges.
231 void EHStreamer::computeCallSiteTable(
232     SmallVectorImpl<CallSiteEntry> &CallSites,
233     SmallVectorImpl<CallSiteRange> &CallSiteRanges,
234     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
235     const SmallVectorImpl<unsigned> &FirstActions) {
236   RangeMapType PadMap;
237   computePadMap(LandingPads, PadMap);
238 
239   // The end label of the previous invoke or nounwind try-range.
240   MCSymbol *LastLabel = Asm->getFunctionBegin();
241 
242   // Whether there is a potentially throwing instruction (currently this means
243   // an ordinary call) between the end of the previous try-range and now.
244   bool SawPotentiallyThrowing = false;
245 
246   // Whether the last CallSite entry was for an invoke.
247   bool PreviousIsInvoke = false;
248 
249   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
250 
251   // Visit all instructions in order of address.
252   for (const auto &MBB : *Asm->MF) {
253     if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
254       // We start a call-site range upon function entry and at the beginning of
255       // every basic block section.
256       CallSiteRanges.push_back(
257           {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel,
258            Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel,
259            Asm->getMBBExceptionSym(MBB), CallSites.size()});
260       PreviousIsInvoke = false;
261       SawPotentiallyThrowing = false;
262       LastLabel = nullptr;
263     }
264 
265     if (MBB.isEHPad())
266       CallSiteRanges.back().IsLPRange = true;
267 
268     for (const auto &MI : MBB) {
269       if (!MI.isEHLabel()) {
270         if (MI.isCall())
271           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
272         continue;
273       }
274 
275       // End of the previous try-range?
276       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
277       if (BeginLabel == LastLabel)
278         SawPotentiallyThrowing = false;
279 
280       // Beginning of a new try-range?
281       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
282       if (L == PadMap.end())
283         // Nope, it was just some random label.
284         continue;
285 
286       const PadRange &P = L->second;
287       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
288       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
289              "Inconsistent landing pad map!");
290 
291       // For Dwarf exception handling (SjLj handling doesn't use this). If some
292       // instruction between the previous try-range and this one may throw,
293       // create a call-site entry with no landing pad for the region between the
294       // try-ranges.
295       if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
296         CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
297         PreviousIsInvoke = false;
298       }
299 
300       LastLabel = LandingPad->EndLabels[P.RangeIndex];
301       assert(BeginLabel && LastLabel && "Invalid landing pad!");
302 
303       if (!LandingPad->LandingPadLabel) {
304         // Create a gap.
305         PreviousIsInvoke = false;
306       } else {
307         // This try-range is for an invoke.
308         CallSiteEntry Site = {
309           BeginLabel,
310           LastLabel,
311           LandingPad,
312           FirstActions[P.PadIndex]
313         };
314 
315         // Try to merge with the previous call-site. SJLJ doesn't do this
316         if (PreviousIsInvoke && !IsSJLJ) {
317           CallSiteEntry &Prev = CallSites.back();
318           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
319             // Extend the range of the previous entry.
320             Prev.EndLabel = Site.EndLabel;
321             continue;
322           }
323         }
324 
325         // Otherwise, create a new call-site.
326         if (!IsSJLJ)
327           CallSites.push_back(Site);
328         else {
329           // SjLj EH must maintain the call sites in the order assigned
330           // to them by the SjLjPrepare pass.
331           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
332           if (CallSites.size() < SiteNo)
333             CallSites.resize(SiteNo);
334           CallSites[SiteNo - 1] = Site;
335         }
336         PreviousIsInvoke = true;
337       }
338     }
339 
340     // We end the call-site range upon function exit and at the end of every
341     // basic block section.
342     if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
343       // If some instruction between the previous try-range and the end of the
344       // function may throw, create a call-site entry with no landing pad for
345       // the region following the try-range.
346       if (SawPotentiallyThrowing && !IsSJLJ) {
347         CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
348                               nullptr, 0};
349         CallSites.push_back(Site);
350         SawPotentiallyThrowing = false;
351       }
352       CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
353     }
354   }
355 }
356 
357 /// Emit landing pads and actions.
358 ///
359 /// The general organization of the table is complex, but the basic concepts are
360 /// easy.  First there is a header which describes the location and organization
361 /// of the three components that follow.
362 ///
363 ///  1. The landing pad site information describes the range of code covered by
364 ///     the try.  In our case it's an accumulation of the ranges covered by the
365 ///     invokes in the try.  There is also a reference to the landing pad that
366 ///     handles the exception once processed.  Finally an index into the actions
367 ///     table.
368 ///  2. The action table, in our case, is composed of pairs of type IDs and next
369 ///     action offset.  Starting with the action index from the landing pad
370 ///     site, each type ID is checked for a match to the current exception.  If
371 ///     it matches then the exception and type id are passed on to the landing
372 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
373 ///     with a next action of zero.  If no type id is found then the frame is
374 ///     unwound and handling continues.
375 ///  3. Type ID table contains references to all the C++ typeinfo for all
376 ///     catches in the function.  This tables is reverse indexed base 1.
377 ///
378 /// Returns the starting symbol of an exception table.
379 MCSymbol *EHStreamer::emitExceptionTable() {
380   const MachineFunction *MF = Asm->MF;
381   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
382   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
383   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
384 
385   // Sort the landing pads in order of their type ids.  This is used to fold
386   // duplicate actions.
387   SmallVector<const LandingPadInfo *, 64> LandingPads;
388   LandingPads.reserve(PadInfos.size());
389 
390   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
391     LandingPads.push_back(&PadInfos[i]);
392 
393   // Order landing pads lexicographically by type id.
394   llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
395     return L->TypeIds < R->TypeIds;
396   });
397 
398   // Compute the actions table and gather the first action index for each
399   // landing pad site.
400   SmallVector<ActionEntry, 32> Actions;
401   SmallVector<unsigned, 64> FirstActions;
402   computeActionsTable(LandingPads, Actions, FirstActions);
403 
404   // Compute the call-site table and call-site ranges. Normally, there is only
405   // one call-site-range which covers the whole funciton. With
406   // -basic-block-sections, there is one call-site-range per basic block
407   // section.
408   SmallVector<CallSiteEntry, 64> CallSites;
409   SmallVector<CallSiteRange, 4> CallSiteRanges;
410   computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);
411 
412   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
413   bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
414   unsigned CallSiteEncoding =
415       IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
416                Asm->getObjFileLowering().getCallSiteEncoding();
417   bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
418 
419   // Type infos.
420   MCSection *LSDASection =
421       Asm->getObjFileLowering().getSectionForLSDA(MF->getFunction(), Asm->TM);
422   unsigned TTypeEncoding;
423 
424   if (!HaveTTData) {
425     // If there is no TypeInfo, then we just explicitly say that we're omitting
426     // that bit.
427     TTypeEncoding = dwarf::DW_EH_PE_omit;
428   } else {
429     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
430     // pick a type encoding for them.  We're about to emit a list of pointers to
431     // typeinfo objects at the end of the LSDA.  However, unless we're in static
432     // mode, this reference will require a relocation by the dynamic linker.
433     //
434     // Because of this, we have a couple of options:
435     //
436     //   1) If we are in -static mode, we can always use an absolute reference
437     //      from the LSDA, because the static linker will resolve it.
438     //
439     //   2) Otherwise, if the LSDA section is writable, we can output the direct
440     //      reference to the typeinfo and allow the dynamic linker to relocate
441     //      it.  Since it is in a writable section, the dynamic linker won't
442     //      have a problem.
443     //
444     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
445     //      we need to use some form of indirection.  For example, on Darwin,
446     //      we can output a statically-relocatable reference to a dyld stub. The
447     //      offset to the stub is constant, but the contents are in a section
448     //      that is updated by the dynamic linker.  This is easy enough, but we
449     //      need to tell the personality function of the unwinder to indirect
450     //      through the dyld stub.
451     //
452     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
453     // somewhere.  This predicate should be moved to a shared location that is
454     // in target-independent code.
455     //
456     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
457   }
458 
459   // Begin the exception table.
460   // Sometimes we want not to emit the data into separate section (e.g. ARM
461   // EHABI). In this case LSDASection will be NULL.
462   if (LSDASection)
463     Asm->OutStreamer->SwitchSection(LSDASection);
464   Asm->emitAlignment(Align(4));
465 
466   // Emit the LSDA.
467   MCSymbol *GCCETSym =
468     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
469                                       Twine(Asm->getFunctionNumber()));
470   Asm->OutStreamer->emitLabel(GCCETSym);
471   MCSymbol *CstEndLabel = Asm->createTempSymbol(
472       CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");
473 
474   MCSymbol *TTBaseLabel = nullptr;
475   if (HaveTTData)
476     TTBaseLabel = Asm->createTempSymbol("ttbase");
477 
478   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
479 
480   // Helper for emitting references (offsets) for type table and the end of the
481   // call-site table (which marks the beginning of the action table).
482   //  * For Itanium, these references will be emitted for every callsite range.
483   //  * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
484   auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
485     Asm->emitEncodingByte(TTypeEncoding, "@TType");
486     if (HaveTTData) {
487       // N.B.: There is a dependency loop between the size of the TTBase uleb128
488       // here and the amount of padding before the aligned type table. The
489       // assembler must sometimes pad this uleb128 or insert extra padding
490       // before the type table. See PR35809 or GNU as bug 4029.
491       MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
492       Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
493       Asm->OutStreamer->emitLabel(TTBaseRefLabel);
494     }
495 
496     // The Action table follows the call-site table. So we emit the
497     // label difference from here (start of the call-site table for SJLJ and
498     // Wasm, and start of a call-site range for Itanium) to the end of the
499     // whole call-site table (end of the last call-site range for Itanium).
500     MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
501     Asm->emitEncodingByte(CallSiteEncoding, "Call site");
502     Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
503     Asm->OutStreamer->emitLabel(CstBeginLabel);
504   };
505 
506   // SjLj / Wasm Exception handling
507   if (IsSJLJ || IsWasm) {
508     Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));
509 
510     // emit the LSDA header.
511     Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
512     EmitTypeTableRefAndCallSiteTableEndRef();
513 
514     unsigned idx = 0;
515     for (SmallVectorImpl<CallSiteEntry>::const_iterator
516          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
517       const CallSiteEntry &S = *I;
518 
519       // Index of the call site entry.
520       if (VerboseAsm) {
521         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
522         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
523       }
524       Asm->emitULEB128(idx);
525 
526       // Offset of the first associated action record, relative to the start of
527       // the action table. This value is biased by 1 (1 indicates the start of
528       // the action table), and 0 indicates that there are no actions.
529       if (VerboseAsm) {
530         if (S.Action == 0)
531           Asm->OutStreamer->AddComment("  Action: cleanup");
532         else
533           Asm->OutStreamer->AddComment("  Action: " +
534                                        Twine((S.Action - 1) / 2 + 1));
535       }
536       Asm->emitULEB128(S.Action);
537     }
538     Asm->OutStreamer->emitLabel(CstEndLabel);
539   } else {
540     // Itanium LSDA exception handling
541 
542     // The call-site table is a list of all call sites that may throw an
543     // exception (including C++ 'throw' statements) in the procedure
544     // fragment. It immediately follows the LSDA header. Each entry indicates,
545     // for a given call, the first corresponding action record and corresponding
546     // landing pad.
547     //
548     // The table begins with the number of bytes, stored as an LEB128
549     // compressed, unsigned integer. The records immediately follow the record
550     // count. They are sorted in increasing call-site address. Each record
551     // indicates:
552     //
553     //   * The position of the call-site.
554     //   * The position of the landing pad.
555     //   * The first action record for that call site.
556     //
557     // A missing entry in the call-site table indicates that a call is not
558     // supposed to throw.
559 
560     assert(CallSiteRanges.size() != 0 && "No call-site ranges!");
561 
562     // There should be only one call-site range which includes all the landing
563     // pads. Find that call-site range here.
564     const CallSiteRange *LandingPadRange = nullptr;
565     for (const CallSiteRange &CSRange : CallSiteRanges) {
566       if (CSRange.IsLPRange) {
567         assert(LandingPadRange == nullptr &&
568                "All landing pads must be in a single callsite range.");
569         LandingPadRange = &CSRange;
570       }
571     }
572 
573     // The call-site table is split into its call-site ranges, each being
574     // emitted as:
575     //              [ LPStartEncoding | LPStart ]
576     //              [ TypeTableEncoding | TypeTableOffset ]
577     //              [ CallSiteEncoding | CallSiteTableEndOffset ]
578     // cst_begin -> { call-site entries contained in this range }
579     //
580     // and is followed by the next call-site range.
581     //
582     // For each call-site range, CallSiteTableEndOffset is computed as the
583     // difference between cst_begin of that range and the last call-site-table's
584     // end label. This offset is used to find the action table.
585 
586     unsigned Entry = 0;
587     for (const CallSiteRange &CSRange : CallSiteRanges) {
588       if (CSRange.CallSiteBeginIdx != 0) {
589         // Align the call-site range for all ranges except the first. The
590         // first range is already aligned due to the exception table alignment.
591         Asm->emitAlignment(Align(4));
592       }
593       Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);
594 
595       // Emit the LSDA header.
596       // If only one call-site range exists, LPStart is omitted as it is the
597       // same as the function entry.
598       if (CallSiteRanges.size() == 1) {
599         Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
600       } else if (!Asm->isPositionIndependent()) {
601         // For more than one call-site ranges, LPStart must be explicitly
602         // specified.
603         // For non-PIC we can simply use the absolute value.
604         Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
605         Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
606                                           Asm->MAI->getCodePointerSize());
607       } else {
608         // For PIC mode, we Emit a PC-relative address for LPStart.
609         Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
610         MCContext &Context = Asm->OutStreamer->getContext();
611         MCSymbol *Dot = Context.createTempSymbol();
612         Asm->OutStreamer->emitLabel(Dot);
613         Asm->OutStreamer->emitValue(
614             MCBinaryExpr::createSub(
615                 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
616                                         Context),
617                 MCSymbolRefExpr::create(Dot, Context), Context),
618             Asm->MAI->getCodePointerSize());
619       }
620 
621       EmitTypeTableRefAndCallSiteTableEndRef();
622 
623       for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
624            CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
625         const CallSiteEntry &S = CallSites[CallSiteIdx];
626 
627         MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
628         MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;
629 
630         MCSymbol *BeginLabel = S.BeginLabel;
631         if (!BeginLabel)
632           BeginLabel = EHFuncBeginSym;
633         MCSymbol *EndLabel = S.EndLabel;
634         if (!EndLabel)
635           EndLabel = EHFuncEndSym;
636 
637         // Offset of the call site relative to the start of the procedure.
638         if (VerboseAsm)
639           Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
640                                        " <<");
641         Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
642         if (VerboseAsm)
643           Asm->OutStreamer->AddComment(Twine("  Call between ") +
644                                        BeginLabel->getName() + " and " +
645                                        EndLabel->getName());
646         Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
647 
648         // Offset of the landing pad relative to the start of the landing pad
649         // fragment.
650         if (!S.LPad) {
651           if (VerboseAsm)
652             Asm->OutStreamer->AddComment("    has no landing pad");
653           Asm->emitCallSiteValue(0, CallSiteEncoding);
654         } else {
655           if (VerboseAsm)
656             Asm->OutStreamer->AddComment(Twine("    jumps to ") +
657                                          S.LPad->LandingPadLabel->getName());
658           Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
659                                   LandingPadRange->FragmentBeginLabel,
660                                   CallSiteEncoding);
661         }
662 
663         // Offset of the first associated action record, relative to the start
664         // of the action table. This value is biased by 1 (1 indicates the start
665         // of the action table), and 0 indicates that there are no actions.
666         if (VerboseAsm) {
667           if (S.Action == 0)
668             Asm->OutStreamer->AddComment("  On action: cleanup");
669           else
670             Asm->OutStreamer->AddComment("  On action: " +
671                                          Twine((S.Action - 1) / 2 + 1));
672         }
673         Asm->emitULEB128(S.Action);
674       }
675     }
676     Asm->OutStreamer->emitLabel(CstEndLabel);
677   }
678 
679   // Emit the Action Table.
680   int Entry = 0;
681   for (SmallVectorImpl<ActionEntry>::const_iterator
682          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
683     const ActionEntry &Action = *I;
684 
685     if (VerboseAsm) {
686       // Emit comments that decode the action table.
687       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
688     }
689 
690     // Type Filter
691     //
692     //   Used by the runtime to match the type of the thrown exception to the
693     //   type of the catch clauses or the types in the exception specification.
694     if (VerboseAsm) {
695       if (Action.ValueForTypeID > 0)
696         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
697                                      Twine(Action.ValueForTypeID));
698       else if (Action.ValueForTypeID < 0)
699         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
700                                      Twine(Action.ValueForTypeID));
701       else
702         Asm->OutStreamer->AddComment("  Cleanup");
703     }
704     Asm->emitSLEB128(Action.ValueForTypeID);
705 
706     // Action Record
707     if (VerboseAsm) {
708       if (Action.Previous == unsigned(-1)) {
709         Asm->OutStreamer->AddComment("  No further actions");
710       } else {
711         Asm->OutStreamer->AddComment("  Continue to action " +
712                                      Twine(Action.Previous + 1));
713       }
714     }
715     Asm->emitSLEB128(Action.NextAction);
716   }
717 
718   if (HaveTTData) {
719     Asm->emitAlignment(Align(4));
720     emitTypeInfos(TTypeEncoding, TTBaseLabel);
721   }
722 
723   Asm->emitAlignment(Align(4));
724   return GCCETSym;
725 }
726 
727 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
728   const MachineFunction *MF = Asm->MF;
729   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
730   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
731 
732   const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
733 
734   int Entry = 0;
735   // Emit the Catch TypeInfos.
736   if (VerboseAsm && !TypeInfos.empty()) {
737     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
738     Asm->OutStreamer->AddBlankLine();
739     Entry = TypeInfos.size();
740   }
741 
742   for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
743                                           TypeInfos.rend())) {
744     if (VerboseAsm)
745       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
746     Asm->emitTTypeReference(GV, TTypeEncoding);
747   }
748 
749   Asm->OutStreamer->emitLabel(TTBaseLabel);
750 
751   // Emit the Exception Specifications.
752   if (VerboseAsm && !FilterIds.empty()) {
753     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
754     Asm->OutStreamer->AddBlankLine();
755     Entry = 0;
756   }
757   for (std::vector<unsigned>::const_iterator
758          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
759     unsigned TypeID = *I;
760     if (VerboseAsm) {
761       --Entry;
762       if (isFilterEHSelector(TypeID))
763         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
764     }
765 
766     Asm->emitULEB128(TypeID);
767   }
768 }
769