1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing exception info into assembly files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "EHStreamer.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Twine.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/BinaryFormat/Dwarf.h" 19 #include "llvm/CodeGen/AsmPrinter.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineOperand.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/MC/MCAsmInfo.h" 26 #include "llvm/MC/MCContext.h" 27 #include "llvm/MC/MCStreamer.h" 28 #include "llvm/MC/MCSymbol.h" 29 #include "llvm/MC/MCTargetOptions.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/LEB128.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstdint> 36 #include <vector> 37 38 using namespace llvm; 39 40 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 41 42 EHStreamer::~EHStreamer() = default; 43 44 /// How many leading type ids two landing pads have in common. 45 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L, 46 const LandingPadInfo *R) { 47 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 48 unsigned LSize = LIds.size(), RSize = RIds.size(); 49 unsigned MinSize = LSize < RSize ? LSize : RSize; 50 unsigned Count = 0; 51 52 for (; Count != MinSize; ++Count) 53 if (LIds[Count] != RIds[Count]) 54 return Count; 55 56 return Count; 57 } 58 59 /// Compute the actions table and gather the first action index for each landing 60 /// pad site. 61 void EHStreamer::computeActionsTable( 62 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 63 SmallVectorImpl<ActionEntry> &Actions, 64 SmallVectorImpl<unsigned> &FirstActions) { 65 // The action table follows the call-site table in the LSDA. The individual 66 // records are of two types: 67 // 68 // * Catch clause 69 // * Exception specification 70 // 71 // The two record kinds have the same format, with only small differences. 72 // They are distinguished by the "switch value" field: Catch clauses 73 // (TypeInfos) have strictly positive switch values, and exception 74 // specifications (FilterIds) have strictly negative switch values. Value 0 75 // indicates a catch-all clause. 76 // 77 // Negative type IDs index into FilterIds. Positive type IDs index into 78 // TypeInfos. The value written for a positive type ID is just the type ID 79 // itself. For a negative type ID, however, the value written is the 80 // (negative) byte offset of the corresponding FilterIds entry. The byte 81 // offset is usually equal to the type ID (because the FilterIds entries are 82 // written using a variable width encoding, which outputs one byte per entry 83 // as long as the value written is not too large) but can differ. This kind 84 // of complication does not occur for positive type IDs because type infos are 85 // output using a fixed width encoding. FilterOffsets[i] holds the byte 86 // offset corresponding to FilterIds[i]. 87 88 const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds(); 89 SmallVector<int, 16> FilterOffsets; 90 FilterOffsets.reserve(FilterIds.size()); 91 int Offset = -1; 92 93 for (std::vector<unsigned>::const_iterator 94 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { 95 FilterOffsets.push_back(Offset); 96 Offset -= getULEB128Size(*I); 97 } 98 99 FirstActions.reserve(LandingPads.size()); 100 101 int FirstAction = 0; 102 unsigned SizeActions = 0; 103 const LandingPadInfo *PrevLPI = nullptr; 104 105 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator 106 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) { 107 const LandingPadInfo *LPI = *I; 108 const std::vector<int> &TypeIds = LPI->TypeIds; 109 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0; 110 unsigned SizeSiteActions = 0; 111 112 if (NumShared < TypeIds.size()) { 113 unsigned SizeAction = 0; 114 unsigned PrevAction = (unsigned)-1; 115 116 if (NumShared) { 117 unsigned SizePrevIds = PrevLPI->TypeIds.size(); 118 assert(Actions.size()); 119 PrevAction = Actions.size() - 1; 120 SizeAction = getSLEB128Size(Actions[PrevAction].NextAction) + 121 getSLEB128Size(Actions[PrevAction].ValueForTypeID); 122 123 for (unsigned j = NumShared; j != SizePrevIds; ++j) { 124 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!"); 125 SizeAction -= getSLEB128Size(Actions[PrevAction].ValueForTypeID); 126 SizeAction += -Actions[PrevAction].NextAction; 127 PrevAction = Actions[PrevAction].Previous; 128 } 129 } 130 131 // Compute the actions. 132 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { 133 int TypeID = TypeIds[J]; 134 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); 135 int ValueForTypeID = 136 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID; 137 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID); 138 139 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; 140 SizeAction = SizeTypeID + getSLEB128Size(NextAction); 141 SizeSiteActions += SizeAction; 142 143 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; 144 Actions.push_back(Action); 145 PrevAction = Actions.size() - 1; 146 } 147 148 // Record the first action of the landing pad site. 149 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; 150 } // else identical - re-use previous FirstAction 151 152 // Information used when creating the call-site table. The action record 153 // field of the call site record is the offset of the first associated 154 // action record, relative to the start of the actions table. This value is 155 // biased by 1 (1 indicating the start of the actions table), and 0 156 // indicates that there are no actions. 157 FirstActions.push_back(FirstAction); 158 159 // Compute this sites contribution to size. 160 SizeActions += SizeSiteActions; 161 162 PrevLPI = LPI; 163 } 164 } 165 166 /// Return `true' if this is a call to a function marked `nounwind'. Return 167 /// `false' otherwise. 168 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) { 169 assert(MI->isCall() && "This should be a call instruction!"); 170 171 bool MarkedNoUnwind = false; 172 bool SawFunc = false; 173 174 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 175 const MachineOperand &MO = MI->getOperand(I); 176 177 if (!MO.isGlobal()) continue; 178 179 const Function *F = dyn_cast<Function>(MO.getGlobal()); 180 if (!F) continue; 181 182 if (SawFunc) { 183 // Be conservative. If we have more than one function operand for this 184 // call, then we can't make the assumption that it's the callee and 185 // not a parameter to the call. 186 // 187 // FIXME: Determine if there's a way to say that `F' is the callee or 188 // parameter. 189 MarkedNoUnwind = false; 190 break; 191 } 192 193 MarkedNoUnwind = F->doesNotThrow(); 194 SawFunc = true; 195 } 196 197 return MarkedNoUnwind; 198 } 199 200 void EHStreamer::computePadMap( 201 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 202 RangeMapType &PadMap) { 203 // Invokes and nounwind calls have entries in PadMap (due to being bracketed 204 // by try-range labels when lowered). Ordinary calls do not, so appropriate 205 // try-ranges for them need be deduced so we can put them in the LSDA. 206 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 207 const LandingPadInfo *LandingPad = LandingPads[i]; 208 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { 209 MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; 210 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); 211 PadRange P = { i, j }; 212 PadMap[BeginLabel] = P; 213 } 214 } 215 } 216 217 /// Compute the call-site table. The entry for an invoke has a try-range 218 /// containing the call, a non-zero landing pad, and an appropriate action. The 219 /// entry for an ordinary call has a try-range containing the call and zero for 220 /// the landing pad and the action. Calls marked 'nounwind' have no entry and 221 /// must not be contained in the try-range of any entry - they form gaps in the 222 /// table. Entries must be ordered by try-range address. 223 void EHStreamer:: 224 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, 225 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 226 const SmallVectorImpl<unsigned> &FirstActions) { 227 RangeMapType PadMap; 228 computePadMap(LandingPads, PadMap); 229 230 // The end label of the previous invoke or nounwind try-range. 231 MCSymbol *LastLabel = nullptr; 232 233 // Whether there is a potentially throwing instruction (currently this means 234 // an ordinary call) between the end of the previous try-range and now. 235 bool SawPotentiallyThrowing = false; 236 237 // Whether the last CallSite entry was for an invoke. 238 bool PreviousIsInvoke = false; 239 240 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 241 242 // Visit all instructions in order of address. 243 for (const auto &MBB : *Asm->MF) { 244 for (const auto &MI : MBB) { 245 if (!MI.isEHLabel()) { 246 if (MI.isCall()) 247 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI); 248 continue; 249 } 250 251 // End of the previous try-range? 252 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol(); 253 if (BeginLabel == LastLabel) 254 SawPotentiallyThrowing = false; 255 256 // Beginning of a new try-range? 257 RangeMapType::const_iterator L = PadMap.find(BeginLabel); 258 if (L == PadMap.end()) 259 // Nope, it was just some random label. 260 continue; 261 262 const PadRange &P = L->second; 263 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; 264 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && 265 "Inconsistent landing pad map!"); 266 267 // For Dwarf exception handling (SjLj handling doesn't use this). If some 268 // instruction between the previous try-range and this one may throw, 269 // create a call-site entry with no landing pad for the region between the 270 // try-ranges. 271 if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) { 272 CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 }; 273 CallSites.push_back(Site); 274 PreviousIsInvoke = false; 275 } 276 277 LastLabel = LandingPad->EndLabels[P.RangeIndex]; 278 assert(BeginLabel && LastLabel && "Invalid landing pad!"); 279 280 if (!LandingPad->LandingPadLabel) { 281 // Create a gap. 282 PreviousIsInvoke = false; 283 } else { 284 // This try-range is for an invoke. 285 CallSiteEntry Site = { 286 BeginLabel, 287 LastLabel, 288 LandingPad, 289 FirstActions[P.PadIndex] 290 }; 291 292 // Try to merge with the previous call-site. SJLJ doesn't do this 293 if (PreviousIsInvoke && !IsSJLJ) { 294 CallSiteEntry &Prev = CallSites.back(); 295 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) { 296 // Extend the range of the previous entry. 297 Prev.EndLabel = Site.EndLabel; 298 continue; 299 } 300 } 301 302 // Otherwise, create a new call-site. 303 if (!IsSJLJ) 304 CallSites.push_back(Site); 305 else { 306 // SjLj EH must maintain the call sites in the order assigned 307 // to them by the SjLjPrepare pass. 308 unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel); 309 if (CallSites.size() < SiteNo) 310 CallSites.resize(SiteNo); 311 CallSites[SiteNo - 1] = Site; 312 } 313 PreviousIsInvoke = true; 314 } 315 } 316 } 317 318 // If some instruction between the previous try-range and the end of the 319 // function may throw, create a call-site entry with no landing pad for the 320 // region following the try-range. 321 if (SawPotentiallyThrowing && !IsSJLJ) { 322 CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 }; 323 CallSites.push_back(Site); 324 } 325 } 326 327 /// Emit landing pads and actions. 328 /// 329 /// The general organization of the table is complex, but the basic concepts are 330 /// easy. First there is a header which describes the location and organization 331 /// of the three components that follow. 332 /// 333 /// 1. The landing pad site information describes the range of code covered by 334 /// the try. In our case it's an accumulation of the ranges covered by the 335 /// invokes in the try. There is also a reference to the landing pad that 336 /// handles the exception once processed. Finally an index into the actions 337 /// table. 338 /// 2. The action table, in our case, is composed of pairs of type IDs and next 339 /// action offset. Starting with the action index from the landing pad 340 /// site, each type ID is checked for a match to the current exception. If 341 /// it matches then the exception and type id are passed on to the landing 342 /// pad. Otherwise the next action is looked up. This chain is terminated 343 /// with a next action of zero. If no type id is found then the frame is 344 /// unwound and handling continues. 345 /// 3. Type ID table contains references to all the C++ typeinfo for all 346 /// catches in the function. This tables is reverse indexed base 1. 347 void EHStreamer::emitExceptionTable() { 348 const MachineFunction *MF = Asm->MF; 349 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos(); 350 const std::vector<unsigned> &FilterIds = MF->getFilterIds(); 351 const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads(); 352 353 // Sort the landing pads in order of their type ids. This is used to fold 354 // duplicate actions. 355 SmallVector<const LandingPadInfo *, 64> LandingPads; 356 LandingPads.reserve(PadInfos.size()); 357 358 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) 359 LandingPads.push_back(&PadInfos[i]); 360 361 // Order landing pads lexicographically by type id. 362 llvm::sort(LandingPads.begin(), LandingPads.end(), 363 [](const LandingPadInfo *L, 364 const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; }); 365 366 // Compute the actions table and gather the first action index for each 367 // landing pad site. 368 SmallVector<ActionEntry, 32> Actions; 369 SmallVector<unsigned, 64> FirstActions; 370 computeActionsTable(LandingPads, Actions, FirstActions); 371 372 // Compute the call-site table. 373 SmallVector<CallSiteEntry, 64> CallSites; 374 computeCallSiteTable(CallSites, LandingPads, FirstActions); 375 376 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 377 unsigned CallSiteEncoding = 378 IsSJLJ ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_uleb128; 379 bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty(); 380 381 // Type infos. 382 MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection(); 383 unsigned TTypeEncoding; 384 385 if (!HaveTTData) { 386 // If there is no TypeInfo, then we just explicitly say that we're omitting 387 // that bit. 388 TTypeEncoding = dwarf::DW_EH_PE_omit; 389 } else { 390 // Okay, we have actual filters or typeinfos to emit. As such, we need to 391 // pick a type encoding for them. We're about to emit a list of pointers to 392 // typeinfo objects at the end of the LSDA. However, unless we're in static 393 // mode, this reference will require a relocation by the dynamic linker. 394 // 395 // Because of this, we have a couple of options: 396 // 397 // 1) If we are in -static mode, we can always use an absolute reference 398 // from the LSDA, because the static linker will resolve it. 399 // 400 // 2) Otherwise, if the LSDA section is writable, we can output the direct 401 // reference to the typeinfo and allow the dynamic linker to relocate 402 // it. Since it is in a writable section, the dynamic linker won't 403 // have a problem. 404 // 405 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, 406 // we need to use some form of indirection. For example, on Darwin, 407 // we can output a statically-relocatable reference to a dyld stub. The 408 // offset to the stub is constant, but the contents are in a section 409 // that is updated by the dynamic linker. This is easy enough, but we 410 // need to tell the personality function of the unwinder to indirect 411 // through the dyld stub. 412 // 413 // FIXME: When (3) is actually implemented, we'll have to emit the stubs 414 // somewhere. This predicate should be moved to a shared location that is 415 // in target-independent code. 416 // 417 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding(); 418 } 419 420 // Begin the exception table. 421 // Sometimes we want not to emit the data into separate section (e.g. ARM 422 // EHABI). In this case LSDASection will be NULL. 423 if (LSDASection) 424 Asm->OutStreamer->SwitchSection(LSDASection); 425 Asm->EmitAlignment(2); 426 427 // Emit the LSDA. 428 MCSymbol *GCCETSym = 429 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+ 430 Twine(Asm->getFunctionNumber())); 431 Asm->OutStreamer->EmitLabel(GCCETSym); 432 Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym()); 433 434 // Emit the LSDA header. 435 Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); 436 Asm->EmitEncodingByte(TTypeEncoding, "@TType"); 437 438 MCSymbol *TTBaseLabel = nullptr; 439 if (HaveTTData) { 440 // N.B.: There is a dependency loop between the size of the TTBase uleb128 441 // here and the amount of padding before the aligned type table. The 442 // assembler must sometimes pad this uleb128 or insert extra padding before 443 // the type table. See PR35809 or GNU as bug 4029. 444 MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref"); 445 TTBaseLabel = Asm->createTempSymbol("ttbase"); 446 Asm->EmitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel); 447 Asm->OutStreamer->EmitLabel(TTBaseRefLabel); 448 } 449 450 bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 451 452 // Emit the landing pad call site table. 453 MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin"); 454 MCSymbol *CstEndLabel = Asm->createTempSymbol("cst_end"); 455 Asm->EmitEncodingByte(CallSiteEncoding, "Call site"); 456 Asm->EmitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel); 457 Asm->OutStreamer->EmitLabel(CstBeginLabel); 458 459 // SjLj Exception handling 460 if (IsSJLJ) { 461 unsigned idx = 0; 462 for (SmallVectorImpl<CallSiteEntry>::const_iterator 463 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { 464 const CallSiteEntry &S = *I; 465 466 // Index of the call site entry. 467 if (VerboseAsm) { 468 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<"); 469 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx)); 470 } 471 Asm->EmitULEB128(idx); 472 473 // Offset of the first associated action record, relative to the start of 474 // the action table. This value is biased by 1 (1 indicates the start of 475 // the action table), and 0 indicates that there are no actions. 476 if (VerboseAsm) { 477 if (S.Action == 0) 478 Asm->OutStreamer->AddComment(" Action: cleanup"); 479 else 480 Asm->OutStreamer->AddComment(" Action: " + 481 Twine((S.Action - 1) / 2 + 1)); 482 } 483 Asm->EmitULEB128(S.Action); 484 } 485 } else { 486 // Itanium LSDA exception handling 487 488 // The call-site table is a list of all call sites that may throw an 489 // exception (including C++ 'throw' statements) in the procedure 490 // fragment. It immediately follows the LSDA header. Each entry indicates, 491 // for a given call, the first corresponding action record and corresponding 492 // landing pad. 493 // 494 // The table begins with the number of bytes, stored as an LEB128 495 // compressed, unsigned integer. The records immediately follow the record 496 // count. They are sorted in increasing call-site address. Each record 497 // indicates: 498 // 499 // * The position of the call-site. 500 // * The position of the landing pad. 501 // * The first action record for that call site. 502 // 503 // A missing entry in the call-site table indicates that a call is not 504 // supposed to throw. 505 506 unsigned Entry = 0; 507 for (SmallVectorImpl<CallSiteEntry>::const_iterator 508 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) { 509 const CallSiteEntry &S = *I; 510 511 MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin(); 512 513 MCSymbol *BeginLabel = S.BeginLabel; 514 if (!BeginLabel) 515 BeginLabel = EHFuncBeginSym; 516 MCSymbol *EndLabel = S.EndLabel; 517 if (!EndLabel) 518 EndLabel = Asm->getFunctionEnd(); 519 520 // Offset of the call site relative to the start of the procedure. 521 if (VerboseAsm) 522 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<"); 523 Asm->EmitLabelDifferenceAsULEB128(BeginLabel, EHFuncBeginSym); 524 if (VerboseAsm) 525 Asm->OutStreamer->AddComment(Twine(" Call between ") + 526 BeginLabel->getName() + " and " + 527 EndLabel->getName()); 528 Asm->EmitLabelDifferenceAsULEB128(EndLabel, BeginLabel); 529 530 // Offset of the landing pad relative to the start of the procedure. 531 if (!S.LPad) { 532 if (VerboseAsm) 533 Asm->OutStreamer->AddComment(" has no landing pad"); 534 Asm->EmitULEB128(0); 535 } else { 536 if (VerboseAsm) 537 Asm->OutStreamer->AddComment(Twine(" jumps to ") + 538 S.LPad->LandingPadLabel->getName()); 539 Asm->EmitLabelDifferenceAsULEB128(S.LPad->LandingPadLabel, 540 EHFuncBeginSym); 541 } 542 543 // Offset of the first associated action record, relative to the start of 544 // the action table. This value is biased by 1 (1 indicates the start of 545 // the action table), and 0 indicates that there are no actions. 546 if (VerboseAsm) { 547 if (S.Action == 0) 548 Asm->OutStreamer->AddComment(" On action: cleanup"); 549 else 550 Asm->OutStreamer->AddComment(" On action: " + 551 Twine((S.Action - 1) / 2 + 1)); 552 } 553 Asm->EmitULEB128(S.Action); 554 } 555 } 556 Asm->OutStreamer->EmitLabel(CstEndLabel); 557 558 // Emit the Action Table. 559 int Entry = 0; 560 for (SmallVectorImpl<ActionEntry>::const_iterator 561 I = Actions.begin(), E = Actions.end(); I != E; ++I) { 562 const ActionEntry &Action = *I; 563 564 if (VerboseAsm) { 565 // Emit comments that decode the action table. 566 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<"); 567 } 568 569 // Type Filter 570 // 571 // Used by the runtime to match the type of the thrown exception to the 572 // type of the catch clauses or the types in the exception specification. 573 if (VerboseAsm) { 574 if (Action.ValueForTypeID > 0) 575 Asm->OutStreamer->AddComment(" Catch TypeInfo " + 576 Twine(Action.ValueForTypeID)); 577 else if (Action.ValueForTypeID < 0) 578 Asm->OutStreamer->AddComment(" Filter TypeInfo " + 579 Twine(Action.ValueForTypeID)); 580 else 581 Asm->OutStreamer->AddComment(" Cleanup"); 582 } 583 Asm->EmitSLEB128(Action.ValueForTypeID); 584 585 // Action Record 586 // 587 // Self-relative signed displacement in bytes of the next action record, 588 // or 0 if there is no next action record. 589 if (VerboseAsm) { 590 if (Action.NextAction == 0) { 591 Asm->OutStreamer->AddComment(" No further actions"); 592 } else { 593 unsigned NextAction = Entry + (Action.NextAction + 1) / 2; 594 Asm->OutStreamer->AddComment(" Continue to action "+Twine(NextAction)); 595 } 596 } 597 Asm->EmitSLEB128(Action.NextAction); 598 } 599 600 if (HaveTTData) { 601 Asm->EmitAlignment(2); 602 emitTypeInfos(TTypeEncoding, TTBaseLabel); 603 } 604 605 Asm->EmitAlignment(2); 606 } 607 608 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) { 609 const MachineFunction *MF = Asm->MF; 610 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos(); 611 const std::vector<unsigned> &FilterIds = MF->getFilterIds(); 612 613 bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 614 615 int Entry = 0; 616 // Emit the Catch TypeInfos. 617 if (VerboseAsm && !TypeInfos.empty()) { 618 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<"); 619 Asm->OutStreamer->AddBlankLine(); 620 Entry = TypeInfos.size(); 621 } 622 623 for (const GlobalValue *GV : make_range(TypeInfos.rbegin(), 624 TypeInfos.rend())) { 625 if (VerboseAsm) 626 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--)); 627 Asm->EmitTTypeReference(GV, TTypeEncoding); 628 } 629 630 Asm->OutStreamer->EmitLabel(TTBaseLabel); 631 632 // Emit the Exception Specifications. 633 if (VerboseAsm && !FilterIds.empty()) { 634 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<"); 635 Asm->OutStreamer->AddBlankLine(); 636 Entry = 0; 637 } 638 for (std::vector<unsigned>::const_iterator 639 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { 640 unsigned TypeID = *I; 641 if (VerboseAsm) { 642 --Entry; 643 if (isFilterEHSelector(TypeID)) 644 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry)); 645 } 646 647 Asm->EmitULEB128(TypeID); 648 } 649 } 650