1 //===-- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing exception info into assembly files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "EHStreamer.h" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineInstr.h" 18 #include "llvm/CodeGen/MachineModuleInfo.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCStreamer.h" 22 #include "llvm/MC/MCSymbol.h" 23 #include "llvm/Support/LEB128.h" 24 #include "llvm/Target/TargetLoweringObjectFile.h" 25 26 using namespace llvm; 27 28 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 29 30 EHStreamer::~EHStreamer() {} 31 32 /// How many leading type ids two landing pads have in common. 33 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L, 34 const LandingPadInfo *R) { 35 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 36 unsigned LSize = LIds.size(), RSize = RIds.size(); 37 unsigned MinSize = LSize < RSize ? LSize : RSize; 38 unsigned Count = 0; 39 40 for (; Count != MinSize; ++Count) 41 if (LIds[Count] != RIds[Count]) 42 return Count; 43 44 return Count; 45 } 46 47 /// Compute the actions table and gather the first action index for each landing 48 /// pad site. 49 unsigned EHStreamer:: 50 computeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads, 51 SmallVectorImpl<ActionEntry> &Actions, 52 SmallVectorImpl<unsigned> &FirstActions) { 53 54 // The action table follows the call-site table in the LSDA. The individual 55 // records are of two types: 56 // 57 // * Catch clause 58 // * Exception specification 59 // 60 // The two record kinds have the same format, with only small differences. 61 // They are distinguished by the "switch value" field: Catch clauses 62 // (TypeInfos) have strictly positive switch values, and exception 63 // specifications (FilterIds) have strictly negative switch values. Value 0 64 // indicates a catch-all clause. 65 // 66 // Negative type IDs index into FilterIds. Positive type IDs index into 67 // TypeInfos. The value written for a positive type ID is just the type ID 68 // itself. For a negative type ID, however, the value written is the 69 // (negative) byte offset of the corresponding FilterIds entry. The byte 70 // offset is usually equal to the type ID (because the FilterIds entries are 71 // written using a variable width encoding, which outputs one byte per entry 72 // as long as the value written is not too large) but can differ. This kind 73 // of complication does not occur for positive type IDs because type infos are 74 // output using a fixed width encoding. FilterOffsets[i] holds the byte 75 // offset corresponding to FilterIds[i]. 76 77 const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds(); 78 SmallVector<int, 16> FilterOffsets; 79 FilterOffsets.reserve(FilterIds.size()); 80 int Offset = -1; 81 82 for (std::vector<unsigned>::const_iterator 83 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { 84 FilterOffsets.push_back(Offset); 85 Offset -= getULEB128Size(*I); 86 } 87 88 FirstActions.reserve(LandingPads.size()); 89 90 int FirstAction = 0; 91 unsigned SizeActions = 0; 92 const LandingPadInfo *PrevLPI = nullptr; 93 94 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator 95 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) { 96 const LandingPadInfo *LPI = *I; 97 const std::vector<int> &TypeIds = LPI->TypeIds; 98 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0; 99 unsigned SizeSiteActions = 0; 100 101 if (NumShared < TypeIds.size()) { 102 unsigned SizeAction = 0; 103 unsigned PrevAction = (unsigned)-1; 104 105 if (NumShared) { 106 unsigned SizePrevIds = PrevLPI->TypeIds.size(); 107 assert(Actions.size()); 108 PrevAction = Actions.size() - 1; 109 SizeAction = getSLEB128Size(Actions[PrevAction].NextAction) + 110 getSLEB128Size(Actions[PrevAction].ValueForTypeID); 111 112 for (unsigned j = NumShared; j != SizePrevIds; ++j) { 113 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!"); 114 SizeAction -= getSLEB128Size(Actions[PrevAction].ValueForTypeID); 115 SizeAction += -Actions[PrevAction].NextAction; 116 PrevAction = Actions[PrevAction].Previous; 117 } 118 } 119 120 // Compute the actions. 121 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { 122 int TypeID = TypeIds[J]; 123 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); 124 int ValueForTypeID = 125 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID; 126 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID); 127 128 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; 129 SizeAction = SizeTypeID + getSLEB128Size(NextAction); 130 SizeSiteActions += SizeAction; 131 132 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; 133 Actions.push_back(Action); 134 PrevAction = Actions.size() - 1; 135 } 136 137 // Record the first action of the landing pad site. 138 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; 139 } // else identical - re-use previous FirstAction 140 141 // Information used when created the call-site table. The action record 142 // field of the call site record is the offset of the first associated 143 // action record, relative to the start of the actions table. This value is 144 // biased by 1 (1 indicating the start of the actions table), and 0 145 // indicates that there are no actions. 146 FirstActions.push_back(FirstAction); 147 148 // Compute this sites contribution to size. 149 SizeActions += SizeSiteActions; 150 151 PrevLPI = LPI; 152 } 153 154 return SizeActions; 155 } 156 157 /// Return `true' if this is a call to a function marked `nounwind'. Return 158 /// `false' otherwise. 159 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) { 160 assert(MI->isCall() && "This should be a call instruction!"); 161 162 bool MarkedNoUnwind = false; 163 bool SawFunc = false; 164 165 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 166 const MachineOperand &MO = MI->getOperand(I); 167 168 if (!MO.isGlobal()) continue; 169 170 const Function *F = dyn_cast<Function>(MO.getGlobal()); 171 if (!F) continue; 172 173 if (SawFunc) { 174 // Be conservative. If we have more than one function operand for this 175 // call, then we can't make the assumption that it's the callee and 176 // not a parameter to the call. 177 // 178 // FIXME: Determine if there's a way to say that `F' is the callee or 179 // parameter. 180 MarkedNoUnwind = false; 181 break; 182 } 183 184 MarkedNoUnwind = F->doesNotThrow(); 185 SawFunc = true; 186 } 187 188 return MarkedNoUnwind; 189 } 190 191 void EHStreamer::computePadMap( 192 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 193 RangeMapType &PadMap) { 194 // Invokes and nounwind calls have entries in PadMap (due to being bracketed 195 // by try-range labels when lowered). Ordinary calls do not, so appropriate 196 // try-ranges for them need be deduced so we can put them in the LSDA. 197 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 198 const LandingPadInfo *LandingPad = LandingPads[i]; 199 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { 200 MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; 201 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); 202 PadRange P = { i, j }; 203 PadMap[BeginLabel] = P; 204 } 205 } 206 } 207 208 /// Compute the call-site table. The entry for an invoke has a try-range 209 /// containing the call, a non-zero landing pad, and an appropriate action. The 210 /// entry for an ordinary call has a try-range containing the call and zero for 211 /// the landing pad and the action. Calls marked 'nounwind' have no entry and 212 /// must not be contained in the try-range of any entry - they form gaps in the 213 /// table. Entries must be ordered by try-range address. 214 void EHStreamer:: 215 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, 216 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 217 const SmallVectorImpl<unsigned> &FirstActions) { 218 RangeMapType PadMap; 219 computePadMap(LandingPads, PadMap); 220 221 // The end label of the previous invoke or nounwind try-range. 222 MCSymbol *LastLabel = nullptr; 223 224 // Whether there is a potentially throwing instruction (currently this means 225 // an ordinary call) between the end of the previous try-range and now. 226 bool SawPotentiallyThrowing = false; 227 228 // Whether the last CallSite entry was for an invoke. 229 bool PreviousIsInvoke = false; 230 231 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 232 233 // Visit all instructions in order of address. 234 for (const auto &MBB : *Asm->MF) { 235 for (const auto &MI : MBB) { 236 if (!MI.isEHLabel()) { 237 if (MI.isCall()) 238 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI); 239 continue; 240 } 241 242 // End of the previous try-range? 243 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol(); 244 if (BeginLabel == LastLabel) 245 SawPotentiallyThrowing = false; 246 247 // Beginning of a new try-range? 248 RangeMapType::const_iterator L = PadMap.find(BeginLabel); 249 if (L == PadMap.end()) 250 // Nope, it was just some random label. 251 continue; 252 253 const PadRange &P = L->second; 254 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; 255 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && 256 "Inconsistent landing pad map!"); 257 258 // For Dwarf exception handling (SjLj handling doesn't use this). If some 259 // instruction between the previous try-range and this one may throw, 260 // create a call-site entry with no landing pad for the region between the 261 // try-ranges. 262 if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) { 263 CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 }; 264 CallSites.push_back(Site); 265 PreviousIsInvoke = false; 266 } 267 268 LastLabel = LandingPad->EndLabels[P.RangeIndex]; 269 assert(BeginLabel && LastLabel && "Invalid landing pad!"); 270 271 if (!LandingPad->LandingPadLabel) { 272 // Create a gap. 273 PreviousIsInvoke = false; 274 } else { 275 // This try-range is for an invoke. 276 CallSiteEntry Site = { 277 BeginLabel, 278 LastLabel, 279 LandingPad, 280 FirstActions[P.PadIndex] 281 }; 282 283 // Try to merge with the previous call-site. SJLJ doesn't do this 284 if (PreviousIsInvoke && !IsSJLJ) { 285 CallSiteEntry &Prev = CallSites.back(); 286 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) { 287 // Extend the range of the previous entry. 288 Prev.EndLabel = Site.EndLabel; 289 continue; 290 } 291 } 292 293 // Otherwise, create a new call-site. 294 if (!IsSJLJ) 295 CallSites.push_back(Site); 296 else { 297 // SjLj EH must maintain the call sites in the order assigned 298 // to them by the SjLjPrepare pass. 299 unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel); 300 if (CallSites.size() < SiteNo) 301 CallSites.resize(SiteNo); 302 CallSites[SiteNo - 1] = Site; 303 } 304 PreviousIsInvoke = true; 305 } 306 } 307 } 308 309 // If some instruction between the previous try-range and the end of the 310 // function may throw, create a call-site entry with no landing pad for the 311 // region following the try-range. 312 if (SawPotentiallyThrowing && !IsSJLJ) { 313 CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 }; 314 CallSites.push_back(Site); 315 } 316 } 317 318 /// Emit landing pads and actions. 319 /// 320 /// The general organization of the table is complex, but the basic concepts are 321 /// easy. First there is a header which describes the location and organization 322 /// of the three components that follow. 323 /// 324 /// 1. The landing pad site information describes the range of code covered by 325 /// the try. In our case it's an accumulation of the ranges covered by the 326 /// invokes in the try. There is also a reference to the landing pad that 327 /// handles the exception once processed. Finally an index into the actions 328 /// table. 329 /// 2. The action table, in our case, is composed of pairs of type IDs and next 330 /// action offset. Starting with the action index from the landing pad 331 /// site, each type ID is checked for a match to the current exception. If 332 /// it matches then the exception and type id are passed on to the landing 333 /// pad. Otherwise the next action is looked up. This chain is terminated 334 /// with a next action of zero. If no type id is found then the frame is 335 /// unwound and handling continues. 336 /// 3. Type ID table contains references to all the C++ typeinfo for all 337 /// catches in the function. This tables is reverse indexed base 1. 338 void EHStreamer::emitExceptionTable() { 339 const MachineFunction *MF = Asm->MF; 340 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos(); 341 const std::vector<unsigned> &FilterIds = MF->getFilterIds(); 342 const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads(); 343 344 // Sort the landing pads in order of their type ids. This is used to fold 345 // duplicate actions. 346 SmallVector<const LandingPadInfo *, 64> LandingPads; 347 LandingPads.reserve(PadInfos.size()); 348 349 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) 350 LandingPads.push_back(&PadInfos[i]); 351 352 // Order landing pads lexicographically by type id. 353 std::sort(LandingPads.begin(), LandingPads.end(), 354 [](const LandingPadInfo *L, 355 const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; }); 356 357 // Compute the actions table and gather the first action index for each 358 // landing pad site. 359 SmallVector<ActionEntry, 32> Actions; 360 SmallVector<unsigned, 64> FirstActions; 361 unsigned SizeActions = 362 computeActionsTable(LandingPads, Actions, FirstActions); 363 364 // Compute the call-site table. 365 SmallVector<CallSiteEntry, 64> CallSites; 366 computeCallSiteTable(CallSites, LandingPads, FirstActions); 367 368 // Final tallies. 369 370 // Call sites. 371 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 372 bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true; 373 374 unsigned CallSiteTableLength; 375 if (IsSJLJ) 376 CallSiteTableLength = 0; 377 else { 378 unsigned SiteStartSize = 4; // dwarf::DW_EH_PE_udata4 379 unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4 380 unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4 381 CallSiteTableLength = 382 CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize); 383 } 384 385 for (unsigned i = 0, e = CallSites.size(); i < e; ++i) { 386 CallSiteTableLength += getULEB128Size(CallSites[i].Action); 387 if (IsSJLJ) 388 CallSiteTableLength += getULEB128Size(i); 389 } 390 391 // Type infos. 392 MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection(); 393 unsigned TTypeEncoding; 394 unsigned TypeFormatSize; 395 396 if (!HaveTTData) { 397 // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say 398 // that we're omitting that bit. 399 TTypeEncoding = dwarf::DW_EH_PE_omit; 400 // dwarf::DW_EH_PE_absptr 401 TypeFormatSize = Asm->getDataLayout().getPointerSize(); 402 } else { 403 // Okay, we have actual filters or typeinfos to emit. As such, we need to 404 // pick a type encoding for them. We're about to emit a list of pointers to 405 // typeinfo objects at the end of the LSDA. However, unless we're in static 406 // mode, this reference will require a relocation by the dynamic linker. 407 // 408 // Because of this, we have a couple of options: 409 // 410 // 1) If we are in -static mode, we can always use an absolute reference 411 // from the LSDA, because the static linker will resolve it. 412 // 413 // 2) Otherwise, if the LSDA section is writable, we can output the direct 414 // reference to the typeinfo and allow the dynamic linker to relocate 415 // it. Since it is in a writable section, the dynamic linker won't 416 // have a problem. 417 // 418 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, 419 // we need to use some form of indirection. For example, on Darwin, 420 // we can output a statically-relocatable reference to a dyld stub. The 421 // offset to the stub is constant, but the contents are in a section 422 // that is updated by the dynamic linker. This is easy enough, but we 423 // need to tell the personality function of the unwinder to indirect 424 // through the dyld stub. 425 // 426 // FIXME: When (3) is actually implemented, we'll have to emit the stubs 427 // somewhere. This predicate should be moved to a shared location that is 428 // in target-independent code. 429 // 430 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding(); 431 TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding); 432 } 433 434 // Begin the exception table. 435 // Sometimes we want not to emit the data into separate section (e.g. ARM 436 // EHABI). In this case LSDASection will be NULL. 437 if (LSDASection) 438 Asm->OutStreamer->SwitchSection(LSDASection); 439 Asm->EmitAlignment(2); 440 441 // Emit the LSDA. 442 MCSymbol *GCCETSym = 443 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+ 444 Twine(Asm->getFunctionNumber())); 445 Asm->OutStreamer->EmitLabel(GCCETSym); 446 Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym()); 447 448 // Emit the LSDA header. 449 Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); 450 Asm->EmitEncodingByte(TTypeEncoding, "@TType"); 451 452 // The type infos need to be aligned. GCC does this by inserting padding just 453 // before the type infos. However, this changes the size of the exception 454 // table, so you need to take this into account when you output the exception 455 // table size. However, the size is output using a variable length encoding. 456 // So by increasing the size by inserting padding, you may increase the number 457 // of bytes used for writing the size. If it increases, say by one byte, then 458 // you now need to output one less byte of padding to get the type infos 459 // aligned. However this decreases the size of the exception table. This 460 // changes the value you have to output for the exception table size. Due to 461 // the variable length encoding, the number of bytes used for writing the 462 // length may decrease. If so, you then have to increase the amount of 463 // padding. And so on. If you look carefully at the GCC code you will see that 464 // it indeed does this in a loop, going on and on until the values stabilize. 465 // We chose another solution: don't output padding inside the table like GCC 466 // does, instead output it before the table. 467 unsigned SizeTypes = TypeInfos.size() * TypeFormatSize; 468 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength); 469 unsigned TTypeBaseOffset = 470 sizeof(int8_t) + // Call site format 471 CallSiteTableLengthSize + // Call site table length size 472 CallSiteTableLength + // Call site table length 473 SizeActions + // Actions size 474 SizeTypes; 475 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset); 476 unsigned TotalSize = 477 sizeof(int8_t) + // LPStart format 478 sizeof(int8_t) + // TType format 479 (HaveTTData ? TTypeBaseOffsetSize : 0) + // TType base offset size 480 TTypeBaseOffset; // TType base offset 481 unsigned SizeAlign = (4 - TotalSize) & 3; 482 483 if (HaveTTData) { 484 // Account for any extra padding that will be added to the call site table 485 // length. 486 Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign); 487 SizeAlign = 0; 488 } 489 490 bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 491 492 // SjLj Exception handling 493 if (IsSJLJ) { 494 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site"); 495 496 // Add extra padding if it wasn't added to the TType base offset. 497 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign); 498 499 // Emit the landing pad site information. 500 unsigned idx = 0; 501 for (SmallVectorImpl<CallSiteEntry>::const_iterator 502 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { 503 const CallSiteEntry &S = *I; 504 505 // Offset of the landing pad, counted in 16-byte bundles relative to the 506 // @LPStart address. 507 if (VerboseAsm) { 508 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<"); 509 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx)); 510 } 511 Asm->EmitULEB128(idx); 512 513 // Offset of the first associated action record, relative to the start of 514 // the action table. This value is biased by 1 (1 indicates the start of 515 // the action table), and 0 indicates that there are no actions. 516 if (VerboseAsm) { 517 if (S.Action == 0) 518 Asm->OutStreamer->AddComment(" Action: cleanup"); 519 else 520 Asm->OutStreamer->AddComment(" Action: " + 521 Twine((S.Action - 1) / 2 + 1)); 522 } 523 Asm->EmitULEB128(S.Action); 524 } 525 } else { 526 // Itanium LSDA exception handling 527 528 // The call-site table is a list of all call sites that may throw an 529 // exception (including C++ 'throw' statements) in the procedure 530 // fragment. It immediately follows the LSDA header. Each entry indicates, 531 // for a given call, the first corresponding action record and corresponding 532 // landing pad. 533 // 534 // The table begins with the number of bytes, stored as an LEB128 535 // compressed, unsigned integer. The records immediately follow the record 536 // count. They are sorted in increasing call-site address. Each record 537 // indicates: 538 // 539 // * The position of the call-site. 540 // * The position of the landing pad. 541 // * The first action record for that call site. 542 // 543 // A missing entry in the call-site table indicates that a call is not 544 // supposed to throw. 545 546 // Emit the landing pad call site table. 547 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site"); 548 549 // Add extra padding if it wasn't added to the TType base offset. 550 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign); 551 552 unsigned Entry = 0; 553 for (SmallVectorImpl<CallSiteEntry>::const_iterator 554 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) { 555 const CallSiteEntry &S = *I; 556 557 MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin(); 558 559 MCSymbol *BeginLabel = S.BeginLabel; 560 if (!BeginLabel) 561 BeginLabel = EHFuncBeginSym; 562 MCSymbol *EndLabel = S.EndLabel; 563 if (!EndLabel) 564 EndLabel = Asm->getFunctionEnd(); 565 566 // Offset of the call site relative to the previous call site, counted in 567 // number of 16-byte bundles. The first call site is counted relative to 568 // the start of the procedure fragment. 569 if (VerboseAsm) 570 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<"); 571 Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4); 572 if (VerboseAsm) 573 Asm->OutStreamer->AddComment(Twine(" Call between ") + 574 BeginLabel->getName() + " and " + 575 EndLabel->getName()); 576 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 577 578 // Offset of the landing pad, counted in 16-byte bundles relative to the 579 // @LPStart address. 580 if (!S.LPad) { 581 if (VerboseAsm) 582 Asm->OutStreamer->AddComment(" has no landing pad"); 583 Asm->OutStreamer->EmitIntValue(0, 4/*size*/); 584 } else { 585 if (VerboseAsm) 586 Asm->OutStreamer->AddComment(Twine(" jumps to ") + 587 S.LPad->LandingPadLabel->getName()); 588 Asm->EmitLabelDifference(S.LPad->LandingPadLabel, EHFuncBeginSym, 4); 589 } 590 591 // Offset of the first associated action record, relative to the start of 592 // the action table. This value is biased by 1 (1 indicates the start of 593 // the action table), and 0 indicates that there are no actions. 594 if (VerboseAsm) { 595 if (S.Action == 0) 596 Asm->OutStreamer->AddComment(" On action: cleanup"); 597 else 598 Asm->OutStreamer->AddComment(" On action: " + 599 Twine((S.Action - 1) / 2 + 1)); 600 } 601 Asm->EmitULEB128(S.Action); 602 } 603 } 604 605 // Emit the Action Table. 606 int Entry = 0; 607 for (SmallVectorImpl<ActionEntry>::const_iterator 608 I = Actions.begin(), E = Actions.end(); I != E; ++I) { 609 const ActionEntry &Action = *I; 610 611 if (VerboseAsm) { 612 // Emit comments that decode the action table. 613 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<"); 614 } 615 616 // Type Filter 617 // 618 // Used by the runtime to match the type of the thrown exception to the 619 // type of the catch clauses or the types in the exception specification. 620 if (VerboseAsm) { 621 if (Action.ValueForTypeID > 0) 622 Asm->OutStreamer->AddComment(" Catch TypeInfo " + 623 Twine(Action.ValueForTypeID)); 624 else if (Action.ValueForTypeID < 0) 625 Asm->OutStreamer->AddComment(" Filter TypeInfo " + 626 Twine(Action.ValueForTypeID)); 627 else 628 Asm->OutStreamer->AddComment(" Cleanup"); 629 } 630 Asm->EmitSLEB128(Action.ValueForTypeID); 631 632 // Action Record 633 // 634 // Self-relative signed displacement in bytes of the next action record, 635 // or 0 if there is no next action record. 636 if (VerboseAsm) { 637 if (Action.NextAction == 0) { 638 Asm->OutStreamer->AddComment(" No further actions"); 639 } else { 640 unsigned NextAction = Entry + (Action.NextAction + 1) / 2; 641 Asm->OutStreamer->AddComment(" Continue to action "+Twine(NextAction)); 642 } 643 } 644 Asm->EmitSLEB128(Action.NextAction); 645 } 646 647 emitTypeInfos(TTypeEncoding); 648 649 Asm->EmitAlignment(2); 650 } 651 652 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) { 653 const MachineFunction *MF = Asm->MF; 654 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos(); 655 const std::vector<unsigned> &FilterIds = MF->getFilterIds(); 656 657 bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 658 659 int Entry = 0; 660 // Emit the Catch TypeInfos. 661 if (VerboseAsm && !TypeInfos.empty()) { 662 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<"); 663 Asm->OutStreamer->AddBlankLine(); 664 Entry = TypeInfos.size(); 665 } 666 667 for (const GlobalValue *GV : make_range(TypeInfos.rbegin(), 668 TypeInfos.rend())) { 669 if (VerboseAsm) 670 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--)); 671 Asm->EmitTTypeReference(GV, TTypeEncoding); 672 } 673 674 // Emit the Exception Specifications. 675 if (VerboseAsm && !FilterIds.empty()) { 676 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<"); 677 Asm->OutStreamer->AddBlankLine(); 678 Entry = 0; 679 } 680 for (std::vector<unsigned>::const_iterator 681 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { 682 unsigned TypeID = *I; 683 if (VerboseAsm) { 684 --Entry; 685 if (isFilterEHSelector(TypeID)) 686 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry)); 687 } 688 689 Asm->EmitULEB128(TypeID); 690 } 691 } 692