1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Common functionality for different debug information format backends. 10 // LLVM currently supports DWARF and CodeView. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/DebugHandlerBase.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/Twine.h" 17 #include "llvm/CodeGen/AsmPrinter.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineModuleInfo.h" 21 #include "llvm/CodeGen/TargetSubtargetInfo.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/CommandLine.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "dwarfdebug" 29 30 /// If true, we drop variable location ranges which exist entirely outside the 31 /// variable's lexical scope instruction ranges. 32 static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true)); 33 34 Optional<DbgVariableLocation> 35 DbgVariableLocation::extractFromMachineInstruction( 36 const MachineInstr &Instruction) { 37 DbgVariableLocation Location; 38 if (!Instruction.isDebugValue()) 39 return None; 40 if (!Instruction.getDebugOperand(0).isReg()) 41 return None; 42 Location.Register = Instruction.getDebugOperand(0).getReg(); 43 Location.FragmentInfo.reset(); 44 // We only handle expressions generated by DIExpression::appendOffset, 45 // which doesn't require a full stack machine. 46 int64_t Offset = 0; 47 const DIExpression *DIExpr = Instruction.getDebugExpression(); 48 auto Op = DIExpr->expr_op_begin(); 49 while (Op != DIExpr->expr_op_end()) { 50 switch (Op->getOp()) { 51 case dwarf::DW_OP_constu: { 52 int Value = Op->getArg(0); 53 ++Op; 54 if (Op != DIExpr->expr_op_end()) { 55 switch (Op->getOp()) { 56 case dwarf::DW_OP_minus: 57 Offset -= Value; 58 break; 59 case dwarf::DW_OP_plus: 60 Offset += Value; 61 break; 62 default: 63 continue; 64 } 65 } 66 } break; 67 case dwarf::DW_OP_plus_uconst: 68 Offset += Op->getArg(0); 69 break; 70 case dwarf::DW_OP_LLVM_fragment: 71 Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)}; 72 break; 73 case dwarf::DW_OP_deref: 74 Location.LoadChain.push_back(Offset); 75 Offset = 0; 76 break; 77 default: 78 return None; 79 } 80 ++Op; 81 } 82 83 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE 84 // instruction. 85 // FIXME: Replace these with DIExpression. 86 if (Instruction.isIndirectDebugValue()) 87 Location.LoadChain.push_back(Offset); 88 89 return Location; 90 } 91 92 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 93 94 void DebugHandlerBase::beginModule(Module *M) { 95 if (M->debug_compile_units().empty()) 96 Asm = nullptr; 97 } 98 99 // Each LexicalScope has first instruction and last instruction to mark 100 // beginning and end of a scope respectively. Create an inverse map that list 101 // scopes starts (and ends) with an instruction. One instruction may start (or 102 // end) multiple scopes. Ignore scopes that are not reachable. 103 void DebugHandlerBase::identifyScopeMarkers() { 104 SmallVector<LexicalScope *, 4> WorkList; 105 WorkList.push_back(LScopes.getCurrentFunctionScope()); 106 while (!WorkList.empty()) { 107 LexicalScope *S = WorkList.pop_back_val(); 108 109 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 110 if (!Children.empty()) 111 WorkList.append(Children.begin(), Children.end()); 112 113 if (S->isAbstractScope()) 114 continue; 115 116 for (const InsnRange &R : S->getRanges()) { 117 assert(R.first && "InsnRange does not have first instruction!"); 118 assert(R.second && "InsnRange does not have second instruction!"); 119 requestLabelBeforeInsn(R.first); 120 requestLabelAfterInsn(R.second); 121 } 122 } 123 } 124 125 // Return Label preceding the instruction. 126 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) { 127 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 128 assert(Label && "Didn't insert label before instruction"); 129 return Label; 130 } 131 132 // Return Label immediately following the instruction. 133 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) { 134 return LabelsAfterInsn.lookup(MI); 135 } 136 137 /// If this type is derived from a base type then return base type size. 138 uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) { 139 assert(Ty); 140 const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty); 141 if (!DDTy) 142 return Ty->getSizeInBits(); 143 144 unsigned Tag = DDTy->getTag(); 145 146 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef && 147 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && 148 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type) 149 return DDTy->getSizeInBits(); 150 151 DIType *BaseType = DDTy->getBaseType(); 152 153 if (!BaseType) 154 return 0; 155 156 // If this is a derived type, go ahead and get the base type, unless it's a 157 // reference then it's just the size of the field. Pointer types have no need 158 // of this since they're a different type of qualification on the type. 159 if (BaseType->getTag() == dwarf::DW_TAG_reference_type || 160 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type) 161 return Ty->getSizeInBits(); 162 163 return getBaseTypeSize(BaseType); 164 } 165 166 static bool hasDebugInfo(const MachineModuleInfo *MMI, 167 const MachineFunction *MF) { 168 if (!MMI->hasDebugInfo()) 169 return false; 170 auto *SP = MF->getFunction().getSubprogram(); 171 if (!SP) 172 return false; 173 assert(SP->getUnit()); 174 auto EK = SP->getUnit()->getEmissionKind(); 175 if (EK == DICompileUnit::NoDebug) 176 return false; 177 return true; 178 } 179 180 void DebugHandlerBase::beginFunction(const MachineFunction *MF) { 181 PrevInstBB = nullptr; 182 183 if (!Asm || !hasDebugInfo(MMI, MF)) { 184 skippedNonDebugFunction(); 185 return; 186 } 187 188 // Grab the lexical scopes for the function, if we don't have any of those 189 // then we're not going to be able to do anything. 190 LScopes.initialize(*MF); 191 if (LScopes.empty()) { 192 beginFunctionImpl(MF); 193 return; 194 } 195 196 // Make sure that each lexical scope will have a begin/end label. 197 identifyScopeMarkers(); 198 199 // Calculate history for local variables. 200 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); 201 assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!"); 202 calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), 203 DbgValues, DbgLabels); 204 InstOrdering.initialize(*MF); 205 if (TrimVarLocs) 206 DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering); 207 LLVM_DEBUG(DbgValues.dump()); 208 209 // Request labels for the full history. 210 for (const auto &I : DbgValues) { 211 const auto &Entries = I.second; 212 if (Entries.empty()) 213 continue; 214 215 auto IsDescribedByReg = [](const MachineInstr *MI) { 216 return MI->getDebugOperand(0).isReg() && MI->getDebugOperand(0).getReg(); 217 }; 218 219 // The first mention of a function argument gets the CurrentFnBegin label, 220 // so arguments are visible when breaking at function entry. 221 // 222 // We do not change the label for values that are described by registers, 223 // as that could place them above their defining instructions. We should 224 // ideally not change the labels for constant debug values either, since 225 // doing that violates the ranges that are calculated in the history map. 226 // However, we currently do not emit debug values for constant arguments 227 // directly at the start of the function, so this code is still useful. 228 // FIXME: If the first mention of an argument is in a unique section basic 229 // block, we cannot always assign the CurrentFnBeginLabel as it lies in a 230 // different section. Temporarily, we disable generating loc list 231 // information or DW_AT_const_value when the block is in a different 232 // section. 233 const DILocalVariable *DIVar = 234 Entries.front().getInstr()->getDebugVariable(); 235 if (DIVar->isParameter() && 236 getDISubprogram(DIVar->getScope())->describes(&MF->getFunction()) && 237 Entries.front().getInstr()->getParent()->sameSection(&MF->front())) { 238 if (!IsDescribedByReg(Entries.front().getInstr())) 239 LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin(); 240 if (Entries.front().getInstr()->getDebugExpression()->isFragment()) { 241 // Mark all non-overlapping initial fragments. 242 for (auto I = Entries.begin(); I != Entries.end(); ++I) { 243 if (!I->isDbgValue()) 244 continue; 245 const DIExpression *Fragment = I->getInstr()->getDebugExpression(); 246 if (std::any_of(Entries.begin(), I, 247 [&](DbgValueHistoryMap::Entry Pred) { 248 return Pred.isDbgValue() && 249 Fragment->fragmentsOverlap( 250 Pred.getInstr()->getDebugExpression()); 251 })) 252 break; 253 // The code that generates location lists for DWARF assumes that the 254 // entries' start labels are monotonically increasing, and since we 255 // don't change the label for fragments that are described by 256 // registers, we must bail out when encountering such a fragment. 257 if (IsDescribedByReg(I->getInstr())) 258 break; 259 LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin(); 260 } 261 } 262 } 263 264 for (const auto &Entry : Entries) { 265 if (Entry.isDbgValue()) 266 requestLabelBeforeInsn(Entry.getInstr()); 267 else 268 requestLabelAfterInsn(Entry.getInstr()); 269 } 270 } 271 272 // Ensure there is a symbol before DBG_LABEL. 273 for (const auto &I : DbgLabels) { 274 const MachineInstr *MI = I.second; 275 requestLabelBeforeInsn(MI); 276 } 277 278 PrevInstLoc = DebugLoc(); 279 PrevLabel = Asm->getFunctionBegin(); 280 beginFunctionImpl(MF); 281 } 282 283 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) { 284 if (!Asm || !MMI->hasDebugInfo()) 285 return; 286 287 assert(CurMI == nullptr); 288 CurMI = MI; 289 290 // Insert labels where requested. 291 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 292 LabelsBeforeInsn.find(MI); 293 294 // No label needed. 295 if (I == LabelsBeforeInsn.end()) 296 return; 297 298 // Label already assigned. 299 if (I->second) 300 return; 301 302 if (!PrevLabel) { 303 PrevLabel = MMI->getContext().createTempSymbol(); 304 Asm->OutStreamer->emitLabel(PrevLabel); 305 } 306 I->second = PrevLabel; 307 } 308 309 void DebugHandlerBase::endInstruction() { 310 if (!Asm || !MMI->hasDebugInfo()) 311 return; 312 313 assert(CurMI != nullptr); 314 // Don't create a new label after DBG_VALUE and other instructions that don't 315 // generate code. 316 if (!CurMI->isMetaInstruction()) { 317 PrevLabel = nullptr; 318 PrevInstBB = CurMI->getParent(); 319 } 320 321 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 322 LabelsAfterInsn.find(CurMI); 323 CurMI = nullptr; 324 325 // No label needed. 326 if (I == LabelsAfterInsn.end()) 327 return; 328 329 // Label already assigned. 330 if (I->second) 331 return; 332 333 // We need a label after this instruction. 334 if (!PrevLabel) { 335 PrevLabel = MMI->getContext().createTempSymbol(); 336 Asm->OutStreamer->emitLabel(PrevLabel); 337 } 338 I->second = PrevLabel; 339 } 340 341 void DebugHandlerBase::endFunction(const MachineFunction *MF) { 342 if (Asm && hasDebugInfo(MMI, MF)) 343 endFunctionImpl(MF); 344 DbgValues.clear(); 345 DbgLabels.clear(); 346 LabelsBeforeInsn.clear(); 347 LabelsAfterInsn.clear(); 348 InstOrdering.clear(); 349 } 350 351 void DebugHandlerBase::beginBasicBlock(const MachineBasicBlock &MBB) { 352 if (!MBB.isBeginSection()) 353 return; 354 355 PrevLabel = MBB.getSymbol(); 356 } 357 358 void DebugHandlerBase::endBasicBlock(const MachineBasicBlock &MBB) { 359 if (!MBB.isEndSection()) 360 return; 361 362 PrevLabel = nullptr; 363 } 364