1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Common functionality for different debug information format backends. 10 // LLVM currently supports DWARF and CodeView. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/DebugHandlerBase.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/Twine.h" 17 #include "llvm/CodeGen/AsmPrinter.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineModuleInfo.h" 21 #include "llvm/CodeGen/TargetSubtargetInfo.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/CommandLine.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "dwarfdebug" 29 30 /// If true, we drop variable location ranges which exist entirely outside the 31 /// variable's lexical scope instruction ranges. 32 static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true)); 33 34 Optional<DbgVariableLocation> 35 DbgVariableLocation::extractFromMachineInstruction( 36 const MachineInstr &Instruction) { 37 DbgVariableLocation Location; 38 // Variables calculated from multiple locations can't be represented here. 39 if (Instruction.getNumDebugOperands() != 1) 40 return None; 41 if (!Instruction.getDebugOperand(0).isReg()) 42 return None; 43 Location.Register = Instruction.getDebugOperand(0).getReg(); 44 Location.FragmentInfo.reset(); 45 // We only handle expressions generated by DIExpression::appendOffset, 46 // which doesn't require a full stack machine. 47 int64_t Offset = 0; 48 const DIExpression *DIExpr = Instruction.getDebugExpression(); 49 auto Op = DIExpr->expr_op_begin(); 50 // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that 51 // appears exactly once at the start of the expression. 52 if (Instruction.isDebugValueList()) { 53 if (Instruction.getNumDebugOperands() == 1 && 54 Op->getOp() == dwarf::DW_OP_LLVM_arg) 55 ++Op; 56 else 57 return None; 58 } 59 while (Op != DIExpr->expr_op_end()) { 60 switch (Op->getOp()) { 61 case dwarf::DW_OP_constu: { 62 int Value = Op->getArg(0); 63 ++Op; 64 if (Op != DIExpr->expr_op_end()) { 65 switch (Op->getOp()) { 66 case dwarf::DW_OP_minus: 67 Offset -= Value; 68 break; 69 case dwarf::DW_OP_plus: 70 Offset += Value; 71 break; 72 default: 73 continue; 74 } 75 } 76 } break; 77 case dwarf::DW_OP_plus_uconst: 78 Offset += Op->getArg(0); 79 break; 80 case dwarf::DW_OP_LLVM_fragment: 81 Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)}; 82 break; 83 case dwarf::DW_OP_deref: 84 Location.LoadChain.push_back(Offset); 85 Offset = 0; 86 break; 87 default: 88 return None; 89 } 90 ++Op; 91 } 92 93 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE 94 // instruction. 95 // FIXME: Replace these with DIExpression. 96 if (Instruction.isIndirectDebugValue()) 97 Location.LoadChain.push_back(Offset); 98 99 return Location; 100 } 101 102 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 103 104 void DebugHandlerBase::beginModule(Module *M) { 105 if (M->debug_compile_units().empty()) 106 Asm = nullptr; 107 } 108 109 // Each LexicalScope has first instruction and last instruction to mark 110 // beginning and end of a scope respectively. Create an inverse map that list 111 // scopes starts (and ends) with an instruction. One instruction may start (or 112 // end) multiple scopes. Ignore scopes that are not reachable. 113 void DebugHandlerBase::identifyScopeMarkers() { 114 SmallVector<LexicalScope *, 4> WorkList; 115 WorkList.push_back(LScopes.getCurrentFunctionScope()); 116 while (!WorkList.empty()) { 117 LexicalScope *S = WorkList.pop_back_val(); 118 119 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 120 if (!Children.empty()) 121 WorkList.append(Children.begin(), Children.end()); 122 123 if (S->isAbstractScope()) 124 continue; 125 126 for (const InsnRange &R : S->getRanges()) { 127 assert(R.first && "InsnRange does not have first instruction!"); 128 assert(R.second && "InsnRange does not have second instruction!"); 129 requestLabelBeforeInsn(R.first); 130 requestLabelAfterInsn(R.second); 131 } 132 } 133 } 134 135 // Return Label preceding the instruction. 136 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) { 137 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 138 assert(Label && "Didn't insert label before instruction"); 139 return Label; 140 } 141 142 // Return Label immediately following the instruction. 143 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) { 144 return LabelsAfterInsn.lookup(MI); 145 } 146 147 /// If this type is derived from a base type then return base type size. 148 uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) { 149 assert(Ty); 150 const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty); 151 if (!DDTy) 152 return Ty->getSizeInBits(); 153 154 unsigned Tag = DDTy->getTag(); 155 156 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef && 157 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && 158 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type) 159 return DDTy->getSizeInBits(); 160 161 DIType *BaseType = DDTy->getBaseType(); 162 163 if (!BaseType) 164 return 0; 165 166 // If this is a derived type, go ahead and get the base type, unless it's a 167 // reference then it's just the size of the field. Pointer types have no need 168 // of this since they're a different type of qualification on the type. 169 if (BaseType->getTag() == dwarf::DW_TAG_reference_type || 170 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type) 171 return Ty->getSizeInBits(); 172 173 return getBaseTypeSize(BaseType); 174 } 175 176 bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) { 177 if (auto *CTy = dyn_cast<DICompositeType>(Ty)) { 178 // FIXME: Enums without a fixed underlying type have unknown signedness 179 // here, leading to incorrectly emitted constants. 180 if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) 181 return false; 182 183 // (Pieces of) aggregate types that get hacked apart by SROA may be 184 // represented by a constant. Encode them as unsigned bytes. 185 return true; 186 } 187 188 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 189 dwarf::Tag T = (dwarf::Tag)Ty->getTag(); 190 // Encode pointer constants as unsigned bytes. This is used at least for 191 // null pointer constant emission. 192 // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed 193 // here, but accept them for now due to a bug in SROA producing bogus 194 // dbg.values. 195 if (T == dwarf::DW_TAG_pointer_type || 196 T == dwarf::DW_TAG_ptr_to_member_type || 197 T == dwarf::DW_TAG_reference_type || 198 T == dwarf::DW_TAG_rvalue_reference_type) 199 return true; 200 assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type || 201 T == dwarf::DW_TAG_volatile_type || 202 T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type); 203 assert(DTy->getBaseType() && "Expected valid base type"); 204 return isUnsignedDIType(DTy->getBaseType()); 205 } 206 207 auto *BTy = cast<DIBasicType>(Ty); 208 unsigned Encoding = BTy->getEncoding(); 209 assert((Encoding == dwarf::DW_ATE_unsigned || 210 Encoding == dwarf::DW_ATE_unsigned_char || 211 Encoding == dwarf::DW_ATE_signed || 212 Encoding == dwarf::DW_ATE_signed_char || 213 Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF || 214 Encoding == dwarf::DW_ATE_boolean || 215 (Ty->getTag() == dwarf::DW_TAG_unspecified_type && 216 Ty->getName() == "decltype(nullptr)")) && 217 "Unsupported encoding"); 218 return Encoding == dwarf::DW_ATE_unsigned || 219 Encoding == dwarf::DW_ATE_unsigned_char || 220 Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean || 221 Ty->getTag() == dwarf::DW_TAG_unspecified_type; 222 } 223 224 static bool hasDebugInfo(const MachineModuleInfo *MMI, 225 const MachineFunction *MF) { 226 if (!MMI->hasDebugInfo()) 227 return false; 228 auto *SP = MF->getFunction().getSubprogram(); 229 if (!SP) 230 return false; 231 assert(SP->getUnit()); 232 auto EK = SP->getUnit()->getEmissionKind(); 233 if (EK == DICompileUnit::NoDebug) 234 return false; 235 return true; 236 } 237 238 void DebugHandlerBase::beginFunction(const MachineFunction *MF) { 239 PrevInstBB = nullptr; 240 241 if (!Asm || !hasDebugInfo(MMI, MF)) { 242 skippedNonDebugFunction(); 243 return; 244 } 245 246 // Grab the lexical scopes for the function, if we don't have any of those 247 // then we're not going to be able to do anything. 248 LScopes.initialize(*MF); 249 if (LScopes.empty()) { 250 beginFunctionImpl(MF); 251 return; 252 } 253 254 // Make sure that each lexical scope will have a begin/end label. 255 identifyScopeMarkers(); 256 257 // Calculate history for local variables. 258 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); 259 assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!"); 260 calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), 261 DbgValues, DbgLabels); 262 InstOrdering.initialize(*MF); 263 if (TrimVarLocs) 264 DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering); 265 LLVM_DEBUG(DbgValues.dump()); 266 267 // Request labels for the full history. 268 for (const auto &I : DbgValues) { 269 const auto &Entries = I.second; 270 if (Entries.empty()) 271 continue; 272 273 auto IsDescribedByReg = [](const MachineInstr *MI) { 274 return any_of(MI->debug_operands(), 275 [](auto &MO) { return MO.isReg() && MO.getReg(); }); 276 }; 277 278 // The first mention of a function argument gets the CurrentFnBegin label, 279 // so arguments are visible when breaking at function entry. 280 // 281 // We do not change the label for values that are described by registers, 282 // as that could place them above their defining instructions. We should 283 // ideally not change the labels for constant debug values either, since 284 // doing that violates the ranges that are calculated in the history map. 285 // However, we currently do not emit debug values for constant arguments 286 // directly at the start of the function, so this code is still useful. 287 // FIXME: If the first mention of an argument is in a unique section basic 288 // block, we cannot always assign the CurrentFnBeginLabel as it lies in a 289 // different section. Temporarily, we disable generating loc list 290 // information or DW_AT_const_value when the block is in a different 291 // section. 292 const DILocalVariable *DIVar = 293 Entries.front().getInstr()->getDebugVariable(); 294 if (DIVar->isParameter() && 295 getDISubprogram(DIVar->getScope())->describes(&MF->getFunction()) && 296 Entries.front().getInstr()->getParent()->sameSection(&MF->front())) { 297 if (!IsDescribedByReg(Entries.front().getInstr())) 298 LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin(); 299 if (Entries.front().getInstr()->getDebugExpression()->isFragment()) { 300 // Mark all non-overlapping initial fragments. 301 for (auto I = Entries.begin(); I != Entries.end(); ++I) { 302 if (!I->isDbgValue()) 303 continue; 304 const DIExpression *Fragment = I->getInstr()->getDebugExpression(); 305 if (std::any_of(Entries.begin(), I, 306 [&](DbgValueHistoryMap::Entry Pred) { 307 return Pred.isDbgValue() && 308 Fragment->fragmentsOverlap( 309 Pred.getInstr()->getDebugExpression()); 310 })) 311 break; 312 // The code that generates location lists for DWARF assumes that the 313 // entries' start labels are monotonically increasing, and since we 314 // don't change the label for fragments that are described by 315 // registers, we must bail out when encountering such a fragment. 316 if (IsDescribedByReg(I->getInstr())) 317 break; 318 LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin(); 319 } 320 } 321 } 322 323 for (const auto &Entry : Entries) { 324 if (Entry.isDbgValue()) 325 requestLabelBeforeInsn(Entry.getInstr()); 326 else 327 requestLabelAfterInsn(Entry.getInstr()); 328 } 329 } 330 331 // Ensure there is a symbol before DBG_LABEL. 332 for (const auto &I : DbgLabels) { 333 const MachineInstr *MI = I.second; 334 requestLabelBeforeInsn(MI); 335 } 336 337 PrevInstLoc = DebugLoc(); 338 PrevLabel = Asm->getFunctionBegin(); 339 beginFunctionImpl(MF); 340 } 341 342 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) { 343 if (!Asm || !MMI->hasDebugInfo()) 344 return; 345 346 assert(CurMI == nullptr); 347 CurMI = MI; 348 349 // Insert labels where requested. 350 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 351 LabelsBeforeInsn.find(MI); 352 353 // No label needed. 354 if (I == LabelsBeforeInsn.end()) 355 return; 356 357 // Label already assigned. 358 if (I->second) 359 return; 360 361 if (!PrevLabel) { 362 PrevLabel = MMI->getContext().createTempSymbol(); 363 Asm->OutStreamer->emitLabel(PrevLabel); 364 } 365 I->second = PrevLabel; 366 } 367 368 void DebugHandlerBase::endInstruction() { 369 if (!Asm || !MMI->hasDebugInfo()) 370 return; 371 372 assert(CurMI != nullptr); 373 // Don't create a new label after DBG_VALUE and other instructions that don't 374 // generate code. 375 if (!CurMI->isMetaInstruction()) { 376 PrevLabel = nullptr; 377 PrevInstBB = CurMI->getParent(); 378 } 379 380 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 381 LabelsAfterInsn.find(CurMI); 382 CurMI = nullptr; 383 384 // No label needed. 385 if (I == LabelsAfterInsn.end()) 386 return; 387 388 // Label already assigned. 389 if (I->second) 390 return; 391 392 // We need a label after this instruction. 393 if (!PrevLabel) { 394 PrevLabel = MMI->getContext().createTempSymbol(); 395 Asm->OutStreamer->emitLabel(PrevLabel); 396 } 397 I->second = PrevLabel; 398 } 399 400 void DebugHandlerBase::endFunction(const MachineFunction *MF) { 401 if (Asm && hasDebugInfo(MMI, MF)) 402 endFunctionImpl(MF); 403 DbgValues.clear(); 404 DbgLabels.clear(); 405 LabelsBeforeInsn.clear(); 406 LabelsAfterInsn.clear(); 407 InstOrdering.clear(); 408 } 409 410 void DebugHandlerBase::beginBasicBlock(const MachineBasicBlock &MBB) { 411 if (!MBB.isBeginSection()) 412 return; 413 414 PrevLabel = MBB.getSymbol(); 415 } 416 417 void DebugHandlerBase::endBasicBlock(const MachineBasicBlock &MBB) { 418 if (!MBB.isEndSection()) 419 return; 420 421 PrevLabel = nullptr; 422 } 423