1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Common functionality for different debug information format backends. 11 // LLVM currently supports DWARF and CodeView. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "DebugHandlerBase.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Target/TargetSubtargetInfo.h" 25 26 using namespace llvm; 27 28 Optional<DbgVariableLocation> 29 DbgVariableLocation::extractFromMachineInstruction( 30 const MachineInstr &Instruction) { 31 DbgVariableLocation Location; 32 if (!Instruction.isDebugValue()) 33 return None; 34 if (!Instruction.getOperand(0).isReg()) 35 return None; 36 Location.Register = Instruction.getOperand(0).getReg(); 37 Location.InMemory = Instruction.getOperand(1).isImm(); 38 Location.Deref = false; 39 Location.FragmentInfo.reset(); 40 // We only handle expressions generated by DIExpression::appendOffset, 41 // which doesn't require a full stack machine. 42 int64_t Offset = 0; 43 const DIExpression *DIExpr = Instruction.getDebugExpression(); 44 auto Op = DIExpr->expr_op_begin(); 45 while (Op != DIExpr->expr_op_end()) { 46 switch (Op->getOp()) { 47 case dwarf::DW_OP_constu: { 48 int Value = Op->getArg(0); 49 ++Op; 50 if (Op != DIExpr->expr_op_end()) { 51 switch (Op->getOp()) { 52 case dwarf::DW_OP_minus: 53 Offset -= Value; 54 break; 55 case dwarf::DW_OP_plus: 56 Offset += Value; 57 break; 58 default: 59 continue; 60 } 61 } 62 } break; 63 case dwarf::DW_OP_plus_uconst: 64 Offset += Op->getArg(0); 65 break; 66 case dwarf::DW_OP_LLVM_fragment: 67 Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)}; 68 break; 69 case dwarf::DW_OP_deref: 70 Location.Deref = true; 71 break; 72 default: 73 return None; 74 } 75 ++Op; 76 } 77 78 Location.Offset = Offset; 79 return Location; 80 } 81 82 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 83 84 // Each LexicalScope has first instruction and last instruction to mark 85 // beginning and end of a scope respectively. Create an inverse map that list 86 // scopes starts (and ends) with an instruction. One instruction may start (or 87 // end) multiple scopes. Ignore scopes that are not reachable. 88 void DebugHandlerBase::identifyScopeMarkers() { 89 SmallVector<LexicalScope *, 4> WorkList; 90 WorkList.push_back(LScopes.getCurrentFunctionScope()); 91 while (!WorkList.empty()) { 92 LexicalScope *S = WorkList.pop_back_val(); 93 94 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 95 if (!Children.empty()) 96 WorkList.append(Children.begin(), Children.end()); 97 98 if (S->isAbstractScope()) 99 continue; 100 101 for (const InsnRange &R : S->getRanges()) { 102 assert(R.first && "InsnRange does not have first instruction!"); 103 assert(R.second && "InsnRange does not have second instruction!"); 104 requestLabelBeforeInsn(R.first); 105 requestLabelAfterInsn(R.second); 106 } 107 } 108 } 109 110 // Return Label preceding the instruction. 111 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) { 112 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 113 assert(Label && "Didn't insert label before instruction"); 114 return Label; 115 } 116 117 // Return Label immediately following the instruction. 118 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) { 119 return LabelsAfterInsn.lookup(MI); 120 } 121 122 int DebugHandlerBase::fragmentCmp(const DIExpression *P1, 123 const DIExpression *P2) { 124 auto Fragment1 = *P1->getFragmentInfo(); 125 auto Fragment2 = *P2->getFragmentInfo(); 126 unsigned l1 = Fragment1.OffsetInBits; 127 unsigned l2 = Fragment2.OffsetInBits; 128 unsigned r1 = l1 + Fragment1.SizeInBits; 129 unsigned r2 = l2 + Fragment2.SizeInBits; 130 if (r1 <= l2) 131 return -1; 132 else if (r2 <= l1) 133 return 1; 134 else 135 return 0; 136 } 137 138 bool DebugHandlerBase::fragmentsOverlap(const DIExpression *P1, 139 const DIExpression *P2) { 140 if (!P1->isFragment() || !P2->isFragment()) 141 return true; 142 return fragmentCmp(P1, P2) == 0; 143 } 144 145 /// If this type is derived from a base type then return base type size. 146 uint64_t DebugHandlerBase::getBaseTypeSize(const DITypeRef TyRef) { 147 DIType *Ty = TyRef.resolve(); 148 assert(Ty); 149 DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty); 150 if (!DDTy) 151 return Ty->getSizeInBits(); 152 153 unsigned Tag = DDTy->getTag(); 154 155 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef && 156 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && 157 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type) 158 return DDTy->getSizeInBits(); 159 160 DIType *BaseType = DDTy->getBaseType().resolve(); 161 162 assert(BaseType && "Unexpected invalid base type"); 163 164 // If this is a derived type, go ahead and get the base type, unless it's a 165 // reference then it's just the size of the field. Pointer types have no need 166 // of this since they're a different type of qualification on the type. 167 if (BaseType->getTag() == dwarf::DW_TAG_reference_type || 168 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type) 169 return Ty->getSizeInBits(); 170 171 return getBaseTypeSize(BaseType); 172 } 173 174 static bool hasDebugInfo(const MachineModuleInfo *MMI, 175 const MachineFunction *MF) { 176 if (!MMI->hasDebugInfo()) 177 return false; 178 auto *SP = MF->getFunction()->getSubprogram(); 179 if (!SP) 180 return false; 181 assert(SP->getUnit()); 182 auto EK = SP->getUnit()->getEmissionKind(); 183 if (EK == DICompileUnit::NoDebug) 184 return false; 185 return true; 186 } 187 188 void DebugHandlerBase::beginFunction(const MachineFunction *MF) { 189 PrevInstBB = nullptr; 190 191 if (!Asm || !hasDebugInfo(MMI, MF)) { 192 skippedNonDebugFunction(); 193 return; 194 } 195 196 // Grab the lexical scopes for the function, if we don't have any of those 197 // then we're not going to be able to do anything. 198 LScopes.initialize(*MF); 199 if (LScopes.empty()) { 200 beginFunctionImpl(MF); 201 return; 202 } 203 204 // Make sure that each lexical scope will have a begin/end label. 205 identifyScopeMarkers(); 206 207 // Calculate history for local variables. 208 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); 209 calculateDbgValueHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), 210 DbgValues); 211 212 // Request labels for the full history. 213 for (const auto &I : DbgValues) { 214 const auto &Ranges = I.second; 215 if (Ranges.empty()) 216 continue; 217 218 // The first mention of a function argument gets the CurrentFnBegin 219 // label, so arguments are visible when breaking at function entry. 220 const DILocalVariable *DIVar = Ranges.front().first->getDebugVariable(); 221 if (DIVar->isParameter() && 222 getDISubprogram(DIVar->getScope())->describes(MF->getFunction())) { 223 LabelsBeforeInsn[Ranges.front().first] = Asm->getFunctionBegin(); 224 if (Ranges.front().first->getDebugExpression()->isFragment()) { 225 // Mark all non-overlapping initial fragments. 226 for (auto I = Ranges.begin(); I != Ranges.end(); ++I) { 227 const DIExpression *Fragment = I->first->getDebugExpression(); 228 if (std::all_of(Ranges.begin(), I, 229 [&](DbgValueHistoryMap::InstrRange Pred) { 230 return !fragmentsOverlap( 231 Fragment, Pred.first->getDebugExpression()); 232 })) 233 LabelsBeforeInsn[I->first] = Asm->getFunctionBegin(); 234 else 235 break; 236 } 237 } 238 } 239 240 for (const auto &Range : Ranges) { 241 requestLabelBeforeInsn(Range.first); 242 if (Range.second) 243 requestLabelAfterInsn(Range.second); 244 } 245 } 246 247 PrevInstLoc = DebugLoc(); 248 PrevLabel = Asm->getFunctionBegin(); 249 beginFunctionImpl(MF); 250 } 251 252 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) { 253 if (!MMI->hasDebugInfo()) 254 return; 255 256 assert(CurMI == nullptr); 257 CurMI = MI; 258 259 // Insert labels where requested. 260 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 261 LabelsBeforeInsn.find(MI); 262 263 // No label needed. 264 if (I == LabelsBeforeInsn.end()) 265 return; 266 267 // Label already assigned. 268 if (I->second) 269 return; 270 271 if (!PrevLabel) { 272 PrevLabel = MMI->getContext().createTempSymbol(); 273 Asm->OutStreamer->EmitLabel(PrevLabel); 274 } 275 I->second = PrevLabel; 276 } 277 278 void DebugHandlerBase::endInstruction() { 279 if (!MMI->hasDebugInfo()) 280 return; 281 282 assert(CurMI != nullptr); 283 // Don't create a new label after DBG_VALUE and other instructions that don't 284 // generate code. 285 if (!CurMI->isMetaInstruction()) { 286 PrevLabel = nullptr; 287 PrevInstBB = CurMI->getParent(); 288 } 289 290 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 291 LabelsAfterInsn.find(CurMI); 292 CurMI = nullptr; 293 294 // No label needed. 295 if (I == LabelsAfterInsn.end()) 296 return; 297 298 // Label already assigned. 299 if (I->second) 300 return; 301 302 // We need a label after this instruction. 303 if (!PrevLabel) { 304 PrevLabel = MMI->getContext().createTempSymbol(); 305 Asm->OutStreamer->EmitLabel(PrevLabel); 306 } 307 I->second = PrevLabel; 308 } 309 310 void DebugHandlerBase::endFunction(const MachineFunction *MF) { 311 if (hasDebugInfo(MMI, MF)) 312 endFunctionImpl(MF); 313 DbgValues.clear(); 314 LabelsBeforeInsn.clear(); 315 LabelsAfterInsn.clear(); 316 } 317