1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for DWARF4 hashing of DIEs.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DIEHash.h"
14 #include "ByteStreamer.h"
15 #include "DwarfDebug.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/CodeGen/AsmPrinter.h"
20 #include "llvm/CodeGen/DIE.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MD5.h"
24 #include "llvm/Support/raw_ostream.h"
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "dwarfdebug"
29 
30 /// Grabs the string in whichever attribute is passed in and returns
31 /// a reference to it.
32 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
33   // Iterate through all the attributes until we find the one we're
34   // looking for, if we can't find it return an empty string.
35   for (const auto &V : Die.values())
36     if (V.getAttribute() == Attr)
37       return V.getDIEString().getString();
38 
39   return StringRef("");
40 }
41 
42 /// Adds the string in \p Str to the hash. This also hashes
43 /// a trailing NULL with the string.
44 void DIEHash::addString(StringRef Str) {
45   LLVM_DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
46   Hash.update(Str);
47   Hash.update(makeArrayRef((uint8_t)'\0'));
48 }
49 
50 // FIXME: The LEB128 routines are copied and only slightly modified out of
51 // LEB128.h.
52 
53 /// Adds the unsigned in \p Value to the hash encoded as a ULEB128.
54 void DIEHash::addULEB128(uint64_t Value) {
55   LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
56   do {
57     uint8_t Byte = Value & 0x7f;
58     Value >>= 7;
59     if (Value != 0)
60       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
61     Hash.update(Byte);
62   } while (Value != 0);
63 }
64 
65 void DIEHash::addSLEB128(int64_t Value) {
66   LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
67   bool More;
68   do {
69     uint8_t Byte = Value & 0x7f;
70     Value >>= 7;
71     More = !((((Value == 0) && ((Byte & 0x40) == 0)) ||
72               ((Value == -1) && ((Byte & 0x40) != 0))));
73     if (More)
74       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
75     Hash.update(Byte);
76   } while (More);
77 }
78 
79 /// Including \p Parent adds the context of Parent to the hash..
80 void DIEHash::addParentContext(const DIE &Parent) {
81 
82   LLVM_DEBUG(dbgs() << "Adding parent context to hash...\n");
83 
84   // [7.27.2] For each surrounding type or namespace beginning with the
85   // outermost such construct...
86   SmallVector<const DIE *, 1> Parents;
87   const DIE *Cur = &Parent;
88   while (Cur->getParent()) {
89     Parents.push_back(Cur);
90     Cur = Cur->getParent();
91   }
92   assert(Cur->getTag() == dwarf::DW_TAG_compile_unit ||
93          Cur->getTag() == dwarf::DW_TAG_type_unit);
94 
95   // Reverse iterate over our list to go from the outermost construct to the
96   // innermost.
97   for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(),
98                                                       E = Parents.rend();
99        I != E; ++I) {
100     const DIE &Die = **I;
101 
102     // ... Append the letter "C" to the sequence...
103     addULEB128('C');
104 
105     // ... Followed by the DWARF tag of the construct...
106     addULEB128(Die.getTag());
107 
108     // ... Then the name, taken from the DW_AT_name attribute.
109     StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
110     LLVM_DEBUG(dbgs() << "... adding context: " << Name << "\n");
111     if (!Name.empty())
112       addString(Name);
113   }
114 }
115 
116 // Collect all of the attributes for a particular DIE in single structure.
117 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
118 
119   for (const auto &V : Die.values()) {
120     LLVM_DEBUG(dbgs() << "Attribute: "
121                       << dwarf::AttributeString(V.getAttribute())
122                       << " added.\n");
123     switch (V.getAttribute()) {
124 #define HANDLE_DIE_HASH_ATTR(NAME)                                             \
125   case dwarf::NAME:                                                            \
126     Attrs.NAME = V;                                                            \
127     break;
128 #include "DIEHashAttributes.def"
129     default:
130       break;
131     }
132   }
133 }
134 
135 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
136                                        const DIE &Entry, StringRef Name) {
137   // append the letter 'N'
138   addULEB128('N');
139 
140   // the DWARF attribute code (DW_AT_type or DW_AT_friend),
141   addULEB128(Attribute);
142 
143   // the context of the tag,
144   if (const DIE *Parent = Entry.getParent())
145     addParentContext(*Parent);
146 
147   // the letter 'E',
148   addULEB128('E');
149 
150   // and the name of the type.
151   addString(Name);
152 
153   // Currently DW_TAG_friends are not used by Clang, but if they do become so,
154   // here's the relevant spec text to implement:
155   //
156   // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
157   // the context is omitted and the name to be used is the ABI-specific name
158   // of the subprogram (e.g., the mangled linker name).
159 }
160 
161 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
162                                         unsigned DieNumber) {
163   // a) If T is in the list of [previously hashed types], use the letter
164   // 'R' as the marker
165   addULEB128('R');
166 
167   addULEB128(Attribute);
168 
169   // and use the unsigned LEB128 encoding of [the index of T in the
170   // list] as the attribute value;
171   addULEB128(DieNumber);
172 }
173 
174 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
175                            const DIE &Entry) {
176   assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
177                                         "tags. Add support here when there's "
178                                         "a use case");
179   // Step 5
180   // If the tag in Step 3 is one of [the below tags]
181   if ((Tag == dwarf::DW_TAG_pointer_type ||
182        Tag == dwarf::DW_TAG_reference_type ||
183        Tag == dwarf::DW_TAG_rvalue_reference_type ||
184        Tag == dwarf::DW_TAG_ptr_to_member_type) &&
185       // and the referenced type (via the [below attributes])
186       // FIXME: This seems overly restrictive, and causes hash mismatches
187       // there's a decl/def difference in the containing type of a
188       // ptr_to_member_type, but it's what DWARF says, for some reason.
189       Attribute == dwarf::DW_AT_type) {
190     // ... has a DW_AT_name attribute,
191     StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
192     if (!Name.empty()) {
193       hashShallowTypeReference(Attribute, Entry, Name);
194       return;
195     }
196   }
197 
198   unsigned &DieNumber = Numbering[&Entry];
199   if (DieNumber) {
200     hashRepeatedTypeReference(Attribute, DieNumber);
201     return;
202   }
203 
204   // otherwise, b) use the letter 'T' as the marker, ...
205   addULEB128('T');
206 
207   addULEB128(Attribute);
208 
209   // ... process the type T recursively by performing Steps 2 through 7, and
210   // use the result as the attribute value.
211   DieNumber = Numbering.size();
212   computeHash(Entry);
213 }
214 
215 // Hash all of the values in a block like set of values. This assumes that
216 // all of the data is going to be added as integers.
217 void DIEHash::hashBlockData(const DIE::const_value_range &Values) {
218   for (const auto &V : Values)
219     Hash.update((uint64_t)V.getDIEInteger().getValue());
220 }
221 
222 // Hash the contents of a loclistptr class.
223 void DIEHash::hashLocList(const DIELocList &LocList) {
224   HashingByteStreamer Streamer(*this);
225   DwarfDebug &DD = *AP->getDwarfDebug();
226   const DebugLocStream &Locs = DD.getDebugLocs();
227   const DebugLocStream::List &List = Locs.getList(LocList.getValue());
228   for (const DebugLocStream::Entry &Entry : Locs.getEntries(List))
229     DD.emitDebugLocEntry(Streamer, Entry, List.CU);
230 }
231 
232 // Hash an individual attribute \param Attr based on the type of attribute and
233 // the form.
234 void DIEHash::hashAttribute(const DIEValue &Value, dwarf::Tag Tag) {
235   dwarf::Attribute Attribute = Value.getAttribute();
236 
237   // Other attribute values use the letter 'A' as the marker, and the value
238   // consists of the form code (encoded as an unsigned LEB128 value) followed by
239   // the encoding of the value according to the form code. To ensure
240   // reproducibility of the signature, the set of forms used in the signature
241   // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag,
242   // DW_FORM_string, and DW_FORM_block.
243 
244   switch (Value.getType()) {
245   case DIEValue::isNone:
246     llvm_unreachable("Expected valid DIEValue");
247 
248     // 7.27 Step 3
249     // ... An attribute that refers to another type entry T is processed as
250     // follows:
251   case DIEValue::isEntry:
252     hashDIEEntry(Attribute, Tag, Value.getDIEEntry().getEntry());
253     break;
254   case DIEValue::isInteger: {
255     addULEB128('A');
256     addULEB128(Attribute);
257     switch (Value.getForm()) {
258     case dwarf::DW_FORM_data1:
259     case dwarf::DW_FORM_data2:
260     case dwarf::DW_FORM_data4:
261     case dwarf::DW_FORM_data8:
262     case dwarf::DW_FORM_udata:
263     case dwarf::DW_FORM_sdata:
264       addULEB128(dwarf::DW_FORM_sdata);
265       addSLEB128((int64_t)Value.getDIEInteger().getValue());
266       break;
267     // DW_FORM_flag_present is just flag with a value of one. We still give it a
268     // value so just use the value.
269     case dwarf::DW_FORM_flag_present:
270     case dwarf::DW_FORM_flag:
271       addULEB128(dwarf::DW_FORM_flag);
272       addULEB128((int64_t)Value.getDIEInteger().getValue());
273       break;
274     default:
275       llvm_unreachable("Unknown integer form!");
276     }
277     break;
278   }
279   case DIEValue::isString:
280     addULEB128('A');
281     addULEB128(Attribute);
282     addULEB128(dwarf::DW_FORM_string);
283     addString(Value.getDIEString().getString());
284     break;
285   case DIEValue::isInlineString:
286     addULEB128('A');
287     addULEB128(Attribute);
288     addULEB128(dwarf::DW_FORM_string);
289     addString(Value.getDIEInlineString().getString());
290     break;
291   case DIEValue::isBlock:
292   case DIEValue::isLoc:
293   case DIEValue::isLocList:
294     addULEB128('A');
295     addULEB128(Attribute);
296     addULEB128(dwarf::DW_FORM_block);
297     if (Value.getType() == DIEValue::isBlock) {
298       addULEB128(Value.getDIEBlock().ComputeSize(AP));
299       hashBlockData(Value.getDIEBlock().values());
300     } else if (Value.getType() == DIEValue::isLoc) {
301       addULEB128(Value.getDIELoc().ComputeSize(AP));
302       hashBlockData(Value.getDIELoc().values());
303     } else {
304       // We could add the block length, but that would take
305       // a bit of work and not add a lot of uniqueness
306       // to the hash in some way we could test.
307       hashLocList(Value.getDIELocList());
308     }
309     break;
310     // FIXME: It's uncertain whether or not we should handle this at the moment.
311   case DIEValue::isExpr:
312   case DIEValue::isLabel:
313   case DIEValue::isBaseTypeRef:
314   case DIEValue::isDelta:
315     llvm_unreachable("Add support for additional value types.");
316   }
317 }
318 
319 // Go through the attributes from \param Attrs in the order specified in 7.27.4
320 // and hash them.
321 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
322 #define HANDLE_DIE_HASH_ATTR(NAME)                                             \
323   {                                                                            \
324     if (Attrs.NAME)                                                           \
325       hashAttribute(Attrs.NAME, Tag);                                         \
326   }
327 #include "DIEHashAttributes.def"
328   // FIXME: Add the extended attributes.
329 }
330 
331 // Add all of the attributes for \param Die to the hash.
332 void DIEHash::addAttributes(const DIE &Die) {
333   DIEAttrs Attrs = {};
334   collectAttributes(Die, Attrs);
335   hashAttributes(Attrs, Die.getTag());
336 }
337 
338 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
339   // 7.27 Step 7
340   // ... append the letter 'S',
341   addULEB128('S');
342 
343   // the tag of C,
344   addULEB128(Die.getTag());
345 
346   // and the name.
347   addString(Name);
348 }
349 
350 // Compute the hash of a DIE. This is based on the type signature computation
351 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
352 // flattened description of the DIE.
353 void DIEHash::computeHash(const DIE &Die) {
354   // Append the letter 'D', followed by the DWARF tag of the DIE.
355   addULEB128('D');
356   addULEB128(Die.getTag());
357 
358   // Add each of the attributes of the DIE.
359   addAttributes(Die);
360 
361   // Then hash each of the children of the DIE.
362   for (auto &C : Die.children()) {
363     // 7.27 Step 7
364     // If C is a nested type entry or a member function entry, ...
365     if (isType(C.getTag()) || (C.getTag() == dwarf::DW_TAG_subprogram && isType(C.getParent()->getTag()))) {
366       StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name);
367       // ... and has a DW_AT_name attribute
368       if (!Name.empty()) {
369         hashNestedType(C, Name);
370         continue;
371       }
372     }
373     computeHash(C);
374   }
375 
376   // Following the last (or if there are no children), append a zero byte.
377   Hash.update(makeArrayRef((uint8_t)'\0'));
378 }
379 
380 /// This is based on the type signature computation given in section 7.27 of the
381 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
382 /// with the inclusion of the full CU and all top level CU entities.
383 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
384 uint64_t DIEHash::computeCUSignature(StringRef DWOName, const DIE &Die) {
385   Numbering.clear();
386   Numbering[&Die] = 1;
387 
388   if (!DWOName.empty())
389     Hash.update(DWOName);
390   // Hash the DIE.
391   computeHash(Die);
392 
393   // Now return the result.
394   MD5::MD5Result Result;
395   Hash.final(Result);
396 
397   // ... take the least significant 8 bytes and return those. Our MD5
398   // implementation always returns its results in little endian, so we actually
399   // need the "high" word.
400   return Result.high();
401 }
402 
403 /// This is based on the type signature computation given in section 7.27 of the
404 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
405 /// with the inclusion of additional forms not specifically called out in the
406 /// standard.
407 uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
408   Numbering.clear();
409   Numbering[&Die] = 1;
410 
411   if (const DIE *Parent = Die.getParent())
412     addParentContext(*Parent);
413 
414   // Hash the DIE.
415   computeHash(Die);
416 
417   // Now return the result.
418   MD5::MD5Result Result;
419   Hash.final(Result);
420 
421   // ... take the least significant 8 bytes and return those. Our MD5
422   // implementation always returns its results in little endian, so we actually
423   // need the "high" word.
424   return Result.high();
425 }
426