1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for DWARF4 hashing of DIEs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "dwarfdebug" 15 16 #include "DIEHash.h" 17 18 #include "DIE.h" 19 #include "DwarfCompileUnit.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/Dwarf.h" 24 #include "llvm/Support/Endian.h" 25 #include "llvm/Support/MD5.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 using namespace llvm; 29 30 /// \brief Grabs the string in whichever attribute is passed in and returns 31 /// a reference to it. 32 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) { 33 const SmallVectorImpl<DIEValue *> &Values = Die.getValues(); 34 const DIEAbbrev &Abbrevs = Die.getAbbrev(); 35 36 // Iterate through all the attributes until we find the one we're 37 // looking for, if we can't find it return an empty string. 38 for (size_t i = 0; i < Values.size(); ++i) { 39 if (Abbrevs.getData()[i].getAttribute() == Attr) { 40 DIEValue *V = Values[i]; 41 assert(isa<DIEString>(V) && "String requested. Not a string."); 42 DIEString *S = cast<DIEString>(V); 43 return S->getString(); 44 } 45 } 46 return StringRef(""); 47 } 48 49 /// \brief Adds the string in \p Str to the hash. This also hashes 50 /// a trailing NULL with the string. 51 void DIEHash::addString(StringRef Str) { 52 DEBUG(dbgs() << "Adding string " << Str << " to hash.\n"); 53 Hash.update(Str); 54 Hash.update(makeArrayRef((uint8_t)'\0')); 55 } 56 57 // FIXME: The LEB128 routines are copied and only slightly modified out of 58 // LEB128.h. 59 60 /// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128. 61 void DIEHash::addULEB128(uint64_t Value) { 62 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); 63 do { 64 uint8_t Byte = Value & 0x7f; 65 Value >>= 7; 66 if (Value != 0) 67 Byte |= 0x80; // Mark this byte to show that more bytes will follow. 68 Hash.update(Byte); 69 } while (Value != 0); 70 } 71 72 void DIEHash::addSLEB128(int64_t Value) { 73 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); 74 bool More; 75 do { 76 uint8_t Byte = Value & 0x7f; 77 Value >>= 7; 78 More = !((((Value == 0 ) && ((Byte & 0x40) == 0)) || 79 ((Value == -1) && ((Byte & 0x40) != 0)))); 80 if (More) 81 Byte |= 0x80; // Mark this byte to show that more bytes will follow. 82 Hash.update(Byte); 83 } while (More); 84 } 85 86 /// \brief Including \p Parent adds the context of Parent to the hash.. 87 void DIEHash::addParentContext(const DIE &Parent) { 88 89 DEBUG(dbgs() << "Adding parent context to hash...\n"); 90 91 // [7.27.2] For each surrounding type or namespace beginning with the 92 // outermost such construct... 93 SmallVector<const DIE *, 1> Parents; 94 const DIE *Cur = &Parent; 95 while (Cur->getParent()) { 96 Parents.push_back(Cur); 97 Cur = Cur->getParent(); 98 } 99 assert(Cur->getTag() == dwarf::DW_TAG_compile_unit || 100 Cur->getTag() == dwarf::DW_TAG_type_unit); 101 102 // Reverse iterate over our list to go from the outermost construct to the 103 // innermost. 104 for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(), 105 E = Parents.rend(); 106 I != E; ++I) { 107 const DIE &Die = **I; 108 109 // ... Append the letter "C" to the sequence... 110 addULEB128('C'); 111 112 // ... Followed by the DWARF tag of the construct... 113 addULEB128(Die.getTag()); 114 115 // ... Then the name, taken from the DW_AT_name attribute. 116 StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name); 117 DEBUG(dbgs() << "... adding context: " << Name << "\n"); 118 if (!Name.empty()) 119 addString(Name); 120 } 121 } 122 123 // Collect all of the attributes for a particular DIE in single structure. 124 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) { 125 const SmallVectorImpl<DIEValue *> &Values = Die.getValues(); 126 const DIEAbbrev &Abbrevs = Die.getAbbrev(); 127 128 #define COLLECT_ATTR(NAME) \ 129 case dwarf::NAME: \ 130 Attrs.NAME.Val = Values[i]; \ 131 Attrs.NAME.Desc = &Abbrevs.getData()[i]; \ 132 break 133 134 for (size_t i = 0, e = Values.size(); i != e; ++i) { 135 DEBUG(dbgs() << "Attribute: " 136 << dwarf::AttributeString(Abbrevs.getData()[i].getAttribute()) 137 << " added.\n"); 138 switch (Abbrevs.getData()[i].getAttribute()) { 139 COLLECT_ATTR(DW_AT_name); 140 COLLECT_ATTR(DW_AT_accessibility); 141 COLLECT_ATTR(DW_AT_address_class); 142 COLLECT_ATTR(DW_AT_allocated); 143 COLLECT_ATTR(DW_AT_artificial); 144 COLLECT_ATTR(DW_AT_associated); 145 COLLECT_ATTR(DW_AT_binary_scale); 146 COLLECT_ATTR(DW_AT_bit_offset); 147 COLLECT_ATTR(DW_AT_bit_size); 148 COLLECT_ATTR(DW_AT_bit_stride); 149 COLLECT_ATTR(DW_AT_byte_size); 150 COLLECT_ATTR(DW_AT_byte_stride); 151 COLLECT_ATTR(DW_AT_const_expr); 152 COLLECT_ATTR(DW_AT_const_value); 153 COLLECT_ATTR(DW_AT_containing_type); 154 COLLECT_ATTR(DW_AT_count); 155 COLLECT_ATTR(DW_AT_data_bit_offset); 156 COLLECT_ATTR(DW_AT_data_location); 157 COLLECT_ATTR(DW_AT_data_member_location); 158 COLLECT_ATTR(DW_AT_decimal_scale); 159 COLLECT_ATTR(DW_AT_decimal_sign); 160 COLLECT_ATTR(DW_AT_default_value); 161 COLLECT_ATTR(DW_AT_digit_count); 162 COLLECT_ATTR(DW_AT_discr); 163 COLLECT_ATTR(DW_AT_discr_list); 164 COLLECT_ATTR(DW_AT_discr_value); 165 COLLECT_ATTR(DW_AT_encoding); 166 COLLECT_ATTR(DW_AT_enum_class); 167 COLLECT_ATTR(DW_AT_endianity); 168 COLLECT_ATTR(DW_AT_explicit); 169 COLLECT_ATTR(DW_AT_is_optional); 170 COLLECT_ATTR(DW_AT_location); 171 COLLECT_ATTR(DW_AT_lower_bound); 172 COLLECT_ATTR(DW_AT_mutable); 173 COLLECT_ATTR(DW_AT_ordering); 174 COLLECT_ATTR(DW_AT_picture_string); 175 COLLECT_ATTR(DW_AT_prototyped); 176 COLLECT_ATTR(DW_AT_small); 177 COLLECT_ATTR(DW_AT_segment); 178 COLLECT_ATTR(DW_AT_string_length); 179 COLLECT_ATTR(DW_AT_threads_scaled); 180 COLLECT_ATTR(DW_AT_upper_bound); 181 COLLECT_ATTR(DW_AT_use_location); 182 COLLECT_ATTR(DW_AT_use_UTF8); 183 COLLECT_ATTR(DW_AT_variable_parameter); 184 COLLECT_ATTR(DW_AT_virtuality); 185 COLLECT_ATTR(DW_AT_visibility); 186 COLLECT_ATTR(DW_AT_vtable_elem_location); 187 COLLECT_ATTR(DW_AT_type); 188 default: 189 break; 190 } 191 } 192 } 193 194 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute, 195 const DIE &Entry, StringRef Name) { 196 // append the letter 'N' 197 addULEB128('N'); 198 199 // the DWARF attribute code (DW_AT_type or DW_AT_friend), 200 addULEB128(Attribute); 201 202 // the context of the tag, 203 if (const DIE *Parent = Entry.getParent()) 204 addParentContext(*Parent); 205 206 // the letter 'E', 207 addULEB128('E'); 208 209 // and the name of the type. 210 addString(Name); 211 212 // Currently DW_TAG_friends are not used by Clang, but if they do become so, 213 // here's the relevant spec text to implement: 214 // 215 // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram, 216 // the context is omitted and the name to be used is the ABI-specific name 217 // of the subprogram (e.g., the mangled linker name). 218 } 219 220 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute, 221 unsigned DieNumber) { 222 // a) If T is in the list of [previously hashed types], use the letter 223 // 'R' as the marker 224 addULEB128('R'); 225 226 addULEB128(Attribute); 227 228 // and use the unsigned LEB128 encoding of [the index of T in the 229 // list] as the attribute value; 230 addULEB128(DieNumber); 231 } 232 233 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag, 234 const DIE &Entry) { 235 assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend " 236 "tags. Add support here when there's " 237 "a use case"); 238 // Step 5 239 // If the tag in Step 3 is one of [the below tags] 240 if ((Tag == dwarf::DW_TAG_pointer_type || 241 Tag == dwarf::DW_TAG_reference_type || 242 Tag == dwarf::DW_TAG_rvalue_reference_type || 243 Tag == dwarf::DW_TAG_ptr_to_member_type) && 244 // and the referenced type (via the [below attributes]) 245 // FIXME: This seems overly restrictive, and causes hash mismatches 246 // there's a decl/def difference in the containing type of a 247 // ptr_to_member_type, but it's what DWARF says, for some reason. 248 Attribute == dwarf::DW_AT_type) { 249 // ... has a DW_AT_name attribute, 250 StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name); 251 if (!Name.empty()) { 252 hashShallowTypeReference(Attribute, Entry, Name); 253 return; 254 } 255 } 256 257 unsigned &DieNumber = Numbering[&Entry]; 258 if (DieNumber) { 259 hashRepeatedTypeReference(Attribute, DieNumber); 260 return; 261 } 262 263 // otherwise, b) use the letter 'T' as a the marker, ... 264 addULEB128('T'); 265 266 addULEB128(Attribute); 267 268 // ... process the type T recursively by performing Steps 2 through 7, and 269 // use the result as the attribute value. 270 DieNumber = Numbering.size(); 271 computeHash(Entry); 272 } 273 274 // Hash an individual attribute \param Attr based on the type of attribute and 275 // the form. 276 void DIEHash::hashAttribute(AttrEntry Attr, dwarf::Tag Tag) { 277 const DIEValue *Value = Attr.Val; 278 const DIEAbbrevData *Desc = Attr.Desc; 279 dwarf::Attribute Attribute = Desc->getAttribute(); 280 281 // 7.27 Step 3 282 // ... An attribute that refers to another type entry T is processed as 283 // follows: 284 if (const DIEEntry *EntryAttr = dyn_cast<DIEEntry>(Value)) { 285 hashDIEEntry(Attribute, Tag, *EntryAttr->getEntry()); 286 return; 287 } 288 289 // Other attribute values use the letter 'A' as the marker, ... 290 addULEB128('A'); 291 292 addULEB128(Attribute); 293 294 // ... and the value consists of the form code (encoded as an unsigned LEB128 295 // value) followed by the encoding of the value according to the form code. To 296 // ensure reproducibility of the signature, the set of forms used in the 297 // signature computation is limited to the following: DW_FORM_sdata, 298 // DW_FORM_flag, DW_FORM_string, and DW_FORM_block. 299 switch (Desc->getForm()) { 300 case dwarf::DW_FORM_string: 301 llvm_unreachable( 302 "Add support for DW_FORM_string if we ever start emitting them again"); 303 case dwarf::DW_FORM_GNU_str_index: 304 case dwarf::DW_FORM_strp: 305 addULEB128(dwarf::DW_FORM_string); 306 addString(cast<DIEString>(Value)->getString()); 307 break; 308 case dwarf::DW_FORM_data1: 309 case dwarf::DW_FORM_data2: 310 case dwarf::DW_FORM_data4: 311 case dwarf::DW_FORM_data8: 312 case dwarf::DW_FORM_udata: 313 addULEB128(dwarf::DW_FORM_sdata); 314 addSLEB128((int64_t)cast<DIEInteger>(Value)->getValue()); 315 break; 316 default: 317 llvm_unreachable("Add support for additional forms"); 318 } 319 } 320 321 // Go through the attributes from \param Attrs in the order specified in 7.27.4 322 // and hash them. 323 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) { 324 #define ADD_ATTR(ATTR) \ 325 { \ 326 if (ATTR.Val != 0) \ 327 hashAttribute(ATTR, Tag); \ 328 } 329 330 ADD_ATTR(Attrs.DW_AT_name); 331 ADD_ATTR(Attrs.DW_AT_accessibility); 332 ADD_ATTR(Attrs.DW_AT_address_class); 333 ADD_ATTR(Attrs.DW_AT_allocated); 334 ADD_ATTR(Attrs.DW_AT_artificial); 335 ADD_ATTR(Attrs.DW_AT_associated); 336 ADD_ATTR(Attrs.DW_AT_binary_scale); 337 ADD_ATTR(Attrs.DW_AT_bit_offset); 338 ADD_ATTR(Attrs.DW_AT_bit_size); 339 ADD_ATTR(Attrs.DW_AT_bit_stride); 340 ADD_ATTR(Attrs.DW_AT_byte_size); 341 ADD_ATTR(Attrs.DW_AT_byte_stride); 342 ADD_ATTR(Attrs.DW_AT_const_expr); 343 ADD_ATTR(Attrs.DW_AT_const_value); 344 ADD_ATTR(Attrs.DW_AT_containing_type); 345 ADD_ATTR(Attrs.DW_AT_count); 346 ADD_ATTR(Attrs.DW_AT_data_bit_offset); 347 ADD_ATTR(Attrs.DW_AT_data_location); 348 ADD_ATTR(Attrs.DW_AT_data_member_location); 349 ADD_ATTR(Attrs.DW_AT_decimal_scale); 350 ADD_ATTR(Attrs.DW_AT_decimal_sign); 351 ADD_ATTR(Attrs.DW_AT_default_value); 352 ADD_ATTR(Attrs.DW_AT_digit_count); 353 ADD_ATTR(Attrs.DW_AT_discr); 354 ADD_ATTR(Attrs.DW_AT_discr_list); 355 ADD_ATTR(Attrs.DW_AT_discr_value); 356 ADD_ATTR(Attrs.DW_AT_encoding); 357 ADD_ATTR(Attrs.DW_AT_enum_class); 358 ADD_ATTR(Attrs.DW_AT_endianity); 359 ADD_ATTR(Attrs.DW_AT_explicit); 360 ADD_ATTR(Attrs.DW_AT_is_optional); 361 ADD_ATTR(Attrs.DW_AT_location); 362 ADD_ATTR(Attrs.DW_AT_lower_bound); 363 ADD_ATTR(Attrs.DW_AT_mutable); 364 ADD_ATTR(Attrs.DW_AT_ordering); 365 ADD_ATTR(Attrs.DW_AT_picture_string); 366 ADD_ATTR(Attrs.DW_AT_prototyped); 367 ADD_ATTR(Attrs.DW_AT_small); 368 ADD_ATTR(Attrs.DW_AT_segment); 369 ADD_ATTR(Attrs.DW_AT_string_length); 370 ADD_ATTR(Attrs.DW_AT_threads_scaled); 371 ADD_ATTR(Attrs.DW_AT_upper_bound); 372 ADD_ATTR(Attrs.DW_AT_use_location); 373 ADD_ATTR(Attrs.DW_AT_use_UTF8); 374 ADD_ATTR(Attrs.DW_AT_variable_parameter); 375 ADD_ATTR(Attrs.DW_AT_virtuality); 376 ADD_ATTR(Attrs.DW_AT_visibility); 377 ADD_ATTR(Attrs.DW_AT_vtable_elem_location); 378 ADD_ATTR(Attrs.DW_AT_type); 379 380 // FIXME: Add the extended attributes. 381 } 382 383 // Add all of the attributes for \param Die to the hash. 384 void DIEHash::addAttributes(const DIE &Die) { 385 DIEAttrs Attrs = {}; 386 collectAttributes(Die, Attrs); 387 hashAttributes(Attrs, Die.getTag()); 388 } 389 390 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) { 391 // 7.27 Step 7 392 // ... append the letter 'S', 393 addULEB128('S'); 394 395 // the tag of C, 396 addULEB128(Die.getTag()); 397 398 // and the name. 399 addString(Name); 400 } 401 402 // Compute the hash of a DIE. This is based on the type signature computation 403 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a 404 // flattened description of the DIE. 405 void DIEHash::computeHash(const DIE &Die) { 406 // Append the letter 'D', followed by the DWARF tag of the DIE. 407 addULEB128('D'); 408 addULEB128(Die.getTag()); 409 410 // Add each of the attributes of the DIE. 411 addAttributes(Die); 412 413 // Then hash each of the children of the DIE. 414 for (std::vector<DIE *>::const_iterator I = Die.getChildren().begin(), 415 E = Die.getChildren().end(); 416 I != E; ++I) { 417 // 7.27 Step 7 418 // If C is a nested type entry or a member function entry, ... 419 if (isType((*I)->getTag()) || (*I)->getTag() == dwarf::DW_TAG_subprogram) { 420 StringRef Name = getDIEStringAttr(**I, dwarf::DW_AT_name); 421 // ... and has a DW_AT_name attribute 422 if (!Name.empty()) { 423 hashNestedType(**I, Name); 424 continue; 425 } 426 } 427 computeHash(**I); 428 } 429 430 // Following the last (or if there are no children), append a zero byte. 431 Hash.update(makeArrayRef((uint8_t)'\0')); 432 } 433 434 /// This is based on the type signature computation given in section 7.27 of the 435 /// DWARF4 standard. It is the md5 hash of a flattened description of the DIE 436 /// with the exception that we are hashing only the context and the name of the 437 /// type. 438 uint64_t DIEHash::computeDIEODRSignature(const DIE &Die) { 439 440 // Add the contexts to the hash. We won't be computing the ODR hash for 441 // function local types so it's safe to use the generic context hashing 442 // algorithm here. 443 // FIXME: If we figure out how to account for linkage in some way we could 444 // actually do this with a slight modification to the parent hash algorithm. 445 if (const DIE *Parent = Die.getParent()) 446 addParentContext(*Parent); 447 448 // Add the current DIE information. 449 450 // Add the DWARF tag of the DIE. 451 addULEB128(Die.getTag()); 452 453 // Add the name of the type to the hash. 454 addString(getDIEStringAttr(Die, dwarf::DW_AT_name)); 455 456 // Now get the result. 457 MD5::MD5Result Result; 458 Hash.final(Result); 459 460 // ... take the least significant 8 bytes and return those. Our MD5 461 // implementation always returns its results in little endian, swap bytes 462 // appropriately. 463 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 464 } 465 466 /// This is based on the type signature computation given in section 7.27 of the 467 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE 468 /// with the inclusion of the full CU and all top level CU entities. 469 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures. 470 uint64_t DIEHash::computeCUSignature(const DIE &Die) { 471 Numbering.clear(); 472 Numbering[&Die] = 1; 473 474 // Hash the DIE. 475 computeHash(Die); 476 477 // Now return the result. 478 MD5::MD5Result Result; 479 Hash.final(Result); 480 481 // ... take the least significant 8 bytes and return those. Our MD5 482 // implementation always returns its results in little endian, swap bytes 483 // appropriately. 484 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 485 } 486 487 /// This is based on the type signature computation given in section 7.27 of the 488 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE 489 /// with the inclusion of additional forms not specifically called out in the 490 /// standard. 491 uint64_t DIEHash::computeTypeSignature(const DIE &Die) { 492 Numbering.clear(); 493 Numbering[&Die] = 1; 494 495 if (const DIE *Parent = Die.getParent()) 496 addParentContext(*Parent); 497 498 // Hash the DIE. 499 computeHash(Die); 500 501 // Now return the result. 502 MD5::MD5Result Result; 503 Hash.final(Result); 504 505 // ... take the least significant 8 bytes and return those. Our MD5 506 // implementation always returns its results in little endian, swap bytes 507 // appropriately. 508 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 509 } 510