1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for DWARF4 hashing of DIEs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "dwarfdebug" 15 16 #include "DIEHash.h" 17 18 #include "DIE.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/Dwarf.h" 23 #include "llvm/Support/Endian.h" 24 #include "llvm/Support/MD5.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace llvm; 28 29 /// \brief Grabs the string in whichever attribute is passed in and returns 30 /// a reference to it. 31 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) { 32 const SmallVectorImpl<DIEValue *> &Values = Die.getValues(); 33 const DIEAbbrev &Abbrevs = Die.getAbbrev(); 34 35 // Iterate through all the attributes until we find the one we're 36 // looking for, if we can't find it return an empty string. 37 for (size_t i = 0; i < Values.size(); ++i) { 38 if (Abbrevs.getData()[i].getAttribute() == Attr) { 39 DIEValue *V = Values[i]; 40 assert(isa<DIEString>(V) && "String requested. Not a string."); 41 DIEString *S = cast<DIEString>(V); 42 return S->getString(); 43 } 44 } 45 return StringRef(""); 46 } 47 48 /// \brief Adds the string in \p Str to the hash. This also hashes 49 /// a trailing NULL with the string. 50 void DIEHash::addString(StringRef Str) { 51 DEBUG(dbgs() << "Adding string " << Str << " to hash.\n"); 52 Hash.update(Str); 53 Hash.update(makeArrayRef((uint8_t)'\0')); 54 } 55 56 // FIXME: The LEB128 routines are copied and only slightly modified out of 57 // LEB128.h. 58 59 /// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128. 60 void DIEHash::addULEB128(uint64_t Value) { 61 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); 62 do { 63 uint8_t Byte = Value & 0x7f; 64 Value >>= 7; 65 if (Value != 0) 66 Byte |= 0x80; // Mark this byte to show that more bytes will follow. 67 Hash.update(Byte); 68 } while (Value != 0); 69 } 70 71 void DIEHash::addSLEB128(int64_t Value) { 72 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); 73 bool More; 74 do { 75 uint8_t Byte = Value & 0x7f; 76 Value >>= 7; 77 More = !((((Value == 0 ) && ((Byte & 0x40) == 0)) || 78 ((Value == -1) && ((Byte & 0x40) != 0)))); 79 if (More) 80 Byte |= 0x80; // Mark this byte to show that more bytes will follow. 81 Hash.update(Byte); 82 } while (More); 83 } 84 85 /// \brief Including \p Parent adds the context of Parent to the hash.. 86 void DIEHash::addParentContext(const DIE &Parent) { 87 88 DEBUG(dbgs() << "Adding parent context to hash...\n"); 89 90 // [7.27.2] For each surrounding type or namespace beginning with the 91 // outermost such construct... 92 SmallVector<const DIE *, 1> Parents; 93 const DIE *Cur = &Parent; 94 while (Cur->getParent()) { 95 Parents.push_back(Cur); 96 Cur = Cur->getParent(); 97 } 98 assert(Cur->getTag() == dwarf::DW_TAG_compile_unit || 99 Cur->getTag() == dwarf::DW_TAG_type_unit); 100 101 // Reverse iterate over our list to go from the outermost construct to the 102 // innermost. 103 for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(), 104 E = Parents.rend(); 105 I != E; ++I) { 106 const DIE &Die = **I; 107 108 // ... Append the letter "C" to the sequence... 109 addULEB128('C'); 110 111 // ... Followed by the DWARF tag of the construct... 112 addULEB128(Die.getTag()); 113 114 // ... Then the name, taken from the DW_AT_name attribute. 115 StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name); 116 DEBUG(dbgs() << "... adding context: " << Name << "\n"); 117 if (!Name.empty()) 118 addString(Name); 119 } 120 } 121 122 // Collect all of the attributes for a particular DIE in single structure. 123 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) { 124 const SmallVectorImpl<DIEValue *> &Values = Die.getValues(); 125 const DIEAbbrev &Abbrevs = Die.getAbbrev(); 126 127 #define COLLECT_ATTR(NAME) \ 128 case dwarf::NAME: \ 129 Attrs.NAME.Val = Values[i]; \ 130 Attrs.NAME.Desc = &Abbrevs.getData()[i]; \ 131 break 132 133 for (size_t i = 0, e = Values.size(); i != e; ++i) { 134 DEBUG(dbgs() << "Attribute: " 135 << dwarf::AttributeString(Abbrevs.getData()[i].getAttribute()) 136 << " added.\n"); 137 switch (Abbrevs.getData()[i].getAttribute()) { 138 COLLECT_ATTR(DW_AT_name); 139 COLLECT_ATTR(DW_AT_accessibility); 140 COLLECT_ATTR(DW_AT_address_class); 141 COLLECT_ATTR(DW_AT_allocated); 142 COLLECT_ATTR(DW_AT_artificial); 143 COLLECT_ATTR(DW_AT_associated); 144 COLLECT_ATTR(DW_AT_binary_scale); 145 COLLECT_ATTR(DW_AT_bit_offset); 146 COLLECT_ATTR(DW_AT_bit_size); 147 COLLECT_ATTR(DW_AT_bit_stride); 148 COLLECT_ATTR(DW_AT_byte_size); 149 COLLECT_ATTR(DW_AT_byte_stride); 150 COLLECT_ATTR(DW_AT_const_expr); 151 COLLECT_ATTR(DW_AT_const_value); 152 COLLECT_ATTR(DW_AT_containing_type); 153 COLLECT_ATTR(DW_AT_count); 154 COLLECT_ATTR(DW_AT_data_bit_offset); 155 COLLECT_ATTR(DW_AT_data_location); 156 COLLECT_ATTR(DW_AT_data_member_location); 157 COLLECT_ATTR(DW_AT_decimal_scale); 158 COLLECT_ATTR(DW_AT_decimal_sign); 159 COLLECT_ATTR(DW_AT_default_value); 160 COLLECT_ATTR(DW_AT_digit_count); 161 COLLECT_ATTR(DW_AT_discr); 162 COLLECT_ATTR(DW_AT_discr_list); 163 COLLECT_ATTR(DW_AT_discr_value); 164 COLLECT_ATTR(DW_AT_encoding); 165 COLLECT_ATTR(DW_AT_enum_class); 166 COLLECT_ATTR(DW_AT_endianity); 167 COLLECT_ATTR(DW_AT_explicit); 168 COLLECT_ATTR(DW_AT_is_optional); 169 COLLECT_ATTR(DW_AT_location); 170 COLLECT_ATTR(DW_AT_lower_bound); 171 COLLECT_ATTR(DW_AT_mutable); 172 COLLECT_ATTR(DW_AT_ordering); 173 COLLECT_ATTR(DW_AT_picture_string); 174 COLLECT_ATTR(DW_AT_prototyped); 175 COLLECT_ATTR(DW_AT_small); 176 COLLECT_ATTR(DW_AT_segment); 177 COLLECT_ATTR(DW_AT_string_length); 178 COLLECT_ATTR(DW_AT_threads_scaled); 179 COLLECT_ATTR(DW_AT_upper_bound); 180 COLLECT_ATTR(DW_AT_use_location); 181 COLLECT_ATTR(DW_AT_use_UTF8); 182 COLLECT_ATTR(DW_AT_variable_parameter); 183 COLLECT_ATTR(DW_AT_virtuality); 184 COLLECT_ATTR(DW_AT_visibility); 185 COLLECT_ATTR(DW_AT_vtable_elem_location); 186 COLLECT_ATTR(DW_AT_type); 187 default: 188 break; 189 } 190 } 191 } 192 193 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute, 194 const DIE &Entry, StringRef Name) { 195 // append the letter 'N' 196 addULEB128('N'); 197 198 // the DWARF attribute code (DW_AT_type or DW_AT_friend), 199 addULEB128(Attribute); 200 201 // the context of the tag, 202 if (const DIE *Parent = Entry.getParent()) 203 addParentContext(*Parent); 204 205 // the letter 'E', 206 addULEB128('E'); 207 208 // and the name of the type. 209 addString(Name); 210 211 // Currently DW_TAG_friends are not used by Clang, but if they do become so, 212 // here's the relevant spec text to implement: 213 // 214 // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram, 215 // the context is omitted and the name to be used is the ABI-specific name 216 // of the subprogram (e.g., the mangled linker name). 217 } 218 219 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute, 220 unsigned DieNumber) { 221 // a) If T is in the list of [previously hashed types], use the letter 222 // 'R' as the marker 223 addULEB128('R'); 224 225 addULEB128(Attribute); 226 227 // and use the unsigned LEB128 encoding of [the index of T in the 228 // list] as the attribute value; 229 addULEB128(DieNumber); 230 } 231 232 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag, 233 const DIE &Entry) { 234 assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend " 235 "tags. Add support here when there's " 236 "a use case"); 237 // Step 5 238 // If the tag in Step 3 is one of [the below tags] 239 if ((Tag == dwarf::DW_TAG_pointer_type || 240 Tag == dwarf::DW_TAG_reference_type || 241 Tag == dwarf::DW_TAG_rvalue_reference_type || 242 Tag == dwarf::DW_TAG_ptr_to_member_type) && 243 // and the referenced type (via the [below attributes]) 244 // FIXME: This seems overly restrictive, and causes hash mismatches 245 // there's a decl/def difference in the containing type of a 246 // ptr_to_member_type, but it's what DWARF says, for some reason. 247 Attribute == dwarf::DW_AT_type) { 248 // ... has a DW_AT_name attribute, 249 StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name); 250 if (!Name.empty()) { 251 hashShallowTypeReference(Attribute, Entry, Name); 252 return; 253 } 254 } 255 256 unsigned &DieNumber = Numbering[&Entry]; 257 if (DieNumber) { 258 hashRepeatedTypeReference(Attribute, DieNumber); 259 return; 260 } 261 262 // otherwise, b) use the letter 'T' as a the marker, ... 263 addULEB128('T'); 264 265 addULEB128(Attribute); 266 267 // ... process the type T recursively by performing Steps 2 through 7, and 268 // use the result as the attribute value. 269 DieNumber = Numbering.size(); 270 computeHash(Entry); 271 } 272 273 // Hash an individual attribute \param Attr based on the type of attribute and 274 // the form. 275 void DIEHash::hashAttribute(AttrEntry Attr, dwarf::Tag Tag) { 276 const DIEValue *Value = Attr.Val; 277 const DIEAbbrevData *Desc = Attr.Desc; 278 dwarf::Attribute Attribute = Desc->getAttribute(); 279 280 // 7.27 Step 3 281 // ... An attribute that refers to another type entry T is processed as 282 // follows: 283 if (const DIEEntry *EntryAttr = dyn_cast<DIEEntry>(Value)) { 284 hashDIEEntry(Attribute, Tag, *EntryAttr->getEntry()); 285 return; 286 } 287 288 // Other attribute values use the letter 'A' as the marker, ... 289 addULEB128('A'); 290 291 addULEB128(Attribute); 292 293 // ... and the value consists of the form code (encoded as an unsigned LEB128 294 // value) followed by the encoding of the value according to the form code. To 295 // ensure reproducibility of the signature, the set of forms used in the 296 // signature computation is limited to the following: DW_FORM_sdata, 297 // DW_FORM_flag, DW_FORM_string, and DW_FORM_block. 298 switch (Desc->getForm()) { 299 case dwarf::DW_FORM_string: 300 llvm_unreachable( 301 "Add support for DW_FORM_string if we ever start emitting them again"); 302 case dwarf::DW_FORM_GNU_str_index: 303 case dwarf::DW_FORM_strp: 304 addULEB128(dwarf::DW_FORM_string); 305 addString(cast<DIEString>(Value)->getString()); 306 break; 307 case dwarf::DW_FORM_data1: 308 case dwarf::DW_FORM_data2: 309 case dwarf::DW_FORM_data4: 310 case dwarf::DW_FORM_data8: 311 case dwarf::DW_FORM_udata: 312 addULEB128(dwarf::DW_FORM_sdata); 313 addSLEB128((int64_t)cast<DIEInteger>(Value)->getValue()); 314 break; 315 default: 316 llvm_unreachable("Add support for additional forms"); 317 } 318 } 319 320 // Go through the attributes from \param Attrs in the order specified in 7.27.4 321 // and hash them. 322 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) { 323 #define ADD_ATTR(ATTR) \ 324 { \ 325 if (ATTR.Val != 0) \ 326 hashAttribute(ATTR, Tag); \ 327 } 328 329 ADD_ATTR(Attrs.DW_AT_name); 330 ADD_ATTR(Attrs.DW_AT_accessibility); 331 ADD_ATTR(Attrs.DW_AT_address_class); 332 ADD_ATTR(Attrs.DW_AT_allocated); 333 ADD_ATTR(Attrs.DW_AT_artificial); 334 ADD_ATTR(Attrs.DW_AT_associated); 335 ADD_ATTR(Attrs.DW_AT_binary_scale); 336 ADD_ATTR(Attrs.DW_AT_bit_offset); 337 ADD_ATTR(Attrs.DW_AT_bit_size); 338 ADD_ATTR(Attrs.DW_AT_bit_stride); 339 ADD_ATTR(Attrs.DW_AT_byte_size); 340 ADD_ATTR(Attrs.DW_AT_byte_stride); 341 ADD_ATTR(Attrs.DW_AT_const_expr); 342 ADD_ATTR(Attrs.DW_AT_const_value); 343 ADD_ATTR(Attrs.DW_AT_containing_type); 344 ADD_ATTR(Attrs.DW_AT_count); 345 ADD_ATTR(Attrs.DW_AT_data_bit_offset); 346 ADD_ATTR(Attrs.DW_AT_data_location); 347 ADD_ATTR(Attrs.DW_AT_data_member_location); 348 ADD_ATTR(Attrs.DW_AT_decimal_scale); 349 ADD_ATTR(Attrs.DW_AT_decimal_sign); 350 ADD_ATTR(Attrs.DW_AT_default_value); 351 ADD_ATTR(Attrs.DW_AT_digit_count); 352 ADD_ATTR(Attrs.DW_AT_discr); 353 ADD_ATTR(Attrs.DW_AT_discr_list); 354 ADD_ATTR(Attrs.DW_AT_discr_value); 355 ADD_ATTR(Attrs.DW_AT_encoding); 356 ADD_ATTR(Attrs.DW_AT_enum_class); 357 ADD_ATTR(Attrs.DW_AT_endianity); 358 ADD_ATTR(Attrs.DW_AT_explicit); 359 ADD_ATTR(Attrs.DW_AT_is_optional); 360 ADD_ATTR(Attrs.DW_AT_location); 361 ADD_ATTR(Attrs.DW_AT_lower_bound); 362 ADD_ATTR(Attrs.DW_AT_mutable); 363 ADD_ATTR(Attrs.DW_AT_ordering); 364 ADD_ATTR(Attrs.DW_AT_picture_string); 365 ADD_ATTR(Attrs.DW_AT_prototyped); 366 ADD_ATTR(Attrs.DW_AT_small); 367 ADD_ATTR(Attrs.DW_AT_segment); 368 ADD_ATTR(Attrs.DW_AT_string_length); 369 ADD_ATTR(Attrs.DW_AT_threads_scaled); 370 ADD_ATTR(Attrs.DW_AT_upper_bound); 371 ADD_ATTR(Attrs.DW_AT_use_location); 372 ADD_ATTR(Attrs.DW_AT_use_UTF8); 373 ADD_ATTR(Attrs.DW_AT_variable_parameter); 374 ADD_ATTR(Attrs.DW_AT_virtuality); 375 ADD_ATTR(Attrs.DW_AT_visibility); 376 ADD_ATTR(Attrs.DW_AT_vtable_elem_location); 377 ADD_ATTR(Attrs.DW_AT_type); 378 379 // FIXME: Add the extended attributes. 380 } 381 382 // Add all of the attributes for \param Die to the hash. 383 void DIEHash::addAttributes(const DIE &Die) { 384 DIEAttrs Attrs = {}; 385 collectAttributes(Die, Attrs); 386 hashAttributes(Attrs, Die.getTag()); 387 } 388 389 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) { 390 // 7.27 Step 7 391 // ... append the letter 'S', 392 addULEB128('S'); 393 394 // the tag of C, 395 addULEB128(Die.getTag()); 396 397 // and the name. 398 addString(Name); 399 } 400 401 // Compute the hash of a DIE. This is based on the type signature computation 402 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a 403 // flattened description of the DIE. 404 void DIEHash::computeHash(const DIE &Die) { 405 // Append the letter 'D', followed by the DWARF tag of the DIE. 406 addULEB128('D'); 407 addULEB128(Die.getTag()); 408 409 // Add each of the attributes of the DIE. 410 addAttributes(Die); 411 412 // Then hash each of the children of the DIE. 413 for (std::vector<DIE *>::const_iterator I = Die.getChildren().begin(), 414 E = Die.getChildren().end(); 415 I != E; ++I) { 416 // 7.27 Step 7 417 // If C is a nested type entry or a member function entry, ... 418 if (isType((*I)->getTag()) || (*I)->getTag() == dwarf::DW_TAG_subprogram) { 419 StringRef Name = getDIEStringAttr(**I, dwarf::DW_AT_name); 420 // ... and has a DW_AT_name attribute 421 if (!Name.empty()) { 422 hashNestedType(**I, Name); 423 continue; 424 } 425 } 426 computeHash(**I); 427 } 428 429 // Following the last (or if there are no children), append a zero byte. 430 Hash.update(makeArrayRef((uint8_t)'\0')); 431 } 432 433 /// This is based on the type signature computation given in section 7.27 of the 434 /// DWARF4 standard. It is the md5 hash of a flattened description of the DIE 435 /// with the exception that we are hashing only the context and the name of the 436 /// type. 437 uint64_t DIEHash::computeDIEODRSignature(const DIE &Die) { 438 439 // Add the contexts to the hash. We won't be computing the ODR hash for 440 // function local types so it's safe to use the generic context hashing 441 // algorithm here. 442 // FIXME: If we figure out how to account for linkage in some way we could 443 // actually do this with a slight modification to the parent hash algorithm. 444 if (const DIE *Parent = Die.getParent()) 445 addParentContext(*Parent); 446 447 // Add the current DIE information. 448 449 // Add the DWARF tag of the DIE. 450 addULEB128(Die.getTag()); 451 452 // Add the name of the type to the hash. 453 addString(getDIEStringAttr(Die, dwarf::DW_AT_name)); 454 455 // Now get the result. 456 MD5::MD5Result Result; 457 Hash.final(Result); 458 459 // ... take the least significant 8 bytes and return those. Our MD5 460 // implementation always returns its results in little endian, swap bytes 461 // appropriately. 462 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 463 } 464 465 /// This is based on the type signature computation given in section 7.27 of the 466 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE 467 /// with the inclusion of the full CU and all top level CU entities. 468 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures. 469 uint64_t DIEHash::computeCUSignature(const DIE &Die) { 470 Numbering.clear(); 471 Numbering[&Die] = 1; 472 473 // Hash the DIE. 474 computeHash(Die); 475 476 // Now return the result. 477 MD5::MD5Result Result; 478 Hash.final(Result); 479 480 // ... take the least significant 8 bytes and return those. Our MD5 481 // implementation always returns its results in little endian, swap bytes 482 // appropriately. 483 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 484 } 485 486 /// This is based on the type signature computation given in section 7.27 of the 487 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE 488 /// with the inclusion of additional forms not specifically called out in the 489 /// standard. 490 uint64_t DIEHash::computeTypeSignature(const DIE &Die) { 491 Numbering.clear(); 492 Numbering[&Die] = 1; 493 494 if (const DIE *Parent = Die.getParent()) 495 addParentContext(*Parent); 496 497 // Hash the DIE. 498 computeHash(Die); 499 500 // Now return the result. 501 MD5::MD5Result Result; 502 Hash.final(Result); 503 504 // ... take the least significant 8 bytes and return those. Our MD5 505 // implementation always returns its results in little endian, swap bytes 506 // appropriately. 507 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 508 } 509