1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for DWARF4 hashing of DIEs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "dwarfdebug" 15 16 #include "DIE.h" 17 #include "DIEHash.h" 18 #include "DwarfCompileUnit.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/Dwarf.h" 23 #include "llvm/Support/Endian.h" 24 #include "llvm/Support/MD5.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace llvm; 28 29 /// \brief Grabs the string in whichever attribute is passed in and returns 30 /// a reference to it. 31 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) { 32 const SmallVectorImpl<DIEValue *> &Values = Die.getValues(); 33 const DIEAbbrev &Abbrevs = Die.getAbbrev(); 34 35 // Iterate through all the attributes until we find the one we're 36 // looking for, if we can't find it return an empty string. 37 for (size_t i = 0; i < Values.size(); ++i) { 38 if (Abbrevs.getData()[i].getAttribute() == Attr) { 39 DIEValue *V = Values[i]; 40 assert(isa<DIEString>(V) && "String requested. Not a string."); 41 DIEString *S = cast<DIEString>(V); 42 return S->getString(); 43 } 44 } 45 return StringRef(""); 46 } 47 48 /// \brief Adds the string in \p Str to the hash. This also hashes 49 /// a trailing NULL with the string. 50 void DIEHash::addString(StringRef Str) { 51 DEBUG(dbgs() << "Adding string " << Str << " to hash.\n"); 52 Hash.update(Str); 53 Hash.update(makeArrayRef((uint8_t)'\0')); 54 } 55 56 // FIXME: The LEB128 routines are copied and only slightly modified out of 57 // LEB128.h. 58 59 /// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128. 60 void DIEHash::addULEB128(uint64_t Value) { 61 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); 62 do { 63 uint8_t Byte = Value & 0x7f; 64 Value >>= 7; 65 if (Value != 0) 66 Byte |= 0x80; // Mark this byte to show that more bytes will follow. 67 Hash.update(Byte); 68 } while (Value != 0); 69 } 70 71 void DIEHash::addSLEB128(int64_t Value) { 72 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); 73 bool More; 74 do { 75 uint8_t Byte = Value & 0x7f; 76 Value >>= 7; 77 More = !((((Value == 0 ) && ((Byte & 0x40) == 0)) || 78 ((Value == -1) && ((Byte & 0x40) != 0)))); 79 if (More) 80 Byte |= 0x80; // Mark this byte to show that more bytes will follow. 81 Hash.update(Byte); 82 } while (More); 83 } 84 85 /// \brief Including \p Parent adds the context of Parent to the hash.. 86 void DIEHash::addParentContext(const DIE &Parent) { 87 88 DEBUG(dbgs() << "Adding parent context to hash...\n"); 89 90 // [7.27.2] For each surrounding type or namespace beginning with the 91 // outermost such construct... 92 SmallVector<const DIE *, 1> Parents; 93 const DIE *Cur = &Parent; 94 while (Cur->getTag() != dwarf::DW_TAG_compile_unit) { 95 Parents.push_back(Cur); 96 Cur = Cur->getParent(); 97 } 98 99 // Reverse iterate over our list to go from the outermost construct to the 100 // innermost. 101 for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(), 102 E = Parents.rend(); 103 I != E; ++I) { 104 const DIE &Die = **I; 105 106 // ... Append the letter "C" to the sequence... 107 addULEB128('C'); 108 109 // ... Followed by the DWARF tag of the construct... 110 addULEB128(Die.getTag()); 111 112 // ... Then the name, taken from the DW_AT_name attribute. 113 StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name); 114 DEBUG(dbgs() << "... adding context: " << Name << "\n"); 115 if (!Name.empty()) 116 addString(Name); 117 } 118 } 119 120 // Collect all of the attributes for a particular DIE in single structure. 121 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) { 122 const SmallVectorImpl<DIEValue *> &Values = Die.getValues(); 123 const DIEAbbrev &Abbrevs = Die.getAbbrev(); 124 125 #define COLLECT_ATTR(NAME) \ 126 case dwarf::NAME: \ 127 Attrs.NAME.Val = Values[i]; \ 128 Attrs.NAME.Desc = &Abbrevs.getData()[i]; \ 129 break 130 131 for (size_t i = 0, e = Values.size(); i != e; ++i) { 132 DEBUG(dbgs() << "Attribute: " 133 << dwarf::AttributeString(Abbrevs.getData()[i].getAttribute()) 134 << " added.\n"); 135 switch (Abbrevs.getData()[i].getAttribute()) { 136 COLLECT_ATTR(DW_AT_name); 137 COLLECT_ATTR(DW_AT_accessibility); 138 COLLECT_ATTR(DW_AT_address_class); 139 COLLECT_ATTR(DW_AT_allocated); 140 COLLECT_ATTR(DW_AT_artificial); 141 COLLECT_ATTR(DW_AT_associated); 142 COLLECT_ATTR(DW_AT_binary_scale); 143 COLLECT_ATTR(DW_AT_bit_offset); 144 COLLECT_ATTR(DW_AT_bit_size); 145 COLLECT_ATTR(DW_AT_bit_stride); 146 COLLECT_ATTR(DW_AT_byte_size); 147 COLLECT_ATTR(DW_AT_byte_stride); 148 COLLECT_ATTR(DW_AT_const_expr); 149 COLLECT_ATTR(DW_AT_const_value); 150 COLLECT_ATTR(DW_AT_containing_type); 151 COLLECT_ATTR(DW_AT_count); 152 COLLECT_ATTR(DW_AT_data_bit_offset); 153 COLLECT_ATTR(DW_AT_data_location); 154 COLLECT_ATTR(DW_AT_data_member_location); 155 COLLECT_ATTR(DW_AT_decimal_scale); 156 COLLECT_ATTR(DW_AT_decimal_sign); 157 COLLECT_ATTR(DW_AT_default_value); 158 COLLECT_ATTR(DW_AT_digit_count); 159 COLLECT_ATTR(DW_AT_discr); 160 COLLECT_ATTR(DW_AT_discr_list); 161 COLLECT_ATTR(DW_AT_discr_value); 162 COLLECT_ATTR(DW_AT_encoding); 163 COLLECT_ATTR(DW_AT_enum_class); 164 COLLECT_ATTR(DW_AT_endianity); 165 COLLECT_ATTR(DW_AT_explicit); 166 COLLECT_ATTR(DW_AT_is_optional); 167 COLLECT_ATTR(DW_AT_location); 168 COLLECT_ATTR(DW_AT_lower_bound); 169 COLLECT_ATTR(DW_AT_mutable); 170 COLLECT_ATTR(DW_AT_ordering); 171 COLLECT_ATTR(DW_AT_picture_string); 172 COLLECT_ATTR(DW_AT_prototyped); 173 COLLECT_ATTR(DW_AT_small); 174 COLLECT_ATTR(DW_AT_segment); 175 COLLECT_ATTR(DW_AT_string_length); 176 COLLECT_ATTR(DW_AT_threads_scaled); 177 COLLECT_ATTR(DW_AT_upper_bound); 178 COLLECT_ATTR(DW_AT_use_location); 179 COLLECT_ATTR(DW_AT_use_UTF8); 180 COLLECT_ATTR(DW_AT_variable_parameter); 181 COLLECT_ATTR(DW_AT_virtuality); 182 COLLECT_ATTR(DW_AT_visibility); 183 COLLECT_ATTR(DW_AT_vtable_elem_location); 184 COLLECT_ATTR(DW_AT_type); 185 default: 186 break; 187 } 188 } 189 } 190 191 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute, 192 const DIE &Entry, StringRef Name) { 193 // append the letter 'N' 194 addULEB128('N'); 195 196 // the DWARF attribute code (DW_AT_type or DW_AT_friend), 197 addULEB128(Attribute); 198 199 // the context of the tag, 200 if (const DIE *Parent = Entry.getParent()) 201 addParentContext(*Parent); 202 203 // the letter 'E', 204 addULEB128('E'); 205 206 // and the name of the type. 207 addString(Name); 208 209 // Currently DW_TAG_friends are not used by Clang, but if they do become so, 210 // here's the relevant spec text to implement: 211 // 212 // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram, 213 // the context is omitted and the name to be used is the ABI-specific name 214 // of the subprogram (e.g., the mangled linker name). 215 } 216 217 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute, 218 unsigned DieNumber) { 219 // a) If T is in the list of [previously hashed types], use the letter 220 // 'R' as the marker 221 addULEB128('R'); 222 223 addULEB128(Attribute); 224 225 // and use the unsigned LEB128 encoding of [the index of T in the 226 // list] as the attribute value; 227 addULEB128(DieNumber); 228 } 229 230 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag, 231 const DIE &Entry) { 232 assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend " 233 "tags. Add support here when there's " 234 "a use case"); 235 // Step 5 236 // If the tag in Step 3 is one of [the below tags] 237 if ((Tag == dwarf::DW_TAG_pointer_type || 238 Tag == dwarf::DW_TAG_reference_type || 239 Tag == dwarf::DW_TAG_rvalue_reference_type || 240 Tag == dwarf::DW_TAG_ptr_to_member_type) && 241 // and the referenced type (via the [below attributes]) 242 // FIXME: This seems overly restrictive, and causes hash mismatches 243 // there's a decl/def difference in the containing type of a 244 // ptr_to_member_type, but it's what DWARF says, for some reason. 245 Attribute == dwarf::DW_AT_type) { 246 // ... has a DW_AT_name attribute, 247 StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name); 248 if (!Name.empty()) { 249 hashShallowTypeReference(Attribute, Entry, Name); 250 return; 251 } 252 } 253 254 unsigned &DieNumber = Numbering[&Entry]; 255 if (DieNumber) { 256 hashRepeatedTypeReference(Attribute, DieNumber); 257 return; 258 } 259 260 // otherwise, b) use the letter 'T' as a the marker, ... 261 addULEB128('T'); 262 263 addULEB128(Attribute); 264 265 // ... process the type T recursively by performing Steps 2 through 7, and 266 // use the result as the attribute value. 267 DieNumber = Numbering.size(); 268 computeHash(Entry); 269 } 270 271 // Hash an individual attribute \param Attr based on the type of attribute and 272 // the form. 273 void DIEHash::hashAttribute(AttrEntry Attr, dwarf::Tag Tag) { 274 const DIEValue *Value = Attr.Val; 275 const DIEAbbrevData *Desc = Attr.Desc; 276 dwarf::Attribute Attribute = Desc->getAttribute(); 277 278 // 7.27 Step 3 279 // ... An attribute that refers to another type entry T is processed as 280 // follows: 281 if (const DIEEntry *EntryAttr = dyn_cast<DIEEntry>(Value)) { 282 hashDIEEntry(Attribute, Tag, *EntryAttr->getEntry()); 283 return; 284 } 285 286 // Other attribute values use the letter 'A' as the marker, ... 287 addULEB128('A'); 288 289 addULEB128(Attribute); 290 291 // ... and the value consists of the form code (encoded as an unsigned LEB128 292 // value) followed by the encoding of the value according to the form code. To 293 // ensure reproducibility of the signature, the set of forms used in the 294 // signature computation is limited to the following: DW_FORM_sdata, 295 // DW_FORM_flag, DW_FORM_string, and DW_FORM_block. 296 switch (Desc->getForm()) { 297 case dwarf::DW_FORM_string: 298 llvm_unreachable( 299 "Add support for DW_FORM_string if we ever start emitting them again"); 300 case dwarf::DW_FORM_GNU_str_index: 301 case dwarf::DW_FORM_strp: 302 addULEB128(dwarf::DW_FORM_string); 303 addString(cast<DIEString>(Value)->getString()); 304 break; 305 case dwarf::DW_FORM_data1: 306 case dwarf::DW_FORM_data2: 307 case dwarf::DW_FORM_data4: 308 case dwarf::DW_FORM_data8: 309 case dwarf::DW_FORM_udata: 310 addULEB128(dwarf::DW_FORM_sdata); 311 addSLEB128((int64_t)cast<DIEInteger>(Value)->getValue()); 312 break; 313 default: 314 llvm_unreachable("Add support for additional forms"); 315 } 316 } 317 318 // Go through the attributes from \param Attrs in the order specified in 7.27.4 319 // and hash them. 320 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) { 321 #define ADD_ATTR(ATTR) \ 322 { \ 323 if (ATTR.Val != 0) \ 324 hashAttribute(ATTR, Tag); \ 325 } 326 327 ADD_ATTR(Attrs.DW_AT_name); 328 ADD_ATTR(Attrs.DW_AT_accessibility); 329 ADD_ATTR(Attrs.DW_AT_address_class); 330 ADD_ATTR(Attrs.DW_AT_allocated); 331 ADD_ATTR(Attrs.DW_AT_artificial); 332 ADD_ATTR(Attrs.DW_AT_associated); 333 ADD_ATTR(Attrs.DW_AT_binary_scale); 334 ADD_ATTR(Attrs.DW_AT_bit_offset); 335 ADD_ATTR(Attrs.DW_AT_bit_size); 336 ADD_ATTR(Attrs.DW_AT_bit_stride); 337 ADD_ATTR(Attrs.DW_AT_byte_size); 338 ADD_ATTR(Attrs.DW_AT_byte_stride); 339 ADD_ATTR(Attrs.DW_AT_const_expr); 340 ADD_ATTR(Attrs.DW_AT_const_value); 341 ADD_ATTR(Attrs.DW_AT_containing_type); 342 ADD_ATTR(Attrs.DW_AT_count); 343 ADD_ATTR(Attrs.DW_AT_data_bit_offset); 344 ADD_ATTR(Attrs.DW_AT_data_location); 345 ADD_ATTR(Attrs.DW_AT_data_member_location); 346 ADD_ATTR(Attrs.DW_AT_decimal_scale); 347 ADD_ATTR(Attrs.DW_AT_decimal_sign); 348 ADD_ATTR(Attrs.DW_AT_default_value); 349 ADD_ATTR(Attrs.DW_AT_digit_count); 350 ADD_ATTR(Attrs.DW_AT_discr); 351 ADD_ATTR(Attrs.DW_AT_discr_list); 352 ADD_ATTR(Attrs.DW_AT_discr_value); 353 ADD_ATTR(Attrs.DW_AT_encoding); 354 ADD_ATTR(Attrs.DW_AT_enum_class); 355 ADD_ATTR(Attrs.DW_AT_endianity); 356 ADD_ATTR(Attrs.DW_AT_explicit); 357 ADD_ATTR(Attrs.DW_AT_is_optional); 358 ADD_ATTR(Attrs.DW_AT_location); 359 ADD_ATTR(Attrs.DW_AT_lower_bound); 360 ADD_ATTR(Attrs.DW_AT_mutable); 361 ADD_ATTR(Attrs.DW_AT_ordering); 362 ADD_ATTR(Attrs.DW_AT_picture_string); 363 ADD_ATTR(Attrs.DW_AT_prototyped); 364 ADD_ATTR(Attrs.DW_AT_small); 365 ADD_ATTR(Attrs.DW_AT_segment); 366 ADD_ATTR(Attrs.DW_AT_string_length); 367 ADD_ATTR(Attrs.DW_AT_threads_scaled); 368 ADD_ATTR(Attrs.DW_AT_upper_bound); 369 ADD_ATTR(Attrs.DW_AT_use_location); 370 ADD_ATTR(Attrs.DW_AT_use_UTF8); 371 ADD_ATTR(Attrs.DW_AT_variable_parameter); 372 ADD_ATTR(Attrs.DW_AT_virtuality); 373 ADD_ATTR(Attrs.DW_AT_visibility); 374 ADD_ATTR(Attrs.DW_AT_vtable_elem_location); 375 ADD_ATTR(Attrs.DW_AT_type); 376 377 // FIXME: Add the extended attributes. 378 } 379 380 // Add all of the attributes for \param Die to the hash. 381 void DIEHash::addAttributes(const DIE &Die) { 382 DIEAttrs Attrs = {}; 383 collectAttributes(Die, Attrs); 384 hashAttributes(Attrs, Die.getTag()); 385 } 386 387 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) { 388 // 7.27 Step 7 389 // ... append the letter 'S', 390 addULEB128('S'); 391 392 // the tag of C, 393 addULEB128(Die.getTag()); 394 395 // and the name. 396 addString(Name); 397 } 398 399 // Compute the hash of a DIE. This is based on the type signature computation 400 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a 401 // flattened description of the DIE. 402 void DIEHash::computeHash(const DIE &Die) { 403 // Append the letter 'D', followed by the DWARF tag of the DIE. 404 addULEB128('D'); 405 addULEB128(Die.getTag()); 406 407 // Add each of the attributes of the DIE. 408 addAttributes(Die); 409 410 // Then hash each of the children of the DIE. 411 for (std::vector<DIE *>::const_iterator I = Die.getChildren().begin(), 412 E = Die.getChildren().end(); 413 I != E; ++I) { 414 // 7.27 Step 7 415 // If C is a nested type entry or a member function entry, ... 416 if (isType((*I)->getTag()) || (*I)->getTag() == dwarf::DW_TAG_subprogram) { 417 StringRef Name = getDIEStringAttr(**I, dwarf::DW_AT_name); 418 // ... and has a DW_AT_name attribute 419 if (!Name.empty()) { 420 hashNestedType(**I, Name); 421 continue; 422 } 423 } 424 computeHash(**I); 425 } 426 427 // Following the last (or if there are no children), append a zero byte. 428 Hash.update(makeArrayRef((uint8_t)'\0')); 429 } 430 431 /// This is based on the type signature computation given in section 7.27 of the 432 /// DWARF4 standard. It is the md5 hash of a flattened description of the DIE 433 /// with the exception that we are hashing only the context and the name of the 434 /// type. 435 uint64_t DIEHash::computeDIEODRSignature(const DIE &Die) { 436 437 // Add the contexts to the hash. We won't be computing the ODR hash for 438 // function local types so it's safe to use the generic context hashing 439 // algorithm here. 440 // FIXME: If we figure out how to account for linkage in some way we could 441 // actually do this with a slight modification to the parent hash algorithm. 442 if (const DIE *Parent = Die.getParent()) 443 addParentContext(*Parent); 444 445 // Add the current DIE information. 446 447 // Add the DWARF tag of the DIE. 448 addULEB128(Die.getTag()); 449 450 // Add the name of the type to the hash. 451 addString(getDIEStringAttr(Die, dwarf::DW_AT_name)); 452 453 // Now get the result. 454 MD5::MD5Result Result; 455 Hash.final(Result); 456 457 // ... take the least significant 8 bytes and return those. Our MD5 458 // implementation always returns its results in little endian, swap bytes 459 // appropriately. 460 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 461 } 462 463 /// This is based on the type signature computation given in section 7.27 of the 464 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE 465 /// with the inclusion of the full CU and all top level CU entities. 466 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures. 467 uint64_t DIEHash::computeCUSignature(const DIE &Die) { 468 Numbering.clear(); 469 Numbering[&Die] = 1; 470 471 // Hash the DIE. 472 computeHash(Die); 473 474 // Now return the result. 475 MD5::MD5Result Result; 476 Hash.final(Result); 477 478 // ... take the least significant 8 bytes and return those. Our MD5 479 // implementation always returns its results in little endian, swap bytes 480 // appropriately. 481 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 482 } 483 484 /// This is based on the type signature computation given in section 7.27 of the 485 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE 486 /// with the inclusion of additional forms not specifically called out in the 487 /// standard. 488 uint64_t DIEHash::computeTypeSignature(const DIE &Die) { 489 Numbering.clear(); 490 Numbering[&Die] = 1; 491 492 if (const DIE *Parent = Die.getParent()) 493 addParentContext(*Parent); 494 495 // Hash the DIE. 496 computeHash(Die); 497 498 // Now return the result. 499 MD5::MD5Result Result; 500 Hash.final(Result); 501 502 // ... take the least significant 8 bytes and return those. Our MD5 503 // implementation always returns its results in little endian, swap bytes 504 // appropriately. 505 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 506 } 507