1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 17 #include "llvm/DebugInfo/CodeView/CodeView.h" 18 #include "llvm/DebugInfo/CodeView/Line.h" 19 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 20 #include "llvm/DebugInfo/CodeView/TypeDumper.h" 21 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 22 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 23 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h" 24 #include "llvm/DebugInfo/MSF/ByteStream.h" 25 #include "llvm/DebugInfo/MSF/StreamReader.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCSectionCOFF.h" 30 #include "llvm/MC/MCSymbol.h" 31 #include "llvm/Support/COFF.h" 32 #include "llvm/Support/ScopedPrinter.h" 33 #include "llvm/Target/TargetFrameLowering.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 37 using namespace llvm; 38 using namespace llvm::codeview; 39 using namespace llvm::msf; 40 41 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 42 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(), 43 TypeTable(Allocator), CurFn(nullptr) { 44 // If module doesn't have named metadata anchors or COFF debug section 45 // is not available, skip any debug info related stuff. 46 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 47 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 48 Asm = nullptr; 49 return; 50 } 51 52 // Tell MMI that we have debug info. 53 MMI->setDebugInfoAvailability(true); 54 } 55 56 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 57 std::string &Filepath = FileToFilepathMap[File]; 58 if (!Filepath.empty()) 59 return Filepath; 60 61 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 62 63 // Clang emits directory and relative filename info into the IR, but CodeView 64 // operates on full paths. We could change Clang to emit full paths too, but 65 // that would increase the IR size and probably not needed for other users. 66 // For now, just concatenate and canonicalize the path here. 67 if (Filename.find(':') == 1) 68 Filepath = Filename; 69 else 70 Filepath = (Dir + "\\" + Filename).str(); 71 72 // Canonicalize the path. We have to do it textually because we may no longer 73 // have access the file in the filesystem. 74 // First, replace all slashes with backslashes. 75 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 76 77 // Remove all "\.\" with "\". 78 size_t Cursor = 0; 79 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 80 Filepath.erase(Cursor, 2); 81 82 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 83 // path should be well-formatted, e.g. start with a drive letter, etc. 84 Cursor = 0; 85 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 86 // Something's wrong if the path starts with "\..\", abort. 87 if (Cursor == 0) 88 break; 89 90 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 91 if (PrevSlash == std::string::npos) 92 // Something's wrong, abort. 93 break; 94 95 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 96 // The next ".." might be following the one we've just erased. 97 Cursor = PrevSlash; 98 } 99 100 // Remove all duplicate backslashes. 101 Cursor = 0; 102 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 103 Filepath.erase(Cursor, 1); 104 105 return Filepath; 106 } 107 108 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 109 unsigned NextId = FileIdMap.size() + 1; 110 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 111 if (Insertion.second) { 112 // We have to compute the full filepath and emit a .cv_file directive. 113 StringRef FullPath = getFullFilepath(F); 114 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 115 (void)Success; 116 assert(Success && ".cv_file directive failed"); 117 } 118 return Insertion.first->second; 119 } 120 121 CodeViewDebug::InlineSite & 122 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 123 const DISubprogram *Inlinee) { 124 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 125 InlineSite *Site = &SiteInsertion.first->second; 126 if (SiteInsertion.second) { 127 unsigned ParentFuncId = CurFn->FuncId; 128 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 129 ParentFuncId = 130 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 131 .SiteFuncId; 132 133 Site->SiteFuncId = NextFuncId++; 134 OS.EmitCVInlineSiteIdDirective( 135 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 136 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 137 Site->Inlinee = Inlinee; 138 InlinedSubprograms.insert(Inlinee); 139 getFuncIdForSubprogram(Inlinee); 140 } 141 return *Site; 142 } 143 144 static StringRef getPrettyScopeName(const DIScope *Scope) { 145 StringRef ScopeName = Scope->getName(); 146 if (!ScopeName.empty()) 147 return ScopeName; 148 149 switch (Scope->getTag()) { 150 case dwarf::DW_TAG_enumeration_type: 151 case dwarf::DW_TAG_class_type: 152 case dwarf::DW_TAG_structure_type: 153 case dwarf::DW_TAG_union_type: 154 return "<unnamed-tag>"; 155 case dwarf::DW_TAG_namespace: 156 return "`anonymous namespace'"; 157 } 158 159 return StringRef(); 160 } 161 162 static const DISubprogram *getQualifiedNameComponents( 163 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 164 const DISubprogram *ClosestSubprogram = nullptr; 165 while (Scope != nullptr) { 166 if (ClosestSubprogram == nullptr) 167 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 168 StringRef ScopeName = getPrettyScopeName(Scope); 169 if (!ScopeName.empty()) 170 QualifiedNameComponents.push_back(ScopeName); 171 Scope = Scope->getScope().resolve(); 172 } 173 return ClosestSubprogram; 174 } 175 176 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 177 StringRef TypeName) { 178 std::string FullyQualifiedName; 179 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 180 FullyQualifiedName.append(QualifiedNameComponent); 181 FullyQualifiedName.append("::"); 182 } 183 FullyQualifiedName.append(TypeName); 184 return FullyQualifiedName; 185 } 186 187 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 188 SmallVector<StringRef, 5> QualifiedNameComponents; 189 getQualifiedNameComponents(Scope, QualifiedNameComponents); 190 return getQualifiedName(QualifiedNameComponents, Name); 191 } 192 193 struct CodeViewDebug::TypeLoweringScope { 194 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 195 ~TypeLoweringScope() { 196 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 197 // inner TypeLoweringScopes don't attempt to emit deferred types. 198 if (CVD.TypeEmissionLevel == 1) 199 CVD.emitDeferredCompleteTypes(); 200 --CVD.TypeEmissionLevel; 201 } 202 CodeViewDebug &CVD; 203 }; 204 205 static std::string getFullyQualifiedName(const DIScope *Ty) { 206 const DIScope *Scope = Ty->getScope().resolve(); 207 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 208 } 209 210 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 211 // No scope means global scope and that uses the zero index. 212 if (!Scope || isa<DIFile>(Scope)) 213 return TypeIndex(); 214 215 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 216 217 // Check if we've already translated this scope. 218 auto I = TypeIndices.find({Scope, nullptr}); 219 if (I != TypeIndices.end()) 220 return I->second; 221 222 // Build the fully qualified name of the scope. 223 std::string ScopeName = getFullyQualifiedName(Scope); 224 StringIdRecord SID(TypeIndex(), ScopeName); 225 auto TI = TypeTable.writeKnownType(SID); 226 return recordTypeIndexForDINode(Scope, TI); 227 } 228 229 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 230 assert(SP); 231 232 // Check if we've already translated this subprogram. 233 auto I = TypeIndices.find({SP, nullptr}); 234 if (I != TypeIndices.end()) 235 return I->second; 236 237 // The display name includes function template arguments. Drop them to match 238 // MSVC. 239 StringRef DisplayName = SP->getDisplayName().split('<').first; 240 241 const DIScope *Scope = SP->getScope().resolve(); 242 TypeIndex TI; 243 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 244 // If the scope is a DICompositeType, then this must be a method. Member 245 // function types take some special handling, and require access to the 246 // subprogram. 247 TypeIndex ClassType = getTypeIndex(Class); 248 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 249 DisplayName); 250 TI = TypeTable.writeKnownType(MFuncId); 251 } else { 252 // Otherwise, this must be a free function. 253 TypeIndex ParentScope = getScopeIndex(Scope); 254 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 255 TI = TypeTable.writeKnownType(FuncId); 256 } 257 258 return recordTypeIndexForDINode(SP, TI); 259 } 260 261 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 262 const DICompositeType *Class) { 263 // Always use the method declaration as the key for the function type. The 264 // method declaration contains the this adjustment. 265 if (SP->getDeclaration()) 266 SP = SP->getDeclaration(); 267 assert(!SP->getDeclaration() && "should use declaration as key"); 268 269 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 270 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 271 auto I = TypeIndices.find({SP, Class}); 272 if (I != TypeIndices.end()) 273 return I->second; 274 275 // Make sure complete type info for the class is emitted *after* the member 276 // function type, as the complete class type is likely to reference this 277 // member function type. 278 TypeLoweringScope S(*this); 279 TypeIndex TI = 280 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 281 return recordTypeIndexForDINode(SP, TI, Class); 282 } 283 284 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 285 TypeIndex TI, 286 const DIType *ClassTy) { 287 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 288 (void)InsertResult; 289 assert(InsertResult.second && "DINode was already assigned a type index"); 290 return TI; 291 } 292 293 unsigned CodeViewDebug::getPointerSizeInBytes() { 294 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 295 } 296 297 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 298 const DILocation *InlinedAt) { 299 if (InlinedAt) { 300 // This variable was inlined. Associate it with the InlineSite. 301 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 302 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 303 Site.InlinedLocals.emplace_back(Var); 304 } else { 305 // This variable goes in the main ProcSym. 306 CurFn->Locals.emplace_back(Var); 307 } 308 } 309 310 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 311 const DILocation *Loc) { 312 auto B = Locs.begin(), E = Locs.end(); 313 if (std::find(B, E, Loc) == E) 314 Locs.push_back(Loc); 315 } 316 317 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 318 const MachineFunction *MF) { 319 // Skip this instruction if it has the same location as the previous one. 320 if (DL == CurFn->LastLoc) 321 return; 322 323 const DIScope *Scope = DL.get()->getScope(); 324 if (!Scope) 325 return; 326 327 // Skip this line if it is longer than the maximum we can record. 328 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 329 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 330 LI.isNeverStepInto()) 331 return; 332 333 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 334 if (CI.getStartColumn() != DL.getCol()) 335 return; 336 337 if (!CurFn->HaveLineInfo) 338 CurFn->HaveLineInfo = true; 339 unsigned FileId = 0; 340 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 341 FileId = CurFn->LastFileId; 342 else 343 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 344 CurFn->LastLoc = DL; 345 346 unsigned FuncId = CurFn->FuncId; 347 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 348 const DILocation *Loc = DL.get(); 349 350 // If this location was actually inlined from somewhere else, give it the ID 351 // of the inline call site. 352 FuncId = 353 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 354 355 // Ensure we have links in the tree of inline call sites. 356 bool FirstLoc = true; 357 while ((SiteLoc = Loc->getInlinedAt())) { 358 InlineSite &Site = 359 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 360 if (!FirstLoc) 361 addLocIfNotPresent(Site.ChildSites, Loc); 362 FirstLoc = false; 363 Loc = SiteLoc; 364 } 365 addLocIfNotPresent(CurFn->ChildSites, Loc); 366 } 367 368 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 369 /*PrologueEnd=*/false, /*IsStmt=*/false, 370 DL->getFilename(), SMLoc()); 371 } 372 373 void CodeViewDebug::emitCodeViewMagicVersion() { 374 OS.EmitValueToAlignment(4); 375 OS.AddComment("Debug section magic"); 376 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 377 } 378 379 void CodeViewDebug::endModule() { 380 if (!Asm || !MMI->hasDebugInfo()) 381 return; 382 383 assert(Asm != nullptr); 384 385 // The COFF .debug$S section consists of several subsections, each starting 386 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 387 // of the payload followed by the payload itself. The subsections are 4-byte 388 // aligned. 389 390 // Use the generic .debug$S section, and make a subsection for all the inlined 391 // subprograms. 392 switchToDebugSectionForSymbol(nullptr); 393 394 MCSymbol *CompilerInfo = beginCVSubsection(ModuleSubstreamKind::Symbols); 395 emitCompilerInformation(); 396 endCVSubsection(CompilerInfo); 397 398 emitInlineeLinesSubsection(); 399 400 // Emit per-function debug information. 401 for (auto &P : FnDebugInfo) 402 if (!P.first->isDeclarationForLinker()) 403 emitDebugInfoForFunction(P.first, P.second); 404 405 // Emit global variable debug information. 406 setCurrentSubprogram(nullptr); 407 emitDebugInfoForGlobals(); 408 409 // Emit retained types. 410 emitDebugInfoForRetainedTypes(); 411 412 // Switch back to the generic .debug$S section after potentially processing 413 // comdat symbol sections. 414 switchToDebugSectionForSymbol(nullptr); 415 416 // Emit UDT records for any types used by global variables. 417 if (!GlobalUDTs.empty()) { 418 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 419 emitDebugInfoForUDTs(GlobalUDTs); 420 endCVSubsection(SymbolsEnd); 421 } 422 423 // This subsection holds a file index to offset in string table table. 424 OS.AddComment("File index to string table offset subsection"); 425 OS.EmitCVFileChecksumsDirective(); 426 427 // This subsection holds the string table. 428 OS.AddComment("String table"); 429 OS.EmitCVStringTableDirective(); 430 431 // Emit type information last, so that any types we translate while emitting 432 // function info are included. 433 emitTypeInformation(); 434 435 clear(); 436 } 437 438 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 439 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 440 // after a fixed length portion of the record. The fixed length portion should 441 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 442 // overall record size is less than the maximum allowed. 443 unsigned MaxFixedRecordLength = 0xF00; 444 SmallString<32> NullTerminatedString( 445 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 446 NullTerminatedString.push_back('\0'); 447 OS.EmitBytes(NullTerminatedString); 448 } 449 450 void CodeViewDebug::emitTypeInformation() { 451 // Do nothing if we have no debug info or if no non-trivial types were emitted 452 // to TypeTable during codegen. 453 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 454 if (!CU_Nodes) 455 return; 456 if (TypeTable.empty()) 457 return; 458 459 // Start the .debug$T section with 0x4. 460 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 461 emitCodeViewMagicVersion(); 462 463 SmallString<8> CommentPrefix; 464 if (OS.isVerboseAsm()) { 465 CommentPrefix += '\t'; 466 CommentPrefix += Asm->MAI->getCommentString(); 467 CommentPrefix += ' '; 468 } 469 470 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 471 TypeTable.ForEachRecord([&](TypeIndex Index, ArrayRef<uint8_t> Record) { 472 if (OS.isVerboseAsm()) { 473 // Emit a block comment describing the type record for readability. 474 SmallString<512> CommentBlock; 475 raw_svector_ostream CommentOS(CommentBlock); 476 ScopedPrinter SP(CommentOS); 477 SP.setPrefix(CommentPrefix); 478 CVTD.setPrinter(&SP); 479 Error E = CVTD.dump(Record); 480 if (E) { 481 logAllUnhandledErrors(std::move(E), errs(), "error: "); 482 llvm_unreachable("produced malformed type record"); 483 } 484 // emitRawComment will insert its own tab and comment string before 485 // the first line, so strip off our first one. It also prints its own 486 // newline. 487 OS.emitRawComment( 488 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 489 } else { 490 #ifndef NDEBUG 491 // Assert that the type data is valid even if we aren't dumping 492 // comments. The MSVC linker doesn't do much type record validation, 493 // so the first link of an invalid type record can succeed while 494 // subsequent links will fail with LNK1285. 495 ByteStream Stream(Record); 496 CVTypeArray Types; 497 StreamReader Reader(Stream); 498 Error E = Reader.readArray(Types, Reader.getLength()); 499 if (!E) { 500 TypeVisitorCallbacks C; 501 E = CVTypeVisitor(C).visitTypeStream(Types); 502 } 503 if (E) { 504 logAllUnhandledErrors(std::move(E), errs(), "error: "); 505 llvm_unreachable("produced malformed type record"); 506 } 507 #endif 508 } 509 StringRef S(reinterpret_cast<const char *>(Record.data()), Record.size()); 510 OS.EmitBinaryData(S); 511 }); 512 } 513 514 namespace { 515 516 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 517 switch (DWLang) { 518 case dwarf::DW_LANG_C: 519 case dwarf::DW_LANG_C89: 520 case dwarf::DW_LANG_C99: 521 case dwarf::DW_LANG_C11: 522 case dwarf::DW_LANG_ObjC: 523 return SourceLanguage::C; 524 case dwarf::DW_LANG_C_plus_plus: 525 case dwarf::DW_LANG_C_plus_plus_03: 526 case dwarf::DW_LANG_C_plus_plus_11: 527 case dwarf::DW_LANG_C_plus_plus_14: 528 return SourceLanguage::Cpp; 529 case dwarf::DW_LANG_Fortran77: 530 case dwarf::DW_LANG_Fortran90: 531 case dwarf::DW_LANG_Fortran03: 532 case dwarf::DW_LANG_Fortran08: 533 return SourceLanguage::Fortran; 534 case dwarf::DW_LANG_Pascal83: 535 return SourceLanguage::Pascal; 536 case dwarf::DW_LANG_Cobol74: 537 case dwarf::DW_LANG_Cobol85: 538 return SourceLanguage::Cobol; 539 case dwarf::DW_LANG_Java: 540 return SourceLanguage::Java; 541 default: 542 // There's no CodeView representation for this language, and CV doesn't 543 // have an "unknown" option for the language field, so we'll use MASM, 544 // as it's very low level. 545 return SourceLanguage::Masm; 546 } 547 } 548 549 struct Version { 550 int Part[4]; 551 }; 552 553 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 554 // the version number. 555 static Version parseVersion(StringRef Name) { 556 Version V = {{0}}; 557 int N = 0; 558 for (const char C : Name) { 559 if (isdigit(C)) { 560 V.Part[N] *= 10; 561 V.Part[N] += C - '0'; 562 } else if (C == '.') { 563 ++N; 564 if (N >= 4) 565 return V; 566 } else if (N > 0) 567 return V; 568 } 569 return V; 570 } 571 572 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 573 switch (Type) { 574 case Triple::ArchType::x86: 575 return CPUType::Pentium3; 576 case Triple::ArchType::x86_64: 577 return CPUType::X64; 578 case Triple::ArchType::thumb: 579 return CPUType::Thumb; 580 default: 581 report_fatal_error("target architecture doesn't map to a CodeView " 582 "CPUType"); 583 } 584 } 585 586 } // anonymous namespace 587 588 void CodeViewDebug::emitCompilerInformation() { 589 MCContext &Context = MMI->getContext(); 590 MCSymbol *CompilerBegin = Context.createTempSymbol(), 591 *CompilerEnd = Context.createTempSymbol(); 592 OS.AddComment("Record length"); 593 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 594 OS.EmitLabel(CompilerBegin); 595 OS.AddComment("Record kind: S_COMPILE3"); 596 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 597 uint32_t Flags = 0; 598 599 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 600 const MDNode *Node = *CUs->operands().begin(); 601 const auto *CU = cast<DICompileUnit>(Node); 602 603 // The low byte of the flags indicates the source language. 604 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 605 // TODO: Figure out which other flags need to be set. 606 607 OS.AddComment("Flags and language"); 608 OS.EmitIntValue(Flags, 4); 609 610 OS.AddComment("CPUType"); 611 CPUType CPU = 612 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 613 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 614 615 StringRef CompilerVersion = CU->getProducer(); 616 Version FrontVer = parseVersion(CompilerVersion); 617 OS.AddComment("Frontend version"); 618 for (int N = 0; N < 4; ++N) 619 OS.EmitIntValue(FrontVer.Part[N], 2); 620 621 // Some Microsoft tools, like Binscope, expect a backend version number of at 622 // least 8.something, so we'll coerce the LLVM version into a form that 623 // guarantees it'll be big enough without really lying about the version. 624 int Major = 1000 * LLVM_VERSION_MAJOR + 625 10 * LLVM_VERSION_MINOR + 626 LLVM_VERSION_PATCH; 627 // Clamp it for builds that use unusually large version numbers. 628 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 629 Version BackVer = {{ Major, 0, 0, 0 }}; 630 OS.AddComment("Backend version"); 631 for (int N = 0; N < 4; ++N) 632 OS.EmitIntValue(BackVer.Part[N], 2); 633 634 OS.AddComment("Null-terminated compiler version string"); 635 emitNullTerminatedSymbolName(OS, CompilerVersion); 636 637 OS.EmitLabel(CompilerEnd); 638 } 639 640 void CodeViewDebug::emitInlineeLinesSubsection() { 641 if (InlinedSubprograms.empty()) 642 return; 643 644 OS.AddComment("Inlinee lines subsection"); 645 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 646 647 // We don't provide any extra file info. 648 // FIXME: Find out if debuggers use this info. 649 OS.AddComment("Inlinee lines signature"); 650 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 651 652 for (const DISubprogram *SP : InlinedSubprograms) { 653 assert(TypeIndices.count({SP, nullptr})); 654 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 655 656 OS.AddBlankLine(); 657 unsigned FileId = maybeRecordFile(SP->getFile()); 658 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 659 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 660 OS.AddBlankLine(); 661 // The filechecksum table uses 8 byte entries for now, and file ids start at 662 // 1. 663 unsigned FileOffset = (FileId - 1) * 8; 664 OS.AddComment("Type index of inlined function"); 665 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 666 OS.AddComment("Offset into filechecksum table"); 667 OS.EmitIntValue(FileOffset, 4); 668 OS.AddComment("Starting line number"); 669 OS.EmitIntValue(SP->getLine(), 4); 670 } 671 672 endCVSubsection(InlineEnd); 673 } 674 675 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 676 const DILocation *InlinedAt, 677 const InlineSite &Site) { 678 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 679 *InlineEnd = MMI->getContext().createTempSymbol(); 680 681 assert(TypeIndices.count({Site.Inlinee, nullptr})); 682 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 683 684 // SymbolRecord 685 OS.AddComment("Record length"); 686 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 687 OS.EmitLabel(InlineBegin); 688 OS.AddComment("Record kind: S_INLINESITE"); 689 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 690 691 OS.AddComment("PtrParent"); 692 OS.EmitIntValue(0, 4); 693 OS.AddComment("PtrEnd"); 694 OS.EmitIntValue(0, 4); 695 OS.AddComment("Inlinee type index"); 696 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 697 698 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 699 unsigned StartLineNum = Site.Inlinee->getLine(); 700 701 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 702 FI.Begin, FI.End); 703 704 OS.EmitLabel(InlineEnd); 705 706 emitLocalVariableList(Site.InlinedLocals); 707 708 // Recurse on child inlined call sites before closing the scope. 709 for (const DILocation *ChildSite : Site.ChildSites) { 710 auto I = FI.InlineSites.find(ChildSite); 711 assert(I != FI.InlineSites.end() && 712 "child site not in function inline site map"); 713 emitInlinedCallSite(FI, ChildSite, I->second); 714 } 715 716 // Close the scope. 717 OS.AddComment("Record length"); 718 OS.EmitIntValue(2, 2); // RecordLength 719 OS.AddComment("Record kind: S_INLINESITE_END"); 720 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 721 } 722 723 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 724 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 725 // comdat key. A section may be comdat because of -ffunction-sections or 726 // because it is comdat in the IR. 727 MCSectionCOFF *GVSec = 728 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 729 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 730 731 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 732 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 733 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 734 735 OS.SwitchSection(DebugSec); 736 737 // Emit the magic version number if this is the first time we've switched to 738 // this section. 739 if (ComdatDebugSections.insert(DebugSec).second) 740 emitCodeViewMagicVersion(); 741 } 742 743 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 744 FunctionInfo &FI) { 745 // For each function there is a separate subsection 746 // which holds the PC to file:line table. 747 const MCSymbol *Fn = Asm->getSymbol(GV); 748 assert(Fn); 749 750 // Switch to the to a comdat section, if appropriate. 751 switchToDebugSectionForSymbol(Fn); 752 753 std::string FuncName; 754 auto *SP = GV->getSubprogram(); 755 assert(SP); 756 setCurrentSubprogram(SP); 757 758 // If we have a display name, build the fully qualified name by walking the 759 // chain of scopes. 760 if (!SP->getDisplayName().empty()) 761 FuncName = 762 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 763 764 // If our DISubprogram name is empty, use the mangled name. 765 if (FuncName.empty()) 766 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 767 768 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 769 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 770 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 771 { 772 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 773 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 774 OS.AddComment("Record length"); 775 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 776 OS.EmitLabel(ProcRecordBegin); 777 778 if (GV->hasLocalLinkage()) { 779 OS.AddComment("Record kind: S_LPROC32_ID"); 780 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 781 } else { 782 OS.AddComment("Record kind: S_GPROC32_ID"); 783 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 784 } 785 786 // These fields are filled in by tools like CVPACK which run after the fact. 787 OS.AddComment("PtrParent"); 788 OS.EmitIntValue(0, 4); 789 OS.AddComment("PtrEnd"); 790 OS.EmitIntValue(0, 4); 791 OS.AddComment("PtrNext"); 792 OS.EmitIntValue(0, 4); 793 // This is the important bit that tells the debugger where the function 794 // code is located and what's its size: 795 OS.AddComment("Code size"); 796 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 797 OS.AddComment("Offset after prologue"); 798 OS.EmitIntValue(0, 4); 799 OS.AddComment("Offset before epilogue"); 800 OS.EmitIntValue(0, 4); 801 OS.AddComment("Function type index"); 802 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 803 OS.AddComment("Function section relative address"); 804 OS.EmitCOFFSecRel32(Fn); 805 OS.AddComment("Function section index"); 806 OS.EmitCOFFSectionIndex(Fn); 807 OS.AddComment("Flags"); 808 OS.EmitIntValue(0, 1); 809 // Emit the function display name as a null-terminated string. 810 OS.AddComment("Function name"); 811 // Truncate the name so we won't overflow the record length field. 812 emitNullTerminatedSymbolName(OS, FuncName); 813 OS.EmitLabel(ProcRecordEnd); 814 815 emitLocalVariableList(FI.Locals); 816 817 // Emit inlined call site information. Only emit functions inlined directly 818 // into the parent function. We'll emit the other sites recursively as part 819 // of their parent inline site. 820 for (const DILocation *InlinedAt : FI.ChildSites) { 821 auto I = FI.InlineSites.find(InlinedAt); 822 assert(I != FI.InlineSites.end() && 823 "child site not in function inline site map"); 824 emitInlinedCallSite(FI, InlinedAt, I->second); 825 } 826 827 if (SP != nullptr) 828 emitDebugInfoForUDTs(LocalUDTs); 829 830 // We're done with this function. 831 OS.AddComment("Record length"); 832 OS.EmitIntValue(0x0002, 2); 833 OS.AddComment("Record kind: S_PROC_ID_END"); 834 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 835 } 836 endCVSubsection(SymbolsEnd); 837 838 // We have an assembler directive that takes care of the whole line table. 839 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 840 } 841 842 CodeViewDebug::LocalVarDefRange 843 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 844 LocalVarDefRange DR; 845 DR.InMemory = -1; 846 DR.DataOffset = Offset; 847 assert(DR.DataOffset == Offset && "truncation"); 848 DR.IsSubfield = 0; 849 DR.StructOffset = 0; 850 DR.CVRegister = CVRegister; 851 return DR; 852 } 853 854 CodeViewDebug::LocalVarDefRange 855 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 856 int Offset, bool IsSubfield, 857 uint16_t StructOffset) { 858 LocalVarDefRange DR; 859 DR.InMemory = InMemory; 860 DR.DataOffset = Offset; 861 DR.IsSubfield = IsSubfield; 862 DR.StructOffset = StructOffset; 863 DR.CVRegister = CVRegister; 864 return DR; 865 } 866 867 void CodeViewDebug::collectVariableInfoFromMFTable( 868 DenseSet<InlinedVariable> &Processed) { 869 const MachineFunction &MF = *Asm->MF; 870 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 871 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 872 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 873 874 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 875 if (!VI.Var) 876 continue; 877 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 878 "Expected inlined-at fields to agree"); 879 880 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 881 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 882 883 // If variable scope is not found then skip this variable. 884 if (!Scope) 885 continue; 886 887 // Get the frame register used and the offset. 888 unsigned FrameReg = 0; 889 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 890 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 891 892 // Calculate the label ranges. 893 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 894 for (const InsnRange &Range : Scope->getRanges()) { 895 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 896 const MCSymbol *End = getLabelAfterInsn(Range.second); 897 End = End ? End : Asm->getFunctionEnd(); 898 DefRange.Ranges.emplace_back(Begin, End); 899 } 900 901 LocalVariable Var; 902 Var.DIVar = VI.Var; 903 Var.DefRanges.emplace_back(std::move(DefRange)); 904 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 905 } 906 } 907 908 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 909 DenseSet<InlinedVariable> Processed; 910 // Grab the variable info that was squirreled away in the MMI side-table. 911 collectVariableInfoFromMFTable(Processed); 912 913 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 914 915 for (const auto &I : DbgValues) { 916 InlinedVariable IV = I.first; 917 if (Processed.count(IV)) 918 continue; 919 const DILocalVariable *DIVar = IV.first; 920 const DILocation *InlinedAt = IV.second; 921 922 // Instruction ranges, specifying where IV is accessible. 923 const auto &Ranges = I.second; 924 925 LexicalScope *Scope = nullptr; 926 if (InlinedAt) 927 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 928 else 929 Scope = LScopes.findLexicalScope(DIVar->getScope()); 930 // If variable scope is not found then skip this variable. 931 if (!Scope) 932 continue; 933 934 LocalVariable Var; 935 Var.DIVar = DIVar; 936 937 // Calculate the definition ranges. 938 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 939 const InsnRange &Range = *I; 940 const MachineInstr *DVInst = Range.first; 941 assert(DVInst->isDebugValue() && "Invalid History entry"); 942 const DIExpression *DIExpr = DVInst->getDebugExpression(); 943 bool IsSubfield = false; 944 unsigned StructOffset = 0; 945 946 // Handle fragments. 947 auto Fragment = DIExpr->getFragmentInfo(); 948 if (DIExpr && Fragment) { 949 IsSubfield = true; 950 StructOffset = Fragment->OffsetInBits / 8; 951 } else if (DIExpr && DIExpr->getNumElements() > 0) { 952 continue; // Ignore unrecognized exprs. 953 } 954 955 // Bail if operand 0 is not a valid register. This means the variable is a 956 // simple constant, or is described by a complex expression. 957 // FIXME: Find a way to represent constant variables, since they are 958 // relatively common. 959 unsigned Reg = 960 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 961 if (Reg == 0) 962 continue; 963 964 // Handle the two cases we can handle: indirect in memory and in register. 965 unsigned CVReg = TRI->getCodeViewRegNum(Reg); 966 bool InMemory = DVInst->getOperand(1).isImm(); 967 int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0; 968 { 969 LocalVarDefRange DR; 970 DR.CVRegister = CVReg; 971 DR.InMemory = InMemory; 972 DR.DataOffset = Offset; 973 DR.IsSubfield = IsSubfield; 974 DR.StructOffset = StructOffset; 975 976 if (Var.DefRanges.empty() || 977 Var.DefRanges.back().isDifferentLocation(DR)) { 978 Var.DefRanges.emplace_back(std::move(DR)); 979 } 980 } 981 982 // Compute the label range. 983 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 984 const MCSymbol *End = getLabelAfterInsn(Range.second); 985 if (!End) { 986 // This range is valid until the next overlapping bitpiece. In the 987 // common case, ranges will not be bitpieces, so they will overlap. 988 auto J = std::next(I); 989 while (J != E && 990 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 991 ++J; 992 if (J != E) 993 End = getLabelBeforeInsn(J->first); 994 else 995 End = Asm->getFunctionEnd(); 996 } 997 998 // If the last range end is our begin, just extend the last range. 999 // Otherwise make a new range. 1000 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 1001 Var.DefRanges.back().Ranges; 1002 if (!Ranges.empty() && Ranges.back().second == Begin) 1003 Ranges.back().second = End; 1004 else 1005 Ranges.emplace_back(Begin, End); 1006 1007 // FIXME: Do more range combining. 1008 } 1009 1010 recordLocalVariable(std::move(Var), InlinedAt); 1011 } 1012 } 1013 1014 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 1015 assert(!CurFn && "Can't process two functions at once!"); 1016 1017 if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram()) 1018 return; 1019 1020 DebugHandlerBase::beginFunction(MF); 1021 1022 const Function *GV = MF->getFunction(); 1023 assert(FnDebugInfo.count(GV) == false); 1024 CurFn = &FnDebugInfo[GV]; 1025 CurFn->FuncId = NextFuncId++; 1026 CurFn->Begin = Asm->getFunctionBegin(); 1027 1028 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1029 1030 // Find the end of the function prolog. First known non-DBG_VALUE and 1031 // non-frame setup location marks the beginning of the function body. 1032 // FIXME: is there a simpler a way to do this? Can we just search 1033 // for the first instruction of the function, not the last of the prolog? 1034 DebugLoc PrologEndLoc; 1035 bool EmptyPrologue = true; 1036 for (const auto &MBB : *MF) { 1037 for (const auto &MI : MBB) { 1038 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 1039 MI.getDebugLoc()) { 1040 PrologEndLoc = MI.getDebugLoc(); 1041 break; 1042 } else if (!MI.isDebugValue()) { 1043 EmptyPrologue = false; 1044 } 1045 } 1046 } 1047 1048 // Record beginning of function if we have a non-empty prologue. 1049 if (PrologEndLoc && !EmptyPrologue) { 1050 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1051 maybeRecordLocation(FnStartDL, MF); 1052 } 1053 } 1054 1055 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 1056 // Don't record empty UDTs. 1057 if (Ty->getName().empty()) 1058 return; 1059 1060 SmallVector<StringRef, 5> QualifiedNameComponents; 1061 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1062 Ty->getScope().resolve(), QualifiedNameComponents); 1063 1064 std::string FullyQualifiedName = 1065 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1066 1067 if (ClosestSubprogram == nullptr) 1068 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1069 else if (ClosestSubprogram == CurrentSubprogram) 1070 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1071 1072 // TODO: What if the ClosestSubprogram is neither null or the current 1073 // subprogram? Currently, the UDT just gets dropped on the floor. 1074 // 1075 // The current behavior is not desirable. To get maximal fidelity, we would 1076 // need to perform all type translation before beginning emission of .debug$S 1077 // and then make LocalUDTs a member of FunctionInfo 1078 } 1079 1080 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1081 // Generic dispatch for lowering an unknown type. 1082 switch (Ty->getTag()) { 1083 case dwarf::DW_TAG_array_type: 1084 return lowerTypeArray(cast<DICompositeType>(Ty)); 1085 case dwarf::DW_TAG_typedef: 1086 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1087 case dwarf::DW_TAG_base_type: 1088 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1089 case dwarf::DW_TAG_pointer_type: 1090 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1091 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1092 LLVM_FALLTHROUGH; 1093 case dwarf::DW_TAG_reference_type: 1094 case dwarf::DW_TAG_rvalue_reference_type: 1095 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1096 case dwarf::DW_TAG_ptr_to_member_type: 1097 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1098 case dwarf::DW_TAG_const_type: 1099 case dwarf::DW_TAG_volatile_type: 1100 // TODO: add support for DW_TAG_atomic_type here 1101 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1102 case dwarf::DW_TAG_subroutine_type: 1103 if (ClassTy) { 1104 // The member function type of a member function pointer has no 1105 // ThisAdjustment. 1106 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1107 /*ThisAdjustment=*/0); 1108 } 1109 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1110 case dwarf::DW_TAG_enumeration_type: 1111 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1112 case dwarf::DW_TAG_class_type: 1113 case dwarf::DW_TAG_structure_type: 1114 return lowerTypeClass(cast<DICompositeType>(Ty)); 1115 case dwarf::DW_TAG_union_type: 1116 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1117 default: 1118 // Use the null type index. 1119 return TypeIndex(); 1120 } 1121 } 1122 1123 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1124 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1125 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1126 StringRef TypeName = Ty->getName(); 1127 1128 addToUDTs(Ty, UnderlyingTypeIndex); 1129 1130 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1131 TypeName == "HRESULT") 1132 return TypeIndex(SimpleTypeKind::HResult); 1133 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1134 TypeName == "wchar_t") 1135 return TypeIndex(SimpleTypeKind::WideCharacter); 1136 1137 return UnderlyingTypeIndex; 1138 } 1139 1140 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1141 DITypeRef ElementTypeRef = Ty->getBaseType(); 1142 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1143 // IndexType is size_t, which depends on the bitness of the target. 1144 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 1145 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1146 : TypeIndex(SimpleTypeKind::UInt32Long); 1147 1148 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1149 1150 1151 // We want to assert that the element type multiplied by the array lengths 1152 // match the size of the overall array. However, if we don't have complete 1153 // type information for the base type, we can't make this assertion. This 1154 // happens if limited debug info is enabled in this case: 1155 // struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); }; 1156 // VTableOptzn array[3]; 1157 // The DICompositeType of VTableOptzn will have size zero, and the array will 1158 // have size 3 * sizeof(void*), and we should avoid asserting. 1159 // 1160 // There is a related bug in the front-end where an array of a structure, 1161 // which was declared as incomplete structure first, ends up not getting a 1162 // size assigned to it. (PR28303) 1163 // Example: 1164 // struct A(*p)[3]; 1165 // struct A { int f; } a[3]; 1166 bool PartiallyIncomplete = false; 1167 if (Ty->getSizeInBits() == 0 || ElementSize == 0) { 1168 PartiallyIncomplete = true; 1169 } 1170 1171 // Add subranges to array type. 1172 DINodeArray Elements = Ty->getElements(); 1173 for (int i = Elements.size() - 1; i >= 0; --i) { 1174 const DINode *Element = Elements[i]; 1175 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1176 1177 const DISubrange *Subrange = cast<DISubrange>(Element); 1178 assert(Subrange->getLowerBound() == 0 && 1179 "codeview doesn't support subranges with lower bounds"); 1180 int64_t Count = Subrange->getCount(); 1181 1182 // Variable Length Array (VLA) has Count equal to '-1'. 1183 // Replace with Count '1', assume it is the minimum VLA length. 1184 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1185 if (Count == -1) { 1186 Count = 1; 1187 PartiallyIncomplete = true; 1188 } 1189 1190 // Update the element size and element type index for subsequent subranges. 1191 ElementSize *= Count; 1192 1193 // If this is the outermost array, use the size from the array. It will be 1194 // more accurate if PartiallyIncomplete is true. 1195 uint64_t ArraySize = 1196 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1197 1198 StringRef Name = (i == 0) ? Ty->getName() : ""; 1199 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1200 ElementTypeIndex = TypeTable.writeKnownType(AR); 1201 } 1202 1203 (void)PartiallyIncomplete; 1204 assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8)); 1205 1206 return ElementTypeIndex; 1207 } 1208 1209 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1210 TypeIndex Index; 1211 dwarf::TypeKind Kind; 1212 uint32_t ByteSize; 1213 1214 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1215 ByteSize = Ty->getSizeInBits() / 8; 1216 1217 SimpleTypeKind STK = SimpleTypeKind::None; 1218 switch (Kind) { 1219 case dwarf::DW_ATE_address: 1220 // FIXME: Translate 1221 break; 1222 case dwarf::DW_ATE_boolean: 1223 switch (ByteSize) { 1224 case 1: STK = SimpleTypeKind::Boolean8; break; 1225 case 2: STK = SimpleTypeKind::Boolean16; break; 1226 case 4: STK = SimpleTypeKind::Boolean32; break; 1227 case 8: STK = SimpleTypeKind::Boolean64; break; 1228 case 16: STK = SimpleTypeKind::Boolean128; break; 1229 } 1230 break; 1231 case dwarf::DW_ATE_complex_float: 1232 switch (ByteSize) { 1233 case 2: STK = SimpleTypeKind::Complex16; break; 1234 case 4: STK = SimpleTypeKind::Complex32; break; 1235 case 8: STK = SimpleTypeKind::Complex64; break; 1236 case 10: STK = SimpleTypeKind::Complex80; break; 1237 case 16: STK = SimpleTypeKind::Complex128; break; 1238 } 1239 break; 1240 case dwarf::DW_ATE_float: 1241 switch (ByteSize) { 1242 case 2: STK = SimpleTypeKind::Float16; break; 1243 case 4: STK = SimpleTypeKind::Float32; break; 1244 case 6: STK = SimpleTypeKind::Float48; break; 1245 case 8: STK = SimpleTypeKind::Float64; break; 1246 case 10: STK = SimpleTypeKind::Float80; break; 1247 case 16: STK = SimpleTypeKind::Float128; break; 1248 } 1249 break; 1250 case dwarf::DW_ATE_signed: 1251 switch (ByteSize) { 1252 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1253 case 2: STK = SimpleTypeKind::Int16Short; break; 1254 case 4: STK = SimpleTypeKind::Int32; break; 1255 case 8: STK = SimpleTypeKind::Int64Quad; break; 1256 case 16: STK = SimpleTypeKind::Int128Oct; break; 1257 } 1258 break; 1259 case dwarf::DW_ATE_unsigned: 1260 switch (ByteSize) { 1261 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1262 case 2: STK = SimpleTypeKind::UInt16Short; break; 1263 case 4: STK = SimpleTypeKind::UInt32; break; 1264 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1265 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1266 } 1267 break; 1268 case dwarf::DW_ATE_UTF: 1269 switch (ByteSize) { 1270 case 2: STK = SimpleTypeKind::Character16; break; 1271 case 4: STK = SimpleTypeKind::Character32; break; 1272 } 1273 break; 1274 case dwarf::DW_ATE_signed_char: 1275 if (ByteSize == 1) 1276 STK = SimpleTypeKind::SignedCharacter; 1277 break; 1278 case dwarf::DW_ATE_unsigned_char: 1279 if (ByteSize == 1) 1280 STK = SimpleTypeKind::UnsignedCharacter; 1281 break; 1282 default: 1283 break; 1284 } 1285 1286 // Apply some fixups based on the source-level type name. 1287 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1288 STK = SimpleTypeKind::Int32Long; 1289 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1290 STK = SimpleTypeKind::UInt32Long; 1291 if (STK == SimpleTypeKind::UInt16Short && 1292 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1293 STK = SimpleTypeKind::WideCharacter; 1294 if ((STK == SimpleTypeKind::SignedCharacter || 1295 STK == SimpleTypeKind::UnsignedCharacter) && 1296 Ty->getName() == "char") 1297 STK = SimpleTypeKind::NarrowCharacter; 1298 1299 return TypeIndex(STK); 1300 } 1301 1302 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1303 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1304 1305 // Pointers to simple types can use SimpleTypeMode, rather than having a 1306 // dedicated pointer type record. 1307 if (PointeeTI.isSimple() && 1308 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1309 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1310 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1311 ? SimpleTypeMode::NearPointer64 1312 : SimpleTypeMode::NearPointer32; 1313 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1314 } 1315 1316 PointerKind PK = 1317 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1318 PointerMode PM = PointerMode::Pointer; 1319 switch (Ty->getTag()) { 1320 default: llvm_unreachable("not a pointer tag type"); 1321 case dwarf::DW_TAG_pointer_type: 1322 PM = PointerMode::Pointer; 1323 break; 1324 case dwarf::DW_TAG_reference_type: 1325 PM = PointerMode::LValueReference; 1326 break; 1327 case dwarf::DW_TAG_rvalue_reference_type: 1328 PM = PointerMode::RValueReference; 1329 break; 1330 } 1331 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1332 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1333 // do. 1334 PointerOptions PO = PointerOptions::None; 1335 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1336 return TypeTable.writeKnownType(PR); 1337 } 1338 1339 static PointerToMemberRepresentation 1340 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1341 // SizeInBytes being zero generally implies that the member pointer type was 1342 // incomplete, which can happen if it is part of a function prototype. In this 1343 // case, use the unknown model instead of the general model. 1344 if (IsPMF) { 1345 switch (Flags & DINode::FlagPtrToMemberRep) { 1346 case 0: 1347 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1348 : PointerToMemberRepresentation::GeneralFunction; 1349 case DINode::FlagSingleInheritance: 1350 return PointerToMemberRepresentation::SingleInheritanceFunction; 1351 case DINode::FlagMultipleInheritance: 1352 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1353 case DINode::FlagVirtualInheritance: 1354 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1355 } 1356 } else { 1357 switch (Flags & DINode::FlagPtrToMemberRep) { 1358 case 0: 1359 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1360 : PointerToMemberRepresentation::GeneralData; 1361 case DINode::FlagSingleInheritance: 1362 return PointerToMemberRepresentation::SingleInheritanceData; 1363 case DINode::FlagMultipleInheritance: 1364 return PointerToMemberRepresentation::MultipleInheritanceData; 1365 case DINode::FlagVirtualInheritance: 1366 return PointerToMemberRepresentation::VirtualInheritanceData; 1367 } 1368 } 1369 llvm_unreachable("invalid ptr to member representation"); 1370 } 1371 1372 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1373 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1374 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1375 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1376 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1377 : PointerKind::Near32; 1378 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1379 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1380 : PointerMode::PointerToDataMember; 1381 PointerOptions PO = PointerOptions::None; // FIXME 1382 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1383 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1384 MemberPointerInfo MPI( 1385 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1386 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1387 return TypeTable.writeKnownType(PR); 1388 } 1389 1390 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1391 /// have a translation, use the NearC convention. 1392 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1393 switch (DwarfCC) { 1394 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1395 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1396 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1397 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1398 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1399 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1400 } 1401 return CallingConvention::NearC; 1402 } 1403 1404 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1405 ModifierOptions Mods = ModifierOptions::None; 1406 bool IsModifier = true; 1407 const DIType *BaseTy = Ty; 1408 while (IsModifier && BaseTy) { 1409 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1410 switch (BaseTy->getTag()) { 1411 case dwarf::DW_TAG_const_type: 1412 Mods |= ModifierOptions::Const; 1413 break; 1414 case dwarf::DW_TAG_volatile_type: 1415 Mods |= ModifierOptions::Volatile; 1416 break; 1417 default: 1418 IsModifier = false; 1419 break; 1420 } 1421 if (IsModifier) 1422 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1423 } 1424 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1425 ModifierRecord MR(ModifiedTI, Mods); 1426 return TypeTable.writeKnownType(MR); 1427 } 1428 1429 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1430 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1431 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1432 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1433 1434 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1435 ArrayRef<TypeIndex> ArgTypeIndices = None; 1436 if (!ReturnAndArgTypeIndices.empty()) { 1437 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1438 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1439 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1440 } 1441 1442 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1443 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1444 1445 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1446 1447 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1448 ArgTypeIndices.size(), ArgListIndex); 1449 return TypeTable.writeKnownType(Procedure); 1450 } 1451 1452 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1453 const DIType *ClassTy, 1454 int ThisAdjustment) { 1455 // Lower the containing class type. 1456 TypeIndex ClassType = getTypeIndex(ClassTy); 1457 1458 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1459 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1460 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1461 1462 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1463 ArrayRef<TypeIndex> ArgTypeIndices = None; 1464 if (!ReturnAndArgTypeIndices.empty()) { 1465 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1466 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1467 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1468 } 1469 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1470 if (!ArgTypeIndices.empty()) { 1471 ThisTypeIndex = ArgTypeIndices.front(); 1472 ArgTypeIndices = ArgTypeIndices.drop_front(); 1473 } 1474 1475 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1476 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1477 1478 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1479 1480 // TODO: Need to use the correct values for: 1481 // FunctionOptions 1482 // ThisPointerAdjustment. 1483 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1484 FunctionOptions::None, ArgTypeIndices.size(), 1485 ArgListIndex, ThisAdjustment); 1486 TypeIndex TI = TypeTable.writeKnownType(MFR); 1487 1488 return TI; 1489 } 1490 1491 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1492 unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize()); 1493 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1494 1495 VFTableShapeRecord VFTSR(Slots); 1496 return TypeTable.writeKnownType(VFTSR); 1497 } 1498 1499 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1500 switch (Flags & DINode::FlagAccessibility) { 1501 case DINode::FlagPrivate: return MemberAccess::Private; 1502 case DINode::FlagPublic: return MemberAccess::Public; 1503 case DINode::FlagProtected: return MemberAccess::Protected; 1504 case 0: 1505 // If there was no explicit access control, provide the default for the tag. 1506 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1507 : MemberAccess::Public; 1508 } 1509 llvm_unreachable("access flags are exclusive"); 1510 } 1511 1512 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1513 if (SP->isArtificial()) 1514 return MethodOptions::CompilerGenerated; 1515 1516 // FIXME: Handle other MethodOptions. 1517 1518 return MethodOptions::None; 1519 } 1520 1521 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1522 bool Introduced) { 1523 switch (SP->getVirtuality()) { 1524 case dwarf::DW_VIRTUALITY_none: 1525 break; 1526 case dwarf::DW_VIRTUALITY_virtual: 1527 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1528 case dwarf::DW_VIRTUALITY_pure_virtual: 1529 return Introduced ? MethodKind::PureIntroducingVirtual 1530 : MethodKind::PureVirtual; 1531 default: 1532 llvm_unreachable("unhandled virtuality case"); 1533 } 1534 1535 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1536 1537 return MethodKind::Vanilla; 1538 } 1539 1540 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1541 switch (Ty->getTag()) { 1542 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1543 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1544 } 1545 llvm_unreachable("unexpected tag"); 1546 } 1547 1548 /// Return ClassOptions that should be present on both the forward declaration 1549 /// and the defintion of a tag type. 1550 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1551 ClassOptions CO = ClassOptions::None; 1552 1553 // MSVC always sets this flag, even for local types. Clang doesn't always 1554 // appear to give every type a linkage name, which may be problematic for us. 1555 // FIXME: Investigate the consequences of not following them here. 1556 if (!Ty->getIdentifier().empty()) 1557 CO |= ClassOptions::HasUniqueName; 1558 1559 // Put the Nested flag on a type if it appears immediately inside a tag type. 1560 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1561 // here. That flag is only set on definitions, and not forward declarations. 1562 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1563 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1564 CO |= ClassOptions::Nested; 1565 1566 // Put the Scoped flag on function-local types. 1567 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1568 Scope = Scope->getScope().resolve()) { 1569 if (isa<DISubprogram>(Scope)) { 1570 CO |= ClassOptions::Scoped; 1571 break; 1572 } 1573 } 1574 1575 return CO; 1576 } 1577 1578 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1579 ClassOptions CO = getCommonClassOptions(Ty); 1580 TypeIndex FTI; 1581 unsigned EnumeratorCount = 0; 1582 1583 if (Ty->isForwardDecl()) { 1584 CO |= ClassOptions::ForwardReference; 1585 } else { 1586 FieldListRecordBuilder FLRB(TypeTable); 1587 1588 FLRB.begin(); 1589 for (const DINode *Element : Ty->getElements()) { 1590 // We assume that the frontend provides all members in source declaration 1591 // order, which is what MSVC does. 1592 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1593 EnumeratorRecord ER(MemberAccess::Public, 1594 APSInt::getUnsigned(Enumerator->getValue()), 1595 Enumerator->getName()); 1596 FLRB.writeMemberType(ER); 1597 EnumeratorCount++; 1598 } 1599 } 1600 FTI = FLRB.end(); 1601 } 1602 1603 std::string FullName = getFullyQualifiedName(Ty); 1604 1605 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1606 getTypeIndex(Ty->getBaseType())); 1607 return TypeTable.writeKnownType(ER); 1608 } 1609 1610 //===----------------------------------------------------------------------===// 1611 // ClassInfo 1612 //===----------------------------------------------------------------------===// 1613 1614 struct llvm::ClassInfo { 1615 struct MemberInfo { 1616 const DIDerivedType *MemberTypeNode; 1617 uint64_t BaseOffset; 1618 }; 1619 // [MemberInfo] 1620 typedef std::vector<MemberInfo> MemberList; 1621 1622 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1623 // MethodName -> MethodsList 1624 typedef MapVector<MDString *, MethodsList> MethodsMap; 1625 1626 /// Base classes. 1627 std::vector<const DIDerivedType *> Inheritance; 1628 1629 /// Direct members. 1630 MemberList Members; 1631 // Direct overloaded methods gathered by name. 1632 MethodsMap Methods; 1633 1634 TypeIndex VShapeTI; 1635 1636 std::vector<const DICompositeType *> NestedClasses; 1637 }; 1638 1639 void CodeViewDebug::clear() { 1640 assert(CurFn == nullptr); 1641 FileIdMap.clear(); 1642 FnDebugInfo.clear(); 1643 FileToFilepathMap.clear(); 1644 LocalUDTs.clear(); 1645 GlobalUDTs.clear(); 1646 TypeIndices.clear(); 1647 CompleteTypeIndices.clear(); 1648 } 1649 1650 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1651 const DIDerivedType *DDTy) { 1652 if (!DDTy->getName().empty()) { 1653 Info.Members.push_back({DDTy, 0}); 1654 return; 1655 } 1656 // An unnamed member must represent a nested struct or union. Add all the 1657 // indirect fields to the current record. 1658 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1659 uint64_t Offset = DDTy->getOffsetInBits(); 1660 const DIType *Ty = DDTy->getBaseType().resolve(); 1661 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1662 ClassInfo NestedInfo = collectClassInfo(DCTy); 1663 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1664 Info.Members.push_back( 1665 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1666 } 1667 1668 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1669 ClassInfo Info; 1670 // Add elements to structure type. 1671 DINodeArray Elements = Ty->getElements(); 1672 for (auto *Element : Elements) { 1673 // We assume that the frontend provides all members in source declaration 1674 // order, which is what MSVC does. 1675 if (!Element) 1676 continue; 1677 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1678 Info.Methods[SP->getRawName()].push_back(SP); 1679 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1680 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1681 collectMemberInfo(Info, DDTy); 1682 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1683 Info.Inheritance.push_back(DDTy); 1684 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1685 DDTy->getName() == "__vtbl_ptr_type") { 1686 Info.VShapeTI = getTypeIndex(DDTy); 1687 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1688 // Ignore friend members. It appears that MSVC emitted info about 1689 // friends in the past, but modern versions do not. 1690 } 1691 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1692 Info.NestedClasses.push_back(Composite); 1693 } 1694 // Skip other unrecognized kinds of elements. 1695 } 1696 return Info; 1697 } 1698 1699 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1700 // First, construct the forward decl. Don't look into Ty to compute the 1701 // forward decl options, since it might not be available in all TUs. 1702 TypeRecordKind Kind = getRecordKind(Ty); 1703 ClassOptions CO = 1704 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1705 std::string FullName = getFullyQualifiedName(Ty); 1706 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1707 FullName, Ty->getIdentifier()); 1708 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1709 if (!Ty->isForwardDecl()) 1710 DeferredCompleteTypes.push_back(Ty); 1711 return FwdDeclTI; 1712 } 1713 1714 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1715 // Construct the field list and complete type record. 1716 TypeRecordKind Kind = getRecordKind(Ty); 1717 ClassOptions CO = getCommonClassOptions(Ty); 1718 TypeIndex FieldTI; 1719 TypeIndex VShapeTI; 1720 unsigned FieldCount; 1721 bool ContainsNestedClass; 1722 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1723 lowerRecordFieldList(Ty); 1724 1725 if (ContainsNestedClass) 1726 CO |= ClassOptions::ContainsNestedClass; 1727 1728 std::string FullName = getFullyQualifiedName(Ty); 1729 1730 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1731 1732 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1733 SizeInBytes, FullName, Ty->getIdentifier()); 1734 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1735 1736 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1737 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1738 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1739 TypeTable.writeKnownType(USLR); 1740 1741 addToUDTs(Ty, ClassTI); 1742 1743 return ClassTI; 1744 } 1745 1746 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1747 ClassOptions CO = 1748 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1749 std::string FullName = getFullyQualifiedName(Ty); 1750 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1751 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1752 if (!Ty->isForwardDecl()) 1753 DeferredCompleteTypes.push_back(Ty); 1754 return FwdDeclTI; 1755 } 1756 1757 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1758 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1759 TypeIndex FieldTI; 1760 unsigned FieldCount; 1761 bool ContainsNestedClass; 1762 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1763 lowerRecordFieldList(Ty); 1764 1765 if (ContainsNestedClass) 1766 CO |= ClassOptions::ContainsNestedClass; 1767 1768 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1769 std::string FullName = getFullyQualifiedName(Ty); 1770 1771 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1772 Ty->getIdentifier()); 1773 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1774 1775 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1776 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1777 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1778 TypeTable.writeKnownType(USLR); 1779 1780 addToUDTs(Ty, UnionTI); 1781 1782 return UnionTI; 1783 } 1784 1785 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1786 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1787 // Manually count members. MSVC appears to count everything that generates a 1788 // field list record. Each individual overload in a method overload group 1789 // contributes to this count, even though the overload group is a single field 1790 // list record. 1791 unsigned MemberCount = 0; 1792 ClassInfo Info = collectClassInfo(Ty); 1793 FieldListRecordBuilder FLBR(TypeTable); 1794 FLBR.begin(); 1795 1796 // Create base classes. 1797 for (const DIDerivedType *I : Info.Inheritance) { 1798 if (I->getFlags() & DINode::FlagVirtual) { 1799 // Virtual base. 1800 // FIXME: Emit VBPtrOffset when the frontend provides it. 1801 unsigned VBPtrOffset = 0; 1802 // FIXME: Despite the accessor name, the offset is really in bytes. 1803 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1804 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1805 ? TypeRecordKind::IndirectVirtualBaseClass 1806 : TypeRecordKind::VirtualBaseClass; 1807 VirtualBaseClassRecord VBCR( 1808 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1809 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1810 VBTableIndex); 1811 1812 FLBR.writeMemberType(VBCR); 1813 } else { 1814 assert(I->getOffsetInBits() % 8 == 0 && 1815 "bases must be on byte boundaries"); 1816 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1817 getTypeIndex(I->getBaseType()), 1818 I->getOffsetInBits() / 8); 1819 FLBR.writeMemberType(BCR); 1820 } 1821 } 1822 1823 // Create members. 1824 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1825 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1826 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1827 StringRef MemberName = Member->getName(); 1828 MemberAccess Access = 1829 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1830 1831 if (Member->isStaticMember()) { 1832 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1833 FLBR.writeMemberType(SDMR); 1834 MemberCount++; 1835 continue; 1836 } 1837 1838 // Virtual function pointer member. 1839 if ((Member->getFlags() & DINode::FlagArtificial) && 1840 Member->getName().startswith("_vptr$")) { 1841 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1842 FLBR.writeMemberType(VFPR); 1843 MemberCount++; 1844 continue; 1845 } 1846 1847 // Data member. 1848 uint64_t MemberOffsetInBits = 1849 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1850 if (Member->isBitField()) { 1851 uint64_t StartBitOffset = MemberOffsetInBits; 1852 if (const auto *CI = 1853 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1854 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1855 } 1856 StartBitOffset -= MemberOffsetInBits; 1857 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1858 StartBitOffset); 1859 MemberBaseType = TypeTable.writeKnownType(BFR); 1860 } 1861 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1862 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1863 MemberName); 1864 FLBR.writeMemberType(DMR); 1865 MemberCount++; 1866 } 1867 1868 // Create methods 1869 for (auto &MethodItr : Info.Methods) { 1870 StringRef Name = MethodItr.first->getString(); 1871 1872 std::vector<OneMethodRecord> Methods; 1873 for (const DISubprogram *SP : MethodItr.second) { 1874 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1875 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1876 1877 unsigned VFTableOffset = -1; 1878 if (Introduced) 1879 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1880 1881 Methods.push_back(OneMethodRecord( 1882 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1883 translateMethodKindFlags(SP, Introduced), 1884 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1885 MemberCount++; 1886 } 1887 assert(Methods.size() > 0 && "Empty methods map entry"); 1888 if (Methods.size() == 1) 1889 FLBR.writeMemberType(Methods[0]); 1890 else { 1891 MethodOverloadListRecord MOLR(Methods); 1892 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1893 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1894 FLBR.writeMemberType(OMR); 1895 } 1896 } 1897 1898 // Create nested classes. 1899 for (const DICompositeType *Nested : Info.NestedClasses) { 1900 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1901 FLBR.writeMemberType(R); 1902 MemberCount++; 1903 } 1904 1905 TypeIndex FieldTI = FLBR.end(); 1906 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1907 !Info.NestedClasses.empty()); 1908 } 1909 1910 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1911 if (!VBPType.getIndex()) { 1912 // Make a 'const int *' type. 1913 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1914 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1915 1916 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1917 : PointerKind::Near32; 1918 PointerMode PM = PointerMode::Pointer; 1919 PointerOptions PO = PointerOptions::None; 1920 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1921 1922 VBPType = TypeTable.writeKnownType(PR); 1923 } 1924 1925 return VBPType; 1926 } 1927 1928 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1929 const DIType *Ty = TypeRef.resolve(); 1930 const DIType *ClassTy = ClassTyRef.resolve(); 1931 1932 // The null DIType is the void type. Don't try to hash it. 1933 if (!Ty) 1934 return TypeIndex::Void(); 1935 1936 // Check if we've already translated this type. Don't try to do a 1937 // get-or-create style insertion that caches the hash lookup across the 1938 // lowerType call. It will update the TypeIndices map. 1939 auto I = TypeIndices.find({Ty, ClassTy}); 1940 if (I != TypeIndices.end()) 1941 return I->second; 1942 1943 TypeLoweringScope S(*this); 1944 TypeIndex TI = lowerType(Ty, ClassTy); 1945 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1946 } 1947 1948 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1949 const DIType *Ty = TypeRef.resolve(); 1950 1951 // The null DIType is the void type. Don't try to hash it. 1952 if (!Ty) 1953 return TypeIndex::Void(); 1954 1955 // If this is a non-record type, the complete type index is the same as the 1956 // normal type index. Just call getTypeIndex. 1957 switch (Ty->getTag()) { 1958 case dwarf::DW_TAG_class_type: 1959 case dwarf::DW_TAG_structure_type: 1960 case dwarf::DW_TAG_union_type: 1961 break; 1962 default: 1963 return getTypeIndex(Ty); 1964 } 1965 1966 // Check if we've already translated the complete record type. Lowering a 1967 // complete type should never trigger lowering another complete type, so we 1968 // can reuse the hash table lookup result. 1969 const auto *CTy = cast<DICompositeType>(Ty); 1970 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1971 if (!InsertResult.second) 1972 return InsertResult.first->second; 1973 1974 TypeLoweringScope S(*this); 1975 1976 // Make sure the forward declaration is emitted first. It's unclear if this 1977 // is necessary, but MSVC does it, and we should follow suit until we can show 1978 // otherwise. 1979 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1980 1981 // Just use the forward decl if we don't have complete type info. This might 1982 // happen if the frontend is using modules and expects the complete definition 1983 // to be emitted elsewhere. 1984 if (CTy->isForwardDecl()) 1985 return FwdDeclTI; 1986 1987 TypeIndex TI; 1988 switch (CTy->getTag()) { 1989 case dwarf::DW_TAG_class_type: 1990 case dwarf::DW_TAG_structure_type: 1991 TI = lowerCompleteTypeClass(CTy); 1992 break; 1993 case dwarf::DW_TAG_union_type: 1994 TI = lowerCompleteTypeUnion(CTy); 1995 break; 1996 default: 1997 llvm_unreachable("not a record"); 1998 } 1999 2000 InsertResult.first->second = TI; 2001 return TI; 2002 } 2003 2004 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2005 /// and do this until fixpoint, as each complete record type typically 2006 /// references 2007 /// many other record types. 2008 void CodeViewDebug::emitDeferredCompleteTypes() { 2009 SmallVector<const DICompositeType *, 4> TypesToEmit; 2010 while (!DeferredCompleteTypes.empty()) { 2011 std::swap(DeferredCompleteTypes, TypesToEmit); 2012 for (const DICompositeType *RecordTy : TypesToEmit) 2013 getCompleteTypeIndex(RecordTy); 2014 TypesToEmit.clear(); 2015 } 2016 } 2017 2018 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2019 // Get the sorted list of parameters and emit them first. 2020 SmallVector<const LocalVariable *, 6> Params; 2021 for (const LocalVariable &L : Locals) 2022 if (L.DIVar->isParameter()) 2023 Params.push_back(&L); 2024 std::sort(Params.begin(), Params.end(), 2025 [](const LocalVariable *L, const LocalVariable *R) { 2026 return L->DIVar->getArg() < R->DIVar->getArg(); 2027 }); 2028 for (const LocalVariable *L : Params) 2029 emitLocalVariable(*L); 2030 2031 // Next emit all non-parameters in the order that we found them. 2032 for (const LocalVariable &L : Locals) 2033 if (!L.DIVar->isParameter()) 2034 emitLocalVariable(L); 2035 } 2036 2037 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2038 // LocalSym record, see SymbolRecord.h for more info. 2039 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2040 *LocalEnd = MMI->getContext().createTempSymbol(); 2041 OS.AddComment("Record length"); 2042 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2043 OS.EmitLabel(LocalBegin); 2044 2045 OS.AddComment("Record kind: S_LOCAL"); 2046 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2047 2048 LocalSymFlags Flags = LocalSymFlags::None; 2049 if (Var.DIVar->isParameter()) 2050 Flags |= LocalSymFlags::IsParameter; 2051 if (Var.DefRanges.empty()) 2052 Flags |= LocalSymFlags::IsOptimizedOut; 2053 2054 OS.AddComment("TypeIndex"); 2055 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 2056 OS.EmitIntValue(TI.getIndex(), 4); 2057 OS.AddComment("Flags"); 2058 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2059 // Truncate the name so we won't overflow the record length field. 2060 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2061 OS.EmitLabel(LocalEnd); 2062 2063 // Calculate the on disk prefix of the appropriate def range record. The 2064 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2065 // should be big enough to hold all forms without memory allocation. 2066 SmallString<20> BytePrefix; 2067 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2068 BytePrefix.clear(); 2069 if (DefRange.InMemory) { 2070 uint16_t RegRelFlags = 0; 2071 if (DefRange.IsSubfield) { 2072 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2073 (DefRange.StructOffset 2074 << DefRangeRegisterRelSym::OffsetInParentShift); 2075 } 2076 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2077 Sym.Hdr.Register = DefRange.CVRegister; 2078 Sym.Hdr.Flags = RegRelFlags; 2079 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2080 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2081 BytePrefix += 2082 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2083 BytePrefix += 2084 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2085 } else { 2086 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2087 if (DefRange.IsSubfield) { 2088 // Unclear what matters here. 2089 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2090 Sym.Hdr.Register = DefRange.CVRegister; 2091 Sym.Hdr.MayHaveNoName = 0; 2092 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2093 2094 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2095 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2096 sizeof(SymKind)); 2097 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2098 sizeof(Sym.Hdr)); 2099 } else { 2100 // Unclear what matters here. 2101 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2102 Sym.Hdr.Register = DefRange.CVRegister; 2103 Sym.Hdr.MayHaveNoName = 0; 2104 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2105 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2106 sizeof(SymKind)); 2107 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2108 sizeof(Sym.Hdr)); 2109 } 2110 } 2111 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2112 } 2113 } 2114 2115 void CodeViewDebug::endFunction(const MachineFunction *MF) { 2116 if (!Asm || !CurFn) // We haven't created any debug info for this function. 2117 return; 2118 2119 const Function *GV = MF->getFunction(); 2120 assert(FnDebugInfo.count(GV)); 2121 assert(CurFn == &FnDebugInfo[GV]); 2122 2123 collectVariableInfo(GV->getSubprogram()); 2124 2125 DebugHandlerBase::endFunction(MF); 2126 2127 // Don't emit anything if we don't have any line tables. 2128 if (!CurFn->HaveLineInfo) { 2129 FnDebugInfo.erase(GV); 2130 CurFn = nullptr; 2131 return; 2132 } 2133 2134 CurFn->End = Asm->getFunctionEnd(); 2135 2136 CurFn = nullptr; 2137 } 2138 2139 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2140 DebugHandlerBase::beginInstruction(MI); 2141 2142 // Ignore DBG_VALUE locations and function prologue. 2143 if (!Asm || !CurFn || MI->isDebugValue() || 2144 MI->getFlag(MachineInstr::FrameSetup)) 2145 return; 2146 DebugLoc DL = MI->getDebugLoc(); 2147 if (DL == PrevInstLoc || !DL) 2148 return; 2149 maybeRecordLocation(DL, Asm->MF); 2150 } 2151 2152 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 2153 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2154 *EndLabel = MMI->getContext().createTempSymbol(); 2155 OS.EmitIntValue(unsigned(Kind), 4); 2156 OS.AddComment("Subsection size"); 2157 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2158 OS.EmitLabel(BeginLabel); 2159 return EndLabel; 2160 } 2161 2162 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2163 OS.EmitLabel(EndLabel); 2164 // Every subsection must be aligned to a 4-byte boundary. 2165 OS.EmitValueToAlignment(4); 2166 } 2167 2168 void CodeViewDebug::emitDebugInfoForUDTs( 2169 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 2170 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 2171 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2172 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2173 OS.AddComment("Record length"); 2174 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2175 OS.EmitLabel(UDTRecordBegin); 2176 2177 OS.AddComment("Record kind: S_UDT"); 2178 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2179 2180 OS.AddComment("Type"); 2181 OS.EmitIntValue(UDT.second.getIndex(), 4); 2182 2183 emitNullTerminatedSymbolName(OS, UDT.first); 2184 OS.EmitLabel(UDTRecordEnd); 2185 } 2186 } 2187 2188 void CodeViewDebug::emitDebugInfoForGlobals() { 2189 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2190 GlobalMap; 2191 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2192 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2193 GV.getDebugInfo(GVEs); 2194 for (const auto *GVE : GVEs) 2195 GlobalMap[GVE] = &GV; 2196 } 2197 2198 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2199 for (const MDNode *Node : CUs->operands()) { 2200 const auto *CU = cast<DICompileUnit>(Node); 2201 2202 // First, emit all globals that are not in a comdat in a single symbol 2203 // substream. MSVC doesn't like it if the substream is empty, so only open 2204 // it if we have at least one global to emit. 2205 switchToDebugSectionForSymbol(nullptr); 2206 MCSymbol *EndLabel = nullptr; 2207 for (const auto *GVE : CU->getGlobalVariables()) { 2208 if (const auto *GV = GlobalMap.lookup(GVE)) 2209 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2210 if (!EndLabel) { 2211 OS.AddComment("Symbol subsection for globals"); 2212 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2213 } 2214 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2215 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2216 } 2217 } 2218 if (EndLabel) 2219 endCVSubsection(EndLabel); 2220 2221 // Second, emit each global that is in a comdat into its own .debug$S 2222 // section along with its own symbol substream. 2223 for (const auto *GVE : CU->getGlobalVariables()) { 2224 if (const auto *GV = GlobalMap.lookup(GVE)) { 2225 if (GV->hasComdat()) { 2226 MCSymbol *GVSym = Asm->getSymbol(GV); 2227 OS.AddComment("Symbol subsection for " + 2228 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 2229 switchToDebugSectionForSymbol(GVSym); 2230 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2231 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2232 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2233 endCVSubsection(EndLabel); 2234 } 2235 } 2236 } 2237 } 2238 } 2239 2240 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2241 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2242 for (const MDNode *Node : CUs->operands()) { 2243 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2244 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2245 getTypeIndex(RT); 2246 // FIXME: Add to global/local DTU list. 2247 } 2248 } 2249 } 2250 } 2251 2252 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2253 const GlobalVariable *GV, 2254 MCSymbol *GVSym) { 2255 // DataSym record, see SymbolRecord.h for more info. 2256 // FIXME: Thread local data, etc 2257 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2258 *DataEnd = MMI->getContext().createTempSymbol(); 2259 OS.AddComment("Record length"); 2260 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2261 OS.EmitLabel(DataBegin); 2262 if (DIGV->isLocalToUnit()) { 2263 if (GV->isThreadLocal()) { 2264 OS.AddComment("Record kind: S_LTHREAD32"); 2265 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2266 } else { 2267 OS.AddComment("Record kind: S_LDATA32"); 2268 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2269 } 2270 } else { 2271 if (GV->isThreadLocal()) { 2272 OS.AddComment("Record kind: S_GTHREAD32"); 2273 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2274 } else { 2275 OS.AddComment("Record kind: S_GDATA32"); 2276 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2277 } 2278 } 2279 OS.AddComment("Type"); 2280 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2281 OS.AddComment("DataOffset"); 2282 OS.EmitCOFFSecRel32(GVSym); 2283 OS.AddComment("Segment"); 2284 OS.EmitCOFFSectionIndex(GVSym); 2285 OS.AddComment("Name"); 2286 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2287 OS.EmitLabel(DataEnd); 2288 } 2289