1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/TinyPtrVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/CodeGen/AsmPrinter.h" 30 #include "llvm/CodeGen/LexicalScopes.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/Config/llvm-config.h" 36 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 37 #include "llvm/DebugInfo/CodeView/CodeView.h" 38 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 39 #include "llvm/DebugInfo/CodeView/Line.h" 40 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 41 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 42 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 43 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/GlobalVariable.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCSectionCOFF.h" 57 #include "llvm/MC/MCStreamer.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/COFF.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Dwarf.h" 63 #include "llvm/Support/Endian.h" 64 #include "llvm/Support/Error.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/ScopedPrinter.h" 67 #include "llvm/Support/SMLoc.h" 68 #include "llvm/Target/TargetFrameLowering.h" 69 #include "llvm/Target/TargetLoweringObjectFile.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetRegisterInfo.h" 72 #include "llvm/Target/TargetSubtargetInfo.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cctype> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <limits> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 using namespace llvm::codeview; 86 87 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 88 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 89 // If module doesn't have named metadata anchors or COFF debug section 90 // is not available, skip any debug info related stuff. 91 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 92 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 93 Asm = nullptr; 94 return; 95 } 96 97 // Tell MMI that we have debug info. 98 MMI->setDebugInfoAvailability(true); 99 } 100 101 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 102 std::string &Filepath = FileToFilepathMap[File]; 103 if (!Filepath.empty()) 104 return Filepath; 105 106 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 107 108 // Clang emits directory and relative filename info into the IR, but CodeView 109 // operates on full paths. We could change Clang to emit full paths too, but 110 // that would increase the IR size and probably not needed for other users. 111 // For now, just concatenate and canonicalize the path here. 112 if (Filename.find(':') == 1) 113 Filepath = Filename; 114 else 115 Filepath = (Dir + "\\" + Filename).str(); 116 117 // Canonicalize the path. We have to do it textually because we may no longer 118 // have access the file in the filesystem. 119 // First, replace all slashes with backslashes. 120 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 121 122 // Remove all "\.\" with "\". 123 size_t Cursor = 0; 124 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 125 Filepath.erase(Cursor, 2); 126 127 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 128 // path should be well-formatted, e.g. start with a drive letter, etc. 129 Cursor = 0; 130 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 131 // Something's wrong if the path starts with "\..\", abort. 132 if (Cursor == 0) 133 break; 134 135 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 136 if (PrevSlash == std::string::npos) 137 // Something's wrong, abort. 138 break; 139 140 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 141 // The next ".." might be following the one we've just erased. 142 Cursor = PrevSlash; 143 } 144 145 // Remove all duplicate backslashes. 146 Cursor = 0; 147 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 148 Filepath.erase(Cursor, 1); 149 150 return Filepath; 151 } 152 153 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 154 unsigned NextId = FileIdMap.size() + 1; 155 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 156 if (Insertion.second) { 157 // We have to compute the full filepath and emit a .cv_file directive. 158 StringRef FullPath = getFullFilepath(F); 159 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 160 (void)Success; 161 assert(Success && ".cv_file directive failed"); 162 } 163 return Insertion.first->second; 164 } 165 166 CodeViewDebug::InlineSite & 167 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 168 const DISubprogram *Inlinee) { 169 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 170 InlineSite *Site = &SiteInsertion.first->second; 171 if (SiteInsertion.second) { 172 unsigned ParentFuncId = CurFn->FuncId; 173 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 174 ParentFuncId = 175 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 176 .SiteFuncId; 177 178 Site->SiteFuncId = NextFuncId++; 179 OS.EmitCVInlineSiteIdDirective( 180 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 181 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 182 Site->Inlinee = Inlinee; 183 InlinedSubprograms.insert(Inlinee); 184 getFuncIdForSubprogram(Inlinee); 185 } 186 return *Site; 187 } 188 189 static StringRef getPrettyScopeName(const DIScope *Scope) { 190 StringRef ScopeName = Scope->getName(); 191 if (!ScopeName.empty()) 192 return ScopeName; 193 194 switch (Scope->getTag()) { 195 case dwarf::DW_TAG_enumeration_type: 196 case dwarf::DW_TAG_class_type: 197 case dwarf::DW_TAG_structure_type: 198 case dwarf::DW_TAG_union_type: 199 return "<unnamed-tag>"; 200 case dwarf::DW_TAG_namespace: 201 return "`anonymous namespace'"; 202 } 203 204 return StringRef(); 205 } 206 207 static const DISubprogram *getQualifiedNameComponents( 208 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 209 const DISubprogram *ClosestSubprogram = nullptr; 210 while (Scope != nullptr) { 211 if (ClosestSubprogram == nullptr) 212 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 213 StringRef ScopeName = getPrettyScopeName(Scope); 214 if (!ScopeName.empty()) 215 QualifiedNameComponents.push_back(ScopeName); 216 Scope = Scope->getScope().resolve(); 217 } 218 return ClosestSubprogram; 219 } 220 221 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 222 StringRef TypeName) { 223 std::string FullyQualifiedName; 224 for (StringRef QualifiedNameComponent : 225 llvm::reverse(QualifiedNameComponents)) { 226 FullyQualifiedName.append(QualifiedNameComponent); 227 FullyQualifiedName.append("::"); 228 } 229 FullyQualifiedName.append(TypeName); 230 return FullyQualifiedName; 231 } 232 233 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 234 SmallVector<StringRef, 5> QualifiedNameComponents; 235 getQualifiedNameComponents(Scope, QualifiedNameComponents); 236 return getQualifiedName(QualifiedNameComponents, Name); 237 } 238 239 struct CodeViewDebug::TypeLoweringScope { 240 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 241 ~TypeLoweringScope() { 242 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 243 // inner TypeLoweringScopes don't attempt to emit deferred types. 244 if (CVD.TypeEmissionLevel == 1) 245 CVD.emitDeferredCompleteTypes(); 246 --CVD.TypeEmissionLevel; 247 } 248 CodeViewDebug &CVD; 249 }; 250 251 static std::string getFullyQualifiedName(const DIScope *Ty) { 252 const DIScope *Scope = Ty->getScope().resolve(); 253 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 254 } 255 256 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 257 // No scope means global scope and that uses the zero index. 258 if (!Scope || isa<DIFile>(Scope)) 259 return TypeIndex(); 260 261 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 262 263 // Check if we've already translated this scope. 264 auto I = TypeIndices.find({Scope, nullptr}); 265 if (I != TypeIndices.end()) 266 return I->second; 267 268 // Build the fully qualified name of the scope. 269 std::string ScopeName = getFullyQualifiedName(Scope); 270 StringIdRecord SID(TypeIndex(), ScopeName); 271 auto TI = TypeTable.writeKnownType(SID); 272 return recordTypeIndexForDINode(Scope, TI); 273 } 274 275 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 276 assert(SP); 277 278 // Check if we've already translated this subprogram. 279 auto I = TypeIndices.find({SP, nullptr}); 280 if (I != TypeIndices.end()) 281 return I->second; 282 283 // The display name includes function template arguments. Drop them to match 284 // MSVC. 285 StringRef DisplayName = SP->getName().split('<').first; 286 287 const DIScope *Scope = SP->getScope().resolve(); 288 TypeIndex TI; 289 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 290 // If the scope is a DICompositeType, then this must be a method. Member 291 // function types take some special handling, and require access to the 292 // subprogram. 293 TypeIndex ClassType = getTypeIndex(Class); 294 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 295 DisplayName); 296 TI = TypeTable.writeKnownType(MFuncId); 297 } else { 298 // Otherwise, this must be a free function. 299 TypeIndex ParentScope = getScopeIndex(Scope); 300 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 301 TI = TypeTable.writeKnownType(FuncId); 302 } 303 304 return recordTypeIndexForDINode(SP, TI); 305 } 306 307 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 308 const DICompositeType *Class) { 309 // Always use the method declaration as the key for the function type. The 310 // method declaration contains the this adjustment. 311 if (SP->getDeclaration()) 312 SP = SP->getDeclaration(); 313 assert(!SP->getDeclaration() && "should use declaration as key"); 314 315 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 316 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 317 auto I = TypeIndices.find({SP, Class}); 318 if (I != TypeIndices.end()) 319 return I->second; 320 321 // Make sure complete type info for the class is emitted *after* the member 322 // function type, as the complete class type is likely to reference this 323 // member function type. 324 TypeLoweringScope S(*this); 325 TypeIndex TI = 326 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 327 return recordTypeIndexForDINode(SP, TI, Class); 328 } 329 330 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 331 TypeIndex TI, 332 const DIType *ClassTy) { 333 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 334 (void)InsertResult; 335 assert(InsertResult.second && "DINode was already assigned a type index"); 336 return TI; 337 } 338 339 unsigned CodeViewDebug::getPointerSizeInBytes() { 340 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 341 } 342 343 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 344 const DILocation *InlinedAt) { 345 if (InlinedAt) { 346 // This variable was inlined. Associate it with the InlineSite. 347 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 348 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 349 Site.InlinedLocals.emplace_back(Var); 350 } else { 351 // This variable goes in the main ProcSym. 352 CurFn->Locals.emplace_back(Var); 353 } 354 } 355 356 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 357 const DILocation *Loc) { 358 auto B = Locs.begin(), E = Locs.end(); 359 if (std::find(B, E, Loc) == E) 360 Locs.push_back(Loc); 361 } 362 363 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 364 const MachineFunction *MF) { 365 // Skip this instruction if it has the same location as the previous one. 366 if (DL == CurFn->LastLoc) 367 return; 368 369 const DIScope *Scope = DL.get()->getScope(); 370 if (!Scope) 371 return; 372 373 // Skip this line if it is longer than the maximum we can record. 374 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 375 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 376 LI.isNeverStepInto()) 377 return; 378 379 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 380 if (CI.getStartColumn() != DL.getCol()) 381 return; 382 383 if (!CurFn->HaveLineInfo) 384 CurFn->HaveLineInfo = true; 385 unsigned FileId = 0; 386 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 387 FileId = CurFn->LastFileId; 388 else 389 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 390 CurFn->LastLoc = DL; 391 392 unsigned FuncId = CurFn->FuncId; 393 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 394 const DILocation *Loc = DL.get(); 395 396 // If this location was actually inlined from somewhere else, give it the ID 397 // of the inline call site. 398 FuncId = 399 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 400 401 // Ensure we have links in the tree of inline call sites. 402 bool FirstLoc = true; 403 while ((SiteLoc = Loc->getInlinedAt())) { 404 InlineSite &Site = 405 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 406 if (!FirstLoc) 407 addLocIfNotPresent(Site.ChildSites, Loc); 408 FirstLoc = false; 409 Loc = SiteLoc; 410 } 411 addLocIfNotPresent(CurFn->ChildSites, Loc); 412 } 413 414 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 415 /*PrologueEnd=*/false, /*IsStmt=*/false, 416 DL->getFilename(), SMLoc()); 417 } 418 419 void CodeViewDebug::emitCodeViewMagicVersion() { 420 OS.EmitValueToAlignment(4); 421 OS.AddComment("Debug section magic"); 422 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 423 } 424 425 void CodeViewDebug::endModule() { 426 if (!Asm || !MMI->hasDebugInfo()) 427 return; 428 429 assert(Asm != nullptr); 430 431 // The COFF .debug$S section consists of several subsections, each starting 432 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 433 // of the payload followed by the payload itself. The subsections are 4-byte 434 // aligned. 435 436 // Use the generic .debug$S section, and make a subsection for all the inlined 437 // subprograms. 438 switchToDebugSectionForSymbol(nullptr); 439 440 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 441 emitCompilerInformation(); 442 endCVSubsection(CompilerInfo); 443 444 emitInlineeLinesSubsection(); 445 446 // Emit per-function debug information. 447 for (auto &P : FnDebugInfo) 448 if (!P.first->isDeclarationForLinker()) 449 emitDebugInfoForFunction(P.first, P.second); 450 451 // Emit global variable debug information. 452 setCurrentSubprogram(nullptr); 453 emitDebugInfoForGlobals(); 454 455 // Emit retained types. 456 emitDebugInfoForRetainedTypes(); 457 458 // Switch back to the generic .debug$S section after potentially processing 459 // comdat symbol sections. 460 switchToDebugSectionForSymbol(nullptr); 461 462 // Emit UDT records for any types used by global variables. 463 if (!GlobalUDTs.empty()) { 464 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 465 emitDebugInfoForUDTs(GlobalUDTs); 466 endCVSubsection(SymbolsEnd); 467 } 468 469 // This subsection holds a file index to offset in string table table. 470 OS.AddComment("File index to string table offset subsection"); 471 OS.EmitCVFileChecksumsDirective(); 472 473 // This subsection holds the string table. 474 OS.AddComment("String table"); 475 OS.EmitCVStringTableDirective(); 476 477 // Emit type information last, so that any types we translate while emitting 478 // function info are included. 479 emitTypeInformation(); 480 481 clear(); 482 } 483 484 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 485 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 486 // after a fixed length portion of the record. The fixed length portion should 487 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 488 // overall record size is less than the maximum allowed. 489 unsigned MaxFixedRecordLength = 0xF00; 490 SmallString<32> NullTerminatedString( 491 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 492 NullTerminatedString.push_back('\0'); 493 OS.EmitBytes(NullTerminatedString); 494 } 495 496 void CodeViewDebug::emitTypeInformation() { 497 // Do nothing if we have no debug info or if no non-trivial types were emitted 498 // to TypeTable during codegen. 499 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 500 if (!CU_Nodes) 501 return; 502 if (TypeTable.empty()) 503 return; 504 505 // Start the .debug$T section with 0x4. 506 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 507 emitCodeViewMagicVersion(); 508 509 SmallString<8> CommentPrefix; 510 if (OS.isVerboseAsm()) { 511 CommentPrefix += '\t'; 512 CommentPrefix += Asm->MAI->getCommentString(); 513 CommentPrefix += ' '; 514 } 515 516 TypeTableCollection Table(TypeTable.records()); 517 Optional<TypeIndex> B = Table.getFirst(); 518 while (B) { 519 // This will fail if the record data is invalid. 520 CVType Record = Table.getType(*B); 521 522 if (OS.isVerboseAsm()) { 523 // Emit a block comment describing the type record for readability. 524 SmallString<512> CommentBlock; 525 raw_svector_ostream CommentOS(CommentBlock); 526 ScopedPrinter SP(CommentOS); 527 SP.setPrefix(CommentPrefix); 528 TypeDumpVisitor TDV(Table, &SP, false); 529 530 Error E = codeview::visitTypeRecord(Record, *B, TDV); 531 if (E) { 532 logAllUnhandledErrors(std::move(E), errs(), "error: "); 533 llvm_unreachable("produced malformed type record"); 534 } 535 // emitRawComment will insert its own tab and comment string before 536 // the first line, so strip off our first one. It also prints its own 537 // newline. 538 OS.emitRawComment( 539 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 540 } 541 OS.EmitBinaryData(Record.str_data()); 542 B = Table.getNext(*B); 543 } 544 } 545 546 namespace { 547 548 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 549 switch (DWLang) { 550 case dwarf::DW_LANG_C: 551 case dwarf::DW_LANG_C89: 552 case dwarf::DW_LANG_C99: 553 case dwarf::DW_LANG_C11: 554 case dwarf::DW_LANG_ObjC: 555 return SourceLanguage::C; 556 case dwarf::DW_LANG_C_plus_plus: 557 case dwarf::DW_LANG_C_plus_plus_03: 558 case dwarf::DW_LANG_C_plus_plus_11: 559 case dwarf::DW_LANG_C_plus_plus_14: 560 return SourceLanguage::Cpp; 561 case dwarf::DW_LANG_Fortran77: 562 case dwarf::DW_LANG_Fortran90: 563 case dwarf::DW_LANG_Fortran03: 564 case dwarf::DW_LANG_Fortran08: 565 return SourceLanguage::Fortran; 566 case dwarf::DW_LANG_Pascal83: 567 return SourceLanguage::Pascal; 568 case dwarf::DW_LANG_Cobol74: 569 case dwarf::DW_LANG_Cobol85: 570 return SourceLanguage::Cobol; 571 case dwarf::DW_LANG_Java: 572 return SourceLanguage::Java; 573 default: 574 // There's no CodeView representation for this language, and CV doesn't 575 // have an "unknown" option for the language field, so we'll use MASM, 576 // as it's very low level. 577 return SourceLanguage::Masm; 578 } 579 } 580 581 struct Version { 582 int Part[4]; 583 }; 584 585 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 586 // the version number. 587 static Version parseVersion(StringRef Name) { 588 Version V = {{0}}; 589 int N = 0; 590 for (const char C : Name) { 591 if (isdigit(C)) { 592 V.Part[N] *= 10; 593 V.Part[N] += C - '0'; 594 } else if (C == '.') { 595 ++N; 596 if (N >= 4) 597 return V; 598 } else if (N > 0) 599 return V; 600 } 601 return V; 602 } 603 604 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 605 switch (Type) { 606 case Triple::ArchType::x86: 607 return CPUType::Pentium3; 608 case Triple::ArchType::x86_64: 609 return CPUType::X64; 610 case Triple::ArchType::thumb: 611 return CPUType::Thumb; 612 default: 613 report_fatal_error("target architecture doesn't map to a CodeView " 614 "CPUType"); 615 } 616 } 617 618 } // end anonymous namespace 619 620 void CodeViewDebug::emitCompilerInformation() { 621 MCContext &Context = MMI->getContext(); 622 MCSymbol *CompilerBegin = Context.createTempSymbol(), 623 *CompilerEnd = Context.createTempSymbol(); 624 OS.AddComment("Record length"); 625 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 626 OS.EmitLabel(CompilerBegin); 627 OS.AddComment("Record kind: S_COMPILE3"); 628 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 629 uint32_t Flags = 0; 630 631 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 632 const MDNode *Node = *CUs->operands().begin(); 633 const auto *CU = cast<DICompileUnit>(Node); 634 635 // The low byte of the flags indicates the source language. 636 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 637 // TODO: Figure out which other flags need to be set. 638 639 OS.AddComment("Flags and language"); 640 OS.EmitIntValue(Flags, 4); 641 642 OS.AddComment("CPUType"); 643 CPUType CPU = 644 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 645 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 646 647 StringRef CompilerVersion = CU->getProducer(); 648 Version FrontVer = parseVersion(CompilerVersion); 649 OS.AddComment("Frontend version"); 650 for (int N = 0; N < 4; ++N) 651 OS.EmitIntValue(FrontVer.Part[N], 2); 652 653 // Some Microsoft tools, like Binscope, expect a backend version number of at 654 // least 8.something, so we'll coerce the LLVM version into a form that 655 // guarantees it'll be big enough without really lying about the version. 656 int Major = 1000 * LLVM_VERSION_MAJOR + 657 10 * LLVM_VERSION_MINOR + 658 LLVM_VERSION_PATCH; 659 // Clamp it for builds that use unusually large version numbers. 660 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 661 Version BackVer = {{ Major, 0, 0, 0 }}; 662 OS.AddComment("Backend version"); 663 for (int N = 0; N < 4; ++N) 664 OS.EmitIntValue(BackVer.Part[N], 2); 665 666 OS.AddComment("Null-terminated compiler version string"); 667 emitNullTerminatedSymbolName(OS, CompilerVersion); 668 669 OS.EmitLabel(CompilerEnd); 670 } 671 672 void CodeViewDebug::emitInlineeLinesSubsection() { 673 if (InlinedSubprograms.empty()) 674 return; 675 676 OS.AddComment("Inlinee lines subsection"); 677 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 678 679 // We don't provide any extra file info. 680 // FIXME: Find out if debuggers use this info. 681 OS.AddComment("Inlinee lines signature"); 682 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 683 684 for (const DISubprogram *SP : InlinedSubprograms) { 685 assert(TypeIndices.count({SP, nullptr})); 686 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 687 688 OS.AddBlankLine(); 689 unsigned FileId = maybeRecordFile(SP->getFile()); 690 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 691 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 692 OS.AddBlankLine(); 693 // The filechecksum table uses 8 byte entries for now, and file ids start at 694 // 1. 695 unsigned FileOffset = (FileId - 1) * 8; 696 OS.AddComment("Type index of inlined function"); 697 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 698 OS.AddComment("Offset into filechecksum table"); 699 OS.EmitIntValue(FileOffset, 4); 700 OS.AddComment("Starting line number"); 701 OS.EmitIntValue(SP->getLine(), 4); 702 } 703 704 endCVSubsection(InlineEnd); 705 } 706 707 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 708 const DILocation *InlinedAt, 709 const InlineSite &Site) { 710 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 711 *InlineEnd = MMI->getContext().createTempSymbol(); 712 713 assert(TypeIndices.count({Site.Inlinee, nullptr})); 714 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 715 716 // SymbolRecord 717 OS.AddComment("Record length"); 718 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 719 OS.EmitLabel(InlineBegin); 720 OS.AddComment("Record kind: S_INLINESITE"); 721 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 722 723 OS.AddComment("PtrParent"); 724 OS.EmitIntValue(0, 4); 725 OS.AddComment("PtrEnd"); 726 OS.EmitIntValue(0, 4); 727 OS.AddComment("Inlinee type index"); 728 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 729 730 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 731 unsigned StartLineNum = Site.Inlinee->getLine(); 732 733 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 734 FI.Begin, FI.End); 735 736 OS.EmitLabel(InlineEnd); 737 738 emitLocalVariableList(Site.InlinedLocals); 739 740 // Recurse on child inlined call sites before closing the scope. 741 for (const DILocation *ChildSite : Site.ChildSites) { 742 auto I = FI.InlineSites.find(ChildSite); 743 assert(I != FI.InlineSites.end() && 744 "child site not in function inline site map"); 745 emitInlinedCallSite(FI, ChildSite, I->second); 746 } 747 748 // Close the scope. 749 OS.AddComment("Record length"); 750 OS.EmitIntValue(2, 2); // RecordLength 751 OS.AddComment("Record kind: S_INLINESITE_END"); 752 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 753 } 754 755 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 756 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 757 // comdat key. A section may be comdat because of -ffunction-sections or 758 // because it is comdat in the IR. 759 MCSectionCOFF *GVSec = 760 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 761 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 762 763 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 764 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 765 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 766 767 OS.SwitchSection(DebugSec); 768 769 // Emit the magic version number if this is the first time we've switched to 770 // this section. 771 if (ComdatDebugSections.insert(DebugSec).second) 772 emitCodeViewMagicVersion(); 773 } 774 775 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 776 FunctionInfo &FI) { 777 // For each function there is a separate subsection 778 // which holds the PC to file:line table. 779 const MCSymbol *Fn = Asm->getSymbol(GV); 780 assert(Fn); 781 782 // Switch to the to a comdat section, if appropriate. 783 switchToDebugSectionForSymbol(Fn); 784 785 std::string FuncName; 786 auto *SP = GV->getSubprogram(); 787 assert(SP); 788 setCurrentSubprogram(SP); 789 790 // If we have a display name, build the fully qualified name by walking the 791 // chain of scopes. 792 if (!SP->getName().empty()) 793 FuncName = 794 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 795 796 // If our DISubprogram name is empty, use the mangled name. 797 if (FuncName.empty()) 798 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 799 800 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 801 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 802 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 803 { 804 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 805 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 806 OS.AddComment("Record length"); 807 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 808 OS.EmitLabel(ProcRecordBegin); 809 810 if (GV->hasLocalLinkage()) { 811 OS.AddComment("Record kind: S_LPROC32_ID"); 812 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 813 } else { 814 OS.AddComment("Record kind: S_GPROC32_ID"); 815 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 816 } 817 818 // These fields are filled in by tools like CVPACK which run after the fact. 819 OS.AddComment("PtrParent"); 820 OS.EmitIntValue(0, 4); 821 OS.AddComment("PtrEnd"); 822 OS.EmitIntValue(0, 4); 823 OS.AddComment("PtrNext"); 824 OS.EmitIntValue(0, 4); 825 // This is the important bit that tells the debugger where the function 826 // code is located and what's its size: 827 OS.AddComment("Code size"); 828 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 829 OS.AddComment("Offset after prologue"); 830 OS.EmitIntValue(0, 4); 831 OS.AddComment("Offset before epilogue"); 832 OS.EmitIntValue(0, 4); 833 OS.AddComment("Function type index"); 834 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 835 OS.AddComment("Function section relative address"); 836 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 837 OS.AddComment("Function section index"); 838 OS.EmitCOFFSectionIndex(Fn); 839 OS.AddComment("Flags"); 840 OS.EmitIntValue(0, 1); 841 // Emit the function display name as a null-terminated string. 842 OS.AddComment("Function name"); 843 // Truncate the name so we won't overflow the record length field. 844 emitNullTerminatedSymbolName(OS, FuncName); 845 OS.EmitLabel(ProcRecordEnd); 846 847 emitLocalVariableList(FI.Locals); 848 849 // Emit inlined call site information. Only emit functions inlined directly 850 // into the parent function. We'll emit the other sites recursively as part 851 // of their parent inline site. 852 for (const DILocation *InlinedAt : FI.ChildSites) { 853 auto I = FI.InlineSites.find(InlinedAt); 854 assert(I != FI.InlineSites.end() && 855 "child site not in function inline site map"); 856 emitInlinedCallSite(FI, InlinedAt, I->second); 857 } 858 859 if (SP != nullptr) 860 emitDebugInfoForUDTs(LocalUDTs); 861 862 // We're done with this function. 863 OS.AddComment("Record length"); 864 OS.EmitIntValue(0x0002, 2); 865 OS.AddComment("Record kind: S_PROC_ID_END"); 866 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 867 } 868 endCVSubsection(SymbolsEnd); 869 870 // We have an assembler directive that takes care of the whole line table. 871 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 872 } 873 874 CodeViewDebug::LocalVarDefRange 875 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 876 LocalVarDefRange DR; 877 DR.InMemory = -1; 878 DR.DataOffset = Offset; 879 assert(DR.DataOffset == Offset && "truncation"); 880 DR.IsSubfield = 0; 881 DR.StructOffset = 0; 882 DR.CVRegister = CVRegister; 883 return DR; 884 } 885 886 CodeViewDebug::LocalVarDefRange 887 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 888 int Offset, bool IsSubfield, 889 uint16_t StructOffset) { 890 LocalVarDefRange DR; 891 DR.InMemory = InMemory; 892 DR.DataOffset = Offset; 893 DR.IsSubfield = IsSubfield; 894 DR.StructOffset = StructOffset; 895 DR.CVRegister = CVRegister; 896 return DR; 897 } 898 899 void CodeViewDebug::collectVariableInfoFromMFTable( 900 DenseSet<InlinedVariable> &Processed) { 901 const MachineFunction &MF = *Asm->MF; 902 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 903 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 904 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 905 906 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 907 if (!VI.Var) 908 continue; 909 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 910 "Expected inlined-at fields to agree"); 911 912 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 913 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 914 915 // If variable scope is not found then skip this variable. 916 if (!Scope) 917 continue; 918 919 // If the variable has an attached offset expression, extract it. 920 // FIXME: Try to handle DW_OP_deref as well. 921 int64_t ExprOffset = 0; 922 if (VI.Expr) 923 if (!VI.Expr->extractIfOffset(ExprOffset)) 924 continue; 925 926 // Get the frame register used and the offset. 927 unsigned FrameReg = 0; 928 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 929 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 930 931 // Calculate the label ranges. 932 LocalVarDefRange DefRange = 933 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 934 for (const InsnRange &Range : Scope->getRanges()) { 935 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 936 const MCSymbol *End = getLabelAfterInsn(Range.second); 937 End = End ? End : Asm->getFunctionEnd(); 938 DefRange.Ranges.emplace_back(Begin, End); 939 } 940 941 LocalVariable Var; 942 Var.DIVar = VI.Var; 943 Var.DefRanges.emplace_back(std::move(DefRange)); 944 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 945 } 946 } 947 948 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 949 DenseSet<InlinedVariable> Processed; 950 // Grab the variable info that was squirreled away in the MMI side-table. 951 collectVariableInfoFromMFTable(Processed); 952 953 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 954 955 for (const auto &I : DbgValues) { 956 InlinedVariable IV = I.first; 957 if (Processed.count(IV)) 958 continue; 959 const DILocalVariable *DIVar = IV.first; 960 const DILocation *InlinedAt = IV.second; 961 962 // Instruction ranges, specifying where IV is accessible. 963 const auto &Ranges = I.second; 964 965 LexicalScope *Scope = nullptr; 966 if (InlinedAt) 967 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 968 else 969 Scope = LScopes.findLexicalScope(DIVar->getScope()); 970 // If variable scope is not found then skip this variable. 971 if (!Scope) 972 continue; 973 974 LocalVariable Var; 975 Var.DIVar = DIVar; 976 977 // Calculate the definition ranges. 978 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 979 const InsnRange &Range = *I; 980 const MachineInstr *DVInst = Range.first; 981 assert(DVInst->isDebugValue() && "Invalid History entry"); 982 const DIExpression *DIExpr = DVInst->getDebugExpression(); 983 bool IsSubfield = false; 984 unsigned StructOffset = 0; 985 986 // Handle fragments. 987 auto Fragment = DIExpr->getFragmentInfo(); 988 if (Fragment) { 989 IsSubfield = true; 990 StructOffset = Fragment->OffsetInBits / 8; 991 } else if (DIExpr->getNumElements() > 0) { 992 continue; // Ignore unrecognized exprs. 993 } 994 995 // Bail if operand 0 is not a valid register. This means the variable is a 996 // simple constant, or is described by a complex expression. 997 // FIXME: Find a way to represent constant variables, since they are 998 // relatively common. 999 unsigned Reg = 1000 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 1001 if (Reg == 0) 1002 continue; 1003 1004 // Handle the two cases we can handle: indirect in memory and in register. 1005 unsigned CVReg = TRI->getCodeViewRegNum(Reg); 1006 bool InMemory = DVInst->getOperand(1).isImm(); 1007 int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0; 1008 { 1009 LocalVarDefRange DR; 1010 DR.CVRegister = CVReg; 1011 DR.InMemory = InMemory; 1012 DR.DataOffset = Offset; 1013 DR.IsSubfield = IsSubfield; 1014 DR.StructOffset = StructOffset; 1015 1016 if (Var.DefRanges.empty() || 1017 Var.DefRanges.back().isDifferentLocation(DR)) { 1018 Var.DefRanges.emplace_back(std::move(DR)); 1019 } 1020 } 1021 1022 // Compute the label range. 1023 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1024 const MCSymbol *End = getLabelAfterInsn(Range.second); 1025 if (!End) { 1026 // This range is valid until the next overlapping bitpiece. In the 1027 // common case, ranges will not be bitpieces, so they will overlap. 1028 auto J = std::next(I); 1029 while (J != E && 1030 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1031 ++J; 1032 if (J != E) 1033 End = getLabelBeforeInsn(J->first); 1034 else 1035 End = Asm->getFunctionEnd(); 1036 } 1037 1038 // If the last range end is our begin, just extend the last range. 1039 // Otherwise make a new range. 1040 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 1041 Var.DefRanges.back().Ranges; 1042 if (!Ranges.empty() && Ranges.back().second == Begin) 1043 Ranges.back().second = End; 1044 else 1045 Ranges.emplace_back(Begin, End); 1046 1047 // FIXME: Do more range combining. 1048 } 1049 1050 recordLocalVariable(std::move(Var), InlinedAt); 1051 } 1052 } 1053 1054 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1055 const Function *GV = MF->getFunction(); 1056 assert(FnDebugInfo.count(GV) == false); 1057 CurFn = &FnDebugInfo[GV]; 1058 CurFn->FuncId = NextFuncId++; 1059 CurFn->Begin = Asm->getFunctionBegin(); 1060 1061 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1062 1063 // Find the end of the function prolog. First known non-DBG_VALUE and 1064 // non-frame setup location marks the beginning of the function body. 1065 // FIXME: is there a simpler a way to do this? Can we just search 1066 // for the first instruction of the function, not the last of the prolog? 1067 DebugLoc PrologEndLoc; 1068 bool EmptyPrologue = true; 1069 for (const auto &MBB : *MF) { 1070 for (const auto &MI : MBB) { 1071 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1072 MI.getDebugLoc()) { 1073 PrologEndLoc = MI.getDebugLoc(); 1074 break; 1075 } else if (!MI.isMetaInstruction()) { 1076 EmptyPrologue = false; 1077 } 1078 } 1079 } 1080 1081 // Record beginning of function if we have a non-empty prologue. 1082 if (PrologEndLoc && !EmptyPrologue) { 1083 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1084 maybeRecordLocation(FnStartDL, MF); 1085 } 1086 } 1087 1088 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 1089 // Don't record empty UDTs. 1090 if (Ty->getName().empty()) 1091 return; 1092 1093 SmallVector<StringRef, 5> QualifiedNameComponents; 1094 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1095 Ty->getScope().resolve(), QualifiedNameComponents); 1096 1097 std::string FullyQualifiedName = 1098 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1099 1100 if (ClosestSubprogram == nullptr) 1101 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1102 else if (ClosestSubprogram == CurrentSubprogram) 1103 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1104 1105 // TODO: What if the ClosestSubprogram is neither null or the current 1106 // subprogram? Currently, the UDT just gets dropped on the floor. 1107 // 1108 // The current behavior is not desirable. To get maximal fidelity, we would 1109 // need to perform all type translation before beginning emission of .debug$S 1110 // and then make LocalUDTs a member of FunctionInfo 1111 } 1112 1113 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1114 // Generic dispatch for lowering an unknown type. 1115 switch (Ty->getTag()) { 1116 case dwarf::DW_TAG_array_type: 1117 return lowerTypeArray(cast<DICompositeType>(Ty)); 1118 case dwarf::DW_TAG_typedef: 1119 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1120 case dwarf::DW_TAG_base_type: 1121 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1122 case dwarf::DW_TAG_pointer_type: 1123 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1124 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1125 LLVM_FALLTHROUGH; 1126 case dwarf::DW_TAG_reference_type: 1127 case dwarf::DW_TAG_rvalue_reference_type: 1128 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1129 case dwarf::DW_TAG_ptr_to_member_type: 1130 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1131 case dwarf::DW_TAG_const_type: 1132 case dwarf::DW_TAG_volatile_type: 1133 // TODO: add support for DW_TAG_atomic_type here 1134 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1135 case dwarf::DW_TAG_subroutine_type: 1136 if (ClassTy) { 1137 // The member function type of a member function pointer has no 1138 // ThisAdjustment. 1139 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1140 /*ThisAdjustment=*/0); 1141 } 1142 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1143 case dwarf::DW_TAG_enumeration_type: 1144 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1145 case dwarf::DW_TAG_class_type: 1146 case dwarf::DW_TAG_structure_type: 1147 return lowerTypeClass(cast<DICompositeType>(Ty)); 1148 case dwarf::DW_TAG_union_type: 1149 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1150 default: 1151 // Use the null type index. 1152 return TypeIndex(); 1153 } 1154 } 1155 1156 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1157 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1158 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1159 StringRef TypeName = Ty->getName(); 1160 1161 addToUDTs(Ty, UnderlyingTypeIndex); 1162 1163 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1164 TypeName == "HRESULT") 1165 return TypeIndex(SimpleTypeKind::HResult); 1166 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1167 TypeName == "wchar_t") 1168 return TypeIndex(SimpleTypeKind::WideCharacter); 1169 1170 return UnderlyingTypeIndex; 1171 } 1172 1173 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1174 DITypeRef ElementTypeRef = Ty->getBaseType(); 1175 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1176 // IndexType is size_t, which depends on the bitness of the target. 1177 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1178 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1179 : TypeIndex(SimpleTypeKind::UInt32Long); 1180 1181 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1182 1183 // Add subranges to array type. 1184 DINodeArray Elements = Ty->getElements(); 1185 for (int i = Elements.size() - 1; i >= 0; --i) { 1186 const DINode *Element = Elements[i]; 1187 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1188 1189 const DISubrange *Subrange = cast<DISubrange>(Element); 1190 assert(Subrange->getLowerBound() == 0 && 1191 "codeview doesn't support subranges with lower bounds"); 1192 int64_t Count = Subrange->getCount(); 1193 1194 // Variable Length Array (VLA) has Count equal to '-1'. 1195 // Replace with Count '1', assume it is the minimum VLA length. 1196 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1197 if (Count == -1) 1198 Count = 1; 1199 1200 // Update the element size and element type index for subsequent subranges. 1201 ElementSize *= Count; 1202 1203 // If this is the outermost array, use the size from the array. It will be 1204 // more accurate if we had a VLA or an incomplete element type size. 1205 uint64_t ArraySize = 1206 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1207 1208 StringRef Name = (i == 0) ? Ty->getName() : ""; 1209 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1210 ElementTypeIndex = TypeTable.writeKnownType(AR); 1211 } 1212 1213 return ElementTypeIndex; 1214 } 1215 1216 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1217 TypeIndex Index; 1218 dwarf::TypeKind Kind; 1219 uint32_t ByteSize; 1220 1221 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1222 ByteSize = Ty->getSizeInBits() / 8; 1223 1224 SimpleTypeKind STK = SimpleTypeKind::None; 1225 switch (Kind) { 1226 case dwarf::DW_ATE_address: 1227 // FIXME: Translate 1228 break; 1229 case dwarf::DW_ATE_boolean: 1230 switch (ByteSize) { 1231 case 1: STK = SimpleTypeKind::Boolean8; break; 1232 case 2: STK = SimpleTypeKind::Boolean16; break; 1233 case 4: STK = SimpleTypeKind::Boolean32; break; 1234 case 8: STK = SimpleTypeKind::Boolean64; break; 1235 case 16: STK = SimpleTypeKind::Boolean128; break; 1236 } 1237 break; 1238 case dwarf::DW_ATE_complex_float: 1239 switch (ByteSize) { 1240 case 2: STK = SimpleTypeKind::Complex16; break; 1241 case 4: STK = SimpleTypeKind::Complex32; break; 1242 case 8: STK = SimpleTypeKind::Complex64; break; 1243 case 10: STK = SimpleTypeKind::Complex80; break; 1244 case 16: STK = SimpleTypeKind::Complex128; break; 1245 } 1246 break; 1247 case dwarf::DW_ATE_float: 1248 switch (ByteSize) { 1249 case 2: STK = SimpleTypeKind::Float16; break; 1250 case 4: STK = SimpleTypeKind::Float32; break; 1251 case 6: STK = SimpleTypeKind::Float48; break; 1252 case 8: STK = SimpleTypeKind::Float64; break; 1253 case 10: STK = SimpleTypeKind::Float80; break; 1254 case 16: STK = SimpleTypeKind::Float128; break; 1255 } 1256 break; 1257 case dwarf::DW_ATE_signed: 1258 switch (ByteSize) { 1259 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1260 case 2: STK = SimpleTypeKind::Int16Short; break; 1261 case 4: STK = SimpleTypeKind::Int32; break; 1262 case 8: STK = SimpleTypeKind::Int64Quad; break; 1263 case 16: STK = SimpleTypeKind::Int128Oct; break; 1264 } 1265 break; 1266 case dwarf::DW_ATE_unsigned: 1267 switch (ByteSize) { 1268 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1269 case 2: STK = SimpleTypeKind::UInt16Short; break; 1270 case 4: STK = SimpleTypeKind::UInt32; break; 1271 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1272 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1273 } 1274 break; 1275 case dwarf::DW_ATE_UTF: 1276 switch (ByteSize) { 1277 case 2: STK = SimpleTypeKind::Character16; break; 1278 case 4: STK = SimpleTypeKind::Character32; break; 1279 } 1280 break; 1281 case dwarf::DW_ATE_signed_char: 1282 if (ByteSize == 1) 1283 STK = SimpleTypeKind::SignedCharacter; 1284 break; 1285 case dwarf::DW_ATE_unsigned_char: 1286 if (ByteSize == 1) 1287 STK = SimpleTypeKind::UnsignedCharacter; 1288 break; 1289 default: 1290 break; 1291 } 1292 1293 // Apply some fixups based on the source-level type name. 1294 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1295 STK = SimpleTypeKind::Int32Long; 1296 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1297 STK = SimpleTypeKind::UInt32Long; 1298 if (STK == SimpleTypeKind::UInt16Short && 1299 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1300 STK = SimpleTypeKind::WideCharacter; 1301 if ((STK == SimpleTypeKind::SignedCharacter || 1302 STK == SimpleTypeKind::UnsignedCharacter) && 1303 Ty->getName() == "char") 1304 STK = SimpleTypeKind::NarrowCharacter; 1305 1306 return TypeIndex(STK); 1307 } 1308 1309 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1310 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1311 1312 // Pointers to simple types can use SimpleTypeMode, rather than having a 1313 // dedicated pointer type record. 1314 if (PointeeTI.isSimple() && 1315 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1316 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1317 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1318 ? SimpleTypeMode::NearPointer64 1319 : SimpleTypeMode::NearPointer32; 1320 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1321 } 1322 1323 PointerKind PK = 1324 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1325 PointerMode PM = PointerMode::Pointer; 1326 switch (Ty->getTag()) { 1327 default: llvm_unreachable("not a pointer tag type"); 1328 case dwarf::DW_TAG_pointer_type: 1329 PM = PointerMode::Pointer; 1330 break; 1331 case dwarf::DW_TAG_reference_type: 1332 PM = PointerMode::LValueReference; 1333 break; 1334 case dwarf::DW_TAG_rvalue_reference_type: 1335 PM = PointerMode::RValueReference; 1336 break; 1337 } 1338 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1339 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1340 // do. 1341 PointerOptions PO = PointerOptions::None; 1342 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1343 return TypeTable.writeKnownType(PR); 1344 } 1345 1346 static PointerToMemberRepresentation 1347 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1348 // SizeInBytes being zero generally implies that the member pointer type was 1349 // incomplete, which can happen if it is part of a function prototype. In this 1350 // case, use the unknown model instead of the general model. 1351 if (IsPMF) { 1352 switch (Flags & DINode::FlagPtrToMemberRep) { 1353 case 0: 1354 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1355 : PointerToMemberRepresentation::GeneralFunction; 1356 case DINode::FlagSingleInheritance: 1357 return PointerToMemberRepresentation::SingleInheritanceFunction; 1358 case DINode::FlagMultipleInheritance: 1359 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1360 case DINode::FlagVirtualInheritance: 1361 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1362 } 1363 } else { 1364 switch (Flags & DINode::FlagPtrToMemberRep) { 1365 case 0: 1366 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1367 : PointerToMemberRepresentation::GeneralData; 1368 case DINode::FlagSingleInheritance: 1369 return PointerToMemberRepresentation::SingleInheritanceData; 1370 case DINode::FlagMultipleInheritance: 1371 return PointerToMemberRepresentation::MultipleInheritanceData; 1372 case DINode::FlagVirtualInheritance: 1373 return PointerToMemberRepresentation::VirtualInheritanceData; 1374 } 1375 } 1376 llvm_unreachable("invalid ptr to member representation"); 1377 } 1378 1379 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1380 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1381 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1382 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1383 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1384 : PointerKind::Near32; 1385 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1386 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1387 : PointerMode::PointerToDataMember; 1388 PointerOptions PO = PointerOptions::None; // FIXME 1389 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1390 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1391 MemberPointerInfo MPI( 1392 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1393 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1394 return TypeTable.writeKnownType(PR); 1395 } 1396 1397 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1398 /// have a translation, use the NearC convention. 1399 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1400 switch (DwarfCC) { 1401 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1402 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1403 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1404 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1405 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1406 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1407 } 1408 return CallingConvention::NearC; 1409 } 1410 1411 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1412 ModifierOptions Mods = ModifierOptions::None; 1413 bool IsModifier = true; 1414 const DIType *BaseTy = Ty; 1415 while (IsModifier && BaseTy) { 1416 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1417 switch (BaseTy->getTag()) { 1418 case dwarf::DW_TAG_const_type: 1419 Mods |= ModifierOptions::Const; 1420 break; 1421 case dwarf::DW_TAG_volatile_type: 1422 Mods |= ModifierOptions::Volatile; 1423 break; 1424 default: 1425 IsModifier = false; 1426 break; 1427 } 1428 if (IsModifier) 1429 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1430 } 1431 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1432 ModifierRecord MR(ModifiedTI, Mods); 1433 return TypeTable.writeKnownType(MR); 1434 } 1435 1436 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1437 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1438 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1439 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1440 1441 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1442 ArrayRef<TypeIndex> ArgTypeIndices = None; 1443 if (!ReturnAndArgTypeIndices.empty()) { 1444 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1445 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1446 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1447 } 1448 1449 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1450 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1451 1452 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1453 1454 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1455 ArgTypeIndices.size(), ArgListIndex); 1456 return TypeTable.writeKnownType(Procedure); 1457 } 1458 1459 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1460 const DIType *ClassTy, 1461 int ThisAdjustment) { 1462 // Lower the containing class type. 1463 TypeIndex ClassType = getTypeIndex(ClassTy); 1464 1465 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1466 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1467 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1468 1469 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1470 ArrayRef<TypeIndex> ArgTypeIndices = None; 1471 if (!ReturnAndArgTypeIndices.empty()) { 1472 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1473 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1474 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1475 } 1476 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1477 if (!ArgTypeIndices.empty()) { 1478 ThisTypeIndex = ArgTypeIndices.front(); 1479 ArgTypeIndices = ArgTypeIndices.drop_front(); 1480 } 1481 1482 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1483 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1484 1485 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1486 1487 // TODO: Need to use the correct values for: 1488 // FunctionOptions 1489 // ThisPointerAdjustment. 1490 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1491 FunctionOptions::None, ArgTypeIndices.size(), 1492 ArgListIndex, ThisAdjustment); 1493 TypeIndex TI = TypeTable.writeKnownType(MFR); 1494 1495 return TI; 1496 } 1497 1498 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1499 unsigned VSlotCount = 1500 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1501 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1502 1503 VFTableShapeRecord VFTSR(Slots); 1504 return TypeTable.writeKnownType(VFTSR); 1505 } 1506 1507 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1508 switch (Flags & DINode::FlagAccessibility) { 1509 case DINode::FlagPrivate: return MemberAccess::Private; 1510 case DINode::FlagPublic: return MemberAccess::Public; 1511 case DINode::FlagProtected: return MemberAccess::Protected; 1512 case 0: 1513 // If there was no explicit access control, provide the default for the tag. 1514 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1515 : MemberAccess::Public; 1516 } 1517 llvm_unreachable("access flags are exclusive"); 1518 } 1519 1520 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1521 if (SP->isArtificial()) 1522 return MethodOptions::CompilerGenerated; 1523 1524 // FIXME: Handle other MethodOptions. 1525 1526 return MethodOptions::None; 1527 } 1528 1529 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1530 bool Introduced) { 1531 switch (SP->getVirtuality()) { 1532 case dwarf::DW_VIRTUALITY_none: 1533 break; 1534 case dwarf::DW_VIRTUALITY_virtual: 1535 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1536 case dwarf::DW_VIRTUALITY_pure_virtual: 1537 return Introduced ? MethodKind::PureIntroducingVirtual 1538 : MethodKind::PureVirtual; 1539 default: 1540 llvm_unreachable("unhandled virtuality case"); 1541 } 1542 1543 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1544 1545 return MethodKind::Vanilla; 1546 } 1547 1548 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1549 switch (Ty->getTag()) { 1550 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1551 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1552 } 1553 llvm_unreachable("unexpected tag"); 1554 } 1555 1556 /// Return ClassOptions that should be present on both the forward declaration 1557 /// and the defintion of a tag type. 1558 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1559 ClassOptions CO = ClassOptions::None; 1560 1561 // MSVC always sets this flag, even for local types. Clang doesn't always 1562 // appear to give every type a linkage name, which may be problematic for us. 1563 // FIXME: Investigate the consequences of not following them here. 1564 if (!Ty->getIdentifier().empty()) 1565 CO |= ClassOptions::HasUniqueName; 1566 1567 // Put the Nested flag on a type if it appears immediately inside a tag type. 1568 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1569 // here. That flag is only set on definitions, and not forward declarations. 1570 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1571 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1572 CO |= ClassOptions::Nested; 1573 1574 // Put the Scoped flag on function-local types. 1575 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1576 Scope = Scope->getScope().resolve()) { 1577 if (isa<DISubprogram>(Scope)) { 1578 CO |= ClassOptions::Scoped; 1579 break; 1580 } 1581 } 1582 1583 return CO; 1584 } 1585 1586 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1587 ClassOptions CO = getCommonClassOptions(Ty); 1588 TypeIndex FTI; 1589 unsigned EnumeratorCount = 0; 1590 1591 if (Ty->isForwardDecl()) { 1592 CO |= ClassOptions::ForwardReference; 1593 } else { 1594 FieldListRecordBuilder FLRB(TypeTable); 1595 1596 FLRB.begin(); 1597 for (const DINode *Element : Ty->getElements()) { 1598 // We assume that the frontend provides all members in source declaration 1599 // order, which is what MSVC does. 1600 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1601 EnumeratorRecord ER(MemberAccess::Public, 1602 APSInt::getUnsigned(Enumerator->getValue()), 1603 Enumerator->getName()); 1604 FLRB.writeMemberType(ER); 1605 EnumeratorCount++; 1606 } 1607 } 1608 FTI = FLRB.end(true); 1609 } 1610 1611 std::string FullName = getFullyQualifiedName(Ty); 1612 1613 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1614 getTypeIndex(Ty->getBaseType())); 1615 return TypeTable.writeKnownType(ER); 1616 } 1617 1618 //===----------------------------------------------------------------------===// 1619 // ClassInfo 1620 //===----------------------------------------------------------------------===// 1621 1622 struct llvm::ClassInfo { 1623 struct MemberInfo { 1624 const DIDerivedType *MemberTypeNode; 1625 uint64_t BaseOffset; 1626 }; 1627 // [MemberInfo] 1628 using MemberList = std::vector<MemberInfo>; 1629 1630 using MethodsList = TinyPtrVector<const DISubprogram *>; 1631 // MethodName -> MethodsList 1632 using MethodsMap = MapVector<MDString *, MethodsList>; 1633 1634 /// Base classes. 1635 std::vector<const DIDerivedType *> Inheritance; 1636 1637 /// Direct members. 1638 MemberList Members; 1639 // Direct overloaded methods gathered by name. 1640 MethodsMap Methods; 1641 1642 TypeIndex VShapeTI; 1643 1644 std::vector<const DICompositeType *> NestedClasses; 1645 }; 1646 1647 void CodeViewDebug::clear() { 1648 assert(CurFn == nullptr); 1649 FileIdMap.clear(); 1650 FnDebugInfo.clear(); 1651 FileToFilepathMap.clear(); 1652 LocalUDTs.clear(); 1653 GlobalUDTs.clear(); 1654 TypeIndices.clear(); 1655 CompleteTypeIndices.clear(); 1656 } 1657 1658 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1659 const DIDerivedType *DDTy) { 1660 if (!DDTy->getName().empty()) { 1661 Info.Members.push_back({DDTy, 0}); 1662 return; 1663 } 1664 // An unnamed member must represent a nested struct or union. Add all the 1665 // indirect fields to the current record. 1666 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1667 uint64_t Offset = DDTy->getOffsetInBits(); 1668 const DIType *Ty = DDTy->getBaseType().resolve(); 1669 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1670 ClassInfo NestedInfo = collectClassInfo(DCTy); 1671 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1672 Info.Members.push_back( 1673 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1674 } 1675 1676 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1677 ClassInfo Info; 1678 // Add elements to structure type. 1679 DINodeArray Elements = Ty->getElements(); 1680 for (auto *Element : Elements) { 1681 // We assume that the frontend provides all members in source declaration 1682 // order, which is what MSVC does. 1683 if (!Element) 1684 continue; 1685 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1686 Info.Methods[SP->getRawName()].push_back(SP); 1687 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1688 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1689 collectMemberInfo(Info, DDTy); 1690 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1691 Info.Inheritance.push_back(DDTy); 1692 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1693 DDTy->getName() == "__vtbl_ptr_type") { 1694 Info.VShapeTI = getTypeIndex(DDTy); 1695 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1696 // Ignore friend members. It appears that MSVC emitted info about 1697 // friends in the past, but modern versions do not. 1698 } 1699 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1700 Info.NestedClasses.push_back(Composite); 1701 } 1702 // Skip other unrecognized kinds of elements. 1703 } 1704 return Info; 1705 } 1706 1707 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1708 // First, construct the forward decl. Don't look into Ty to compute the 1709 // forward decl options, since it might not be available in all TUs. 1710 TypeRecordKind Kind = getRecordKind(Ty); 1711 ClassOptions CO = 1712 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1713 std::string FullName = getFullyQualifiedName(Ty); 1714 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1715 FullName, Ty->getIdentifier()); 1716 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1717 if (!Ty->isForwardDecl()) 1718 DeferredCompleteTypes.push_back(Ty); 1719 return FwdDeclTI; 1720 } 1721 1722 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1723 // Construct the field list and complete type record. 1724 TypeRecordKind Kind = getRecordKind(Ty); 1725 ClassOptions CO = getCommonClassOptions(Ty); 1726 TypeIndex FieldTI; 1727 TypeIndex VShapeTI; 1728 unsigned FieldCount; 1729 bool ContainsNestedClass; 1730 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1731 lowerRecordFieldList(Ty); 1732 1733 if (ContainsNestedClass) 1734 CO |= ClassOptions::ContainsNestedClass; 1735 1736 std::string FullName = getFullyQualifiedName(Ty); 1737 1738 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1739 1740 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1741 SizeInBytes, FullName, Ty->getIdentifier()); 1742 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1743 1744 if (const auto *File = Ty->getFile()) { 1745 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1746 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1747 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1748 TypeTable.writeKnownType(USLR); 1749 } 1750 1751 addToUDTs(Ty, ClassTI); 1752 1753 return ClassTI; 1754 } 1755 1756 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1757 ClassOptions CO = 1758 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1759 std::string FullName = getFullyQualifiedName(Ty); 1760 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1761 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1762 if (!Ty->isForwardDecl()) 1763 DeferredCompleteTypes.push_back(Ty); 1764 return FwdDeclTI; 1765 } 1766 1767 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1768 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1769 TypeIndex FieldTI; 1770 unsigned FieldCount; 1771 bool ContainsNestedClass; 1772 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1773 lowerRecordFieldList(Ty); 1774 1775 if (ContainsNestedClass) 1776 CO |= ClassOptions::ContainsNestedClass; 1777 1778 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1779 std::string FullName = getFullyQualifiedName(Ty); 1780 1781 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1782 Ty->getIdentifier()); 1783 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1784 1785 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1786 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1787 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1788 TypeTable.writeKnownType(USLR); 1789 1790 addToUDTs(Ty, UnionTI); 1791 1792 return UnionTI; 1793 } 1794 1795 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1796 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1797 // Manually count members. MSVC appears to count everything that generates a 1798 // field list record. Each individual overload in a method overload group 1799 // contributes to this count, even though the overload group is a single field 1800 // list record. 1801 unsigned MemberCount = 0; 1802 ClassInfo Info = collectClassInfo(Ty); 1803 FieldListRecordBuilder FLBR(TypeTable); 1804 FLBR.begin(); 1805 1806 // Create base classes. 1807 for (const DIDerivedType *I : Info.Inheritance) { 1808 if (I->getFlags() & DINode::FlagVirtual) { 1809 // Virtual base. 1810 // FIXME: Emit VBPtrOffset when the frontend provides it. 1811 unsigned VBPtrOffset = 0; 1812 // FIXME: Despite the accessor name, the offset is really in bytes. 1813 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1814 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1815 ? TypeRecordKind::IndirectVirtualBaseClass 1816 : TypeRecordKind::VirtualBaseClass; 1817 VirtualBaseClassRecord VBCR( 1818 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1819 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1820 VBTableIndex); 1821 1822 FLBR.writeMemberType(VBCR); 1823 } else { 1824 assert(I->getOffsetInBits() % 8 == 0 && 1825 "bases must be on byte boundaries"); 1826 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1827 getTypeIndex(I->getBaseType()), 1828 I->getOffsetInBits() / 8); 1829 FLBR.writeMemberType(BCR); 1830 } 1831 } 1832 1833 // Create members. 1834 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1835 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1836 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1837 StringRef MemberName = Member->getName(); 1838 MemberAccess Access = 1839 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1840 1841 if (Member->isStaticMember()) { 1842 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1843 FLBR.writeMemberType(SDMR); 1844 MemberCount++; 1845 continue; 1846 } 1847 1848 // Virtual function pointer member. 1849 if ((Member->getFlags() & DINode::FlagArtificial) && 1850 Member->getName().startswith("_vptr$")) { 1851 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1852 FLBR.writeMemberType(VFPR); 1853 MemberCount++; 1854 continue; 1855 } 1856 1857 // Data member. 1858 uint64_t MemberOffsetInBits = 1859 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1860 if (Member->isBitField()) { 1861 uint64_t StartBitOffset = MemberOffsetInBits; 1862 if (const auto *CI = 1863 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1864 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1865 } 1866 StartBitOffset -= MemberOffsetInBits; 1867 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1868 StartBitOffset); 1869 MemberBaseType = TypeTable.writeKnownType(BFR); 1870 } 1871 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1872 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1873 MemberName); 1874 FLBR.writeMemberType(DMR); 1875 MemberCount++; 1876 } 1877 1878 // Create methods 1879 for (auto &MethodItr : Info.Methods) { 1880 StringRef Name = MethodItr.first->getString(); 1881 1882 std::vector<OneMethodRecord> Methods; 1883 for (const DISubprogram *SP : MethodItr.second) { 1884 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1885 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1886 1887 unsigned VFTableOffset = -1; 1888 if (Introduced) 1889 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1890 1891 Methods.push_back(OneMethodRecord( 1892 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1893 translateMethodKindFlags(SP, Introduced), 1894 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1895 MemberCount++; 1896 } 1897 assert(!Methods.empty() && "Empty methods map entry"); 1898 if (Methods.size() == 1) 1899 FLBR.writeMemberType(Methods[0]); 1900 else { 1901 MethodOverloadListRecord MOLR(Methods); 1902 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1903 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1904 FLBR.writeMemberType(OMR); 1905 } 1906 } 1907 1908 // Create nested classes. 1909 for (const DICompositeType *Nested : Info.NestedClasses) { 1910 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1911 FLBR.writeMemberType(R); 1912 MemberCount++; 1913 } 1914 1915 TypeIndex FieldTI = FLBR.end(true); 1916 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1917 !Info.NestedClasses.empty()); 1918 } 1919 1920 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1921 if (!VBPType.getIndex()) { 1922 // Make a 'const int *' type. 1923 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1924 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1925 1926 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1927 : PointerKind::Near32; 1928 PointerMode PM = PointerMode::Pointer; 1929 PointerOptions PO = PointerOptions::None; 1930 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1931 1932 VBPType = TypeTable.writeKnownType(PR); 1933 } 1934 1935 return VBPType; 1936 } 1937 1938 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1939 const DIType *Ty = TypeRef.resolve(); 1940 const DIType *ClassTy = ClassTyRef.resolve(); 1941 1942 // The null DIType is the void type. Don't try to hash it. 1943 if (!Ty) 1944 return TypeIndex::Void(); 1945 1946 // Check if we've already translated this type. Don't try to do a 1947 // get-or-create style insertion that caches the hash lookup across the 1948 // lowerType call. It will update the TypeIndices map. 1949 auto I = TypeIndices.find({Ty, ClassTy}); 1950 if (I != TypeIndices.end()) 1951 return I->second; 1952 1953 TypeLoweringScope S(*this); 1954 TypeIndex TI = lowerType(Ty, ClassTy); 1955 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1956 } 1957 1958 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1959 const DIType *Ty = TypeRef.resolve(); 1960 1961 // The null DIType is the void type. Don't try to hash it. 1962 if (!Ty) 1963 return TypeIndex::Void(); 1964 1965 // If this is a non-record type, the complete type index is the same as the 1966 // normal type index. Just call getTypeIndex. 1967 switch (Ty->getTag()) { 1968 case dwarf::DW_TAG_class_type: 1969 case dwarf::DW_TAG_structure_type: 1970 case dwarf::DW_TAG_union_type: 1971 break; 1972 default: 1973 return getTypeIndex(Ty); 1974 } 1975 1976 // Check if we've already translated the complete record type. Lowering a 1977 // complete type should never trigger lowering another complete type, so we 1978 // can reuse the hash table lookup result. 1979 const auto *CTy = cast<DICompositeType>(Ty); 1980 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1981 if (!InsertResult.second) 1982 return InsertResult.first->second; 1983 1984 TypeLoweringScope S(*this); 1985 1986 // Make sure the forward declaration is emitted first. It's unclear if this 1987 // is necessary, but MSVC does it, and we should follow suit until we can show 1988 // otherwise. 1989 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1990 1991 // Just use the forward decl if we don't have complete type info. This might 1992 // happen if the frontend is using modules and expects the complete definition 1993 // to be emitted elsewhere. 1994 if (CTy->isForwardDecl()) 1995 return FwdDeclTI; 1996 1997 TypeIndex TI; 1998 switch (CTy->getTag()) { 1999 case dwarf::DW_TAG_class_type: 2000 case dwarf::DW_TAG_structure_type: 2001 TI = lowerCompleteTypeClass(CTy); 2002 break; 2003 case dwarf::DW_TAG_union_type: 2004 TI = lowerCompleteTypeUnion(CTy); 2005 break; 2006 default: 2007 llvm_unreachable("not a record"); 2008 } 2009 2010 InsertResult.first->second = TI; 2011 return TI; 2012 } 2013 2014 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2015 /// and do this until fixpoint, as each complete record type typically 2016 /// references 2017 /// many other record types. 2018 void CodeViewDebug::emitDeferredCompleteTypes() { 2019 SmallVector<const DICompositeType *, 4> TypesToEmit; 2020 while (!DeferredCompleteTypes.empty()) { 2021 std::swap(DeferredCompleteTypes, TypesToEmit); 2022 for (const DICompositeType *RecordTy : TypesToEmit) 2023 getCompleteTypeIndex(RecordTy); 2024 TypesToEmit.clear(); 2025 } 2026 } 2027 2028 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2029 // Get the sorted list of parameters and emit them first. 2030 SmallVector<const LocalVariable *, 6> Params; 2031 for (const LocalVariable &L : Locals) 2032 if (L.DIVar->isParameter()) 2033 Params.push_back(&L); 2034 std::sort(Params.begin(), Params.end(), 2035 [](const LocalVariable *L, const LocalVariable *R) { 2036 return L->DIVar->getArg() < R->DIVar->getArg(); 2037 }); 2038 for (const LocalVariable *L : Params) 2039 emitLocalVariable(*L); 2040 2041 // Next emit all non-parameters in the order that we found them. 2042 for (const LocalVariable &L : Locals) 2043 if (!L.DIVar->isParameter()) 2044 emitLocalVariable(L); 2045 } 2046 2047 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2048 // LocalSym record, see SymbolRecord.h for more info. 2049 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2050 *LocalEnd = MMI->getContext().createTempSymbol(); 2051 OS.AddComment("Record length"); 2052 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2053 OS.EmitLabel(LocalBegin); 2054 2055 OS.AddComment("Record kind: S_LOCAL"); 2056 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2057 2058 LocalSymFlags Flags = LocalSymFlags::None; 2059 if (Var.DIVar->isParameter()) 2060 Flags |= LocalSymFlags::IsParameter; 2061 if (Var.DefRanges.empty()) 2062 Flags |= LocalSymFlags::IsOptimizedOut; 2063 2064 OS.AddComment("TypeIndex"); 2065 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 2066 OS.EmitIntValue(TI.getIndex(), 4); 2067 OS.AddComment("Flags"); 2068 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2069 // Truncate the name so we won't overflow the record length field. 2070 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2071 OS.EmitLabel(LocalEnd); 2072 2073 // Calculate the on disk prefix of the appropriate def range record. The 2074 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2075 // should be big enough to hold all forms without memory allocation. 2076 SmallString<20> BytePrefix; 2077 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2078 BytePrefix.clear(); 2079 if (DefRange.InMemory) { 2080 uint16_t RegRelFlags = 0; 2081 if (DefRange.IsSubfield) { 2082 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2083 (DefRange.StructOffset 2084 << DefRangeRegisterRelSym::OffsetInParentShift); 2085 } 2086 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2087 Sym.Hdr.Register = DefRange.CVRegister; 2088 Sym.Hdr.Flags = RegRelFlags; 2089 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2090 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2091 BytePrefix += 2092 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2093 BytePrefix += 2094 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2095 } else { 2096 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2097 if (DefRange.IsSubfield) { 2098 // Unclear what matters here. 2099 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2100 Sym.Hdr.Register = DefRange.CVRegister; 2101 Sym.Hdr.MayHaveNoName = 0; 2102 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2103 2104 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2105 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2106 sizeof(SymKind)); 2107 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2108 sizeof(Sym.Hdr)); 2109 } else { 2110 // Unclear what matters here. 2111 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2112 Sym.Hdr.Register = DefRange.CVRegister; 2113 Sym.Hdr.MayHaveNoName = 0; 2114 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2115 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2116 sizeof(SymKind)); 2117 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2118 sizeof(Sym.Hdr)); 2119 } 2120 } 2121 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2122 } 2123 } 2124 2125 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2126 const Function *GV = MF->getFunction(); 2127 assert(FnDebugInfo.count(GV)); 2128 assert(CurFn == &FnDebugInfo[GV]); 2129 2130 collectVariableInfo(GV->getSubprogram()); 2131 2132 // Don't emit anything if we don't have any line tables. 2133 if (!CurFn->HaveLineInfo) { 2134 FnDebugInfo.erase(GV); 2135 CurFn = nullptr; 2136 return; 2137 } 2138 2139 CurFn->End = Asm->getFunctionEnd(); 2140 2141 CurFn = nullptr; 2142 } 2143 2144 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2145 DebugHandlerBase::beginInstruction(MI); 2146 2147 // Ignore DBG_VALUE locations and function prologue. 2148 if (!Asm || !CurFn || MI->isDebugValue() || 2149 MI->getFlag(MachineInstr::FrameSetup)) 2150 return; 2151 DebugLoc DL = MI->getDebugLoc(); 2152 if (DL == PrevInstLoc || !DL) 2153 return; 2154 maybeRecordLocation(DL, Asm->MF); 2155 } 2156 2157 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2158 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2159 *EndLabel = MMI->getContext().createTempSymbol(); 2160 OS.EmitIntValue(unsigned(Kind), 4); 2161 OS.AddComment("Subsection size"); 2162 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2163 OS.EmitLabel(BeginLabel); 2164 return EndLabel; 2165 } 2166 2167 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2168 OS.EmitLabel(EndLabel); 2169 // Every subsection must be aligned to a 4-byte boundary. 2170 OS.EmitValueToAlignment(4); 2171 } 2172 2173 void CodeViewDebug::emitDebugInfoForUDTs( 2174 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 2175 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 2176 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2177 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2178 OS.AddComment("Record length"); 2179 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2180 OS.EmitLabel(UDTRecordBegin); 2181 2182 OS.AddComment("Record kind: S_UDT"); 2183 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2184 2185 OS.AddComment("Type"); 2186 OS.EmitIntValue(UDT.second.getIndex(), 4); 2187 2188 emitNullTerminatedSymbolName(OS, UDT.first); 2189 OS.EmitLabel(UDTRecordEnd); 2190 } 2191 } 2192 2193 void CodeViewDebug::emitDebugInfoForGlobals() { 2194 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2195 GlobalMap; 2196 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2197 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2198 GV.getDebugInfo(GVEs); 2199 for (const auto *GVE : GVEs) 2200 GlobalMap[GVE] = &GV; 2201 } 2202 2203 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2204 for (const MDNode *Node : CUs->operands()) { 2205 const auto *CU = cast<DICompileUnit>(Node); 2206 2207 // First, emit all globals that are not in a comdat in a single symbol 2208 // substream. MSVC doesn't like it if the substream is empty, so only open 2209 // it if we have at least one global to emit. 2210 switchToDebugSectionForSymbol(nullptr); 2211 MCSymbol *EndLabel = nullptr; 2212 for (const auto *GVE : CU->getGlobalVariables()) { 2213 if (const auto *GV = GlobalMap.lookup(GVE)) 2214 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2215 if (!EndLabel) { 2216 OS.AddComment("Symbol subsection for globals"); 2217 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2218 } 2219 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2220 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2221 } 2222 } 2223 if (EndLabel) 2224 endCVSubsection(EndLabel); 2225 2226 // Second, emit each global that is in a comdat into its own .debug$S 2227 // section along with its own symbol substream. 2228 for (const auto *GVE : CU->getGlobalVariables()) { 2229 if (const auto *GV = GlobalMap.lookup(GVE)) { 2230 if (GV->hasComdat()) { 2231 MCSymbol *GVSym = Asm->getSymbol(GV); 2232 OS.AddComment("Symbol subsection for " + 2233 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2234 switchToDebugSectionForSymbol(GVSym); 2235 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2236 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2237 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2238 endCVSubsection(EndLabel); 2239 } 2240 } 2241 } 2242 } 2243 } 2244 2245 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2246 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2247 for (const MDNode *Node : CUs->operands()) { 2248 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2249 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2250 getTypeIndex(RT); 2251 // FIXME: Add to global/local DTU list. 2252 } 2253 } 2254 } 2255 } 2256 2257 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2258 const GlobalVariable *GV, 2259 MCSymbol *GVSym) { 2260 // DataSym record, see SymbolRecord.h for more info. 2261 // FIXME: Thread local data, etc 2262 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2263 *DataEnd = MMI->getContext().createTempSymbol(); 2264 OS.AddComment("Record length"); 2265 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2266 OS.EmitLabel(DataBegin); 2267 if (DIGV->isLocalToUnit()) { 2268 if (GV->isThreadLocal()) { 2269 OS.AddComment("Record kind: S_LTHREAD32"); 2270 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2271 } else { 2272 OS.AddComment("Record kind: S_LDATA32"); 2273 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2274 } 2275 } else { 2276 if (GV->isThreadLocal()) { 2277 OS.AddComment("Record kind: S_GTHREAD32"); 2278 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2279 } else { 2280 OS.AddComment("Record kind: S_GDATA32"); 2281 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2282 } 2283 } 2284 OS.AddComment("Type"); 2285 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2286 OS.AddComment("DataOffset"); 2287 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2288 OS.AddComment("Segment"); 2289 OS.EmitCOFFSectionIndex(GVSym); 2290 OS.AddComment("Name"); 2291 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2292 OS.EmitLabel(DataEnd); 2293 } 2294