1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "DwarfExpression.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/TinyPtrVector.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/COFF.h" 25 #include "llvm/BinaryFormat/Dwarf.h" 26 #include "llvm/CodeGen/AsmPrinter.h" 27 #include "llvm/CodeGen/LexicalScopes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/TargetFrameLowering.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/Config/llvm-config.h" 37 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 38 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" 39 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 41 #include "llvm/DebugInfo/CodeView/EnumTables.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 47 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/MC/MCAsmInfo.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSectionCOFF.h" 59 #include "llvm/MC/MCStreamer.h" 60 #include "llvm/MC/MCSymbol.h" 61 #include "llvm/Support/BinaryByteStream.h" 62 #include "llvm/Support/BinaryStreamReader.h" 63 #include "llvm/Support/BinaryStreamWriter.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/FormatVariadic.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/SMLoc.h" 72 #include "llvm/Support/ScopedPrinter.h" 73 #include "llvm/Target/TargetLoweringObjectFile.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <iterator> 80 #include <limits> 81 82 using namespace llvm; 83 using namespace llvm::codeview; 84 85 namespace { 86 class CVMCAdapter : public CodeViewRecordStreamer { 87 public: 88 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) 89 : OS(&OS), TypeTable(TypeTable) {} 90 91 void emitBytes(StringRef Data) override { OS->emitBytes(Data); } 92 93 void emitIntValue(uint64_t Value, unsigned Size) override { 94 OS->emitIntValueInHex(Value, Size); 95 } 96 97 void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); } 98 99 void AddComment(const Twine &T) override { OS->AddComment(T); } 100 101 void AddRawComment(const Twine &T) override { OS->emitRawComment(T); } 102 103 bool isVerboseAsm() override { return OS->isVerboseAsm(); } 104 105 std::string getTypeName(TypeIndex TI) override { 106 std::string TypeName; 107 if (!TI.isNoneType()) { 108 if (TI.isSimple()) 109 TypeName = std::string(TypeIndex::simpleTypeName(TI)); 110 else 111 TypeName = std::string(TypeTable.getTypeName(TI)); 112 } 113 return TypeName; 114 } 115 116 private: 117 MCStreamer *OS = nullptr; 118 TypeCollection &TypeTable; 119 }; 120 } // namespace 121 122 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 123 switch (Type) { 124 case Triple::ArchType::x86: 125 return CPUType::Pentium3; 126 case Triple::ArchType::x86_64: 127 return CPUType::X64; 128 case Triple::ArchType::thumb: 129 // LLVM currently doesn't support Windows CE and so thumb 130 // here is indiscriminately mapped to ARMNT specifically. 131 return CPUType::ARMNT; 132 case Triple::ArchType::aarch64: 133 return CPUType::ARM64; 134 default: 135 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 136 } 137 } 138 139 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 140 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {} 141 142 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 143 std::string &Filepath = FileToFilepathMap[File]; 144 if (!Filepath.empty()) 145 return Filepath; 146 147 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 148 149 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 150 // it textually because one of the path components could be a symlink. 151 if (Dir.startswith("/") || Filename.startswith("/")) { 152 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 153 return Filename; 154 Filepath = std::string(Dir); 155 if (Dir.back() != '/') 156 Filepath += '/'; 157 Filepath += Filename; 158 return Filepath; 159 } 160 161 // Clang emits directory and relative filename info into the IR, but CodeView 162 // operates on full paths. We could change Clang to emit full paths too, but 163 // that would increase the IR size and probably not needed for other users. 164 // For now, just concatenate and canonicalize the path here. 165 if (Filename.find(':') == 1) 166 Filepath = std::string(Filename); 167 else 168 Filepath = (Dir + "\\" + Filename).str(); 169 170 // Canonicalize the path. We have to do it textually because we may no longer 171 // have access the file in the filesystem. 172 // First, replace all slashes with backslashes. 173 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 174 175 // Remove all "\.\" with "\". 176 size_t Cursor = 0; 177 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 178 Filepath.erase(Cursor, 2); 179 180 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 181 // path should be well-formatted, e.g. start with a drive letter, etc. 182 Cursor = 0; 183 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 184 // Something's wrong if the path starts with "\..\", abort. 185 if (Cursor == 0) 186 break; 187 188 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 189 if (PrevSlash == std::string::npos) 190 // Something's wrong, abort. 191 break; 192 193 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 194 // The next ".." might be following the one we've just erased. 195 Cursor = PrevSlash; 196 } 197 198 // Remove all duplicate backslashes. 199 Cursor = 0; 200 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 201 Filepath.erase(Cursor, 1); 202 203 return Filepath; 204 } 205 206 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 207 StringRef FullPath = getFullFilepath(F); 208 unsigned NextId = FileIdMap.size() + 1; 209 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 210 if (Insertion.second) { 211 // We have to compute the full filepath and emit a .cv_file directive. 212 ArrayRef<uint8_t> ChecksumAsBytes; 213 FileChecksumKind CSKind = FileChecksumKind::None; 214 if (F->getChecksum()) { 215 std::string Checksum = fromHex(F->getChecksum()->Value); 216 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 217 memcpy(CKMem, Checksum.data(), Checksum.size()); 218 ChecksumAsBytes = ArrayRef<uint8_t>( 219 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 220 switch (F->getChecksum()->Kind) { 221 case DIFile::CSK_MD5: 222 CSKind = FileChecksumKind::MD5; 223 break; 224 case DIFile::CSK_SHA1: 225 CSKind = FileChecksumKind::SHA1; 226 break; 227 case DIFile::CSK_SHA256: 228 CSKind = FileChecksumKind::SHA256; 229 break; 230 } 231 } 232 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 233 static_cast<unsigned>(CSKind)); 234 (void)Success; 235 assert(Success && ".cv_file directive failed"); 236 } 237 return Insertion.first->second; 238 } 239 240 CodeViewDebug::InlineSite & 241 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 242 const DISubprogram *Inlinee) { 243 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 244 InlineSite *Site = &SiteInsertion.first->second; 245 if (SiteInsertion.second) { 246 unsigned ParentFuncId = CurFn->FuncId; 247 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 248 ParentFuncId = 249 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 250 .SiteFuncId; 251 252 Site->SiteFuncId = NextFuncId++; 253 OS.EmitCVInlineSiteIdDirective( 254 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 255 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 256 Site->Inlinee = Inlinee; 257 InlinedSubprograms.insert(Inlinee); 258 getFuncIdForSubprogram(Inlinee); 259 } 260 return *Site; 261 } 262 263 static StringRef getPrettyScopeName(const DIScope *Scope) { 264 StringRef ScopeName = Scope->getName(); 265 if (!ScopeName.empty()) 266 return ScopeName; 267 268 switch (Scope->getTag()) { 269 case dwarf::DW_TAG_enumeration_type: 270 case dwarf::DW_TAG_class_type: 271 case dwarf::DW_TAG_structure_type: 272 case dwarf::DW_TAG_union_type: 273 return "<unnamed-tag>"; 274 case dwarf::DW_TAG_namespace: 275 return "`anonymous namespace'"; 276 default: 277 return StringRef(); 278 } 279 } 280 281 const DISubprogram *CodeViewDebug::collectParentScopeNames( 282 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 283 const DISubprogram *ClosestSubprogram = nullptr; 284 while (Scope != nullptr) { 285 if (ClosestSubprogram == nullptr) 286 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 287 288 // If a type appears in a scope chain, make sure it gets emitted. The 289 // frontend will be responsible for deciding if this should be a forward 290 // declaration or a complete type. 291 if (const auto *Ty = dyn_cast<DICompositeType>(Scope)) 292 DeferredCompleteTypes.push_back(Ty); 293 294 StringRef ScopeName = getPrettyScopeName(Scope); 295 if (!ScopeName.empty()) 296 QualifiedNameComponents.push_back(ScopeName); 297 Scope = Scope->getScope(); 298 } 299 return ClosestSubprogram; 300 } 301 302 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents, 303 StringRef TypeName) { 304 std::string FullyQualifiedName; 305 for (StringRef QualifiedNameComponent : 306 llvm::reverse(QualifiedNameComponents)) { 307 FullyQualifiedName.append(std::string(QualifiedNameComponent)); 308 FullyQualifiedName.append("::"); 309 } 310 FullyQualifiedName.append(std::string(TypeName)); 311 return FullyQualifiedName; 312 } 313 314 struct CodeViewDebug::TypeLoweringScope { 315 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 316 ~TypeLoweringScope() { 317 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 318 // inner TypeLoweringScopes don't attempt to emit deferred types. 319 if (CVD.TypeEmissionLevel == 1) 320 CVD.emitDeferredCompleteTypes(); 321 --CVD.TypeEmissionLevel; 322 } 323 CodeViewDebug &CVD; 324 }; 325 326 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope, 327 StringRef Name) { 328 // Ensure types in the scope chain are emitted as soon as possible. 329 // This can create otherwise a situation where S_UDTs are emitted while 330 // looping in emitDebugInfoForUDTs. 331 TypeLoweringScope S(*this); 332 SmallVector<StringRef, 5> QualifiedNameComponents; 333 collectParentScopeNames(Scope, QualifiedNameComponents); 334 return formatNestedName(QualifiedNameComponents, Name); 335 } 336 337 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) { 338 const DIScope *Scope = Ty->getScope(); 339 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 340 } 341 342 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 343 // No scope means global scope and that uses the zero index. 344 if (!Scope || isa<DIFile>(Scope)) 345 return TypeIndex(); 346 347 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 348 349 // Check if we've already translated this scope. 350 auto I = TypeIndices.find({Scope, nullptr}); 351 if (I != TypeIndices.end()) 352 return I->second; 353 354 // Build the fully qualified name of the scope. 355 std::string ScopeName = getFullyQualifiedName(Scope); 356 StringIdRecord SID(TypeIndex(), ScopeName); 357 auto TI = TypeTable.writeLeafType(SID); 358 return recordTypeIndexForDINode(Scope, TI); 359 } 360 361 static StringRef removeTemplateArgs(StringRef Name) { 362 // Remove template args from the display name. Assume that the template args 363 // are the last thing in the name. 364 if (Name.empty() || Name.back() != '>') 365 return Name; 366 367 int OpenBrackets = 0; 368 for (int i = Name.size() - 1; i >= 0; --i) { 369 if (Name[i] == '>') 370 ++OpenBrackets; 371 else if (Name[i] == '<') { 372 --OpenBrackets; 373 if (OpenBrackets == 0) 374 return Name.substr(0, i); 375 } 376 } 377 return Name; 378 } 379 380 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 381 assert(SP); 382 383 // Check if we've already translated this subprogram. 384 auto I = TypeIndices.find({SP, nullptr}); 385 if (I != TypeIndices.end()) 386 return I->second; 387 388 // The display name includes function template arguments. Drop them to match 389 // MSVC. We need to have the template arguments in the DISubprogram name 390 // because they are used in other symbol records, such as S_GPROC32_IDs. 391 StringRef DisplayName = removeTemplateArgs(SP->getName()); 392 393 const DIScope *Scope = SP->getScope(); 394 TypeIndex TI; 395 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 396 // If the scope is a DICompositeType, then this must be a method. Member 397 // function types take some special handling, and require access to the 398 // subprogram. 399 TypeIndex ClassType = getTypeIndex(Class); 400 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 401 DisplayName); 402 TI = TypeTable.writeLeafType(MFuncId); 403 } else { 404 // Otherwise, this must be a free function. 405 TypeIndex ParentScope = getScopeIndex(Scope); 406 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 407 TI = TypeTable.writeLeafType(FuncId); 408 } 409 410 return recordTypeIndexForDINode(SP, TI); 411 } 412 413 static bool isNonTrivial(const DICompositeType *DCTy) { 414 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); 415 } 416 417 static FunctionOptions 418 getFunctionOptions(const DISubroutineType *Ty, 419 const DICompositeType *ClassTy = nullptr, 420 StringRef SPName = StringRef("")) { 421 FunctionOptions FO = FunctionOptions::None; 422 const DIType *ReturnTy = nullptr; 423 if (auto TypeArray = Ty->getTypeArray()) { 424 if (TypeArray.size()) 425 ReturnTy = TypeArray[0]; 426 } 427 428 // Add CxxReturnUdt option to functions that return nontrivial record types 429 // or methods that return record types. 430 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) 431 if (isNonTrivial(ReturnDCTy) || ClassTy) 432 FO |= FunctionOptions::CxxReturnUdt; 433 434 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 435 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { 436 FO |= FunctionOptions::Constructor; 437 438 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 439 440 } 441 return FO; 442 } 443 444 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 445 const DICompositeType *Class) { 446 // Always use the method declaration as the key for the function type. The 447 // method declaration contains the this adjustment. 448 if (SP->getDeclaration()) 449 SP = SP->getDeclaration(); 450 assert(!SP->getDeclaration() && "should use declaration as key"); 451 452 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 453 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 454 auto I = TypeIndices.find({SP, Class}); 455 if (I != TypeIndices.end()) 456 return I->second; 457 458 // Make sure complete type info for the class is emitted *after* the member 459 // function type, as the complete class type is likely to reference this 460 // member function type. 461 TypeLoweringScope S(*this); 462 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 463 464 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 465 TypeIndex TI = lowerTypeMemberFunction( 466 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 467 return recordTypeIndexForDINode(SP, TI, Class); 468 } 469 470 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 471 TypeIndex TI, 472 const DIType *ClassTy) { 473 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 474 (void)InsertResult; 475 assert(InsertResult.second && "DINode was already assigned a type index"); 476 return TI; 477 } 478 479 unsigned CodeViewDebug::getPointerSizeInBytes() { 480 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 481 } 482 483 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 484 const LexicalScope *LS) { 485 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 486 // This variable was inlined. Associate it with the InlineSite. 487 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 488 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 489 Site.InlinedLocals.emplace_back(Var); 490 } else { 491 // This variable goes into the corresponding lexical scope. 492 ScopeVariables[LS].emplace_back(Var); 493 } 494 } 495 496 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 497 const DILocation *Loc) { 498 if (!llvm::is_contained(Locs, Loc)) 499 Locs.push_back(Loc); 500 } 501 502 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 503 const MachineFunction *MF) { 504 // Skip this instruction if it has the same location as the previous one. 505 if (!DL || DL == PrevInstLoc) 506 return; 507 508 const DIScope *Scope = DL.get()->getScope(); 509 if (!Scope) 510 return; 511 512 // Skip this line if it is longer than the maximum we can record. 513 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 514 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 515 LI.isNeverStepInto()) 516 return; 517 518 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 519 if (CI.getStartColumn() != DL.getCol()) 520 return; 521 522 if (!CurFn->HaveLineInfo) 523 CurFn->HaveLineInfo = true; 524 unsigned FileId = 0; 525 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 526 FileId = CurFn->LastFileId; 527 else 528 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 529 PrevInstLoc = DL; 530 531 unsigned FuncId = CurFn->FuncId; 532 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 533 const DILocation *Loc = DL.get(); 534 535 // If this location was actually inlined from somewhere else, give it the ID 536 // of the inline call site. 537 FuncId = 538 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 539 540 // Ensure we have links in the tree of inline call sites. 541 bool FirstLoc = true; 542 while ((SiteLoc = Loc->getInlinedAt())) { 543 InlineSite &Site = 544 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 545 if (!FirstLoc) 546 addLocIfNotPresent(Site.ChildSites, Loc); 547 FirstLoc = false; 548 Loc = SiteLoc; 549 } 550 addLocIfNotPresent(CurFn->ChildSites, Loc); 551 } 552 553 OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 554 /*PrologueEnd=*/false, /*IsStmt=*/false, 555 DL->getFilename(), SMLoc()); 556 } 557 558 void CodeViewDebug::emitCodeViewMagicVersion() { 559 OS.emitValueToAlignment(4); 560 OS.AddComment("Debug section magic"); 561 OS.emitInt32(COFF::DEBUG_SECTION_MAGIC); 562 } 563 564 void CodeViewDebug::beginModule(Module *M) { 565 // If module doesn't have named metadata anchors or COFF debug section 566 // is not available, skip any debug info related stuff. 567 if (!M->getNamedMetadata("llvm.dbg.cu") || 568 !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) { 569 Asm = nullptr; 570 return; 571 } 572 // Tell MMI that we have and need debug info. 573 MMI->setDebugInfoAvailability(true); 574 575 TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch()); 576 577 collectGlobalVariableInfo(); 578 579 // Check if we should emit type record hashes. 580 ConstantInt *GH = 581 mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash")); 582 EmitDebugGlobalHashes = GH && !GH->isZero(); 583 } 584 585 void CodeViewDebug::endModule() { 586 if (!Asm || !MMI->hasDebugInfo()) 587 return; 588 589 // The COFF .debug$S section consists of several subsections, each starting 590 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 591 // of the payload followed by the payload itself. The subsections are 4-byte 592 // aligned. 593 594 // Use the generic .debug$S section, and make a subsection for all the inlined 595 // subprograms. 596 switchToDebugSectionForSymbol(nullptr); 597 598 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 599 emitCompilerInformation(); 600 endCVSubsection(CompilerInfo); 601 602 emitInlineeLinesSubsection(); 603 604 // Emit per-function debug information. 605 for (auto &P : FnDebugInfo) 606 if (!P.first->isDeclarationForLinker()) 607 emitDebugInfoForFunction(P.first, *P.second); 608 609 // Get types used by globals without emitting anything. 610 // This is meant to collect all static const data members so they can be 611 // emitted as globals. 612 collectDebugInfoForGlobals(); 613 614 // Emit retained types. 615 emitDebugInfoForRetainedTypes(); 616 617 // Emit global variable debug information. 618 setCurrentSubprogram(nullptr); 619 emitDebugInfoForGlobals(); 620 621 // Switch back to the generic .debug$S section after potentially processing 622 // comdat symbol sections. 623 switchToDebugSectionForSymbol(nullptr); 624 625 // Emit UDT records for any types used by global variables. 626 if (!GlobalUDTs.empty()) { 627 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 628 emitDebugInfoForUDTs(GlobalUDTs); 629 endCVSubsection(SymbolsEnd); 630 } 631 632 // This subsection holds a file index to offset in string table table. 633 OS.AddComment("File index to string table offset subsection"); 634 OS.emitCVFileChecksumsDirective(); 635 636 // This subsection holds the string table. 637 OS.AddComment("String table"); 638 OS.emitCVStringTableDirective(); 639 640 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 641 // subsection in the generic .debug$S section at the end. There is no 642 // particular reason for this ordering other than to match MSVC. 643 emitBuildInfo(); 644 645 // Emit type information and hashes last, so that any types we translate while 646 // emitting function info are included. 647 emitTypeInformation(); 648 649 if (EmitDebugGlobalHashes) 650 emitTypeGlobalHashes(); 651 652 clear(); 653 } 654 655 static void 656 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 657 unsigned MaxFixedRecordLength = 0xF00) { 658 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 659 // after a fixed length portion of the record. The fixed length portion should 660 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 661 // overall record size is less than the maximum allowed. 662 SmallString<32> NullTerminatedString( 663 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 664 NullTerminatedString.push_back('\0'); 665 OS.emitBytes(NullTerminatedString); 666 } 667 668 void CodeViewDebug::emitTypeInformation() { 669 if (TypeTable.empty()) 670 return; 671 672 // Start the .debug$T or .debug$P section with 0x4. 673 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 674 emitCodeViewMagicVersion(); 675 676 TypeTableCollection Table(TypeTable.records()); 677 TypeVisitorCallbackPipeline Pipeline; 678 679 // To emit type record using Codeview MCStreamer adapter 680 CVMCAdapter CVMCOS(OS, Table); 681 TypeRecordMapping typeMapping(CVMCOS); 682 Pipeline.addCallbackToPipeline(typeMapping); 683 684 Optional<TypeIndex> B = Table.getFirst(); 685 while (B) { 686 // This will fail if the record data is invalid. 687 CVType Record = Table.getType(*B); 688 689 Error E = codeview::visitTypeRecord(Record, *B, Pipeline); 690 691 if (E) { 692 logAllUnhandledErrors(std::move(E), errs(), "error: "); 693 llvm_unreachable("produced malformed type record"); 694 } 695 696 B = Table.getNext(*B); 697 } 698 } 699 700 void CodeViewDebug::emitTypeGlobalHashes() { 701 if (TypeTable.empty()) 702 return; 703 704 // Start the .debug$H section with the version and hash algorithm, currently 705 // hardcoded to version 0, SHA1. 706 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 707 708 OS.emitValueToAlignment(4); 709 OS.AddComment("Magic"); 710 OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC); 711 OS.AddComment("Section Version"); 712 OS.emitInt16(0); 713 OS.AddComment("Hash Algorithm"); 714 OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8)); 715 716 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 717 for (const auto &GHR : TypeTable.hashes()) { 718 if (OS.isVerboseAsm()) { 719 // Emit an EOL-comment describing which TypeIndex this hash corresponds 720 // to, as well as the stringified SHA1 hash. 721 SmallString<32> Comment; 722 raw_svector_ostream CommentOS(Comment); 723 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 724 OS.AddComment(Comment); 725 ++TI; 726 } 727 assert(GHR.Hash.size() == 8); 728 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 729 GHR.Hash.size()); 730 OS.emitBinaryData(S); 731 } 732 } 733 734 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 735 switch (DWLang) { 736 case dwarf::DW_LANG_C: 737 case dwarf::DW_LANG_C89: 738 case dwarf::DW_LANG_C99: 739 case dwarf::DW_LANG_C11: 740 case dwarf::DW_LANG_ObjC: 741 return SourceLanguage::C; 742 case dwarf::DW_LANG_C_plus_plus: 743 case dwarf::DW_LANG_C_plus_plus_03: 744 case dwarf::DW_LANG_C_plus_plus_11: 745 case dwarf::DW_LANG_C_plus_plus_14: 746 return SourceLanguage::Cpp; 747 case dwarf::DW_LANG_Fortran77: 748 case dwarf::DW_LANG_Fortran90: 749 case dwarf::DW_LANG_Fortran95: 750 case dwarf::DW_LANG_Fortran03: 751 case dwarf::DW_LANG_Fortran08: 752 return SourceLanguage::Fortran; 753 case dwarf::DW_LANG_Pascal83: 754 return SourceLanguage::Pascal; 755 case dwarf::DW_LANG_Cobol74: 756 case dwarf::DW_LANG_Cobol85: 757 return SourceLanguage::Cobol; 758 case dwarf::DW_LANG_Java: 759 return SourceLanguage::Java; 760 case dwarf::DW_LANG_D: 761 return SourceLanguage::D; 762 case dwarf::DW_LANG_Swift: 763 return SourceLanguage::Swift; 764 default: 765 // There's no CodeView representation for this language, and CV doesn't 766 // have an "unknown" option for the language field, so we'll use MASM, 767 // as it's very low level. 768 return SourceLanguage::Masm; 769 } 770 } 771 772 namespace { 773 struct Version { 774 int Part[4]; 775 }; 776 } // end anonymous namespace 777 778 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 779 // the version number. 780 static Version parseVersion(StringRef Name) { 781 Version V = {{0}}; 782 int N = 0; 783 for (const char C : Name) { 784 if (isdigit(C)) { 785 V.Part[N] *= 10; 786 V.Part[N] += C - '0'; 787 } else if (C == '.') { 788 ++N; 789 if (N >= 4) 790 return V; 791 } else if (N > 0) 792 return V; 793 } 794 return V; 795 } 796 797 void CodeViewDebug::emitCompilerInformation() { 798 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 799 uint32_t Flags = 0; 800 801 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 802 const MDNode *Node = *CUs->operands().begin(); 803 const auto *CU = cast<DICompileUnit>(Node); 804 805 // The low byte of the flags indicates the source language. 806 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 807 // TODO: Figure out which other flags need to be set. 808 if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) { 809 Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO); 810 } 811 812 OS.AddComment("Flags and language"); 813 OS.emitInt32(Flags); 814 815 OS.AddComment("CPUType"); 816 OS.emitInt16(static_cast<uint64_t>(TheCPU)); 817 818 StringRef CompilerVersion = CU->getProducer(); 819 Version FrontVer = parseVersion(CompilerVersion); 820 OS.AddComment("Frontend version"); 821 for (int N : FrontVer.Part) 822 OS.emitInt16(N); 823 824 // Some Microsoft tools, like Binscope, expect a backend version number of at 825 // least 8.something, so we'll coerce the LLVM version into a form that 826 // guarantees it'll be big enough without really lying about the version. 827 int Major = 1000 * LLVM_VERSION_MAJOR + 828 10 * LLVM_VERSION_MINOR + 829 LLVM_VERSION_PATCH; 830 // Clamp it for builds that use unusually large version numbers. 831 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 832 Version BackVer = {{ Major, 0, 0, 0 }}; 833 OS.AddComment("Backend version"); 834 for (int N : BackVer.Part) 835 OS.emitInt16(N); 836 837 OS.AddComment("Null-terminated compiler version string"); 838 emitNullTerminatedSymbolName(OS, CompilerVersion); 839 840 endSymbolRecord(CompilerEnd); 841 } 842 843 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 844 StringRef S) { 845 StringIdRecord SIR(TypeIndex(0x0), S); 846 return TypeTable.writeLeafType(SIR); 847 } 848 849 void CodeViewDebug::emitBuildInfo() { 850 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 851 // build info. The known prefix is: 852 // - Absolute path of current directory 853 // - Compiler path 854 // - Main source file path, relative to CWD or absolute 855 // - Type server PDB file 856 // - Canonical compiler command line 857 // If frontend and backend compilation are separated (think llc or LTO), it's 858 // not clear if the compiler path should refer to the executable for the 859 // frontend or the backend. Leave it blank for now. 860 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 861 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 862 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 863 const auto *CU = cast<DICompileUnit>(Node); 864 const DIFile *MainSourceFile = CU->getFile(); 865 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 866 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 867 BuildInfoArgs[BuildInfoRecord::SourceFile] = 868 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 869 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 870 // we implement /Zi type servers. 871 BuildInfoRecord BIR(BuildInfoArgs); 872 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 873 874 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 875 // from the module symbols into the type stream. 876 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 877 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 878 OS.AddComment("LF_BUILDINFO index"); 879 OS.emitInt32(BuildInfoIndex.getIndex()); 880 endSymbolRecord(BIEnd); 881 endCVSubsection(BISubsecEnd); 882 } 883 884 void CodeViewDebug::emitInlineeLinesSubsection() { 885 if (InlinedSubprograms.empty()) 886 return; 887 888 OS.AddComment("Inlinee lines subsection"); 889 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 890 891 // We emit the checksum info for files. This is used by debuggers to 892 // determine if a pdb matches the source before loading it. Visual Studio, 893 // for instance, will display a warning that the breakpoints are not valid if 894 // the pdb does not match the source. 895 OS.AddComment("Inlinee lines signature"); 896 OS.emitInt32(unsigned(InlineeLinesSignature::Normal)); 897 898 for (const DISubprogram *SP : InlinedSubprograms) { 899 assert(TypeIndices.count({SP, nullptr})); 900 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 901 902 OS.AddBlankLine(); 903 unsigned FileId = maybeRecordFile(SP->getFile()); 904 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 905 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 906 OS.AddBlankLine(); 907 OS.AddComment("Type index of inlined function"); 908 OS.emitInt32(InlineeIdx.getIndex()); 909 OS.AddComment("Offset into filechecksum table"); 910 OS.emitCVFileChecksumOffsetDirective(FileId); 911 OS.AddComment("Starting line number"); 912 OS.emitInt32(SP->getLine()); 913 } 914 915 endCVSubsection(InlineEnd); 916 } 917 918 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 919 const DILocation *InlinedAt, 920 const InlineSite &Site) { 921 assert(TypeIndices.count({Site.Inlinee, nullptr})); 922 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 923 924 // SymbolRecord 925 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 926 927 OS.AddComment("PtrParent"); 928 OS.emitInt32(0); 929 OS.AddComment("PtrEnd"); 930 OS.emitInt32(0); 931 OS.AddComment("Inlinee type index"); 932 OS.emitInt32(InlineeIdx.getIndex()); 933 934 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 935 unsigned StartLineNum = Site.Inlinee->getLine(); 936 937 OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 938 FI.Begin, FI.End); 939 940 endSymbolRecord(InlineEnd); 941 942 emitLocalVariableList(FI, Site.InlinedLocals); 943 944 // Recurse on child inlined call sites before closing the scope. 945 for (const DILocation *ChildSite : Site.ChildSites) { 946 auto I = FI.InlineSites.find(ChildSite); 947 assert(I != FI.InlineSites.end() && 948 "child site not in function inline site map"); 949 emitInlinedCallSite(FI, ChildSite, I->second); 950 } 951 952 // Close the scope. 953 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 954 } 955 956 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 957 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 958 // comdat key. A section may be comdat because of -ffunction-sections or 959 // because it is comdat in the IR. 960 MCSectionCOFF *GVSec = 961 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 962 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 963 964 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 965 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 966 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 967 968 OS.SwitchSection(DebugSec); 969 970 // Emit the magic version number if this is the first time we've switched to 971 // this section. 972 if (ComdatDebugSections.insert(DebugSec).second) 973 emitCodeViewMagicVersion(); 974 } 975 976 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 977 // The only supported thunk ordinal is currently the standard type. 978 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 979 FunctionInfo &FI, 980 const MCSymbol *Fn) { 981 std::string FuncName = 982 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 983 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 984 985 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 986 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 987 988 // Emit S_THUNK32 989 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 990 OS.AddComment("PtrParent"); 991 OS.emitInt32(0); 992 OS.AddComment("PtrEnd"); 993 OS.emitInt32(0); 994 OS.AddComment("PtrNext"); 995 OS.emitInt32(0); 996 OS.AddComment("Thunk section relative address"); 997 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 998 OS.AddComment("Thunk section index"); 999 OS.EmitCOFFSectionIndex(Fn); 1000 OS.AddComment("Code size"); 1001 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 1002 OS.AddComment("Ordinal"); 1003 OS.emitInt8(unsigned(ordinal)); 1004 OS.AddComment("Function name"); 1005 emitNullTerminatedSymbolName(OS, FuncName); 1006 // Additional fields specific to the thunk ordinal would go here. 1007 endSymbolRecord(ThunkRecordEnd); 1008 1009 // Local variables/inlined routines are purposely omitted here. The point of 1010 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 1011 1012 // Emit S_PROC_ID_END 1013 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1014 1015 endCVSubsection(SymbolsEnd); 1016 } 1017 1018 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 1019 FunctionInfo &FI) { 1020 // For each function there is a separate subsection which holds the PC to 1021 // file:line table. 1022 const MCSymbol *Fn = Asm->getSymbol(GV); 1023 assert(Fn); 1024 1025 // Switch to the to a comdat section, if appropriate. 1026 switchToDebugSectionForSymbol(Fn); 1027 1028 std::string FuncName; 1029 auto *SP = GV->getSubprogram(); 1030 assert(SP); 1031 setCurrentSubprogram(SP); 1032 1033 if (SP->isThunk()) { 1034 emitDebugInfoForThunk(GV, FI, Fn); 1035 return; 1036 } 1037 1038 // If we have a display name, build the fully qualified name by walking the 1039 // chain of scopes. 1040 if (!SP->getName().empty()) 1041 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); 1042 1043 // If our DISubprogram name is empty, use the mangled name. 1044 if (FuncName.empty()) 1045 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1046 1047 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1048 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1049 OS.EmitCVFPOData(Fn); 1050 1051 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1052 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1053 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1054 { 1055 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 1056 : SymbolKind::S_GPROC32_ID; 1057 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 1058 1059 // These fields are filled in by tools like CVPACK which run after the fact. 1060 OS.AddComment("PtrParent"); 1061 OS.emitInt32(0); 1062 OS.AddComment("PtrEnd"); 1063 OS.emitInt32(0); 1064 OS.AddComment("PtrNext"); 1065 OS.emitInt32(0); 1066 // This is the important bit that tells the debugger where the function 1067 // code is located and what's its size: 1068 OS.AddComment("Code size"); 1069 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1070 OS.AddComment("Offset after prologue"); 1071 OS.emitInt32(0); 1072 OS.AddComment("Offset before epilogue"); 1073 OS.emitInt32(0); 1074 OS.AddComment("Function type index"); 1075 OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex()); 1076 OS.AddComment("Function section relative address"); 1077 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1078 OS.AddComment("Function section index"); 1079 OS.EmitCOFFSectionIndex(Fn); 1080 OS.AddComment("Flags"); 1081 OS.emitInt8(0); 1082 // Emit the function display name as a null-terminated string. 1083 OS.AddComment("Function name"); 1084 // Truncate the name so we won't overflow the record length field. 1085 emitNullTerminatedSymbolName(OS, FuncName); 1086 endSymbolRecord(ProcRecordEnd); 1087 1088 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1089 // Subtract out the CSR size since MSVC excludes that and we include it. 1090 OS.AddComment("FrameSize"); 1091 OS.emitInt32(FI.FrameSize - FI.CSRSize); 1092 OS.AddComment("Padding"); 1093 OS.emitInt32(0); 1094 OS.AddComment("Offset of padding"); 1095 OS.emitInt32(0); 1096 OS.AddComment("Bytes of callee saved registers"); 1097 OS.emitInt32(FI.CSRSize); 1098 OS.AddComment("Exception handler offset"); 1099 OS.emitInt32(0); 1100 OS.AddComment("Exception handler section"); 1101 OS.emitInt16(0); 1102 OS.AddComment("Flags (defines frame register)"); 1103 OS.emitInt32(uint32_t(FI.FrameProcOpts)); 1104 endSymbolRecord(FrameProcEnd); 1105 1106 emitLocalVariableList(FI, FI.Locals); 1107 emitGlobalVariableList(FI.Globals); 1108 emitLexicalBlockList(FI.ChildBlocks, FI); 1109 1110 // Emit inlined call site information. Only emit functions inlined directly 1111 // into the parent function. We'll emit the other sites recursively as part 1112 // of their parent inline site. 1113 for (const DILocation *InlinedAt : FI.ChildSites) { 1114 auto I = FI.InlineSites.find(InlinedAt); 1115 assert(I != FI.InlineSites.end() && 1116 "child site not in function inline site map"); 1117 emitInlinedCallSite(FI, InlinedAt, I->second); 1118 } 1119 1120 for (auto Annot : FI.Annotations) { 1121 MCSymbol *Label = Annot.first; 1122 MDTuple *Strs = cast<MDTuple>(Annot.second); 1123 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1124 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1125 // FIXME: Make sure we don't overflow the max record size. 1126 OS.EmitCOFFSectionIndex(Label); 1127 OS.emitInt16(Strs->getNumOperands()); 1128 for (Metadata *MD : Strs->operands()) { 1129 // MDStrings are null terminated, so we can do EmitBytes and get the 1130 // nice .asciz directive. 1131 StringRef Str = cast<MDString>(MD)->getString(); 1132 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1133 OS.emitBytes(StringRef(Str.data(), Str.size() + 1)); 1134 } 1135 endSymbolRecord(AnnotEnd); 1136 } 1137 1138 for (auto HeapAllocSite : FI.HeapAllocSites) { 1139 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); 1140 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); 1141 const DIType *DITy = std::get<2>(HeapAllocSite); 1142 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); 1143 OS.AddComment("Call site offset"); 1144 OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0); 1145 OS.AddComment("Call site section index"); 1146 OS.EmitCOFFSectionIndex(BeginLabel); 1147 OS.AddComment("Call instruction length"); 1148 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 1149 OS.AddComment("Type index"); 1150 OS.emitInt32(getCompleteTypeIndex(DITy).getIndex()); 1151 endSymbolRecord(HeapAllocEnd); 1152 } 1153 1154 if (SP != nullptr) 1155 emitDebugInfoForUDTs(LocalUDTs); 1156 1157 // We're done with this function. 1158 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1159 } 1160 endCVSubsection(SymbolsEnd); 1161 1162 // We have an assembler directive that takes care of the whole line table. 1163 OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1164 } 1165 1166 CodeViewDebug::LocalVarDefRange 1167 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1168 LocalVarDefRange DR; 1169 DR.InMemory = -1; 1170 DR.DataOffset = Offset; 1171 assert(DR.DataOffset == Offset && "truncation"); 1172 DR.IsSubfield = 0; 1173 DR.StructOffset = 0; 1174 DR.CVRegister = CVRegister; 1175 return DR; 1176 } 1177 1178 void CodeViewDebug::collectVariableInfoFromMFTable( 1179 DenseSet<InlinedEntity> &Processed) { 1180 const MachineFunction &MF = *Asm->MF; 1181 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1182 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1183 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1184 1185 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1186 if (!VI.Var) 1187 continue; 1188 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1189 "Expected inlined-at fields to agree"); 1190 1191 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1192 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1193 1194 // If variable scope is not found then skip this variable. 1195 if (!Scope) 1196 continue; 1197 1198 // If the variable has an attached offset expression, extract it. 1199 // FIXME: Try to handle DW_OP_deref as well. 1200 int64_t ExprOffset = 0; 1201 bool Deref = false; 1202 if (VI.Expr) { 1203 // If there is one DW_OP_deref element, use offset of 0 and keep going. 1204 if (VI.Expr->getNumElements() == 1 && 1205 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) 1206 Deref = true; 1207 else if (!VI.Expr->extractIfOffset(ExprOffset)) 1208 continue; 1209 } 1210 1211 // Get the frame register used and the offset. 1212 Register FrameReg; 1213 StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1214 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1215 1216 assert(!FrameOffset.getScalable() && 1217 "Frame offsets with a scalable component are not supported"); 1218 1219 // Calculate the label ranges. 1220 LocalVarDefRange DefRange = 1221 createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset); 1222 1223 for (const InsnRange &Range : Scope->getRanges()) { 1224 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1225 const MCSymbol *End = getLabelAfterInsn(Range.second); 1226 End = End ? End : Asm->getFunctionEnd(); 1227 DefRange.Ranges.emplace_back(Begin, End); 1228 } 1229 1230 LocalVariable Var; 1231 Var.DIVar = VI.Var; 1232 Var.DefRanges.emplace_back(std::move(DefRange)); 1233 if (Deref) 1234 Var.UseReferenceType = true; 1235 1236 recordLocalVariable(std::move(Var), Scope); 1237 } 1238 } 1239 1240 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1241 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1242 } 1243 1244 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1245 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1246 } 1247 1248 void CodeViewDebug::calculateRanges( 1249 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { 1250 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1251 1252 // Calculate the definition ranges. 1253 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { 1254 const auto &Entry = *I; 1255 if (!Entry.isDbgValue()) 1256 continue; 1257 const MachineInstr *DVInst = Entry.getInstr(); 1258 assert(DVInst->isDebugValue() && "Invalid History entry"); 1259 // FIXME: Find a way to represent constant variables, since they are 1260 // relatively common. 1261 Optional<DbgVariableLocation> Location = 1262 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1263 if (!Location) 1264 continue; 1265 1266 // CodeView can only express variables in register and variables in memory 1267 // at a constant offset from a register. However, for variables passed 1268 // indirectly by pointer, it is common for that pointer to be spilled to a 1269 // stack location. For the special case of one offseted load followed by a 1270 // zero offset load (a pointer spilled to the stack), we change the type of 1271 // the local variable from a value type to a reference type. This tricks the 1272 // debugger into doing the load for us. 1273 if (Var.UseReferenceType) { 1274 // We're using a reference type. Drop the last zero offset load. 1275 if (canUseReferenceType(*Location)) 1276 Location->LoadChain.pop_back(); 1277 else 1278 continue; 1279 } else if (needsReferenceType(*Location)) { 1280 // This location can't be expressed without switching to a reference type. 1281 // Start over using that. 1282 Var.UseReferenceType = true; 1283 Var.DefRanges.clear(); 1284 calculateRanges(Var, Entries); 1285 return; 1286 } 1287 1288 // We can only handle a register or an offseted load of a register. 1289 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1290 continue; 1291 { 1292 LocalVarDefRange DR; 1293 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1294 DR.InMemory = !Location->LoadChain.empty(); 1295 DR.DataOffset = 1296 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1297 if (Location->FragmentInfo) { 1298 DR.IsSubfield = true; 1299 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1300 } else { 1301 DR.IsSubfield = false; 1302 DR.StructOffset = 0; 1303 } 1304 1305 if (Var.DefRanges.empty() || 1306 Var.DefRanges.back().isDifferentLocation(DR)) { 1307 Var.DefRanges.emplace_back(std::move(DR)); 1308 } 1309 } 1310 1311 // Compute the label range. 1312 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); 1313 const MCSymbol *End; 1314 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { 1315 auto &EndingEntry = Entries[Entry.getEndIndex()]; 1316 End = EndingEntry.isDbgValue() 1317 ? getLabelBeforeInsn(EndingEntry.getInstr()) 1318 : getLabelAfterInsn(EndingEntry.getInstr()); 1319 } else 1320 End = Asm->getFunctionEnd(); 1321 1322 // If the last range end is our begin, just extend the last range. 1323 // Otherwise make a new range. 1324 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1325 Var.DefRanges.back().Ranges; 1326 if (!R.empty() && R.back().second == Begin) 1327 R.back().second = End; 1328 else 1329 R.emplace_back(Begin, End); 1330 1331 // FIXME: Do more range combining. 1332 } 1333 } 1334 1335 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1336 DenseSet<InlinedEntity> Processed; 1337 // Grab the variable info that was squirreled away in the MMI side-table. 1338 collectVariableInfoFromMFTable(Processed); 1339 1340 for (const auto &I : DbgValues) { 1341 InlinedEntity IV = I.first; 1342 if (Processed.count(IV)) 1343 continue; 1344 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1345 const DILocation *InlinedAt = IV.second; 1346 1347 // Instruction ranges, specifying where IV is accessible. 1348 const auto &Entries = I.second; 1349 1350 LexicalScope *Scope = nullptr; 1351 if (InlinedAt) 1352 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1353 else 1354 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1355 // If variable scope is not found then skip this variable. 1356 if (!Scope) 1357 continue; 1358 1359 LocalVariable Var; 1360 Var.DIVar = DIVar; 1361 1362 calculateRanges(Var, Entries); 1363 recordLocalVariable(std::move(Var), Scope); 1364 } 1365 } 1366 1367 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1368 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1369 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1370 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1371 const Function &GV = MF->getFunction(); 1372 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); 1373 assert(Insertion.second && "function already has info"); 1374 CurFn = Insertion.first->second.get(); 1375 CurFn->FuncId = NextFuncId++; 1376 CurFn->Begin = Asm->getFunctionBegin(); 1377 1378 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1379 // callee-saved registers were used. For targets that don't use a PUSH 1380 // instruction (AArch64), this will be zero. 1381 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1382 CurFn->FrameSize = MFI.getStackSize(); 1383 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1384 CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF); 1385 1386 // For this function S_FRAMEPROC record, figure out which codeview register 1387 // will be the frame pointer. 1388 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1389 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1390 if (CurFn->FrameSize > 0) { 1391 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1392 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1393 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1394 } else { 1395 // If there is an FP, parameters are always relative to it. 1396 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1397 if (CurFn->HasStackRealignment) { 1398 // If the stack needs realignment, locals are relative to SP or VFRAME. 1399 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1400 } else { 1401 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1402 // other stack adjustments. 1403 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1404 } 1405 } 1406 } 1407 1408 // Compute other frame procedure options. 1409 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1410 if (MFI.hasVarSizedObjects()) 1411 FPO |= FrameProcedureOptions::HasAlloca; 1412 if (MF->exposesReturnsTwice()) 1413 FPO |= FrameProcedureOptions::HasSetJmp; 1414 // FIXME: Set HasLongJmp if we ever track that info. 1415 if (MF->hasInlineAsm()) 1416 FPO |= FrameProcedureOptions::HasInlineAssembly; 1417 if (GV.hasPersonalityFn()) { 1418 if (isAsynchronousEHPersonality( 1419 classifyEHPersonality(GV.getPersonalityFn()))) 1420 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1421 else 1422 FPO |= FrameProcedureOptions::HasExceptionHandling; 1423 } 1424 if (GV.hasFnAttribute(Attribute::InlineHint)) 1425 FPO |= FrameProcedureOptions::MarkedInline; 1426 if (GV.hasFnAttribute(Attribute::Naked)) 1427 FPO |= FrameProcedureOptions::Naked; 1428 if (MFI.hasStackProtectorIndex()) 1429 FPO |= FrameProcedureOptions::SecurityChecks; 1430 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1431 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1432 if (Asm->TM.getOptLevel() != CodeGenOpt::None && 1433 !GV.hasOptSize() && !GV.hasOptNone()) 1434 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1435 if (GV.hasProfileData()) { 1436 FPO |= FrameProcedureOptions::ValidProfileCounts; 1437 FPO |= FrameProcedureOptions::ProfileGuidedOptimization; 1438 } 1439 // FIXME: Set GuardCfg when it is implemented. 1440 CurFn->FrameProcOpts = FPO; 1441 1442 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1443 1444 // Find the end of the function prolog. First known non-DBG_VALUE and 1445 // non-frame setup location marks the beginning of the function body. 1446 // FIXME: is there a simpler a way to do this? Can we just search 1447 // for the first instruction of the function, not the last of the prolog? 1448 DebugLoc PrologEndLoc; 1449 bool EmptyPrologue = true; 1450 for (const auto &MBB : *MF) { 1451 for (const auto &MI : MBB) { 1452 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1453 MI.getDebugLoc()) { 1454 PrologEndLoc = MI.getDebugLoc(); 1455 break; 1456 } else if (!MI.isMetaInstruction()) { 1457 EmptyPrologue = false; 1458 } 1459 } 1460 } 1461 1462 // Record beginning of function if we have a non-empty prologue. 1463 if (PrologEndLoc && !EmptyPrologue) { 1464 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1465 maybeRecordLocation(FnStartDL, MF); 1466 } 1467 1468 // Find heap alloc sites and emit labels around them. 1469 for (const auto &MBB : *MF) { 1470 for (const auto &MI : MBB) { 1471 if (MI.getHeapAllocMarker()) { 1472 requestLabelBeforeInsn(&MI); 1473 requestLabelAfterInsn(&MI); 1474 } 1475 } 1476 } 1477 } 1478 1479 static bool shouldEmitUdt(const DIType *T) { 1480 if (!T) 1481 return false; 1482 1483 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1484 if (T->getTag() == dwarf::DW_TAG_typedef) { 1485 if (DIScope *Scope = T->getScope()) { 1486 switch (Scope->getTag()) { 1487 case dwarf::DW_TAG_structure_type: 1488 case dwarf::DW_TAG_class_type: 1489 case dwarf::DW_TAG_union_type: 1490 return false; 1491 default: 1492 // do nothing. 1493 ; 1494 } 1495 } 1496 } 1497 1498 while (true) { 1499 if (!T || T->isForwardDecl()) 1500 return false; 1501 1502 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1503 if (!DT) 1504 return true; 1505 T = DT->getBaseType(); 1506 } 1507 return true; 1508 } 1509 1510 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1511 // Don't record empty UDTs. 1512 if (Ty->getName().empty()) 1513 return; 1514 if (!shouldEmitUdt(Ty)) 1515 return; 1516 1517 SmallVector<StringRef, 5> ParentScopeNames; 1518 const DISubprogram *ClosestSubprogram = 1519 collectParentScopeNames(Ty->getScope(), ParentScopeNames); 1520 1521 std::string FullyQualifiedName = 1522 formatNestedName(ParentScopeNames, getPrettyScopeName(Ty)); 1523 1524 if (ClosestSubprogram == nullptr) { 1525 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1526 } else if (ClosestSubprogram == CurrentSubprogram) { 1527 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1528 } 1529 1530 // TODO: What if the ClosestSubprogram is neither null or the current 1531 // subprogram? Currently, the UDT just gets dropped on the floor. 1532 // 1533 // The current behavior is not desirable. To get maximal fidelity, we would 1534 // need to perform all type translation before beginning emission of .debug$S 1535 // and then make LocalUDTs a member of FunctionInfo 1536 } 1537 1538 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1539 // Generic dispatch for lowering an unknown type. 1540 switch (Ty->getTag()) { 1541 case dwarf::DW_TAG_array_type: 1542 return lowerTypeArray(cast<DICompositeType>(Ty)); 1543 case dwarf::DW_TAG_typedef: 1544 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1545 case dwarf::DW_TAG_base_type: 1546 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1547 case dwarf::DW_TAG_pointer_type: 1548 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1549 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1550 LLVM_FALLTHROUGH; 1551 case dwarf::DW_TAG_reference_type: 1552 case dwarf::DW_TAG_rvalue_reference_type: 1553 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1554 case dwarf::DW_TAG_ptr_to_member_type: 1555 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1556 case dwarf::DW_TAG_restrict_type: 1557 case dwarf::DW_TAG_const_type: 1558 case dwarf::DW_TAG_volatile_type: 1559 // TODO: add support for DW_TAG_atomic_type here 1560 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1561 case dwarf::DW_TAG_subroutine_type: 1562 if (ClassTy) { 1563 // The member function type of a member function pointer has no 1564 // ThisAdjustment. 1565 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1566 /*ThisAdjustment=*/0, 1567 /*IsStaticMethod=*/false); 1568 } 1569 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1570 case dwarf::DW_TAG_enumeration_type: 1571 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1572 case dwarf::DW_TAG_class_type: 1573 case dwarf::DW_TAG_structure_type: 1574 return lowerTypeClass(cast<DICompositeType>(Ty)); 1575 case dwarf::DW_TAG_union_type: 1576 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1577 case dwarf::DW_TAG_unspecified_type: 1578 if (Ty->getName() == "decltype(nullptr)") 1579 return TypeIndex::NullptrT(); 1580 return TypeIndex::None(); 1581 default: 1582 // Use the null type index. 1583 return TypeIndex(); 1584 } 1585 } 1586 1587 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1588 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); 1589 StringRef TypeName = Ty->getName(); 1590 1591 addToUDTs(Ty); 1592 1593 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1594 TypeName == "HRESULT") 1595 return TypeIndex(SimpleTypeKind::HResult); 1596 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1597 TypeName == "wchar_t") 1598 return TypeIndex(SimpleTypeKind::WideCharacter); 1599 1600 return UnderlyingTypeIndex; 1601 } 1602 1603 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1604 const DIType *ElementType = Ty->getBaseType(); 1605 TypeIndex ElementTypeIndex = getTypeIndex(ElementType); 1606 // IndexType is size_t, which depends on the bitness of the target. 1607 TypeIndex IndexType = getPointerSizeInBytes() == 8 1608 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1609 : TypeIndex(SimpleTypeKind::UInt32Long); 1610 1611 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; 1612 1613 // Add subranges to array type. 1614 DINodeArray Elements = Ty->getElements(); 1615 for (int i = Elements.size() - 1; i >= 0; --i) { 1616 const DINode *Element = Elements[i]; 1617 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1618 1619 const DISubrange *Subrange = cast<DISubrange>(Element); 1620 int64_t Count = -1; 1621 // Calculate the count if either LowerBound is absent or is zero and 1622 // either of Count or UpperBound are constant. 1623 auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>(); 1624 if (!Subrange->getRawLowerBound() || (LI && (LI->getSExtValue() == 0))) { 1625 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1626 Count = CI->getSExtValue(); 1627 else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt*>()) 1628 Count = UI->getSExtValue() + 1; // LowerBound is zero 1629 } 1630 1631 // Forward declarations of arrays without a size and VLAs use a count of -1. 1632 // Emit a count of zero in these cases to match what MSVC does for arrays 1633 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1634 // should do for them even if we could distinguish them. 1635 if (Count == -1) 1636 Count = 0; 1637 1638 // Update the element size and element type index for subsequent subranges. 1639 ElementSize *= Count; 1640 1641 // If this is the outermost array, use the size from the array. It will be 1642 // more accurate if we had a VLA or an incomplete element type size. 1643 uint64_t ArraySize = 1644 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1645 1646 StringRef Name = (i == 0) ? Ty->getName() : ""; 1647 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1648 ElementTypeIndex = TypeTable.writeLeafType(AR); 1649 } 1650 1651 return ElementTypeIndex; 1652 } 1653 1654 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1655 TypeIndex Index; 1656 dwarf::TypeKind Kind; 1657 uint32_t ByteSize; 1658 1659 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1660 ByteSize = Ty->getSizeInBits() / 8; 1661 1662 SimpleTypeKind STK = SimpleTypeKind::None; 1663 switch (Kind) { 1664 case dwarf::DW_ATE_address: 1665 // FIXME: Translate 1666 break; 1667 case dwarf::DW_ATE_boolean: 1668 switch (ByteSize) { 1669 case 1: STK = SimpleTypeKind::Boolean8; break; 1670 case 2: STK = SimpleTypeKind::Boolean16; break; 1671 case 4: STK = SimpleTypeKind::Boolean32; break; 1672 case 8: STK = SimpleTypeKind::Boolean64; break; 1673 case 16: STK = SimpleTypeKind::Boolean128; break; 1674 } 1675 break; 1676 case dwarf::DW_ATE_complex_float: 1677 switch (ByteSize) { 1678 case 2: STK = SimpleTypeKind::Complex16; break; 1679 case 4: STK = SimpleTypeKind::Complex32; break; 1680 case 8: STK = SimpleTypeKind::Complex64; break; 1681 case 10: STK = SimpleTypeKind::Complex80; break; 1682 case 16: STK = SimpleTypeKind::Complex128; break; 1683 } 1684 break; 1685 case dwarf::DW_ATE_float: 1686 switch (ByteSize) { 1687 case 2: STK = SimpleTypeKind::Float16; break; 1688 case 4: STK = SimpleTypeKind::Float32; break; 1689 case 6: STK = SimpleTypeKind::Float48; break; 1690 case 8: STK = SimpleTypeKind::Float64; break; 1691 case 10: STK = SimpleTypeKind::Float80; break; 1692 case 16: STK = SimpleTypeKind::Float128; break; 1693 } 1694 break; 1695 case dwarf::DW_ATE_signed: 1696 switch (ByteSize) { 1697 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1698 case 2: STK = SimpleTypeKind::Int16Short; break; 1699 case 4: STK = SimpleTypeKind::Int32; break; 1700 case 8: STK = SimpleTypeKind::Int64Quad; break; 1701 case 16: STK = SimpleTypeKind::Int128Oct; break; 1702 } 1703 break; 1704 case dwarf::DW_ATE_unsigned: 1705 switch (ByteSize) { 1706 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1707 case 2: STK = SimpleTypeKind::UInt16Short; break; 1708 case 4: STK = SimpleTypeKind::UInt32; break; 1709 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1710 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1711 } 1712 break; 1713 case dwarf::DW_ATE_UTF: 1714 switch (ByteSize) { 1715 case 2: STK = SimpleTypeKind::Character16; break; 1716 case 4: STK = SimpleTypeKind::Character32; break; 1717 } 1718 break; 1719 case dwarf::DW_ATE_signed_char: 1720 if (ByteSize == 1) 1721 STK = SimpleTypeKind::SignedCharacter; 1722 break; 1723 case dwarf::DW_ATE_unsigned_char: 1724 if (ByteSize == 1) 1725 STK = SimpleTypeKind::UnsignedCharacter; 1726 break; 1727 default: 1728 break; 1729 } 1730 1731 // Apply some fixups based on the source-level type name. 1732 // Include some amount of canonicalization from an old naming scheme Clang 1733 // used to use for integer types (in an outdated effort to be compatible with 1734 // GCC's debug info/GDB's behavior, which has since been addressed). 1735 if (STK == SimpleTypeKind::Int32 && 1736 (Ty->getName() == "long int" || Ty->getName() == "long")) 1737 STK = SimpleTypeKind::Int32Long; 1738 if (STK == SimpleTypeKind::UInt32 && (Ty->getName() == "long unsigned int" || 1739 Ty->getName() == "unsigned long")) 1740 STK = SimpleTypeKind::UInt32Long; 1741 if (STK == SimpleTypeKind::UInt16Short && 1742 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1743 STK = SimpleTypeKind::WideCharacter; 1744 if ((STK == SimpleTypeKind::SignedCharacter || 1745 STK == SimpleTypeKind::UnsignedCharacter) && 1746 Ty->getName() == "char") 1747 STK = SimpleTypeKind::NarrowCharacter; 1748 1749 return TypeIndex(STK); 1750 } 1751 1752 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1753 PointerOptions PO) { 1754 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1755 1756 // Pointers to simple types without any options can use SimpleTypeMode, rather 1757 // than having a dedicated pointer type record. 1758 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1759 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1760 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1761 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1762 ? SimpleTypeMode::NearPointer64 1763 : SimpleTypeMode::NearPointer32; 1764 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1765 } 1766 1767 PointerKind PK = 1768 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1769 PointerMode PM = PointerMode::Pointer; 1770 switch (Ty->getTag()) { 1771 default: llvm_unreachable("not a pointer tag type"); 1772 case dwarf::DW_TAG_pointer_type: 1773 PM = PointerMode::Pointer; 1774 break; 1775 case dwarf::DW_TAG_reference_type: 1776 PM = PointerMode::LValueReference; 1777 break; 1778 case dwarf::DW_TAG_rvalue_reference_type: 1779 PM = PointerMode::RValueReference; 1780 break; 1781 } 1782 1783 if (Ty->isObjectPointer()) 1784 PO |= PointerOptions::Const; 1785 1786 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1787 return TypeTable.writeLeafType(PR); 1788 } 1789 1790 static PointerToMemberRepresentation 1791 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1792 // SizeInBytes being zero generally implies that the member pointer type was 1793 // incomplete, which can happen if it is part of a function prototype. In this 1794 // case, use the unknown model instead of the general model. 1795 if (IsPMF) { 1796 switch (Flags & DINode::FlagPtrToMemberRep) { 1797 case 0: 1798 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1799 : PointerToMemberRepresentation::GeneralFunction; 1800 case DINode::FlagSingleInheritance: 1801 return PointerToMemberRepresentation::SingleInheritanceFunction; 1802 case DINode::FlagMultipleInheritance: 1803 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1804 case DINode::FlagVirtualInheritance: 1805 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1806 } 1807 } else { 1808 switch (Flags & DINode::FlagPtrToMemberRep) { 1809 case 0: 1810 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1811 : PointerToMemberRepresentation::GeneralData; 1812 case DINode::FlagSingleInheritance: 1813 return PointerToMemberRepresentation::SingleInheritanceData; 1814 case DINode::FlagMultipleInheritance: 1815 return PointerToMemberRepresentation::MultipleInheritanceData; 1816 case DINode::FlagVirtualInheritance: 1817 return PointerToMemberRepresentation::VirtualInheritanceData; 1818 } 1819 } 1820 llvm_unreachable("invalid ptr to member representation"); 1821 } 1822 1823 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1824 PointerOptions PO) { 1825 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1826 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1827 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1828 TypeIndex PointeeTI = 1829 getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr); 1830 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1831 : PointerKind::Near32; 1832 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1833 : PointerMode::PointerToDataMember; 1834 1835 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1836 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1837 MemberPointerInfo MPI( 1838 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1839 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1840 return TypeTable.writeLeafType(PR); 1841 } 1842 1843 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1844 /// have a translation, use the NearC convention. 1845 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1846 switch (DwarfCC) { 1847 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1848 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1849 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1850 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1851 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1852 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1853 } 1854 return CallingConvention::NearC; 1855 } 1856 1857 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1858 ModifierOptions Mods = ModifierOptions::None; 1859 PointerOptions PO = PointerOptions::None; 1860 bool IsModifier = true; 1861 const DIType *BaseTy = Ty; 1862 while (IsModifier && BaseTy) { 1863 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1864 switch (BaseTy->getTag()) { 1865 case dwarf::DW_TAG_const_type: 1866 Mods |= ModifierOptions::Const; 1867 PO |= PointerOptions::Const; 1868 break; 1869 case dwarf::DW_TAG_volatile_type: 1870 Mods |= ModifierOptions::Volatile; 1871 PO |= PointerOptions::Volatile; 1872 break; 1873 case dwarf::DW_TAG_restrict_type: 1874 // Only pointer types be marked with __restrict. There is no known flag 1875 // for __restrict in LF_MODIFIER records. 1876 PO |= PointerOptions::Restrict; 1877 break; 1878 default: 1879 IsModifier = false; 1880 break; 1881 } 1882 if (IsModifier) 1883 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); 1884 } 1885 1886 // Check if the inner type will use an LF_POINTER record. If so, the 1887 // qualifiers will go in the LF_POINTER record. This comes up for types like 1888 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1889 // char *'. 1890 if (BaseTy) { 1891 switch (BaseTy->getTag()) { 1892 case dwarf::DW_TAG_pointer_type: 1893 case dwarf::DW_TAG_reference_type: 1894 case dwarf::DW_TAG_rvalue_reference_type: 1895 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1896 case dwarf::DW_TAG_ptr_to_member_type: 1897 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1898 default: 1899 break; 1900 } 1901 } 1902 1903 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1904 1905 // Return the base type index if there aren't any modifiers. For example, the 1906 // metadata could contain restrict wrappers around non-pointer types. 1907 if (Mods == ModifierOptions::None) 1908 return ModifiedTI; 1909 1910 ModifierRecord MR(ModifiedTI, Mods); 1911 return TypeTable.writeLeafType(MR); 1912 } 1913 1914 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1915 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1916 for (const DIType *ArgType : Ty->getTypeArray()) 1917 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); 1918 1919 // MSVC uses type none for variadic argument. 1920 if (ReturnAndArgTypeIndices.size() > 1 && 1921 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1922 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1923 } 1924 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1925 ArrayRef<TypeIndex> ArgTypeIndices = None; 1926 if (!ReturnAndArgTypeIndices.empty()) { 1927 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1928 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1929 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1930 } 1931 1932 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1933 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1934 1935 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1936 1937 FunctionOptions FO = getFunctionOptions(Ty); 1938 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1939 ArgListIndex); 1940 return TypeTable.writeLeafType(Procedure); 1941 } 1942 1943 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1944 const DIType *ClassTy, 1945 int ThisAdjustment, 1946 bool IsStaticMethod, 1947 FunctionOptions FO) { 1948 // Lower the containing class type. 1949 TypeIndex ClassType = getTypeIndex(ClassTy); 1950 1951 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1952 1953 unsigned Index = 0; 1954 SmallVector<TypeIndex, 8> ArgTypeIndices; 1955 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1956 if (ReturnAndArgs.size() > Index) { 1957 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 1958 } 1959 1960 // If the first argument is a pointer type and this isn't a static method, 1961 // treat it as the special 'this' parameter, which is encoded separately from 1962 // the arguments. 1963 TypeIndex ThisTypeIndex; 1964 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 1965 if (const DIDerivedType *PtrTy = 1966 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { 1967 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 1968 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 1969 Index++; 1970 } 1971 } 1972 } 1973 1974 while (Index < ReturnAndArgs.size()) 1975 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 1976 1977 // MSVC uses type none for variadic argument. 1978 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 1979 ArgTypeIndices.back() = TypeIndex::None(); 1980 1981 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1982 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1983 1984 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1985 1986 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1987 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1988 return TypeTable.writeLeafType(MFR); 1989 } 1990 1991 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1992 unsigned VSlotCount = 1993 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1994 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1995 1996 VFTableShapeRecord VFTSR(Slots); 1997 return TypeTable.writeLeafType(VFTSR); 1998 } 1999 2000 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 2001 switch (Flags & DINode::FlagAccessibility) { 2002 case DINode::FlagPrivate: return MemberAccess::Private; 2003 case DINode::FlagPublic: return MemberAccess::Public; 2004 case DINode::FlagProtected: return MemberAccess::Protected; 2005 case 0: 2006 // If there was no explicit access control, provide the default for the tag. 2007 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 2008 : MemberAccess::Public; 2009 } 2010 llvm_unreachable("access flags are exclusive"); 2011 } 2012 2013 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 2014 if (SP->isArtificial()) 2015 return MethodOptions::CompilerGenerated; 2016 2017 // FIXME: Handle other MethodOptions. 2018 2019 return MethodOptions::None; 2020 } 2021 2022 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 2023 bool Introduced) { 2024 if (SP->getFlags() & DINode::FlagStaticMember) 2025 return MethodKind::Static; 2026 2027 switch (SP->getVirtuality()) { 2028 case dwarf::DW_VIRTUALITY_none: 2029 break; 2030 case dwarf::DW_VIRTUALITY_virtual: 2031 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 2032 case dwarf::DW_VIRTUALITY_pure_virtual: 2033 return Introduced ? MethodKind::PureIntroducingVirtual 2034 : MethodKind::PureVirtual; 2035 default: 2036 llvm_unreachable("unhandled virtuality case"); 2037 } 2038 2039 return MethodKind::Vanilla; 2040 } 2041 2042 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 2043 switch (Ty->getTag()) { 2044 case dwarf::DW_TAG_class_type: 2045 return TypeRecordKind::Class; 2046 case dwarf::DW_TAG_structure_type: 2047 return TypeRecordKind::Struct; 2048 default: 2049 llvm_unreachable("unexpected tag"); 2050 } 2051 } 2052 2053 /// Return ClassOptions that should be present on both the forward declaration 2054 /// and the defintion of a tag type. 2055 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 2056 ClassOptions CO = ClassOptions::None; 2057 2058 // MSVC always sets this flag, even for local types. Clang doesn't always 2059 // appear to give every type a linkage name, which may be problematic for us. 2060 // FIXME: Investigate the consequences of not following them here. 2061 if (!Ty->getIdentifier().empty()) 2062 CO |= ClassOptions::HasUniqueName; 2063 2064 // Put the Nested flag on a type if it appears immediately inside a tag type. 2065 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 2066 // here. That flag is only set on definitions, and not forward declarations. 2067 const DIScope *ImmediateScope = Ty->getScope(); 2068 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 2069 CO |= ClassOptions::Nested; 2070 2071 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 2072 // type only when it has an immediate function scope. Clang never puts enums 2073 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 2074 // always in function, class, or file scopes. 2075 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 2076 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 2077 CO |= ClassOptions::Scoped; 2078 } else { 2079 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 2080 Scope = Scope->getScope()) { 2081 if (isa<DISubprogram>(Scope)) { 2082 CO |= ClassOptions::Scoped; 2083 break; 2084 } 2085 } 2086 } 2087 2088 return CO; 2089 } 2090 2091 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2092 switch (Ty->getTag()) { 2093 case dwarf::DW_TAG_class_type: 2094 case dwarf::DW_TAG_structure_type: 2095 case dwarf::DW_TAG_union_type: 2096 case dwarf::DW_TAG_enumeration_type: 2097 break; 2098 default: 2099 return; 2100 } 2101 2102 if (const auto *File = Ty->getFile()) { 2103 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2104 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2105 2106 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2107 TypeTable.writeLeafType(USLR); 2108 } 2109 } 2110 2111 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2112 ClassOptions CO = getCommonClassOptions(Ty); 2113 TypeIndex FTI; 2114 unsigned EnumeratorCount = 0; 2115 2116 if (Ty->isForwardDecl()) { 2117 CO |= ClassOptions::ForwardReference; 2118 } else { 2119 ContinuationRecordBuilder ContinuationBuilder; 2120 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2121 for (const DINode *Element : Ty->getElements()) { 2122 // We assume that the frontend provides all members in source declaration 2123 // order, which is what MSVC does. 2124 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2125 // FIXME: Is it correct to always emit these as unsigned here? 2126 EnumeratorRecord ER(MemberAccess::Public, 2127 APSInt(Enumerator->getValue(), true), 2128 Enumerator->getName()); 2129 ContinuationBuilder.writeMemberType(ER); 2130 EnumeratorCount++; 2131 } 2132 } 2133 FTI = TypeTable.insertRecord(ContinuationBuilder); 2134 } 2135 2136 std::string FullName = getFullyQualifiedName(Ty); 2137 2138 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2139 getTypeIndex(Ty->getBaseType())); 2140 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2141 2142 addUDTSrcLine(Ty, EnumTI); 2143 2144 return EnumTI; 2145 } 2146 2147 //===----------------------------------------------------------------------===// 2148 // ClassInfo 2149 //===----------------------------------------------------------------------===// 2150 2151 struct llvm::ClassInfo { 2152 struct MemberInfo { 2153 const DIDerivedType *MemberTypeNode; 2154 uint64_t BaseOffset; 2155 }; 2156 // [MemberInfo] 2157 using MemberList = std::vector<MemberInfo>; 2158 2159 using MethodsList = TinyPtrVector<const DISubprogram *>; 2160 // MethodName -> MethodsList 2161 using MethodsMap = MapVector<MDString *, MethodsList>; 2162 2163 /// Base classes. 2164 std::vector<const DIDerivedType *> Inheritance; 2165 2166 /// Direct members. 2167 MemberList Members; 2168 // Direct overloaded methods gathered by name. 2169 MethodsMap Methods; 2170 2171 TypeIndex VShapeTI; 2172 2173 std::vector<const DIType *> NestedTypes; 2174 }; 2175 2176 void CodeViewDebug::clear() { 2177 assert(CurFn == nullptr); 2178 FileIdMap.clear(); 2179 FnDebugInfo.clear(); 2180 FileToFilepathMap.clear(); 2181 LocalUDTs.clear(); 2182 GlobalUDTs.clear(); 2183 TypeIndices.clear(); 2184 CompleteTypeIndices.clear(); 2185 ScopeGlobals.clear(); 2186 } 2187 2188 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2189 const DIDerivedType *DDTy) { 2190 if (!DDTy->getName().empty()) { 2191 Info.Members.push_back({DDTy, 0}); 2192 2193 // Collect static const data members with values. 2194 if ((DDTy->getFlags() & DINode::FlagStaticMember) == 2195 DINode::FlagStaticMember) { 2196 if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) || 2197 isa<ConstantFP>(DDTy->getConstant()))) 2198 StaticConstMembers.push_back(DDTy); 2199 } 2200 2201 return; 2202 } 2203 2204 // An unnamed member may represent a nested struct or union. Attempt to 2205 // interpret the unnamed member as a DICompositeType possibly wrapped in 2206 // qualifier types. Add all the indirect fields to the current record if that 2207 // succeeds, and drop the member if that fails. 2208 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2209 uint64_t Offset = DDTy->getOffsetInBits(); 2210 const DIType *Ty = DDTy->getBaseType(); 2211 bool FullyResolved = false; 2212 while (!FullyResolved) { 2213 switch (Ty->getTag()) { 2214 case dwarf::DW_TAG_const_type: 2215 case dwarf::DW_TAG_volatile_type: 2216 // FIXME: we should apply the qualifier types to the indirect fields 2217 // rather than dropping them. 2218 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2219 break; 2220 default: 2221 FullyResolved = true; 2222 break; 2223 } 2224 } 2225 2226 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2227 if (!DCTy) 2228 return; 2229 2230 ClassInfo NestedInfo = collectClassInfo(DCTy); 2231 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2232 Info.Members.push_back( 2233 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2234 } 2235 2236 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2237 ClassInfo Info; 2238 // Add elements to structure type. 2239 DINodeArray Elements = Ty->getElements(); 2240 for (auto *Element : Elements) { 2241 // We assume that the frontend provides all members in source declaration 2242 // order, which is what MSVC does. 2243 if (!Element) 2244 continue; 2245 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2246 Info.Methods[SP->getRawName()].push_back(SP); 2247 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2248 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2249 collectMemberInfo(Info, DDTy); 2250 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2251 Info.Inheritance.push_back(DDTy); 2252 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2253 DDTy->getName() == "__vtbl_ptr_type") { 2254 Info.VShapeTI = getTypeIndex(DDTy); 2255 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2256 Info.NestedTypes.push_back(DDTy); 2257 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2258 // Ignore friend members. It appears that MSVC emitted info about 2259 // friends in the past, but modern versions do not. 2260 } 2261 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2262 Info.NestedTypes.push_back(Composite); 2263 } 2264 // Skip other unrecognized kinds of elements. 2265 } 2266 return Info; 2267 } 2268 2269 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2270 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2271 // if a complete type should be emitted instead of a forward reference. 2272 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2273 !Ty->isForwardDecl(); 2274 } 2275 2276 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2277 // Emit the complete type for unnamed structs. C++ classes with methods 2278 // which have a circular reference back to the class type are expected to 2279 // be named by the front-end and should not be "unnamed". C unnamed 2280 // structs should not have circular references. 2281 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2282 // If this unnamed complete type is already in the process of being defined 2283 // then the description of the type is malformed and cannot be emitted 2284 // into CodeView correctly so report a fatal error. 2285 auto I = CompleteTypeIndices.find(Ty); 2286 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2287 report_fatal_error("cannot debug circular reference to unnamed type"); 2288 return getCompleteTypeIndex(Ty); 2289 } 2290 2291 // First, construct the forward decl. Don't look into Ty to compute the 2292 // forward decl options, since it might not be available in all TUs. 2293 TypeRecordKind Kind = getRecordKind(Ty); 2294 ClassOptions CO = 2295 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2296 std::string FullName = getFullyQualifiedName(Ty); 2297 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2298 FullName, Ty->getIdentifier()); 2299 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2300 if (!Ty->isForwardDecl()) 2301 DeferredCompleteTypes.push_back(Ty); 2302 return FwdDeclTI; 2303 } 2304 2305 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2306 // Construct the field list and complete type record. 2307 TypeRecordKind Kind = getRecordKind(Ty); 2308 ClassOptions CO = getCommonClassOptions(Ty); 2309 TypeIndex FieldTI; 2310 TypeIndex VShapeTI; 2311 unsigned FieldCount; 2312 bool ContainsNestedClass; 2313 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2314 lowerRecordFieldList(Ty); 2315 2316 if (ContainsNestedClass) 2317 CO |= ClassOptions::ContainsNestedClass; 2318 2319 // MSVC appears to set this flag by searching any destructor or method with 2320 // FunctionOptions::Constructor among the emitted members. Clang AST has all 2321 // the members, however special member functions are not yet emitted into 2322 // debug information. For now checking a class's non-triviality seems enough. 2323 // FIXME: not true for a nested unnamed struct. 2324 if (isNonTrivial(Ty)) 2325 CO |= ClassOptions::HasConstructorOrDestructor; 2326 2327 std::string FullName = getFullyQualifiedName(Ty); 2328 2329 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2330 2331 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2332 SizeInBytes, FullName, Ty->getIdentifier()); 2333 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2334 2335 addUDTSrcLine(Ty, ClassTI); 2336 2337 addToUDTs(Ty); 2338 2339 return ClassTI; 2340 } 2341 2342 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2343 // Emit the complete type for unnamed unions. 2344 if (shouldAlwaysEmitCompleteClassType(Ty)) 2345 return getCompleteTypeIndex(Ty); 2346 2347 ClassOptions CO = 2348 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2349 std::string FullName = getFullyQualifiedName(Ty); 2350 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2351 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2352 if (!Ty->isForwardDecl()) 2353 DeferredCompleteTypes.push_back(Ty); 2354 return FwdDeclTI; 2355 } 2356 2357 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2358 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2359 TypeIndex FieldTI; 2360 unsigned FieldCount; 2361 bool ContainsNestedClass; 2362 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2363 lowerRecordFieldList(Ty); 2364 2365 if (ContainsNestedClass) 2366 CO |= ClassOptions::ContainsNestedClass; 2367 2368 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2369 std::string FullName = getFullyQualifiedName(Ty); 2370 2371 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2372 Ty->getIdentifier()); 2373 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2374 2375 addUDTSrcLine(Ty, UnionTI); 2376 2377 addToUDTs(Ty); 2378 2379 return UnionTI; 2380 } 2381 2382 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2383 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2384 // Manually count members. MSVC appears to count everything that generates a 2385 // field list record. Each individual overload in a method overload group 2386 // contributes to this count, even though the overload group is a single field 2387 // list record. 2388 unsigned MemberCount = 0; 2389 ClassInfo Info = collectClassInfo(Ty); 2390 ContinuationRecordBuilder ContinuationBuilder; 2391 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2392 2393 // Create base classes. 2394 for (const DIDerivedType *I : Info.Inheritance) { 2395 if (I->getFlags() & DINode::FlagVirtual) { 2396 // Virtual base. 2397 unsigned VBPtrOffset = I->getVBPtrOffset(); 2398 // FIXME: Despite the accessor name, the offset is really in bytes. 2399 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2400 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2401 ? TypeRecordKind::IndirectVirtualBaseClass 2402 : TypeRecordKind::VirtualBaseClass; 2403 VirtualBaseClassRecord VBCR( 2404 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2405 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2406 VBTableIndex); 2407 2408 ContinuationBuilder.writeMemberType(VBCR); 2409 MemberCount++; 2410 } else { 2411 assert(I->getOffsetInBits() % 8 == 0 && 2412 "bases must be on byte boundaries"); 2413 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2414 getTypeIndex(I->getBaseType()), 2415 I->getOffsetInBits() / 8); 2416 ContinuationBuilder.writeMemberType(BCR); 2417 MemberCount++; 2418 } 2419 } 2420 2421 // Create members. 2422 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2423 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2424 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2425 StringRef MemberName = Member->getName(); 2426 MemberAccess Access = 2427 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2428 2429 if (Member->isStaticMember()) { 2430 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2431 ContinuationBuilder.writeMemberType(SDMR); 2432 MemberCount++; 2433 continue; 2434 } 2435 2436 // Virtual function pointer member. 2437 if ((Member->getFlags() & DINode::FlagArtificial) && 2438 Member->getName().startswith("_vptr$")) { 2439 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2440 ContinuationBuilder.writeMemberType(VFPR); 2441 MemberCount++; 2442 continue; 2443 } 2444 2445 // Data member. 2446 uint64_t MemberOffsetInBits = 2447 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2448 if (Member->isBitField()) { 2449 uint64_t StartBitOffset = MemberOffsetInBits; 2450 if (const auto *CI = 2451 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2452 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2453 } 2454 StartBitOffset -= MemberOffsetInBits; 2455 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2456 StartBitOffset); 2457 MemberBaseType = TypeTable.writeLeafType(BFR); 2458 } 2459 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2460 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2461 MemberName); 2462 ContinuationBuilder.writeMemberType(DMR); 2463 MemberCount++; 2464 } 2465 2466 // Create methods 2467 for (auto &MethodItr : Info.Methods) { 2468 StringRef Name = MethodItr.first->getString(); 2469 2470 std::vector<OneMethodRecord> Methods; 2471 for (const DISubprogram *SP : MethodItr.second) { 2472 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2473 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2474 2475 unsigned VFTableOffset = -1; 2476 if (Introduced) 2477 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2478 2479 Methods.push_back(OneMethodRecord( 2480 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2481 translateMethodKindFlags(SP, Introduced), 2482 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2483 MemberCount++; 2484 } 2485 assert(!Methods.empty() && "Empty methods map entry"); 2486 if (Methods.size() == 1) 2487 ContinuationBuilder.writeMemberType(Methods[0]); 2488 else { 2489 // FIXME: Make this use its own ContinuationBuilder so that 2490 // MethodOverloadList can be split correctly. 2491 MethodOverloadListRecord MOLR(Methods); 2492 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2493 2494 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2495 ContinuationBuilder.writeMemberType(OMR); 2496 } 2497 } 2498 2499 // Create nested classes. 2500 for (const DIType *Nested : Info.NestedTypes) { 2501 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); 2502 ContinuationBuilder.writeMemberType(R); 2503 MemberCount++; 2504 } 2505 2506 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2507 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2508 !Info.NestedTypes.empty()); 2509 } 2510 2511 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2512 if (!VBPType.getIndex()) { 2513 // Make a 'const int *' type. 2514 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2515 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2516 2517 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2518 : PointerKind::Near32; 2519 PointerMode PM = PointerMode::Pointer; 2520 PointerOptions PO = PointerOptions::None; 2521 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2522 VBPType = TypeTable.writeLeafType(PR); 2523 } 2524 2525 return VBPType; 2526 } 2527 2528 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { 2529 // The null DIType is the void type. Don't try to hash it. 2530 if (!Ty) 2531 return TypeIndex::Void(); 2532 2533 // Check if we've already translated this type. Don't try to do a 2534 // get-or-create style insertion that caches the hash lookup across the 2535 // lowerType call. It will update the TypeIndices map. 2536 auto I = TypeIndices.find({Ty, ClassTy}); 2537 if (I != TypeIndices.end()) 2538 return I->second; 2539 2540 TypeLoweringScope S(*this); 2541 TypeIndex TI = lowerType(Ty, ClassTy); 2542 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2543 } 2544 2545 codeview::TypeIndex 2546 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2547 const DISubroutineType *SubroutineTy) { 2548 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2549 "this type must be a pointer type"); 2550 2551 PointerOptions Options = PointerOptions::None; 2552 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2553 Options = PointerOptions::LValueRefThisPointer; 2554 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2555 Options = PointerOptions::RValueRefThisPointer; 2556 2557 // Check if we've already translated this type. If there is no ref qualifier 2558 // on the function then we look up this pointer type with no associated class 2559 // so that the TypeIndex for the this pointer can be shared with the type 2560 // index for other pointers to this class type. If there is a ref qualifier 2561 // then we lookup the pointer using the subroutine as the parent type. 2562 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2563 if (I != TypeIndices.end()) 2564 return I->second; 2565 2566 TypeLoweringScope S(*this); 2567 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2568 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2569 } 2570 2571 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { 2572 PointerRecord PR(getTypeIndex(Ty), 2573 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2574 : PointerKind::Near32, 2575 PointerMode::LValueReference, PointerOptions::None, 2576 Ty->getSizeInBits() / 8); 2577 return TypeTable.writeLeafType(PR); 2578 } 2579 2580 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { 2581 // The null DIType is the void type. Don't try to hash it. 2582 if (!Ty) 2583 return TypeIndex::Void(); 2584 2585 // Look through typedefs when getting the complete type index. Call 2586 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2587 // emitted only once. 2588 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2589 (void)getTypeIndex(Ty); 2590 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2591 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2592 2593 // If this is a non-record type, the complete type index is the same as the 2594 // normal type index. Just call getTypeIndex. 2595 switch (Ty->getTag()) { 2596 case dwarf::DW_TAG_class_type: 2597 case dwarf::DW_TAG_structure_type: 2598 case dwarf::DW_TAG_union_type: 2599 break; 2600 default: 2601 return getTypeIndex(Ty); 2602 } 2603 2604 const auto *CTy = cast<DICompositeType>(Ty); 2605 2606 TypeLoweringScope S(*this); 2607 2608 // Make sure the forward declaration is emitted first. It's unclear if this 2609 // is necessary, but MSVC does it, and we should follow suit until we can show 2610 // otherwise. 2611 // We only emit a forward declaration for named types. 2612 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2613 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2614 2615 // Just use the forward decl if we don't have complete type info. This 2616 // might happen if the frontend is using modules and expects the complete 2617 // definition to be emitted elsewhere. 2618 if (CTy->isForwardDecl()) 2619 return FwdDeclTI; 2620 } 2621 2622 // Check if we've already translated the complete record type. 2623 // Insert the type with a null TypeIndex to signify that the type is currently 2624 // being lowered. 2625 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2626 if (!InsertResult.second) 2627 return InsertResult.first->second; 2628 2629 TypeIndex TI; 2630 switch (CTy->getTag()) { 2631 case dwarf::DW_TAG_class_type: 2632 case dwarf::DW_TAG_structure_type: 2633 TI = lowerCompleteTypeClass(CTy); 2634 break; 2635 case dwarf::DW_TAG_union_type: 2636 TI = lowerCompleteTypeUnion(CTy); 2637 break; 2638 default: 2639 llvm_unreachable("not a record"); 2640 } 2641 2642 // Update the type index associated with this CompositeType. This cannot 2643 // use the 'InsertResult' iterator above because it is potentially 2644 // invalidated by map insertions which can occur while lowering the class 2645 // type above. 2646 CompleteTypeIndices[CTy] = TI; 2647 return TI; 2648 } 2649 2650 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2651 /// and do this until fixpoint, as each complete record type typically 2652 /// references 2653 /// many other record types. 2654 void CodeViewDebug::emitDeferredCompleteTypes() { 2655 SmallVector<const DICompositeType *, 4> TypesToEmit; 2656 while (!DeferredCompleteTypes.empty()) { 2657 std::swap(DeferredCompleteTypes, TypesToEmit); 2658 for (const DICompositeType *RecordTy : TypesToEmit) 2659 getCompleteTypeIndex(RecordTy); 2660 TypesToEmit.clear(); 2661 } 2662 } 2663 2664 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2665 ArrayRef<LocalVariable> Locals) { 2666 // Get the sorted list of parameters and emit them first. 2667 SmallVector<const LocalVariable *, 6> Params; 2668 for (const LocalVariable &L : Locals) 2669 if (L.DIVar->isParameter()) 2670 Params.push_back(&L); 2671 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2672 return L->DIVar->getArg() < R->DIVar->getArg(); 2673 }); 2674 for (const LocalVariable *L : Params) 2675 emitLocalVariable(FI, *L); 2676 2677 // Next emit all non-parameters in the order that we found them. 2678 for (const LocalVariable &L : Locals) 2679 if (!L.DIVar->isParameter()) 2680 emitLocalVariable(FI, L); 2681 } 2682 2683 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2684 const LocalVariable &Var) { 2685 // LocalSym record, see SymbolRecord.h for more info. 2686 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2687 2688 LocalSymFlags Flags = LocalSymFlags::None; 2689 if (Var.DIVar->isParameter()) 2690 Flags |= LocalSymFlags::IsParameter; 2691 if (Var.DefRanges.empty()) 2692 Flags |= LocalSymFlags::IsOptimizedOut; 2693 2694 OS.AddComment("TypeIndex"); 2695 TypeIndex TI = Var.UseReferenceType 2696 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2697 : getCompleteTypeIndex(Var.DIVar->getType()); 2698 OS.emitInt32(TI.getIndex()); 2699 OS.AddComment("Flags"); 2700 OS.emitInt16(static_cast<uint16_t>(Flags)); 2701 // Truncate the name so we won't overflow the record length field. 2702 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2703 endSymbolRecord(LocalEnd); 2704 2705 // Calculate the on disk prefix of the appropriate def range record. The 2706 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2707 // should be big enough to hold all forms without memory allocation. 2708 SmallString<20> BytePrefix; 2709 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2710 BytePrefix.clear(); 2711 if (DefRange.InMemory) { 2712 int Offset = DefRange.DataOffset; 2713 unsigned Reg = DefRange.CVRegister; 2714 2715 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2716 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2717 // instead. In frames without stack realignment, $T0 will be the CFA. 2718 if (RegisterId(Reg) == RegisterId::ESP) { 2719 Reg = unsigned(RegisterId::VFRAME); 2720 Offset += FI.OffsetAdjustment; 2721 } 2722 2723 // If we can use the chosen frame pointer for the frame and this isn't a 2724 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2725 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2726 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2727 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2728 (bool(Flags & LocalSymFlags::IsParameter) 2729 ? (EncFP == FI.EncodedParamFramePtrReg) 2730 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2731 DefRangeFramePointerRelHeader DRHdr; 2732 DRHdr.Offset = Offset; 2733 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2734 } else { 2735 uint16_t RegRelFlags = 0; 2736 if (DefRange.IsSubfield) { 2737 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2738 (DefRange.StructOffset 2739 << DefRangeRegisterRelSym::OffsetInParentShift); 2740 } 2741 DefRangeRegisterRelHeader DRHdr; 2742 DRHdr.Register = Reg; 2743 DRHdr.Flags = RegRelFlags; 2744 DRHdr.BasePointerOffset = Offset; 2745 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2746 } 2747 } else { 2748 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2749 if (DefRange.IsSubfield) { 2750 DefRangeSubfieldRegisterHeader DRHdr; 2751 DRHdr.Register = DefRange.CVRegister; 2752 DRHdr.MayHaveNoName = 0; 2753 DRHdr.OffsetInParent = DefRange.StructOffset; 2754 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2755 } else { 2756 DefRangeRegisterHeader DRHdr; 2757 DRHdr.Register = DefRange.CVRegister; 2758 DRHdr.MayHaveNoName = 0; 2759 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2760 } 2761 } 2762 } 2763 } 2764 2765 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2766 const FunctionInfo& FI) { 2767 for (LexicalBlock *Block : Blocks) 2768 emitLexicalBlock(*Block, FI); 2769 } 2770 2771 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2772 /// lexical block scope. 2773 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2774 const FunctionInfo& FI) { 2775 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2776 OS.AddComment("PtrParent"); 2777 OS.emitInt32(0); // PtrParent 2778 OS.AddComment("PtrEnd"); 2779 OS.emitInt32(0); // PtrEnd 2780 OS.AddComment("Code size"); 2781 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2782 OS.AddComment("Function section relative address"); 2783 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2784 OS.AddComment("Function section index"); 2785 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2786 OS.AddComment("Lexical block name"); 2787 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2788 endSymbolRecord(RecordEnd); 2789 2790 // Emit variables local to this lexical block. 2791 emitLocalVariableList(FI, Block.Locals); 2792 emitGlobalVariableList(Block.Globals); 2793 2794 // Emit lexical blocks contained within this block. 2795 emitLexicalBlockList(Block.Children, FI); 2796 2797 // Close the lexical block scope. 2798 emitEndSymbolRecord(SymbolKind::S_END); 2799 } 2800 2801 /// Convenience routine for collecting lexical block information for a list 2802 /// of lexical scopes. 2803 void CodeViewDebug::collectLexicalBlockInfo( 2804 SmallVectorImpl<LexicalScope *> &Scopes, 2805 SmallVectorImpl<LexicalBlock *> &Blocks, 2806 SmallVectorImpl<LocalVariable> &Locals, 2807 SmallVectorImpl<CVGlobalVariable> &Globals) { 2808 for (LexicalScope *Scope : Scopes) 2809 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2810 } 2811 2812 /// Populate the lexical blocks and local variable lists of the parent with 2813 /// information about the specified lexical scope. 2814 void CodeViewDebug::collectLexicalBlockInfo( 2815 LexicalScope &Scope, 2816 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2817 SmallVectorImpl<LocalVariable> &ParentLocals, 2818 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2819 if (Scope.isAbstractScope()) 2820 return; 2821 2822 // Gather information about the lexical scope including local variables, 2823 // global variables, and address ranges. 2824 bool IgnoreScope = false; 2825 auto LI = ScopeVariables.find(&Scope); 2826 SmallVectorImpl<LocalVariable> *Locals = 2827 LI != ScopeVariables.end() ? &LI->second : nullptr; 2828 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2829 SmallVectorImpl<CVGlobalVariable> *Globals = 2830 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2831 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2832 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2833 2834 // Ignore lexical scopes which do not contain variables. 2835 if (!Locals && !Globals) 2836 IgnoreScope = true; 2837 2838 // Ignore lexical scopes which are not lexical blocks. 2839 if (!DILB) 2840 IgnoreScope = true; 2841 2842 // Ignore scopes which have too many address ranges to represent in the 2843 // current CodeView format or do not have a valid address range. 2844 // 2845 // For lexical scopes with multiple address ranges you may be tempted to 2846 // construct a single range covering every instruction where the block is 2847 // live and everything in between. Unfortunately, Visual Studio only 2848 // displays variables from the first matching lexical block scope. If the 2849 // first lexical block contains exception handling code or cold code which 2850 // is moved to the bottom of the routine creating a single range covering 2851 // nearly the entire routine, then it will hide all other lexical blocks 2852 // and the variables they contain. 2853 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2854 IgnoreScope = true; 2855 2856 if (IgnoreScope) { 2857 // This scope can be safely ignored and eliminating it will reduce the 2858 // size of the debug information. Be sure to collect any variable and scope 2859 // information from the this scope or any of its children and collapse them 2860 // into the parent scope. 2861 if (Locals) 2862 ParentLocals.append(Locals->begin(), Locals->end()); 2863 if (Globals) 2864 ParentGlobals.append(Globals->begin(), Globals->end()); 2865 collectLexicalBlockInfo(Scope.getChildren(), 2866 ParentBlocks, 2867 ParentLocals, 2868 ParentGlobals); 2869 return; 2870 } 2871 2872 // Create a new CodeView lexical block for this lexical scope. If we've 2873 // seen this DILexicalBlock before then the scope tree is malformed and 2874 // we can handle this gracefully by not processing it a second time. 2875 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2876 if (!BlockInsertion.second) 2877 return; 2878 2879 // Create a lexical block containing the variables and collect the the 2880 // lexical block information for the children. 2881 const InsnRange &Range = Ranges.front(); 2882 assert(Range.first && Range.second); 2883 LexicalBlock &Block = BlockInsertion.first->second; 2884 Block.Begin = getLabelBeforeInsn(Range.first); 2885 Block.End = getLabelAfterInsn(Range.second); 2886 assert(Block.Begin && "missing label for scope begin"); 2887 assert(Block.End && "missing label for scope end"); 2888 Block.Name = DILB->getName(); 2889 if (Locals) 2890 Block.Locals = std::move(*Locals); 2891 if (Globals) 2892 Block.Globals = std::move(*Globals); 2893 ParentBlocks.push_back(&Block); 2894 collectLexicalBlockInfo(Scope.getChildren(), 2895 Block.Children, 2896 Block.Locals, 2897 Block.Globals); 2898 } 2899 2900 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2901 const Function &GV = MF->getFunction(); 2902 assert(FnDebugInfo.count(&GV)); 2903 assert(CurFn == FnDebugInfo[&GV].get()); 2904 2905 collectVariableInfo(GV.getSubprogram()); 2906 2907 // Build the lexical block structure to emit for this routine. 2908 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2909 collectLexicalBlockInfo(*CFS, 2910 CurFn->ChildBlocks, 2911 CurFn->Locals, 2912 CurFn->Globals); 2913 2914 // Clear the scope and variable information from the map which will not be 2915 // valid after we have finished processing this routine. This also prepares 2916 // the map for the subsequent routine. 2917 ScopeVariables.clear(); 2918 2919 // Don't emit anything if we don't have any line tables. 2920 // Thunks are compiler-generated and probably won't have source correlation. 2921 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2922 FnDebugInfo.erase(&GV); 2923 CurFn = nullptr; 2924 return; 2925 } 2926 2927 // Find heap alloc sites and add to list. 2928 for (const auto &MBB : *MF) { 2929 for (const auto &MI : MBB) { 2930 if (MDNode *MD = MI.getHeapAllocMarker()) { 2931 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), 2932 getLabelAfterInsn(&MI), 2933 dyn_cast<DIType>(MD))); 2934 } 2935 } 2936 } 2937 2938 CurFn->Annotations = MF->getCodeViewAnnotations(); 2939 2940 CurFn->End = Asm->getFunctionEnd(); 2941 2942 CurFn = nullptr; 2943 } 2944 2945 // Usable locations are valid with non-zero line numbers. A line number of zero 2946 // corresponds to optimized code that doesn't have a distinct source location. 2947 // In this case, we try to use the previous or next source location depending on 2948 // the context. 2949 static bool isUsableDebugLoc(DebugLoc DL) { 2950 return DL && DL.getLine() != 0; 2951 } 2952 2953 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2954 DebugHandlerBase::beginInstruction(MI); 2955 2956 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2957 if (!Asm || !CurFn || MI->isDebugInstr() || 2958 MI->getFlag(MachineInstr::FrameSetup)) 2959 return; 2960 2961 // If the first instruction of a new MBB has no location, find the first 2962 // instruction with a location and use that. 2963 DebugLoc DL = MI->getDebugLoc(); 2964 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { 2965 for (const auto &NextMI : *MI->getParent()) { 2966 if (NextMI.isDebugInstr()) 2967 continue; 2968 DL = NextMI.getDebugLoc(); 2969 if (isUsableDebugLoc(DL)) 2970 break; 2971 } 2972 // FIXME: Handle the case where the BB has no valid locations. This would 2973 // probably require doing a real dataflow analysis. 2974 } 2975 PrevInstBB = MI->getParent(); 2976 2977 // If we still don't have a debug location, don't record a location. 2978 if (!isUsableDebugLoc(DL)) 2979 return; 2980 2981 maybeRecordLocation(DL, Asm->MF); 2982 } 2983 2984 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2985 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2986 *EndLabel = MMI->getContext().createTempSymbol(); 2987 OS.emitInt32(unsigned(Kind)); 2988 OS.AddComment("Subsection size"); 2989 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2990 OS.emitLabel(BeginLabel); 2991 return EndLabel; 2992 } 2993 2994 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2995 OS.emitLabel(EndLabel); 2996 // Every subsection must be aligned to a 4-byte boundary. 2997 OS.emitValueToAlignment(4); 2998 } 2999 3000 static StringRef getSymbolName(SymbolKind SymKind) { 3001 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 3002 if (EE.Value == SymKind) 3003 return EE.Name; 3004 return ""; 3005 } 3006 3007 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 3008 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 3009 *EndLabel = MMI->getContext().createTempSymbol(); 3010 OS.AddComment("Record length"); 3011 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 3012 OS.emitLabel(BeginLabel); 3013 if (OS.isVerboseAsm()) 3014 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 3015 OS.emitInt16(unsigned(SymKind)); 3016 return EndLabel; 3017 } 3018 3019 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 3020 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 3021 // an extra copy of every symbol record in LLD. This increases object file 3022 // size by less than 1% in the clang build, and is compatible with the Visual 3023 // C++ linker. 3024 OS.emitValueToAlignment(4); 3025 OS.emitLabel(SymEnd); 3026 } 3027 3028 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 3029 OS.AddComment("Record length"); 3030 OS.emitInt16(2); 3031 if (OS.isVerboseAsm()) 3032 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 3033 OS.emitInt16(uint16_t(EndKind)); // Record Kind 3034 } 3035 3036 void CodeViewDebug::emitDebugInfoForUDTs( 3037 const std::vector<std::pair<std::string, const DIType *>> &UDTs) { 3038 #ifndef NDEBUG 3039 size_t OriginalSize = UDTs.size(); 3040 #endif 3041 for (const auto &UDT : UDTs) { 3042 const DIType *T = UDT.second; 3043 assert(shouldEmitUdt(T)); 3044 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 3045 OS.AddComment("Type"); 3046 OS.emitInt32(getCompleteTypeIndex(T).getIndex()); 3047 assert(OriginalSize == UDTs.size() && 3048 "getCompleteTypeIndex found new UDTs!"); 3049 emitNullTerminatedSymbolName(OS, UDT.first); 3050 endSymbolRecord(UDTRecordEnd); 3051 } 3052 } 3053 3054 void CodeViewDebug::collectGlobalVariableInfo() { 3055 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 3056 GlobalMap; 3057 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 3058 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 3059 GV.getDebugInfo(GVEs); 3060 for (const auto *GVE : GVEs) 3061 GlobalMap[GVE] = &GV; 3062 } 3063 3064 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3065 for (const MDNode *Node : CUs->operands()) { 3066 const auto *CU = cast<DICompileUnit>(Node); 3067 for (const auto *GVE : CU->getGlobalVariables()) { 3068 const DIGlobalVariable *DIGV = GVE->getVariable(); 3069 const DIExpression *DIE = GVE->getExpression(); 3070 3071 // Emit constant global variables in a global symbol section. 3072 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { 3073 CVGlobalVariable CVGV = {DIGV, DIE}; 3074 GlobalVariables.emplace_back(std::move(CVGV)); 3075 } 3076 3077 const auto *GV = GlobalMap.lookup(GVE); 3078 if (!GV || GV->isDeclarationForLinker()) 3079 continue; 3080 3081 DIScope *Scope = DIGV->getScope(); 3082 SmallVector<CVGlobalVariable, 1> *VariableList; 3083 if (Scope && isa<DILocalScope>(Scope)) { 3084 // Locate a global variable list for this scope, creating one if 3085 // necessary. 3086 auto Insertion = ScopeGlobals.insert( 3087 {Scope, std::unique_ptr<GlobalVariableList>()}); 3088 if (Insertion.second) 3089 Insertion.first->second = std::make_unique<GlobalVariableList>(); 3090 VariableList = Insertion.first->second.get(); 3091 } else if (GV->hasComdat()) 3092 // Emit this global variable into a COMDAT section. 3093 VariableList = &ComdatVariables; 3094 else 3095 // Emit this global variable in a single global symbol section. 3096 VariableList = &GlobalVariables; 3097 CVGlobalVariable CVGV = {DIGV, GV}; 3098 VariableList->emplace_back(std::move(CVGV)); 3099 } 3100 } 3101 } 3102 3103 void CodeViewDebug::collectDebugInfoForGlobals() { 3104 for (const CVGlobalVariable &CVGV : GlobalVariables) { 3105 const DIGlobalVariable *DIGV = CVGV.DIGV; 3106 const DIScope *Scope = DIGV->getScope(); 3107 getCompleteTypeIndex(DIGV->getType()); 3108 getFullyQualifiedName(Scope, DIGV->getName()); 3109 } 3110 3111 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3112 const DIGlobalVariable *DIGV = CVGV.DIGV; 3113 const DIScope *Scope = DIGV->getScope(); 3114 getCompleteTypeIndex(DIGV->getType()); 3115 getFullyQualifiedName(Scope, DIGV->getName()); 3116 } 3117 } 3118 3119 void CodeViewDebug::emitDebugInfoForGlobals() { 3120 // First, emit all globals that are not in a comdat in a single symbol 3121 // substream. MSVC doesn't like it if the substream is empty, so only open 3122 // it if we have at least one global to emit. 3123 switchToDebugSectionForSymbol(nullptr); 3124 if (!GlobalVariables.empty() || !StaticConstMembers.empty()) { 3125 OS.AddComment("Symbol subsection for globals"); 3126 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3127 emitGlobalVariableList(GlobalVariables); 3128 emitStaticConstMemberList(); 3129 endCVSubsection(EndLabel); 3130 } 3131 3132 // Second, emit each global that is in a comdat into its own .debug$S 3133 // section along with its own symbol substream. 3134 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3135 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>(); 3136 MCSymbol *GVSym = Asm->getSymbol(GV); 3137 OS.AddComment("Symbol subsection for " + 3138 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 3139 switchToDebugSectionForSymbol(GVSym); 3140 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3141 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3142 emitDebugInfoForGlobal(CVGV); 3143 endCVSubsection(EndLabel); 3144 } 3145 } 3146 3147 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 3148 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3149 for (const MDNode *Node : CUs->operands()) { 3150 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 3151 if (DIType *RT = dyn_cast<DIType>(Ty)) { 3152 getTypeIndex(RT); 3153 // FIXME: Add to global/local DTU list. 3154 } 3155 } 3156 } 3157 } 3158 3159 // Emit each global variable in the specified array. 3160 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 3161 for (const CVGlobalVariable &CVGV : Globals) { 3162 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3163 emitDebugInfoForGlobal(CVGV); 3164 } 3165 } 3166 3167 void CodeViewDebug::emitConstantSymbolRecord(const DIType *DTy, APSInt &Value, 3168 const std::string &QualifiedName) { 3169 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3170 OS.AddComment("Type"); 3171 OS.emitInt32(getTypeIndex(DTy).getIndex()); 3172 3173 OS.AddComment("Value"); 3174 3175 // Encoded integers shouldn't need more than 10 bytes. 3176 uint8_t Data[10]; 3177 BinaryStreamWriter Writer(Data, llvm::support::endianness::little); 3178 CodeViewRecordIO IO(Writer); 3179 cantFail(IO.mapEncodedInteger(Value)); 3180 StringRef SRef((char *)Data, Writer.getOffset()); 3181 OS.emitBinaryData(SRef); 3182 3183 OS.AddComment("Name"); 3184 emitNullTerminatedSymbolName(OS, QualifiedName); 3185 endSymbolRecord(SConstantEnd); 3186 } 3187 3188 void CodeViewDebug::emitStaticConstMemberList() { 3189 for (const DIDerivedType *DTy : StaticConstMembers) { 3190 const DIScope *Scope = DTy->getScope(); 3191 3192 APSInt Value; 3193 if (const ConstantInt *CI = 3194 dyn_cast_or_null<ConstantInt>(DTy->getConstant())) 3195 Value = APSInt(CI->getValue(), 3196 DebugHandlerBase::isUnsignedDIType(DTy->getBaseType())); 3197 else if (const ConstantFP *CFP = 3198 dyn_cast_or_null<ConstantFP>(DTy->getConstant())) 3199 Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true); 3200 else 3201 llvm_unreachable("cannot emit a constant without a value"); 3202 3203 emitConstantSymbolRecord(DTy->getBaseType(), Value, 3204 getFullyQualifiedName(Scope, DTy->getName())); 3205 } 3206 } 3207 3208 static bool isFloatDIType(const DIType *Ty) { 3209 if (isa<DICompositeType>(Ty)) 3210 return false; 3211 3212 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 3213 dwarf::Tag T = (dwarf::Tag)Ty->getTag(); 3214 if (T == dwarf::DW_TAG_pointer_type || 3215 T == dwarf::DW_TAG_ptr_to_member_type || 3216 T == dwarf::DW_TAG_reference_type || 3217 T == dwarf::DW_TAG_rvalue_reference_type) 3218 return false; 3219 assert(DTy->getBaseType() && "Expected valid base type"); 3220 return isFloatDIType(DTy->getBaseType()); 3221 } 3222 3223 auto *BTy = cast<DIBasicType>(Ty); 3224 return (BTy->getEncoding() == dwarf::DW_ATE_float); 3225 } 3226 3227 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { 3228 const DIGlobalVariable *DIGV = CVGV.DIGV; 3229 3230 const DIScope *Scope = DIGV->getScope(); 3231 // For static data members, get the scope from the declaration. 3232 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>( 3233 DIGV->getRawStaticDataMemberDeclaration())) 3234 Scope = MemberDecl->getScope(); 3235 std::string QualifiedName = getFullyQualifiedName(Scope, DIGV->getName()); 3236 3237 if (const GlobalVariable *GV = 3238 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) { 3239 // DataSym record, see SymbolRecord.h for more info. Thread local data 3240 // happens to have the same format as global data. 3241 MCSymbol *GVSym = Asm->getSymbol(GV); 3242 SymbolKind DataSym = GV->isThreadLocal() 3243 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3244 : SymbolKind::S_GTHREAD32) 3245 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3246 : SymbolKind::S_GDATA32); 3247 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3248 OS.AddComment("Type"); 3249 OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex()); 3250 OS.AddComment("DataOffset"); 3251 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 3252 OS.AddComment("Segment"); 3253 OS.EmitCOFFSectionIndex(GVSym); 3254 OS.AddComment("Name"); 3255 const unsigned LengthOfDataRecord = 12; 3256 emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord); 3257 endSymbolRecord(DataEnd); 3258 } else { 3259 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>(); 3260 assert(DIE->isConstant() && 3261 "Global constant variables must contain a constant expression."); 3262 3263 // Use unsigned for floats. 3264 bool isUnsigned = isFloatDIType(DIGV->getType()) 3265 ? true 3266 : DebugHandlerBase::isUnsignedDIType(DIGV->getType()); 3267 APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned); 3268 emitConstantSymbolRecord(DIGV->getType(), Value, QualifiedName); 3269 } 3270 } 3271