1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 40 #include "llvm/DebugInfo/CodeView/CodeView.h" 41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 46 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/MC/MCAsmInfo.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSectionCOFF.h" 60 #include "llvm/MC/MCStreamer.h" 61 #include "llvm/MC/MCSymbol.h" 62 #include "llvm/Support/BinaryByteStream.h" 63 #include "llvm/Support/BinaryStreamReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Target/TargetFrameLowering.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cctype> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <limits> 83 #include <string> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace llvm::codeview; 89 90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 91 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 92 // If module doesn't have named metadata anchors or COFF debug section 93 // is not available, skip any debug info related stuff. 94 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 95 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 96 Asm = nullptr; 97 return; 98 } 99 100 // Tell MMI that we have debug info. 101 MMI->setDebugInfoAvailability(true); 102 } 103 104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 105 std::string &Filepath = FileToFilepathMap[File]; 106 if (!Filepath.empty()) 107 return Filepath; 108 109 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 110 111 // Clang emits directory and relative filename info into the IR, but CodeView 112 // operates on full paths. We could change Clang to emit full paths too, but 113 // that would increase the IR size and probably not needed for other users. 114 // For now, just concatenate and canonicalize the path here. 115 if (Filename.find(':') == 1) 116 Filepath = Filename; 117 else 118 Filepath = (Dir + "\\" + Filename).str(); 119 120 // Canonicalize the path. We have to do it textually because we may no longer 121 // have access the file in the filesystem. 122 // First, replace all slashes with backslashes. 123 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 124 125 // Remove all "\.\" with "\". 126 size_t Cursor = 0; 127 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 128 Filepath.erase(Cursor, 2); 129 130 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 131 // path should be well-formatted, e.g. start with a drive letter, etc. 132 Cursor = 0; 133 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 134 // Something's wrong if the path starts with "\..\", abort. 135 if (Cursor == 0) 136 break; 137 138 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 139 if (PrevSlash == std::string::npos) 140 // Something's wrong, abort. 141 break; 142 143 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 144 // The next ".." might be following the one we've just erased. 145 Cursor = PrevSlash; 146 } 147 148 // Remove all duplicate backslashes. 149 Cursor = 0; 150 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 151 Filepath.erase(Cursor, 1); 152 153 return Filepath; 154 } 155 156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 157 unsigned NextId = FileIdMap.size() + 1; 158 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 159 if (Insertion.second) { 160 // We have to compute the full filepath and emit a .cv_file directive. 161 StringRef FullPath = getFullFilepath(F); 162 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 163 (void)Success; 164 assert(Success && ".cv_file directive failed"); 165 } 166 return Insertion.first->second; 167 } 168 169 CodeViewDebug::InlineSite & 170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 171 const DISubprogram *Inlinee) { 172 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 173 InlineSite *Site = &SiteInsertion.first->second; 174 if (SiteInsertion.second) { 175 unsigned ParentFuncId = CurFn->FuncId; 176 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 177 ParentFuncId = 178 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 179 .SiteFuncId; 180 181 Site->SiteFuncId = NextFuncId++; 182 OS.EmitCVInlineSiteIdDirective( 183 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 184 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 185 Site->Inlinee = Inlinee; 186 InlinedSubprograms.insert(Inlinee); 187 getFuncIdForSubprogram(Inlinee); 188 } 189 return *Site; 190 } 191 192 static StringRef getPrettyScopeName(const DIScope *Scope) { 193 StringRef ScopeName = Scope->getName(); 194 if (!ScopeName.empty()) 195 return ScopeName; 196 197 switch (Scope->getTag()) { 198 case dwarf::DW_TAG_enumeration_type: 199 case dwarf::DW_TAG_class_type: 200 case dwarf::DW_TAG_structure_type: 201 case dwarf::DW_TAG_union_type: 202 return "<unnamed-tag>"; 203 case dwarf::DW_TAG_namespace: 204 return "`anonymous namespace'"; 205 } 206 207 return StringRef(); 208 } 209 210 static const DISubprogram *getQualifiedNameComponents( 211 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 212 const DISubprogram *ClosestSubprogram = nullptr; 213 while (Scope != nullptr) { 214 if (ClosestSubprogram == nullptr) 215 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 216 StringRef ScopeName = getPrettyScopeName(Scope); 217 if (!ScopeName.empty()) 218 QualifiedNameComponents.push_back(ScopeName); 219 Scope = Scope->getScope().resolve(); 220 } 221 return ClosestSubprogram; 222 } 223 224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 225 StringRef TypeName) { 226 std::string FullyQualifiedName; 227 for (StringRef QualifiedNameComponent : 228 llvm::reverse(QualifiedNameComponents)) { 229 FullyQualifiedName.append(QualifiedNameComponent); 230 FullyQualifiedName.append("::"); 231 } 232 FullyQualifiedName.append(TypeName); 233 return FullyQualifiedName; 234 } 235 236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 237 SmallVector<StringRef, 5> QualifiedNameComponents; 238 getQualifiedNameComponents(Scope, QualifiedNameComponents); 239 return getQualifiedName(QualifiedNameComponents, Name); 240 } 241 242 struct CodeViewDebug::TypeLoweringScope { 243 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 244 ~TypeLoweringScope() { 245 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 246 // inner TypeLoweringScopes don't attempt to emit deferred types. 247 if (CVD.TypeEmissionLevel == 1) 248 CVD.emitDeferredCompleteTypes(); 249 --CVD.TypeEmissionLevel; 250 } 251 CodeViewDebug &CVD; 252 }; 253 254 static std::string getFullyQualifiedName(const DIScope *Ty) { 255 const DIScope *Scope = Ty->getScope().resolve(); 256 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 257 } 258 259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 260 // No scope means global scope and that uses the zero index. 261 if (!Scope || isa<DIFile>(Scope)) 262 return TypeIndex(); 263 264 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 265 266 // Check if we've already translated this scope. 267 auto I = TypeIndices.find({Scope, nullptr}); 268 if (I != TypeIndices.end()) 269 return I->second; 270 271 // Build the fully qualified name of the scope. 272 std::string ScopeName = getFullyQualifiedName(Scope); 273 StringIdRecord SID(TypeIndex(), ScopeName); 274 auto TI = TypeTable.writeKnownType(SID); 275 return recordTypeIndexForDINode(Scope, TI); 276 } 277 278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 279 assert(SP); 280 281 // Check if we've already translated this subprogram. 282 auto I = TypeIndices.find({SP, nullptr}); 283 if (I != TypeIndices.end()) 284 return I->second; 285 286 // The display name includes function template arguments. Drop them to match 287 // MSVC. 288 StringRef DisplayName = SP->getName().split('<').first; 289 290 const DIScope *Scope = SP->getScope().resolve(); 291 TypeIndex TI; 292 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 293 // If the scope is a DICompositeType, then this must be a method. Member 294 // function types take some special handling, and require access to the 295 // subprogram. 296 TypeIndex ClassType = getTypeIndex(Class); 297 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 298 DisplayName); 299 TI = TypeTable.writeKnownType(MFuncId); 300 } else { 301 // Otherwise, this must be a free function. 302 TypeIndex ParentScope = getScopeIndex(Scope); 303 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 304 TI = TypeTable.writeKnownType(FuncId); 305 } 306 307 return recordTypeIndexForDINode(SP, TI); 308 } 309 310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 311 const DICompositeType *Class) { 312 // Always use the method declaration as the key for the function type. The 313 // method declaration contains the this adjustment. 314 if (SP->getDeclaration()) 315 SP = SP->getDeclaration(); 316 assert(!SP->getDeclaration() && "should use declaration as key"); 317 318 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 319 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 320 auto I = TypeIndices.find({SP, Class}); 321 if (I != TypeIndices.end()) 322 return I->second; 323 324 // Make sure complete type info for the class is emitted *after* the member 325 // function type, as the complete class type is likely to reference this 326 // member function type. 327 TypeLoweringScope S(*this); 328 TypeIndex TI = 329 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 330 return recordTypeIndexForDINode(SP, TI, Class); 331 } 332 333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 334 TypeIndex TI, 335 const DIType *ClassTy) { 336 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 337 (void)InsertResult; 338 assert(InsertResult.second && "DINode was already assigned a type index"); 339 return TI; 340 } 341 342 unsigned CodeViewDebug::getPointerSizeInBytes() { 343 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 344 } 345 346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 347 const DILocation *InlinedAt) { 348 if (InlinedAt) { 349 // This variable was inlined. Associate it with the InlineSite. 350 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 351 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 352 Site.InlinedLocals.emplace_back(Var); 353 } else { 354 // This variable goes in the main ProcSym. 355 CurFn->Locals.emplace_back(Var); 356 } 357 } 358 359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 360 const DILocation *Loc) { 361 auto B = Locs.begin(), E = Locs.end(); 362 if (std::find(B, E, Loc) == E) 363 Locs.push_back(Loc); 364 } 365 366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 367 const MachineFunction *MF) { 368 // Skip this instruction if it has the same location as the previous one. 369 if (!DL || DL == PrevInstLoc) 370 return; 371 372 const DIScope *Scope = DL.get()->getScope(); 373 if (!Scope) 374 return; 375 376 // Skip this line if it is longer than the maximum we can record. 377 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 378 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 379 LI.isNeverStepInto()) 380 return; 381 382 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 383 if (CI.getStartColumn() != DL.getCol()) 384 return; 385 386 if (!CurFn->HaveLineInfo) 387 CurFn->HaveLineInfo = true; 388 unsigned FileId = 0; 389 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 390 FileId = CurFn->LastFileId; 391 else 392 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 393 PrevInstLoc = DL; 394 395 unsigned FuncId = CurFn->FuncId; 396 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 397 const DILocation *Loc = DL.get(); 398 399 // If this location was actually inlined from somewhere else, give it the ID 400 // of the inline call site. 401 FuncId = 402 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 403 404 // Ensure we have links in the tree of inline call sites. 405 bool FirstLoc = true; 406 while ((SiteLoc = Loc->getInlinedAt())) { 407 InlineSite &Site = 408 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 409 if (!FirstLoc) 410 addLocIfNotPresent(Site.ChildSites, Loc); 411 FirstLoc = false; 412 Loc = SiteLoc; 413 } 414 addLocIfNotPresent(CurFn->ChildSites, Loc); 415 } 416 417 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 418 /*PrologueEnd=*/false, /*IsStmt=*/false, 419 DL->getFilename(), SMLoc()); 420 } 421 422 void CodeViewDebug::emitCodeViewMagicVersion() { 423 OS.EmitValueToAlignment(4); 424 OS.AddComment("Debug section magic"); 425 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 426 } 427 428 void CodeViewDebug::endModule() { 429 if (!Asm || !MMI->hasDebugInfo()) 430 return; 431 432 assert(Asm != nullptr); 433 434 // The COFF .debug$S section consists of several subsections, each starting 435 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 436 // of the payload followed by the payload itself. The subsections are 4-byte 437 // aligned. 438 439 // Use the generic .debug$S section, and make a subsection for all the inlined 440 // subprograms. 441 switchToDebugSectionForSymbol(nullptr); 442 443 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 444 emitCompilerInformation(); 445 endCVSubsection(CompilerInfo); 446 447 emitInlineeLinesSubsection(); 448 449 // Emit per-function debug information. 450 for (auto &P : FnDebugInfo) 451 if (!P.first->isDeclarationForLinker()) 452 emitDebugInfoForFunction(P.first, P.second); 453 454 // Emit global variable debug information. 455 setCurrentSubprogram(nullptr); 456 emitDebugInfoForGlobals(); 457 458 // Emit retained types. 459 emitDebugInfoForRetainedTypes(); 460 461 // Switch back to the generic .debug$S section after potentially processing 462 // comdat symbol sections. 463 switchToDebugSectionForSymbol(nullptr); 464 465 // Emit UDT records for any types used by global variables. 466 if (!GlobalUDTs.empty()) { 467 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 468 emitDebugInfoForUDTs(GlobalUDTs); 469 endCVSubsection(SymbolsEnd); 470 } 471 472 // This subsection holds a file index to offset in string table table. 473 OS.AddComment("File index to string table offset subsection"); 474 OS.EmitCVFileChecksumsDirective(); 475 476 // This subsection holds the string table. 477 OS.AddComment("String table"); 478 OS.EmitCVStringTableDirective(); 479 480 // Emit type information last, so that any types we translate while emitting 481 // function info are included. 482 emitTypeInformation(); 483 484 clear(); 485 } 486 487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 488 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 489 // after a fixed length portion of the record. The fixed length portion should 490 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 491 // overall record size is less than the maximum allowed. 492 unsigned MaxFixedRecordLength = 0xF00; 493 SmallString<32> NullTerminatedString( 494 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 495 NullTerminatedString.push_back('\0'); 496 OS.EmitBytes(NullTerminatedString); 497 } 498 499 void CodeViewDebug::emitTypeInformation() { 500 // Do nothing if we have no debug info or if no non-trivial types were emitted 501 // to TypeTable during codegen. 502 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 503 if (!CU_Nodes) 504 return; 505 if (TypeTable.empty()) 506 return; 507 508 // Start the .debug$T section with 0x4. 509 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 510 emitCodeViewMagicVersion(); 511 512 SmallString<8> CommentPrefix; 513 if (OS.isVerboseAsm()) { 514 CommentPrefix += '\t'; 515 CommentPrefix += Asm->MAI->getCommentString(); 516 CommentPrefix += ' '; 517 } 518 519 TypeTableCollection Table(TypeTable.records()); 520 Optional<TypeIndex> B = Table.getFirst(); 521 while (B) { 522 // This will fail if the record data is invalid. 523 CVType Record = Table.getType(*B); 524 525 if (OS.isVerboseAsm()) { 526 // Emit a block comment describing the type record for readability. 527 SmallString<512> CommentBlock; 528 raw_svector_ostream CommentOS(CommentBlock); 529 ScopedPrinter SP(CommentOS); 530 SP.setPrefix(CommentPrefix); 531 TypeDumpVisitor TDV(Table, &SP, false); 532 533 Error E = codeview::visitTypeRecord(Record, *B, TDV); 534 if (E) { 535 logAllUnhandledErrors(std::move(E), errs(), "error: "); 536 llvm_unreachable("produced malformed type record"); 537 } 538 // emitRawComment will insert its own tab and comment string before 539 // the first line, so strip off our first one. It also prints its own 540 // newline. 541 OS.emitRawComment( 542 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 543 } 544 OS.EmitBinaryData(Record.str_data()); 545 B = Table.getNext(*B); 546 } 547 } 548 549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 550 switch (DWLang) { 551 case dwarf::DW_LANG_C: 552 case dwarf::DW_LANG_C89: 553 case dwarf::DW_LANG_C99: 554 case dwarf::DW_LANG_C11: 555 case dwarf::DW_LANG_ObjC: 556 return SourceLanguage::C; 557 case dwarf::DW_LANG_C_plus_plus: 558 case dwarf::DW_LANG_C_plus_plus_03: 559 case dwarf::DW_LANG_C_plus_plus_11: 560 case dwarf::DW_LANG_C_plus_plus_14: 561 return SourceLanguage::Cpp; 562 case dwarf::DW_LANG_Fortran77: 563 case dwarf::DW_LANG_Fortran90: 564 case dwarf::DW_LANG_Fortran03: 565 case dwarf::DW_LANG_Fortran08: 566 return SourceLanguage::Fortran; 567 case dwarf::DW_LANG_Pascal83: 568 return SourceLanguage::Pascal; 569 case dwarf::DW_LANG_Cobol74: 570 case dwarf::DW_LANG_Cobol85: 571 return SourceLanguage::Cobol; 572 case dwarf::DW_LANG_Java: 573 return SourceLanguage::Java; 574 case dwarf::DW_LANG_D: 575 return SourceLanguage::D; 576 default: 577 // There's no CodeView representation for this language, and CV doesn't 578 // have an "unknown" option for the language field, so we'll use MASM, 579 // as it's very low level. 580 return SourceLanguage::Masm; 581 } 582 } 583 584 namespace { 585 struct Version { 586 int Part[4]; 587 }; 588 } // end anonymous namespace 589 590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 591 // the version number. 592 static Version parseVersion(StringRef Name) { 593 Version V = {{0}}; 594 int N = 0; 595 for (const char C : Name) { 596 if (isdigit(C)) { 597 V.Part[N] *= 10; 598 V.Part[N] += C - '0'; 599 } else if (C == '.') { 600 ++N; 601 if (N >= 4) 602 return V; 603 } else if (N > 0) 604 return V; 605 } 606 return V; 607 } 608 609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 610 switch (Type) { 611 case Triple::ArchType::x86: 612 return CPUType::Pentium3; 613 case Triple::ArchType::x86_64: 614 return CPUType::X64; 615 case Triple::ArchType::thumb: 616 return CPUType::Thumb; 617 case Triple::ArchType::aarch64: 618 return CPUType::ARM64; 619 default: 620 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 621 } 622 } 623 624 void CodeViewDebug::emitCompilerInformation() { 625 MCContext &Context = MMI->getContext(); 626 MCSymbol *CompilerBegin = Context.createTempSymbol(), 627 *CompilerEnd = Context.createTempSymbol(); 628 OS.AddComment("Record length"); 629 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 630 OS.EmitLabel(CompilerBegin); 631 OS.AddComment("Record kind: S_COMPILE3"); 632 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 633 uint32_t Flags = 0; 634 635 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 636 const MDNode *Node = *CUs->operands().begin(); 637 const auto *CU = cast<DICompileUnit>(Node); 638 639 // The low byte of the flags indicates the source language. 640 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 641 // TODO: Figure out which other flags need to be set. 642 643 OS.AddComment("Flags and language"); 644 OS.EmitIntValue(Flags, 4); 645 646 OS.AddComment("CPUType"); 647 CPUType CPU = 648 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 649 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 650 651 StringRef CompilerVersion = CU->getProducer(); 652 Version FrontVer = parseVersion(CompilerVersion); 653 OS.AddComment("Frontend version"); 654 for (int N = 0; N < 4; ++N) 655 OS.EmitIntValue(FrontVer.Part[N], 2); 656 657 // Some Microsoft tools, like Binscope, expect a backend version number of at 658 // least 8.something, so we'll coerce the LLVM version into a form that 659 // guarantees it'll be big enough without really lying about the version. 660 int Major = 1000 * LLVM_VERSION_MAJOR + 661 10 * LLVM_VERSION_MINOR + 662 LLVM_VERSION_PATCH; 663 // Clamp it for builds that use unusually large version numbers. 664 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 665 Version BackVer = {{ Major, 0, 0, 0 }}; 666 OS.AddComment("Backend version"); 667 for (int N = 0; N < 4; ++N) 668 OS.EmitIntValue(BackVer.Part[N], 2); 669 670 OS.AddComment("Null-terminated compiler version string"); 671 emitNullTerminatedSymbolName(OS, CompilerVersion); 672 673 OS.EmitLabel(CompilerEnd); 674 } 675 676 void CodeViewDebug::emitInlineeLinesSubsection() { 677 if (InlinedSubprograms.empty()) 678 return; 679 680 OS.AddComment("Inlinee lines subsection"); 681 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 682 683 // We don't provide any extra file info. 684 // FIXME: Find out if debuggers use this info. 685 OS.AddComment("Inlinee lines signature"); 686 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 687 688 for (const DISubprogram *SP : InlinedSubprograms) { 689 assert(TypeIndices.count({SP, nullptr})); 690 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 691 692 OS.AddBlankLine(); 693 unsigned FileId = maybeRecordFile(SP->getFile()); 694 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 695 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 696 OS.AddBlankLine(); 697 // The filechecksum table uses 8 byte entries for now, and file ids start at 698 // 1. 699 unsigned FileOffset = (FileId - 1) * 8; 700 OS.AddComment("Type index of inlined function"); 701 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 702 OS.AddComment("Offset into filechecksum table"); 703 OS.EmitIntValue(FileOffset, 4); 704 OS.AddComment("Starting line number"); 705 OS.EmitIntValue(SP->getLine(), 4); 706 } 707 708 endCVSubsection(InlineEnd); 709 } 710 711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 712 const DILocation *InlinedAt, 713 const InlineSite &Site) { 714 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 715 *InlineEnd = MMI->getContext().createTempSymbol(); 716 717 assert(TypeIndices.count({Site.Inlinee, nullptr})); 718 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 719 720 // SymbolRecord 721 OS.AddComment("Record length"); 722 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 723 OS.EmitLabel(InlineBegin); 724 OS.AddComment("Record kind: S_INLINESITE"); 725 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 726 727 OS.AddComment("PtrParent"); 728 OS.EmitIntValue(0, 4); 729 OS.AddComment("PtrEnd"); 730 OS.EmitIntValue(0, 4); 731 OS.AddComment("Inlinee type index"); 732 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 733 734 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 735 unsigned StartLineNum = Site.Inlinee->getLine(); 736 737 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 738 FI.Begin, FI.End); 739 740 OS.EmitLabel(InlineEnd); 741 742 emitLocalVariableList(Site.InlinedLocals); 743 744 // Recurse on child inlined call sites before closing the scope. 745 for (const DILocation *ChildSite : Site.ChildSites) { 746 auto I = FI.InlineSites.find(ChildSite); 747 assert(I != FI.InlineSites.end() && 748 "child site not in function inline site map"); 749 emitInlinedCallSite(FI, ChildSite, I->second); 750 } 751 752 // Close the scope. 753 OS.AddComment("Record length"); 754 OS.EmitIntValue(2, 2); // RecordLength 755 OS.AddComment("Record kind: S_INLINESITE_END"); 756 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 757 } 758 759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 760 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 761 // comdat key. A section may be comdat because of -ffunction-sections or 762 // because it is comdat in the IR. 763 MCSectionCOFF *GVSec = 764 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 765 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 766 767 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 768 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 769 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 770 771 OS.SwitchSection(DebugSec); 772 773 // Emit the magic version number if this is the first time we've switched to 774 // this section. 775 if (ComdatDebugSections.insert(DebugSec).second) 776 emitCodeViewMagicVersion(); 777 } 778 779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 780 FunctionInfo &FI) { 781 // For each function there is a separate subsection 782 // which holds the PC to file:line table. 783 const MCSymbol *Fn = Asm->getSymbol(GV); 784 assert(Fn); 785 786 // Switch to the to a comdat section, if appropriate. 787 switchToDebugSectionForSymbol(Fn); 788 789 std::string FuncName; 790 auto *SP = GV->getSubprogram(); 791 assert(SP); 792 setCurrentSubprogram(SP); 793 794 // If we have a display name, build the fully qualified name by walking the 795 // chain of scopes. 796 if (!SP->getName().empty()) 797 FuncName = 798 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 799 800 // If our DISubprogram name is empty, use the mangled name. 801 if (FuncName.empty()) 802 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 803 804 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 805 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 806 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 807 { 808 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 809 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 810 OS.AddComment("Record length"); 811 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 812 OS.EmitLabel(ProcRecordBegin); 813 814 if (GV->hasLocalLinkage()) { 815 OS.AddComment("Record kind: S_LPROC32_ID"); 816 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 817 } else { 818 OS.AddComment("Record kind: S_GPROC32_ID"); 819 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 820 } 821 822 // These fields are filled in by tools like CVPACK which run after the fact. 823 OS.AddComment("PtrParent"); 824 OS.EmitIntValue(0, 4); 825 OS.AddComment("PtrEnd"); 826 OS.EmitIntValue(0, 4); 827 OS.AddComment("PtrNext"); 828 OS.EmitIntValue(0, 4); 829 // This is the important bit that tells the debugger where the function 830 // code is located and what's its size: 831 OS.AddComment("Code size"); 832 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 833 OS.AddComment("Offset after prologue"); 834 OS.EmitIntValue(0, 4); 835 OS.AddComment("Offset before epilogue"); 836 OS.EmitIntValue(0, 4); 837 OS.AddComment("Function type index"); 838 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 839 OS.AddComment("Function section relative address"); 840 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 841 OS.AddComment("Function section index"); 842 OS.EmitCOFFSectionIndex(Fn); 843 OS.AddComment("Flags"); 844 OS.EmitIntValue(0, 1); 845 // Emit the function display name as a null-terminated string. 846 OS.AddComment("Function name"); 847 // Truncate the name so we won't overflow the record length field. 848 emitNullTerminatedSymbolName(OS, FuncName); 849 OS.EmitLabel(ProcRecordEnd); 850 851 emitLocalVariableList(FI.Locals); 852 853 // Emit inlined call site information. Only emit functions inlined directly 854 // into the parent function. We'll emit the other sites recursively as part 855 // of their parent inline site. 856 for (const DILocation *InlinedAt : FI.ChildSites) { 857 auto I = FI.InlineSites.find(InlinedAt); 858 assert(I != FI.InlineSites.end() && 859 "child site not in function inline site map"); 860 emitInlinedCallSite(FI, InlinedAt, I->second); 861 } 862 863 if (SP != nullptr) 864 emitDebugInfoForUDTs(LocalUDTs); 865 866 // We're done with this function. 867 OS.AddComment("Record length"); 868 OS.EmitIntValue(0x0002, 2); 869 OS.AddComment("Record kind: S_PROC_ID_END"); 870 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 871 } 872 endCVSubsection(SymbolsEnd); 873 874 // We have an assembler directive that takes care of the whole line table. 875 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 876 } 877 878 CodeViewDebug::LocalVarDefRange 879 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 880 LocalVarDefRange DR; 881 DR.InMemory = -1; 882 DR.DataOffset = Offset; 883 assert(DR.DataOffset == Offset && "truncation"); 884 DR.IsSubfield = 0; 885 DR.StructOffset = 0; 886 DR.CVRegister = CVRegister; 887 return DR; 888 } 889 890 CodeViewDebug::LocalVarDefRange 891 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 892 int Offset, bool IsSubfield, 893 uint16_t StructOffset) { 894 LocalVarDefRange DR; 895 DR.InMemory = InMemory; 896 DR.DataOffset = Offset; 897 DR.IsSubfield = IsSubfield; 898 DR.StructOffset = StructOffset; 899 DR.CVRegister = CVRegister; 900 return DR; 901 } 902 903 void CodeViewDebug::collectVariableInfoFromMFTable( 904 DenseSet<InlinedVariable> &Processed) { 905 const MachineFunction &MF = *Asm->MF; 906 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 907 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 908 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 909 910 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 911 if (!VI.Var) 912 continue; 913 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 914 "Expected inlined-at fields to agree"); 915 916 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 917 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 918 919 // If variable scope is not found then skip this variable. 920 if (!Scope) 921 continue; 922 923 // If the variable has an attached offset expression, extract it. 924 // FIXME: Try to handle DW_OP_deref as well. 925 int64_t ExprOffset = 0; 926 if (VI.Expr) 927 if (!VI.Expr->extractIfOffset(ExprOffset)) 928 continue; 929 930 // Get the frame register used and the offset. 931 unsigned FrameReg = 0; 932 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 933 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 934 935 // Calculate the label ranges. 936 LocalVarDefRange DefRange = 937 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 938 for (const InsnRange &Range : Scope->getRanges()) { 939 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 940 const MCSymbol *End = getLabelAfterInsn(Range.second); 941 End = End ? End : Asm->getFunctionEnd(); 942 DefRange.Ranges.emplace_back(Begin, End); 943 } 944 945 LocalVariable Var; 946 Var.DIVar = VI.Var; 947 Var.DefRanges.emplace_back(std::move(DefRange)); 948 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 949 } 950 } 951 952 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 953 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 954 } 955 956 static bool needsReferenceType(const DbgVariableLocation &Loc) { 957 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 958 } 959 960 void CodeViewDebug::calculateRanges( 961 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 962 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 963 964 // Calculate the definition ranges. 965 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 966 const InsnRange &Range = *I; 967 const MachineInstr *DVInst = Range.first; 968 assert(DVInst->isDebugValue() && "Invalid History entry"); 969 // FIXME: Find a way to represent constant variables, since they are 970 // relatively common. 971 Optional<DbgVariableLocation> Location = 972 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 973 if (!Location) 974 continue; 975 976 // CodeView can only express variables in register and variables in memory 977 // at a constant offset from a register. However, for variables passed 978 // indirectly by pointer, it is common for that pointer to be spilled to a 979 // stack location. For the special case of one offseted load followed by a 980 // zero offset load (a pointer spilled to the stack), we change the type of 981 // the local variable from a value type to a reference type. This tricks the 982 // debugger into doing the load for us. 983 if (Var.UseReferenceType) { 984 // We're using a reference type. Drop the last zero offset load. 985 if (canUseReferenceType(*Location)) 986 Location->LoadChain.pop_back(); 987 else 988 continue; 989 } else if (needsReferenceType(*Location)) { 990 // This location can't be expressed without switching to a reference type. 991 // Start over using that. 992 Var.UseReferenceType = true; 993 Var.DefRanges.clear(); 994 calculateRanges(Var, Ranges); 995 return; 996 } 997 998 // We can only handle a register or an offseted load of a register. 999 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1000 continue; 1001 { 1002 LocalVarDefRange DR; 1003 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1004 DR.InMemory = !Location->LoadChain.empty(); 1005 DR.DataOffset = 1006 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1007 if (Location->FragmentInfo) { 1008 DR.IsSubfield = true; 1009 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1010 } else { 1011 DR.IsSubfield = false; 1012 DR.StructOffset = 0; 1013 } 1014 1015 if (Var.DefRanges.empty() || 1016 Var.DefRanges.back().isDifferentLocation(DR)) { 1017 Var.DefRanges.emplace_back(std::move(DR)); 1018 } 1019 } 1020 1021 // Compute the label range. 1022 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1023 const MCSymbol *End = getLabelAfterInsn(Range.second); 1024 if (!End) { 1025 // This range is valid until the next overlapping bitpiece. In the 1026 // common case, ranges will not be bitpieces, so they will overlap. 1027 auto J = std::next(I); 1028 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1029 while (J != E && 1030 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1031 ++J; 1032 if (J != E) 1033 End = getLabelBeforeInsn(J->first); 1034 else 1035 End = Asm->getFunctionEnd(); 1036 } 1037 1038 // If the last range end is our begin, just extend the last range. 1039 // Otherwise make a new range. 1040 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1041 Var.DefRanges.back().Ranges; 1042 if (!R.empty() && R.back().second == Begin) 1043 R.back().second = End; 1044 else 1045 R.emplace_back(Begin, End); 1046 1047 // FIXME: Do more range combining. 1048 } 1049 } 1050 1051 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1052 DenseSet<InlinedVariable> Processed; 1053 // Grab the variable info that was squirreled away in the MMI side-table. 1054 collectVariableInfoFromMFTable(Processed); 1055 1056 for (const auto &I : DbgValues) { 1057 InlinedVariable IV = I.first; 1058 if (Processed.count(IV)) 1059 continue; 1060 const DILocalVariable *DIVar = IV.first; 1061 const DILocation *InlinedAt = IV.second; 1062 1063 // Instruction ranges, specifying where IV is accessible. 1064 const auto &Ranges = I.second; 1065 1066 LexicalScope *Scope = nullptr; 1067 if (InlinedAt) 1068 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1069 else 1070 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1071 // If variable scope is not found then skip this variable. 1072 if (!Scope) 1073 continue; 1074 1075 LocalVariable Var; 1076 Var.DIVar = DIVar; 1077 1078 calculateRanges(Var, Ranges); 1079 recordLocalVariable(std::move(Var), InlinedAt); 1080 } 1081 } 1082 1083 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1084 const Function *GV = MF->getFunction(); 1085 assert(FnDebugInfo.count(GV) == false); 1086 CurFn = &FnDebugInfo[GV]; 1087 CurFn->FuncId = NextFuncId++; 1088 CurFn->Begin = Asm->getFunctionBegin(); 1089 1090 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1091 1092 // Find the end of the function prolog. First known non-DBG_VALUE and 1093 // non-frame setup location marks the beginning of the function body. 1094 // FIXME: is there a simpler a way to do this? Can we just search 1095 // for the first instruction of the function, not the last of the prolog? 1096 DebugLoc PrologEndLoc; 1097 bool EmptyPrologue = true; 1098 for (const auto &MBB : *MF) { 1099 for (const auto &MI : MBB) { 1100 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1101 MI.getDebugLoc()) { 1102 PrologEndLoc = MI.getDebugLoc(); 1103 break; 1104 } else if (!MI.isMetaInstruction()) { 1105 EmptyPrologue = false; 1106 } 1107 } 1108 } 1109 1110 // Record beginning of function if we have a non-empty prologue. 1111 if (PrologEndLoc && !EmptyPrologue) { 1112 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1113 maybeRecordLocation(FnStartDL, MF); 1114 } 1115 } 1116 1117 static bool shouldEmitUdt(const DIType *T) { 1118 while (true) { 1119 if (!T || T->isForwardDecl()) 1120 return false; 1121 1122 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1123 if (!DT) 1124 return true; 1125 T = DT->getBaseType().resolve(); 1126 } 1127 return true; 1128 } 1129 1130 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1131 // Don't record empty UDTs. 1132 if (Ty->getName().empty()) 1133 return; 1134 if (!shouldEmitUdt(Ty)) 1135 return; 1136 1137 SmallVector<StringRef, 5> QualifiedNameComponents; 1138 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1139 Ty->getScope().resolve(), QualifiedNameComponents); 1140 1141 std::string FullyQualifiedName = 1142 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1143 1144 if (ClosestSubprogram == nullptr) { 1145 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1146 } else if (ClosestSubprogram == CurrentSubprogram) { 1147 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1148 } 1149 1150 // TODO: What if the ClosestSubprogram is neither null or the current 1151 // subprogram? Currently, the UDT just gets dropped on the floor. 1152 // 1153 // The current behavior is not desirable. To get maximal fidelity, we would 1154 // need to perform all type translation before beginning emission of .debug$S 1155 // and then make LocalUDTs a member of FunctionInfo 1156 } 1157 1158 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1159 // Generic dispatch for lowering an unknown type. 1160 switch (Ty->getTag()) { 1161 case dwarf::DW_TAG_array_type: 1162 return lowerTypeArray(cast<DICompositeType>(Ty)); 1163 case dwarf::DW_TAG_typedef: 1164 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1165 case dwarf::DW_TAG_base_type: 1166 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1167 case dwarf::DW_TAG_pointer_type: 1168 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1169 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1170 LLVM_FALLTHROUGH; 1171 case dwarf::DW_TAG_reference_type: 1172 case dwarf::DW_TAG_rvalue_reference_type: 1173 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1174 case dwarf::DW_TAG_ptr_to_member_type: 1175 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1176 case dwarf::DW_TAG_const_type: 1177 case dwarf::DW_TAG_volatile_type: 1178 // TODO: add support for DW_TAG_atomic_type here 1179 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1180 case dwarf::DW_TAG_subroutine_type: 1181 if (ClassTy) { 1182 // The member function type of a member function pointer has no 1183 // ThisAdjustment. 1184 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1185 /*ThisAdjustment=*/0); 1186 } 1187 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1188 case dwarf::DW_TAG_enumeration_type: 1189 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1190 case dwarf::DW_TAG_class_type: 1191 case dwarf::DW_TAG_structure_type: 1192 return lowerTypeClass(cast<DICompositeType>(Ty)); 1193 case dwarf::DW_TAG_union_type: 1194 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1195 default: 1196 // Use the null type index. 1197 return TypeIndex(); 1198 } 1199 } 1200 1201 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1202 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1203 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1204 StringRef TypeName = Ty->getName(); 1205 1206 addToUDTs(Ty); 1207 1208 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1209 TypeName == "HRESULT") 1210 return TypeIndex(SimpleTypeKind::HResult); 1211 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1212 TypeName == "wchar_t") 1213 return TypeIndex(SimpleTypeKind::WideCharacter); 1214 1215 return UnderlyingTypeIndex; 1216 } 1217 1218 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1219 DITypeRef ElementTypeRef = Ty->getBaseType(); 1220 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1221 // IndexType is size_t, which depends on the bitness of the target. 1222 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1223 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1224 : TypeIndex(SimpleTypeKind::UInt32Long); 1225 1226 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1227 1228 // Add subranges to array type. 1229 DINodeArray Elements = Ty->getElements(); 1230 for (int i = Elements.size() - 1; i >= 0; --i) { 1231 const DINode *Element = Elements[i]; 1232 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1233 1234 const DISubrange *Subrange = cast<DISubrange>(Element); 1235 assert(Subrange->getLowerBound() == 0 && 1236 "codeview doesn't support subranges with lower bounds"); 1237 int64_t Count = Subrange->getCount(); 1238 1239 // Variable Length Array (VLA) has Count equal to '-1'. 1240 // Replace with Count '1', assume it is the minimum VLA length. 1241 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1242 if (Count == -1) 1243 Count = 1; 1244 1245 // Update the element size and element type index for subsequent subranges. 1246 ElementSize *= Count; 1247 1248 // If this is the outermost array, use the size from the array. It will be 1249 // more accurate if we had a VLA or an incomplete element type size. 1250 uint64_t ArraySize = 1251 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1252 1253 StringRef Name = (i == 0) ? Ty->getName() : ""; 1254 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1255 ElementTypeIndex = TypeTable.writeKnownType(AR); 1256 } 1257 1258 return ElementTypeIndex; 1259 } 1260 1261 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1262 TypeIndex Index; 1263 dwarf::TypeKind Kind; 1264 uint32_t ByteSize; 1265 1266 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1267 ByteSize = Ty->getSizeInBits() / 8; 1268 1269 SimpleTypeKind STK = SimpleTypeKind::None; 1270 switch (Kind) { 1271 case dwarf::DW_ATE_address: 1272 // FIXME: Translate 1273 break; 1274 case dwarf::DW_ATE_boolean: 1275 switch (ByteSize) { 1276 case 1: STK = SimpleTypeKind::Boolean8; break; 1277 case 2: STK = SimpleTypeKind::Boolean16; break; 1278 case 4: STK = SimpleTypeKind::Boolean32; break; 1279 case 8: STK = SimpleTypeKind::Boolean64; break; 1280 case 16: STK = SimpleTypeKind::Boolean128; break; 1281 } 1282 break; 1283 case dwarf::DW_ATE_complex_float: 1284 switch (ByteSize) { 1285 case 2: STK = SimpleTypeKind::Complex16; break; 1286 case 4: STK = SimpleTypeKind::Complex32; break; 1287 case 8: STK = SimpleTypeKind::Complex64; break; 1288 case 10: STK = SimpleTypeKind::Complex80; break; 1289 case 16: STK = SimpleTypeKind::Complex128; break; 1290 } 1291 break; 1292 case dwarf::DW_ATE_float: 1293 switch (ByteSize) { 1294 case 2: STK = SimpleTypeKind::Float16; break; 1295 case 4: STK = SimpleTypeKind::Float32; break; 1296 case 6: STK = SimpleTypeKind::Float48; break; 1297 case 8: STK = SimpleTypeKind::Float64; break; 1298 case 10: STK = SimpleTypeKind::Float80; break; 1299 case 16: STK = SimpleTypeKind::Float128; break; 1300 } 1301 break; 1302 case dwarf::DW_ATE_signed: 1303 switch (ByteSize) { 1304 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1305 case 2: STK = SimpleTypeKind::Int16Short; break; 1306 case 4: STK = SimpleTypeKind::Int32; break; 1307 case 8: STK = SimpleTypeKind::Int64Quad; break; 1308 case 16: STK = SimpleTypeKind::Int128Oct; break; 1309 } 1310 break; 1311 case dwarf::DW_ATE_unsigned: 1312 switch (ByteSize) { 1313 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1314 case 2: STK = SimpleTypeKind::UInt16Short; break; 1315 case 4: STK = SimpleTypeKind::UInt32; break; 1316 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1317 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1318 } 1319 break; 1320 case dwarf::DW_ATE_UTF: 1321 switch (ByteSize) { 1322 case 2: STK = SimpleTypeKind::Character16; break; 1323 case 4: STK = SimpleTypeKind::Character32; break; 1324 } 1325 break; 1326 case dwarf::DW_ATE_signed_char: 1327 if (ByteSize == 1) 1328 STK = SimpleTypeKind::SignedCharacter; 1329 break; 1330 case dwarf::DW_ATE_unsigned_char: 1331 if (ByteSize == 1) 1332 STK = SimpleTypeKind::UnsignedCharacter; 1333 break; 1334 default: 1335 break; 1336 } 1337 1338 // Apply some fixups based on the source-level type name. 1339 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1340 STK = SimpleTypeKind::Int32Long; 1341 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1342 STK = SimpleTypeKind::UInt32Long; 1343 if (STK == SimpleTypeKind::UInt16Short && 1344 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1345 STK = SimpleTypeKind::WideCharacter; 1346 if ((STK == SimpleTypeKind::SignedCharacter || 1347 STK == SimpleTypeKind::UnsignedCharacter) && 1348 Ty->getName() == "char") 1349 STK = SimpleTypeKind::NarrowCharacter; 1350 1351 return TypeIndex(STK); 1352 } 1353 1354 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1355 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1356 1357 // Pointers to simple types can use SimpleTypeMode, rather than having a 1358 // dedicated pointer type record. 1359 if (PointeeTI.isSimple() && 1360 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1361 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1362 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1363 ? SimpleTypeMode::NearPointer64 1364 : SimpleTypeMode::NearPointer32; 1365 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1366 } 1367 1368 PointerKind PK = 1369 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1370 PointerMode PM = PointerMode::Pointer; 1371 switch (Ty->getTag()) { 1372 default: llvm_unreachable("not a pointer tag type"); 1373 case dwarf::DW_TAG_pointer_type: 1374 PM = PointerMode::Pointer; 1375 break; 1376 case dwarf::DW_TAG_reference_type: 1377 PM = PointerMode::LValueReference; 1378 break; 1379 case dwarf::DW_TAG_rvalue_reference_type: 1380 PM = PointerMode::RValueReference; 1381 break; 1382 } 1383 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1384 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1385 // do. 1386 PointerOptions PO = PointerOptions::None; 1387 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1388 return TypeTable.writeKnownType(PR); 1389 } 1390 1391 static PointerToMemberRepresentation 1392 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1393 // SizeInBytes being zero generally implies that the member pointer type was 1394 // incomplete, which can happen if it is part of a function prototype. In this 1395 // case, use the unknown model instead of the general model. 1396 if (IsPMF) { 1397 switch (Flags & DINode::FlagPtrToMemberRep) { 1398 case 0: 1399 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1400 : PointerToMemberRepresentation::GeneralFunction; 1401 case DINode::FlagSingleInheritance: 1402 return PointerToMemberRepresentation::SingleInheritanceFunction; 1403 case DINode::FlagMultipleInheritance: 1404 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1405 case DINode::FlagVirtualInheritance: 1406 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1407 } 1408 } else { 1409 switch (Flags & DINode::FlagPtrToMemberRep) { 1410 case 0: 1411 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1412 : PointerToMemberRepresentation::GeneralData; 1413 case DINode::FlagSingleInheritance: 1414 return PointerToMemberRepresentation::SingleInheritanceData; 1415 case DINode::FlagMultipleInheritance: 1416 return PointerToMemberRepresentation::MultipleInheritanceData; 1417 case DINode::FlagVirtualInheritance: 1418 return PointerToMemberRepresentation::VirtualInheritanceData; 1419 } 1420 } 1421 llvm_unreachable("invalid ptr to member representation"); 1422 } 1423 1424 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1425 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1426 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1427 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1428 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1429 : PointerKind::Near32; 1430 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1431 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1432 : PointerMode::PointerToDataMember; 1433 PointerOptions PO = PointerOptions::None; // FIXME 1434 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1435 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1436 MemberPointerInfo MPI( 1437 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1438 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1439 return TypeTable.writeKnownType(PR); 1440 } 1441 1442 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1443 /// have a translation, use the NearC convention. 1444 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1445 switch (DwarfCC) { 1446 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1447 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1448 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1449 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1450 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1451 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1452 } 1453 return CallingConvention::NearC; 1454 } 1455 1456 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1457 ModifierOptions Mods = ModifierOptions::None; 1458 bool IsModifier = true; 1459 const DIType *BaseTy = Ty; 1460 while (IsModifier && BaseTy) { 1461 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1462 switch (BaseTy->getTag()) { 1463 case dwarf::DW_TAG_const_type: 1464 Mods |= ModifierOptions::Const; 1465 break; 1466 case dwarf::DW_TAG_volatile_type: 1467 Mods |= ModifierOptions::Volatile; 1468 break; 1469 default: 1470 IsModifier = false; 1471 break; 1472 } 1473 if (IsModifier) 1474 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1475 } 1476 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1477 ModifierRecord MR(ModifiedTI, Mods); 1478 return TypeTable.writeKnownType(MR); 1479 } 1480 1481 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1482 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1483 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1484 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1485 1486 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1487 ArrayRef<TypeIndex> ArgTypeIndices = None; 1488 if (!ReturnAndArgTypeIndices.empty()) { 1489 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1490 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1491 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1492 } 1493 1494 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1495 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1496 1497 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1498 1499 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1500 ArgTypeIndices.size(), ArgListIndex); 1501 return TypeTable.writeKnownType(Procedure); 1502 } 1503 1504 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1505 const DIType *ClassTy, 1506 int ThisAdjustment) { 1507 // Lower the containing class type. 1508 TypeIndex ClassType = getTypeIndex(ClassTy); 1509 1510 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1511 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1512 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1513 1514 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1515 ArrayRef<TypeIndex> ArgTypeIndices = None; 1516 if (!ReturnAndArgTypeIndices.empty()) { 1517 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1518 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1519 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1520 } 1521 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1522 if (!ArgTypeIndices.empty()) { 1523 ThisTypeIndex = ArgTypeIndices.front(); 1524 ArgTypeIndices = ArgTypeIndices.drop_front(); 1525 } 1526 1527 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1528 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1529 1530 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1531 1532 // TODO: Need to use the correct values for: 1533 // FunctionOptions 1534 // ThisPointerAdjustment. 1535 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1536 FunctionOptions::None, ArgTypeIndices.size(), 1537 ArgListIndex, ThisAdjustment); 1538 TypeIndex TI = TypeTable.writeKnownType(MFR); 1539 1540 return TI; 1541 } 1542 1543 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1544 unsigned VSlotCount = 1545 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1546 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1547 1548 VFTableShapeRecord VFTSR(Slots); 1549 return TypeTable.writeKnownType(VFTSR); 1550 } 1551 1552 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1553 switch (Flags & DINode::FlagAccessibility) { 1554 case DINode::FlagPrivate: return MemberAccess::Private; 1555 case DINode::FlagPublic: return MemberAccess::Public; 1556 case DINode::FlagProtected: return MemberAccess::Protected; 1557 case 0: 1558 // If there was no explicit access control, provide the default for the tag. 1559 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1560 : MemberAccess::Public; 1561 } 1562 llvm_unreachable("access flags are exclusive"); 1563 } 1564 1565 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1566 if (SP->isArtificial()) 1567 return MethodOptions::CompilerGenerated; 1568 1569 // FIXME: Handle other MethodOptions. 1570 1571 return MethodOptions::None; 1572 } 1573 1574 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1575 bool Introduced) { 1576 switch (SP->getVirtuality()) { 1577 case dwarf::DW_VIRTUALITY_none: 1578 break; 1579 case dwarf::DW_VIRTUALITY_virtual: 1580 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1581 case dwarf::DW_VIRTUALITY_pure_virtual: 1582 return Introduced ? MethodKind::PureIntroducingVirtual 1583 : MethodKind::PureVirtual; 1584 default: 1585 llvm_unreachable("unhandled virtuality case"); 1586 } 1587 1588 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1589 1590 return MethodKind::Vanilla; 1591 } 1592 1593 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1594 switch (Ty->getTag()) { 1595 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1596 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1597 } 1598 llvm_unreachable("unexpected tag"); 1599 } 1600 1601 /// Return ClassOptions that should be present on both the forward declaration 1602 /// and the defintion of a tag type. 1603 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1604 ClassOptions CO = ClassOptions::None; 1605 1606 // MSVC always sets this flag, even for local types. Clang doesn't always 1607 // appear to give every type a linkage name, which may be problematic for us. 1608 // FIXME: Investigate the consequences of not following them here. 1609 if (!Ty->getIdentifier().empty()) 1610 CO |= ClassOptions::HasUniqueName; 1611 1612 // Put the Nested flag on a type if it appears immediately inside a tag type. 1613 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1614 // here. That flag is only set on definitions, and not forward declarations. 1615 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1616 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1617 CO |= ClassOptions::Nested; 1618 1619 // Put the Scoped flag on function-local types. 1620 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1621 Scope = Scope->getScope().resolve()) { 1622 if (isa<DISubprogram>(Scope)) { 1623 CO |= ClassOptions::Scoped; 1624 break; 1625 } 1626 } 1627 1628 return CO; 1629 } 1630 1631 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1632 ClassOptions CO = getCommonClassOptions(Ty); 1633 TypeIndex FTI; 1634 unsigned EnumeratorCount = 0; 1635 1636 if (Ty->isForwardDecl()) { 1637 CO |= ClassOptions::ForwardReference; 1638 } else { 1639 FieldListRecordBuilder FLRB(TypeTable); 1640 1641 FLRB.begin(); 1642 for (const DINode *Element : Ty->getElements()) { 1643 // We assume that the frontend provides all members in source declaration 1644 // order, which is what MSVC does. 1645 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1646 EnumeratorRecord ER(MemberAccess::Public, 1647 APSInt::getUnsigned(Enumerator->getValue()), 1648 Enumerator->getName()); 1649 FLRB.writeMemberType(ER); 1650 EnumeratorCount++; 1651 } 1652 } 1653 FTI = FLRB.end(true); 1654 } 1655 1656 std::string FullName = getFullyQualifiedName(Ty); 1657 1658 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1659 getTypeIndex(Ty->getBaseType())); 1660 return TypeTable.writeKnownType(ER); 1661 } 1662 1663 //===----------------------------------------------------------------------===// 1664 // ClassInfo 1665 //===----------------------------------------------------------------------===// 1666 1667 struct llvm::ClassInfo { 1668 struct MemberInfo { 1669 const DIDerivedType *MemberTypeNode; 1670 uint64_t BaseOffset; 1671 }; 1672 // [MemberInfo] 1673 using MemberList = std::vector<MemberInfo>; 1674 1675 using MethodsList = TinyPtrVector<const DISubprogram *>; 1676 // MethodName -> MethodsList 1677 using MethodsMap = MapVector<MDString *, MethodsList>; 1678 1679 /// Base classes. 1680 std::vector<const DIDerivedType *> Inheritance; 1681 1682 /// Direct members. 1683 MemberList Members; 1684 // Direct overloaded methods gathered by name. 1685 MethodsMap Methods; 1686 1687 TypeIndex VShapeTI; 1688 1689 std::vector<const DIType *> NestedTypes; 1690 }; 1691 1692 void CodeViewDebug::clear() { 1693 assert(CurFn == nullptr); 1694 FileIdMap.clear(); 1695 FnDebugInfo.clear(); 1696 FileToFilepathMap.clear(); 1697 LocalUDTs.clear(); 1698 GlobalUDTs.clear(); 1699 TypeIndices.clear(); 1700 CompleteTypeIndices.clear(); 1701 } 1702 1703 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1704 const DIDerivedType *DDTy) { 1705 if (!DDTy->getName().empty()) { 1706 Info.Members.push_back({DDTy, 0}); 1707 return; 1708 } 1709 // An unnamed member must represent a nested struct or union. Add all the 1710 // indirect fields to the current record. 1711 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1712 uint64_t Offset = DDTy->getOffsetInBits(); 1713 const DIType *Ty = DDTy->getBaseType().resolve(); 1714 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1715 ClassInfo NestedInfo = collectClassInfo(DCTy); 1716 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1717 Info.Members.push_back( 1718 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1719 } 1720 1721 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1722 ClassInfo Info; 1723 // Add elements to structure type. 1724 DINodeArray Elements = Ty->getElements(); 1725 for (auto *Element : Elements) { 1726 // We assume that the frontend provides all members in source declaration 1727 // order, which is what MSVC does. 1728 if (!Element) 1729 continue; 1730 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1731 Info.Methods[SP->getRawName()].push_back(SP); 1732 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1733 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1734 collectMemberInfo(Info, DDTy); 1735 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1736 Info.Inheritance.push_back(DDTy); 1737 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1738 DDTy->getName() == "__vtbl_ptr_type") { 1739 Info.VShapeTI = getTypeIndex(DDTy); 1740 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1741 Info.NestedTypes.push_back(DDTy); 1742 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1743 // Ignore friend members. It appears that MSVC emitted info about 1744 // friends in the past, but modern versions do not. 1745 } 1746 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1747 Info.NestedTypes.push_back(Composite); 1748 } 1749 // Skip other unrecognized kinds of elements. 1750 } 1751 return Info; 1752 } 1753 1754 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1755 // First, construct the forward decl. Don't look into Ty to compute the 1756 // forward decl options, since it might not be available in all TUs. 1757 TypeRecordKind Kind = getRecordKind(Ty); 1758 ClassOptions CO = 1759 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1760 std::string FullName = getFullyQualifiedName(Ty); 1761 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1762 FullName, Ty->getIdentifier()); 1763 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1764 if (!Ty->isForwardDecl()) 1765 DeferredCompleteTypes.push_back(Ty); 1766 return FwdDeclTI; 1767 } 1768 1769 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1770 // Construct the field list and complete type record. 1771 TypeRecordKind Kind = getRecordKind(Ty); 1772 ClassOptions CO = getCommonClassOptions(Ty); 1773 TypeIndex FieldTI; 1774 TypeIndex VShapeTI; 1775 unsigned FieldCount; 1776 bool ContainsNestedClass; 1777 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1778 lowerRecordFieldList(Ty); 1779 1780 if (ContainsNestedClass) 1781 CO |= ClassOptions::ContainsNestedClass; 1782 1783 std::string FullName = getFullyQualifiedName(Ty); 1784 1785 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1786 1787 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1788 SizeInBytes, FullName, Ty->getIdentifier()); 1789 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1790 1791 if (const auto *File = Ty->getFile()) { 1792 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1793 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1794 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1795 TypeTable.writeKnownType(USLR); 1796 } 1797 1798 addToUDTs(Ty); 1799 1800 return ClassTI; 1801 } 1802 1803 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1804 ClassOptions CO = 1805 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1806 std::string FullName = getFullyQualifiedName(Ty); 1807 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1808 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1809 if (!Ty->isForwardDecl()) 1810 DeferredCompleteTypes.push_back(Ty); 1811 return FwdDeclTI; 1812 } 1813 1814 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1815 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1816 TypeIndex FieldTI; 1817 unsigned FieldCount; 1818 bool ContainsNestedClass; 1819 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1820 lowerRecordFieldList(Ty); 1821 1822 if (ContainsNestedClass) 1823 CO |= ClassOptions::ContainsNestedClass; 1824 1825 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1826 std::string FullName = getFullyQualifiedName(Ty); 1827 1828 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1829 Ty->getIdentifier()); 1830 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1831 1832 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1833 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1834 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1835 TypeTable.writeKnownType(USLR); 1836 1837 addToUDTs(Ty); 1838 1839 return UnionTI; 1840 } 1841 1842 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1843 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1844 // Manually count members. MSVC appears to count everything that generates a 1845 // field list record. Each individual overload in a method overload group 1846 // contributes to this count, even though the overload group is a single field 1847 // list record. 1848 unsigned MemberCount = 0; 1849 ClassInfo Info = collectClassInfo(Ty); 1850 FieldListRecordBuilder FLBR(TypeTable); 1851 FLBR.begin(); 1852 1853 // Create base classes. 1854 for (const DIDerivedType *I : Info.Inheritance) { 1855 if (I->getFlags() & DINode::FlagVirtual) { 1856 // Virtual base. 1857 // FIXME: Emit VBPtrOffset when the frontend provides it. 1858 unsigned VBPtrOffset = 0; 1859 // FIXME: Despite the accessor name, the offset is really in bytes. 1860 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1861 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1862 ? TypeRecordKind::IndirectVirtualBaseClass 1863 : TypeRecordKind::VirtualBaseClass; 1864 VirtualBaseClassRecord VBCR( 1865 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1866 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1867 VBTableIndex); 1868 1869 FLBR.writeMemberType(VBCR); 1870 } else { 1871 assert(I->getOffsetInBits() % 8 == 0 && 1872 "bases must be on byte boundaries"); 1873 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1874 getTypeIndex(I->getBaseType()), 1875 I->getOffsetInBits() / 8); 1876 FLBR.writeMemberType(BCR); 1877 } 1878 } 1879 1880 // Create members. 1881 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1882 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1883 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1884 StringRef MemberName = Member->getName(); 1885 MemberAccess Access = 1886 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1887 1888 if (Member->isStaticMember()) { 1889 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1890 FLBR.writeMemberType(SDMR); 1891 MemberCount++; 1892 continue; 1893 } 1894 1895 // Virtual function pointer member. 1896 if ((Member->getFlags() & DINode::FlagArtificial) && 1897 Member->getName().startswith("_vptr$")) { 1898 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1899 FLBR.writeMemberType(VFPR); 1900 MemberCount++; 1901 continue; 1902 } 1903 1904 // Data member. 1905 uint64_t MemberOffsetInBits = 1906 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1907 if (Member->isBitField()) { 1908 uint64_t StartBitOffset = MemberOffsetInBits; 1909 if (const auto *CI = 1910 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1911 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1912 } 1913 StartBitOffset -= MemberOffsetInBits; 1914 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1915 StartBitOffset); 1916 MemberBaseType = TypeTable.writeKnownType(BFR); 1917 } 1918 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1919 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1920 MemberName); 1921 FLBR.writeMemberType(DMR); 1922 MemberCount++; 1923 } 1924 1925 // Create methods 1926 for (auto &MethodItr : Info.Methods) { 1927 StringRef Name = MethodItr.first->getString(); 1928 1929 std::vector<OneMethodRecord> Methods; 1930 for (const DISubprogram *SP : MethodItr.second) { 1931 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1932 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1933 1934 unsigned VFTableOffset = -1; 1935 if (Introduced) 1936 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1937 1938 Methods.push_back(OneMethodRecord( 1939 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1940 translateMethodKindFlags(SP, Introduced), 1941 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1942 MemberCount++; 1943 } 1944 assert(!Methods.empty() && "Empty methods map entry"); 1945 if (Methods.size() == 1) 1946 FLBR.writeMemberType(Methods[0]); 1947 else { 1948 MethodOverloadListRecord MOLR(Methods); 1949 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1950 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1951 FLBR.writeMemberType(OMR); 1952 } 1953 } 1954 1955 // Create nested classes. 1956 for (const DIType *Nested : Info.NestedTypes) { 1957 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1958 FLBR.writeMemberType(R); 1959 MemberCount++; 1960 } 1961 1962 TypeIndex FieldTI = FLBR.end(true); 1963 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1964 !Info.NestedTypes.empty()); 1965 } 1966 1967 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1968 if (!VBPType.getIndex()) { 1969 // Make a 'const int *' type. 1970 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1971 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1972 1973 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1974 : PointerKind::Near32; 1975 PointerMode PM = PointerMode::Pointer; 1976 PointerOptions PO = PointerOptions::None; 1977 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1978 1979 VBPType = TypeTable.writeKnownType(PR); 1980 } 1981 1982 return VBPType; 1983 } 1984 1985 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1986 const DIType *Ty = TypeRef.resolve(); 1987 const DIType *ClassTy = ClassTyRef.resolve(); 1988 1989 // The null DIType is the void type. Don't try to hash it. 1990 if (!Ty) 1991 return TypeIndex::Void(); 1992 1993 // Check if we've already translated this type. Don't try to do a 1994 // get-or-create style insertion that caches the hash lookup across the 1995 // lowerType call. It will update the TypeIndices map. 1996 auto I = TypeIndices.find({Ty, ClassTy}); 1997 if (I != TypeIndices.end()) 1998 return I->second; 1999 2000 TypeLoweringScope S(*this); 2001 TypeIndex TI = lowerType(Ty, ClassTy); 2002 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2003 } 2004 2005 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2006 DIType *Ty = TypeRef.resolve(); 2007 PointerRecord PR(getTypeIndex(Ty), 2008 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2009 : PointerKind::Near32, 2010 PointerMode::LValueReference, PointerOptions::None, 2011 Ty->getSizeInBits() / 8); 2012 return TypeTable.writeKnownType(PR); 2013 } 2014 2015 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2016 const DIType *Ty = TypeRef.resolve(); 2017 2018 // The null DIType is the void type. Don't try to hash it. 2019 if (!Ty) 2020 return TypeIndex::Void(); 2021 2022 // If this is a non-record type, the complete type index is the same as the 2023 // normal type index. Just call getTypeIndex. 2024 switch (Ty->getTag()) { 2025 case dwarf::DW_TAG_class_type: 2026 case dwarf::DW_TAG_structure_type: 2027 case dwarf::DW_TAG_union_type: 2028 break; 2029 default: 2030 return getTypeIndex(Ty); 2031 } 2032 2033 // Check if we've already translated the complete record type. Lowering a 2034 // complete type should never trigger lowering another complete type, so we 2035 // can reuse the hash table lookup result. 2036 const auto *CTy = cast<DICompositeType>(Ty); 2037 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2038 if (!InsertResult.second) 2039 return InsertResult.first->second; 2040 2041 TypeLoweringScope S(*this); 2042 2043 // Make sure the forward declaration is emitted first. It's unclear if this 2044 // is necessary, but MSVC does it, and we should follow suit until we can show 2045 // otherwise. 2046 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2047 2048 // Just use the forward decl if we don't have complete type info. This might 2049 // happen if the frontend is using modules and expects the complete definition 2050 // to be emitted elsewhere. 2051 if (CTy->isForwardDecl()) 2052 return FwdDeclTI; 2053 2054 TypeIndex TI; 2055 switch (CTy->getTag()) { 2056 case dwarf::DW_TAG_class_type: 2057 case dwarf::DW_TAG_structure_type: 2058 TI = lowerCompleteTypeClass(CTy); 2059 break; 2060 case dwarf::DW_TAG_union_type: 2061 TI = lowerCompleteTypeUnion(CTy); 2062 break; 2063 default: 2064 llvm_unreachable("not a record"); 2065 } 2066 2067 InsertResult.first->second = TI; 2068 return TI; 2069 } 2070 2071 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2072 /// and do this until fixpoint, as each complete record type typically 2073 /// references 2074 /// many other record types. 2075 void CodeViewDebug::emitDeferredCompleteTypes() { 2076 SmallVector<const DICompositeType *, 4> TypesToEmit; 2077 while (!DeferredCompleteTypes.empty()) { 2078 std::swap(DeferredCompleteTypes, TypesToEmit); 2079 for (const DICompositeType *RecordTy : TypesToEmit) 2080 getCompleteTypeIndex(RecordTy); 2081 TypesToEmit.clear(); 2082 } 2083 } 2084 2085 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2086 // Get the sorted list of parameters and emit them first. 2087 SmallVector<const LocalVariable *, 6> Params; 2088 for (const LocalVariable &L : Locals) 2089 if (L.DIVar->isParameter()) 2090 Params.push_back(&L); 2091 std::sort(Params.begin(), Params.end(), 2092 [](const LocalVariable *L, const LocalVariable *R) { 2093 return L->DIVar->getArg() < R->DIVar->getArg(); 2094 }); 2095 for (const LocalVariable *L : Params) 2096 emitLocalVariable(*L); 2097 2098 // Next emit all non-parameters in the order that we found them. 2099 for (const LocalVariable &L : Locals) 2100 if (!L.DIVar->isParameter()) 2101 emitLocalVariable(L); 2102 } 2103 2104 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2105 // LocalSym record, see SymbolRecord.h for more info. 2106 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2107 *LocalEnd = MMI->getContext().createTempSymbol(); 2108 OS.AddComment("Record length"); 2109 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2110 OS.EmitLabel(LocalBegin); 2111 2112 OS.AddComment("Record kind: S_LOCAL"); 2113 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2114 2115 LocalSymFlags Flags = LocalSymFlags::None; 2116 if (Var.DIVar->isParameter()) 2117 Flags |= LocalSymFlags::IsParameter; 2118 if (Var.DefRanges.empty()) 2119 Flags |= LocalSymFlags::IsOptimizedOut; 2120 2121 OS.AddComment("TypeIndex"); 2122 TypeIndex TI = Var.UseReferenceType 2123 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2124 : getCompleteTypeIndex(Var.DIVar->getType()); 2125 OS.EmitIntValue(TI.getIndex(), 4); 2126 OS.AddComment("Flags"); 2127 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2128 // Truncate the name so we won't overflow the record length field. 2129 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2130 OS.EmitLabel(LocalEnd); 2131 2132 // Calculate the on disk prefix of the appropriate def range record. The 2133 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2134 // should be big enough to hold all forms without memory allocation. 2135 SmallString<20> BytePrefix; 2136 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2137 BytePrefix.clear(); 2138 if (DefRange.InMemory) { 2139 uint16_t RegRelFlags = 0; 2140 if (DefRange.IsSubfield) { 2141 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2142 (DefRange.StructOffset 2143 << DefRangeRegisterRelSym::OffsetInParentShift); 2144 } 2145 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2146 Sym.Hdr.Register = DefRange.CVRegister; 2147 Sym.Hdr.Flags = RegRelFlags; 2148 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2149 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2150 BytePrefix += 2151 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2152 BytePrefix += 2153 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2154 } else { 2155 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2156 if (DefRange.IsSubfield) { 2157 // Unclear what matters here. 2158 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2159 Sym.Hdr.Register = DefRange.CVRegister; 2160 Sym.Hdr.MayHaveNoName = 0; 2161 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2162 2163 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2164 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2165 sizeof(SymKind)); 2166 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2167 sizeof(Sym.Hdr)); 2168 } else { 2169 // Unclear what matters here. 2170 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2171 Sym.Hdr.Register = DefRange.CVRegister; 2172 Sym.Hdr.MayHaveNoName = 0; 2173 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2174 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2175 sizeof(SymKind)); 2176 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2177 sizeof(Sym.Hdr)); 2178 } 2179 } 2180 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2181 } 2182 } 2183 2184 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2185 const Function *GV = MF->getFunction(); 2186 assert(FnDebugInfo.count(GV)); 2187 assert(CurFn == &FnDebugInfo[GV]); 2188 2189 collectVariableInfo(GV->getSubprogram()); 2190 2191 // Don't emit anything if we don't have any line tables. 2192 if (!CurFn->HaveLineInfo) { 2193 FnDebugInfo.erase(GV); 2194 CurFn = nullptr; 2195 return; 2196 } 2197 2198 CurFn->End = Asm->getFunctionEnd(); 2199 2200 CurFn = nullptr; 2201 } 2202 2203 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2204 DebugHandlerBase::beginInstruction(MI); 2205 2206 // Ignore DBG_VALUE locations and function prologue. 2207 if (!Asm || !CurFn || MI->isDebugValue() || 2208 MI->getFlag(MachineInstr::FrameSetup)) 2209 return; 2210 2211 // If the first instruction of a new MBB has no location, find the first 2212 // instruction with a location and use that. 2213 DebugLoc DL = MI->getDebugLoc(); 2214 if (!DL && MI->getParent() != PrevInstBB) { 2215 for (const auto &NextMI : *MI->getParent()) { 2216 if (NextMI.isDebugValue()) 2217 continue; 2218 DL = NextMI.getDebugLoc(); 2219 if (DL) 2220 break; 2221 } 2222 } 2223 PrevInstBB = MI->getParent(); 2224 2225 // If we still don't have a debug location, don't record a location. 2226 if (!DL) 2227 return; 2228 2229 maybeRecordLocation(DL, Asm->MF); 2230 } 2231 2232 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2233 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2234 *EndLabel = MMI->getContext().createTempSymbol(); 2235 OS.EmitIntValue(unsigned(Kind), 4); 2236 OS.AddComment("Subsection size"); 2237 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2238 OS.EmitLabel(BeginLabel); 2239 return EndLabel; 2240 } 2241 2242 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2243 OS.EmitLabel(EndLabel); 2244 // Every subsection must be aligned to a 4-byte boundary. 2245 OS.EmitValueToAlignment(4); 2246 } 2247 2248 void CodeViewDebug::emitDebugInfoForUDTs( 2249 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2250 for (const auto &UDT : UDTs) { 2251 const DIType *T = UDT.second; 2252 assert(shouldEmitUdt(T)); 2253 2254 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2255 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2256 OS.AddComment("Record length"); 2257 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2258 OS.EmitLabel(UDTRecordBegin); 2259 2260 OS.AddComment("Record kind: S_UDT"); 2261 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2262 2263 OS.AddComment("Type"); 2264 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2265 2266 emitNullTerminatedSymbolName(OS, UDT.first); 2267 OS.EmitLabel(UDTRecordEnd); 2268 } 2269 } 2270 2271 void CodeViewDebug::emitDebugInfoForGlobals() { 2272 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2273 GlobalMap; 2274 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2275 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2276 GV.getDebugInfo(GVEs); 2277 for (const auto *GVE : GVEs) 2278 GlobalMap[GVE] = &GV; 2279 } 2280 2281 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2282 for (const MDNode *Node : CUs->operands()) { 2283 const auto *CU = cast<DICompileUnit>(Node); 2284 2285 // First, emit all globals that are not in a comdat in a single symbol 2286 // substream. MSVC doesn't like it if the substream is empty, so only open 2287 // it if we have at least one global to emit. 2288 switchToDebugSectionForSymbol(nullptr); 2289 MCSymbol *EndLabel = nullptr; 2290 for (const auto *GVE : CU->getGlobalVariables()) { 2291 if (const auto *GV = GlobalMap.lookup(GVE)) 2292 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2293 if (!EndLabel) { 2294 OS.AddComment("Symbol subsection for globals"); 2295 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2296 } 2297 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2298 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2299 } 2300 } 2301 if (EndLabel) 2302 endCVSubsection(EndLabel); 2303 2304 // Second, emit each global that is in a comdat into its own .debug$S 2305 // section along with its own symbol substream. 2306 for (const auto *GVE : CU->getGlobalVariables()) { 2307 if (const auto *GV = GlobalMap.lookup(GVE)) { 2308 if (GV->hasComdat()) { 2309 MCSymbol *GVSym = Asm->getSymbol(GV); 2310 OS.AddComment("Symbol subsection for " + 2311 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2312 switchToDebugSectionForSymbol(GVSym); 2313 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2314 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2315 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2316 endCVSubsection(EndLabel); 2317 } 2318 } 2319 } 2320 } 2321 } 2322 2323 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2324 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2325 for (const MDNode *Node : CUs->operands()) { 2326 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2327 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2328 getTypeIndex(RT); 2329 // FIXME: Add to global/local DTU list. 2330 } 2331 } 2332 } 2333 } 2334 2335 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2336 const GlobalVariable *GV, 2337 MCSymbol *GVSym) { 2338 // DataSym record, see SymbolRecord.h for more info. 2339 // FIXME: Thread local data, etc 2340 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2341 *DataEnd = MMI->getContext().createTempSymbol(); 2342 OS.AddComment("Record length"); 2343 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2344 OS.EmitLabel(DataBegin); 2345 if (DIGV->isLocalToUnit()) { 2346 if (GV->isThreadLocal()) { 2347 OS.AddComment("Record kind: S_LTHREAD32"); 2348 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2349 } else { 2350 OS.AddComment("Record kind: S_LDATA32"); 2351 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2352 } 2353 } else { 2354 if (GV->isThreadLocal()) { 2355 OS.AddComment("Record kind: S_GTHREAD32"); 2356 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2357 } else { 2358 OS.AddComment("Record kind: S_GDATA32"); 2359 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2360 } 2361 } 2362 OS.AddComment("Type"); 2363 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2364 OS.AddComment("DataOffset"); 2365 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2366 OS.AddComment("Segment"); 2367 OS.EmitCOFFSectionIndex(GVSym); 2368 OS.AddComment("Name"); 2369 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2370 OS.EmitLabel(DataEnd); 2371 } 2372