1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 17 #include "llvm/DebugInfo/CodeView/CodeView.h" 18 #include "llvm/DebugInfo/CodeView/Line.h" 19 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 20 #include "llvm/DebugInfo/CodeView/TypeDumper.h" 21 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 22 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 23 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h" 24 #include "llvm/DebugInfo/MSF/ByteStream.h" 25 #include "llvm/DebugInfo/MSF/StreamReader.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCSectionCOFF.h" 30 #include "llvm/MC/MCSymbol.h" 31 #include "llvm/Support/COFF.h" 32 #include "llvm/Support/ScopedPrinter.h" 33 #include "llvm/Target/TargetFrameLowering.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 37 using namespace llvm; 38 using namespace llvm::codeview; 39 using namespace llvm::msf; 40 41 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 42 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(), 43 TypeTable(Allocator), CurFn(nullptr) { 44 // If module doesn't have named metadata anchors or COFF debug section 45 // is not available, skip any debug info related stuff. 46 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 47 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 48 Asm = nullptr; 49 return; 50 } 51 52 // Tell MMI that we have debug info. 53 MMI->setDebugInfoAvailability(true); 54 } 55 56 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 57 std::string &Filepath = FileToFilepathMap[File]; 58 if (!Filepath.empty()) 59 return Filepath; 60 61 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 62 63 // Clang emits directory and relative filename info into the IR, but CodeView 64 // operates on full paths. We could change Clang to emit full paths too, but 65 // that would increase the IR size and probably not needed for other users. 66 // For now, just concatenate and canonicalize the path here. 67 if (Filename.find(':') == 1) 68 Filepath = Filename; 69 else 70 Filepath = (Dir + "\\" + Filename).str(); 71 72 // Canonicalize the path. We have to do it textually because we may no longer 73 // have access the file in the filesystem. 74 // First, replace all slashes with backslashes. 75 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 76 77 // Remove all "\.\" with "\". 78 size_t Cursor = 0; 79 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 80 Filepath.erase(Cursor, 2); 81 82 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 83 // path should be well-formatted, e.g. start with a drive letter, etc. 84 Cursor = 0; 85 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 86 // Something's wrong if the path starts with "\..\", abort. 87 if (Cursor == 0) 88 break; 89 90 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 91 if (PrevSlash == std::string::npos) 92 // Something's wrong, abort. 93 break; 94 95 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 96 // The next ".." might be following the one we've just erased. 97 Cursor = PrevSlash; 98 } 99 100 // Remove all duplicate backslashes. 101 Cursor = 0; 102 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 103 Filepath.erase(Cursor, 1); 104 105 return Filepath; 106 } 107 108 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 109 unsigned NextId = FileIdMap.size() + 1; 110 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 111 if (Insertion.second) { 112 // We have to compute the full filepath and emit a .cv_file directive. 113 StringRef FullPath = getFullFilepath(F); 114 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 115 (void)Success; 116 assert(Success && ".cv_file directive failed"); 117 } 118 return Insertion.first->second; 119 } 120 121 CodeViewDebug::InlineSite & 122 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 123 const DISubprogram *Inlinee) { 124 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 125 InlineSite *Site = &SiteInsertion.first->second; 126 if (SiteInsertion.second) { 127 unsigned ParentFuncId = CurFn->FuncId; 128 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 129 ParentFuncId = 130 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 131 .SiteFuncId; 132 133 Site->SiteFuncId = NextFuncId++; 134 OS.EmitCVInlineSiteIdDirective( 135 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 136 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 137 Site->Inlinee = Inlinee; 138 InlinedSubprograms.insert(Inlinee); 139 getFuncIdForSubprogram(Inlinee); 140 } 141 return *Site; 142 } 143 144 static StringRef getPrettyScopeName(const DIScope *Scope) { 145 StringRef ScopeName = Scope->getName(); 146 if (!ScopeName.empty()) 147 return ScopeName; 148 149 switch (Scope->getTag()) { 150 case dwarf::DW_TAG_enumeration_type: 151 case dwarf::DW_TAG_class_type: 152 case dwarf::DW_TAG_structure_type: 153 case dwarf::DW_TAG_union_type: 154 return "<unnamed-tag>"; 155 case dwarf::DW_TAG_namespace: 156 return "`anonymous namespace'"; 157 } 158 159 return StringRef(); 160 } 161 162 static const DISubprogram *getQualifiedNameComponents( 163 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 164 const DISubprogram *ClosestSubprogram = nullptr; 165 while (Scope != nullptr) { 166 if (ClosestSubprogram == nullptr) 167 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 168 StringRef ScopeName = getPrettyScopeName(Scope); 169 if (!ScopeName.empty()) 170 QualifiedNameComponents.push_back(ScopeName); 171 Scope = Scope->getScope().resolve(); 172 } 173 return ClosestSubprogram; 174 } 175 176 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 177 StringRef TypeName) { 178 std::string FullyQualifiedName; 179 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 180 FullyQualifiedName.append(QualifiedNameComponent); 181 FullyQualifiedName.append("::"); 182 } 183 FullyQualifiedName.append(TypeName); 184 return FullyQualifiedName; 185 } 186 187 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 188 SmallVector<StringRef, 5> QualifiedNameComponents; 189 getQualifiedNameComponents(Scope, QualifiedNameComponents); 190 return getQualifiedName(QualifiedNameComponents, Name); 191 } 192 193 struct CodeViewDebug::TypeLoweringScope { 194 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 195 ~TypeLoweringScope() { 196 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 197 // inner TypeLoweringScopes don't attempt to emit deferred types. 198 if (CVD.TypeEmissionLevel == 1) 199 CVD.emitDeferredCompleteTypes(); 200 --CVD.TypeEmissionLevel; 201 } 202 CodeViewDebug &CVD; 203 }; 204 205 static std::string getFullyQualifiedName(const DIScope *Ty) { 206 const DIScope *Scope = Ty->getScope().resolve(); 207 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 208 } 209 210 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 211 // No scope means global scope and that uses the zero index. 212 if (!Scope || isa<DIFile>(Scope)) 213 return TypeIndex(); 214 215 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 216 217 // Check if we've already translated this scope. 218 auto I = TypeIndices.find({Scope, nullptr}); 219 if (I != TypeIndices.end()) 220 return I->second; 221 222 // Build the fully qualified name of the scope. 223 std::string ScopeName = getFullyQualifiedName(Scope); 224 StringIdRecord SID(TypeIndex(), ScopeName); 225 auto TI = TypeTable.writeKnownType(SID); 226 return recordTypeIndexForDINode(Scope, TI); 227 } 228 229 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 230 assert(SP); 231 232 // Check if we've already translated this subprogram. 233 auto I = TypeIndices.find({SP, nullptr}); 234 if (I != TypeIndices.end()) 235 return I->second; 236 237 // The display name includes function template arguments. Drop them to match 238 // MSVC. 239 StringRef DisplayName = SP->getDisplayName().split('<').first; 240 241 const DIScope *Scope = SP->getScope().resolve(); 242 TypeIndex TI; 243 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 244 // If the scope is a DICompositeType, then this must be a method. Member 245 // function types take some special handling, and require access to the 246 // subprogram. 247 TypeIndex ClassType = getTypeIndex(Class); 248 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 249 DisplayName); 250 TI = TypeTable.writeKnownType(MFuncId); 251 } else { 252 // Otherwise, this must be a free function. 253 TypeIndex ParentScope = getScopeIndex(Scope); 254 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 255 TI = TypeTable.writeKnownType(FuncId); 256 } 257 258 return recordTypeIndexForDINode(SP, TI); 259 } 260 261 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 262 const DICompositeType *Class) { 263 // Always use the method declaration as the key for the function type. The 264 // method declaration contains the this adjustment. 265 if (SP->getDeclaration()) 266 SP = SP->getDeclaration(); 267 assert(!SP->getDeclaration() && "should use declaration as key"); 268 269 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 270 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 271 auto I = TypeIndices.find({SP, Class}); 272 if (I != TypeIndices.end()) 273 return I->second; 274 275 // Make sure complete type info for the class is emitted *after* the member 276 // function type, as the complete class type is likely to reference this 277 // member function type. 278 TypeLoweringScope S(*this); 279 TypeIndex TI = 280 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 281 return recordTypeIndexForDINode(SP, TI, Class); 282 } 283 284 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 285 TypeIndex TI, 286 const DIType *ClassTy) { 287 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 288 (void)InsertResult; 289 assert(InsertResult.second && "DINode was already assigned a type index"); 290 return TI; 291 } 292 293 unsigned CodeViewDebug::getPointerSizeInBytes() { 294 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 295 } 296 297 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 298 const DILocation *InlinedAt) { 299 if (InlinedAt) { 300 // This variable was inlined. Associate it with the InlineSite. 301 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 302 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 303 Site.InlinedLocals.emplace_back(Var); 304 } else { 305 // This variable goes in the main ProcSym. 306 CurFn->Locals.emplace_back(Var); 307 } 308 } 309 310 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 311 const DILocation *Loc) { 312 auto B = Locs.begin(), E = Locs.end(); 313 if (std::find(B, E, Loc) == E) 314 Locs.push_back(Loc); 315 } 316 317 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 318 const MachineFunction *MF) { 319 // Skip this instruction if it has the same location as the previous one. 320 if (DL == CurFn->LastLoc) 321 return; 322 323 const DIScope *Scope = DL.get()->getScope(); 324 if (!Scope) 325 return; 326 327 // Skip this line if it is longer than the maximum we can record. 328 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 329 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 330 LI.isNeverStepInto()) 331 return; 332 333 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 334 if (CI.getStartColumn() != DL.getCol()) 335 return; 336 337 if (!CurFn->HaveLineInfo) 338 CurFn->HaveLineInfo = true; 339 unsigned FileId = 0; 340 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 341 FileId = CurFn->LastFileId; 342 else 343 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 344 CurFn->LastLoc = DL; 345 346 unsigned FuncId = CurFn->FuncId; 347 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 348 const DILocation *Loc = DL.get(); 349 350 // If this location was actually inlined from somewhere else, give it the ID 351 // of the inline call site. 352 FuncId = 353 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 354 355 // Ensure we have links in the tree of inline call sites. 356 bool FirstLoc = true; 357 while ((SiteLoc = Loc->getInlinedAt())) { 358 InlineSite &Site = 359 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 360 if (!FirstLoc) 361 addLocIfNotPresent(Site.ChildSites, Loc); 362 FirstLoc = false; 363 Loc = SiteLoc; 364 } 365 addLocIfNotPresent(CurFn->ChildSites, Loc); 366 } 367 368 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 369 /*PrologueEnd=*/false, /*IsStmt=*/false, 370 DL->getFilename(), SMLoc()); 371 } 372 373 void CodeViewDebug::emitCodeViewMagicVersion() { 374 OS.EmitValueToAlignment(4); 375 OS.AddComment("Debug section magic"); 376 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 377 } 378 379 void CodeViewDebug::endModule() { 380 if (!Asm || !MMI->hasDebugInfo()) 381 return; 382 383 assert(Asm != nullptr); 384 385 // The COFF .debug$S section consists of several subsections, each starting 386 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 387 // of the payload followed by the payload itself. The subsections are 4-byte 388 // aligned. 389 390 // Use the generic .debug$S section, and make a subsection for all the inlined 391 // subprograms. 392 switchToDebugSectionForSymbol(nullptr); 393 394 MCSymbol *CompilerInfo = beginCVSubsection(ModuleSubstreamKind::Symbols); 395 emitCompilerInformation(); 396 endCVSubsection(CompilerInfo); 397 398 emitInlineeLinesSubsection(); 399 400 // Emit per-function debug information. 401 for (auto &P : FnDebugInfo) 402 if (!P.first->isDeclarationForLinker()) 403 emitDebugInfoForFunction(P.first, P.second); 404 405 // Emit global variable debug information. 406 setCurrentSubprogram(nullptr); 407 emitDebugInfoForGlobals(); 408 409 // Emit retained types. 410 emitDebugInfoForRetainedTypes(); 411 412 // Switch back to the generic .debug$S section after potentially processing 413 // comdat symbol sections. 414 switchToDebugSectionForSymbol(nullptr); 415 416 // Emit UDT records for any types used by global variables. 417 if (!GlobalUDTs.empty()) { 418 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 419 emitDebugInfoForUDTs(GlobalUDTs); 420 endCVSubsection(SymbolsEnd); 421 } 422 423 // This subsection holds a file index to offset in string table table. 424 OS.AddComment("File index to string table offset subsection"); 425 OS.EmitCVFileChecksumsDirective(); 426 427 // This subsection holds the string table. 428 OS.AddComment("String table"); 429 OS.EmitCVStringTableDirective(); 430 431 // Emit type information last, so that any types we translate while emitting 432 // function info are included. 433 emitTypeInformation(); 434 435 clear(); 436 } 437 438 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 439 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 440 // after a fixed length portion of the record. The fixed length portion should 441 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 442 // overall record size is less than the maximum allowed. 443 unsigned MaxFixedRecordLength = 0xF00; 444 SmallString<32> NullTerminatedString( 445 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 446 NullTerminatedString.push_back('\0'); 447 OS.EmitBytes(NullTerminatedString); 448 } 449 450 void CodeViewDebug::emitTypeInformation() { 451 // Do nothing if we have no debug info or if no non-trivial types were emitted 452 // to TypeTable during codegen. 453 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 454 if (!CU_Nodes) 455 return; 456 if (TypeTable.empty()) 457 return; 458 459 // Start the .debug$T section with 0x4. 460 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 461 emitCodeViewMagicVersion(); 462 463 SmallString<8> CommentPrefix; 464 if (OS.isVerboseAsm()) { 465 CommentPrefix += '\t'; 466 CommentPrefix += Asm->MAI->getCommentString(); 467 CommentPrefix += ' '; 468 } 469 470 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 471 TypeTable.ForEachRecord([&](TypeIndex Index, ArrayRef<uint8_t> Record) { 472 if (OS.isVerboseAsm()) { 473 // Emit a block comment describing the type record for readability. 474 SmallString<512> CommentBlock; 475 raw_svector_ostream CommentOS(CommentBlock); 476 ScopedPrinter SP(CommentOS); 477 SP.setPrefix(CommentPrefix); 478 CVTD.setPrinter(&SP); 479 Error E = CVTD.dump(Record); 480 if (E) { 481 logAllUnhandledErrors(std::move(E), errs(), "error: "); 482 llvm_unreachable("produced malformed type record"); 483 } 484 // emitRawComment will insert its own tab and comment string before 485 // the first line, so strip off our first one. It also prints its own 486 // newline. 487 OS.emitRawComment( 488 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 489 } else { 490 #ifndef NDEBUG 491 // Assert that the type data is valid even if we aren't dumping 492 // comments. The MSVC linker doesn't do much type record validation, 493 // so the first link of an invalid type record can succeed while 494 // subsequent links will fail with LNK1285. 495 ByteStream Stream(Record); 496 CVTypeArray Types; 497 StreamReader Reader(Stream); 498 Error E = Reader.readArray(Types, Reader.getLength()); 499 if (!E) { 500 TypeVisitorCallbacks C; 501 E = CVTypeVisitor(C).visitTypeStream(Types); 502 } 503 if (E) { 504 logAllUnhandledErrors(std::move(E), errs(), "error: "); 505 llvm_unreachable("produced malformed type record"); 506 } 507 #endif 508 } 509 StringRef S(reinterpret_cast<const char *>(Record.data()), Record.size()); 510 OS.EmitBinaryData(S); 511 }); 512 } 513 514 namespace { 515 516 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 517 switch (DWLang) { 518 case dwarf::DW_LANG_C: 519 case dwarf::DW_LANG_C89: 520 case dwarf::DW_LANG_C99: 521 case dwarf::DW_LANG_C11: 522 case dwarf::DW_LANG_ObjC: 523 return SourceLanguage::C; 524 case dwarf::DW_LANG_C_plus_plus: 525 case dwarf::DW_LANG_C_plus_plus_03: 526 case dwarf::DW_LANG_C_plus_plus_11: 527 case dwarf::DW_LANG_C_plus_plus_14: 528 return SourceLanguage::Cpp; 529 case dwarf::DW_LANG_Fortran77: 530 case dwarf::DW_LANG_Fortran90: 531 case dwarf::DW_LANG_Fortran03: 532 case dwarf::DW_LANG_Fortran08: 533 return SourceLanguage::Fortran; 534 case dwarf::DW_LANG_Pascal83: 535 return SourceLanguage::Pascal; 536 case dwarf::DW_LANG_Cobol74: 537 case dwarf::DW_LANG_Cobol85: 538 return SourceLanguage::Cobol; 539 case dwarf::DW_LANG_Java: 540 return SourceLanguage::Java; 541 default: 542 // There's no CodeView representation for this language, and CV doesn't 543 // have an "unknown" option for the language field, so we'll use MASM, 544 // as it's very low level. 545 return SourceLanguage::Masm; 546 } 547 } 548 549 struct Version { 550 int Part[4]; 551 }; 552 553 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 554 // the version number. 555 static Version parseVersion(StringRef Name) { 556 Version V = {{0}}; 557 int N = 0; 558 for (const char C : Name) { 559 if (isdigit(C)) { 560 V.Part[N] *= 10; 561 V.Part[N] += C - '0'; 562 } else if (C == '.') { 563 ++N; 564 if (N >= 4) 565 return V; 566 } else if (N > 0) 567 return V; 568 } 569 return V; 570 } 571 572 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 573 switch (Type) { 574 case Triple::ArchType::x86: 575 return CPUType::Pentium3; 576 case Triple::ArchType::x86_64: 577 return CPUType::X64; 578 case Triple::ArchType::thumb: 579 return CPUType::Thumb; 580 default: 581 report_fatal_error("target architecture doesn't map to a CodeView " 582 "CPUType"); 583 } 584 } 585 586 } // anonymous namespace 587 588 void CodeViewDebug::emitCompilerInformation() { 589 MCContext &Context = MMI->getContext(); 590 MCSymbol *CompilerBegin = Context.createTempSymbol(), 591 *CompilerEnd = Context.createTempSymbol(); 592 OS.AddComment("Record length"); 593 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 594 OS.EmitLabel(CompilerBegin); 595 OS.AddComment("Record kind: S_COMPILE3"); 596 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 597 uint32_t Flags = 0; 598 599 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 600 const MDNode *Node = *CUs->operands().begin(); 601 const auto *CU = cast<DICompileUnit>(Node); 602 603 // The low byte of the flags indicates the source language. 604 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 605 // TODO: Figure out which other flags need to be set. 606 607 OS.AddComment("Flags and language"); 608 OS.EmitIntValue(Flags, 4); 609 610 OS.AddComment("CPUType"); 611 CPUType CPU = 612 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 613 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 614 615 StringRef CompilerVersion = CU->getProducer(); 616 Version FrontVer = parseVersion(CompilerVersion); 617 OS.AddComment("Frontend version"); 618 for (int N = 0; N < 4; ++N) 619 OS.EmitIntValue(FrontVer.Part[N], 2); 620 621 // Some Microsoft tools, like Binscope, expect a backend version number of at 622 // least 8.something, so we'll coerce the LLVM version into a form that 623 // guarantees it'll be big enough without really lying about the version. 624 int Major = 1000 * LLVM_VERSION_MAJOR + 625 10 * LLVM_VERSION_MINOR + 626 LLVM_VERSION_PATCH; 627 // Clamp it for builds that use unusually large version numbers. 628 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 629 Version BackVer = {{ Major, 0, 0, 0 }}; 630 OS.AddComment("Backend version"); 631 for (int N = 0; N < 4; ++N) 632 OS.EmitIntValue(BackVer.Part[N], 2); 633 634 OS.AddComment("Null-terminated compiler version string"); 635 emitNullTerminatedSymbolName(OS, CompilerVersion); 636 637 OS.EmitLabel(CompilerEnd); 638 } 639 640 void CodeViewDebug::emitInlineeLinesSubsection() { 641 if (InlinedSubprograms.empty()) 642 return; 643 644 OS.AddComment("Inlinee lines subsection"); 645 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 646 647 // We don't provide any extra file info. 648 // FIXME: Find out if debuggers use this info. 649 OS.AddComment("Inlinee lines signature"); 650 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 651 652 for (const DISubprogram *SP : InlinedSubprograms) { 653 assert(TypeIndices.count({SP, nullptr})); 654 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 655 656 OS.AddBlankLine(); 657 unsigned FileId = maybeRecordFile(SP->getFile()); 658 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 659 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 660 OS.AddBlankLine(); 661 // The filechecksum table uses 8 byte entries for now, and file ids start at 662 // 1. 663 unsigned FileOffset = (FileId - 1) * 8; 664 OS.AddComment("Type index of inlined function"); 665 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 666 OS.AddComment("Offset into filechecksum table"); 667 OS.EmitIntValue(FileOffset, 4); 668 OS.AddComment("Starting line number"); 669 OS.EmitIntValue(SP->getLine(), 4); 670 } 671 672 endCVSubsection(InlineEnd); 673 } 674 675 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 676 const DILocation *InlinedAt, 677 const InlineSite &Site) { 678 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 679 *InlineEnd = MMI->getContext().createTempSymbol(); 680 681 assert(TypeIndices.count({Site.Inlinee, nullptr})); 682 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 683 684 // SymbolRecord 685 OS.AddComment("Record length"); 686 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 687 OS.EmitLabel(InlineBegin); 688 OS.AddComment("Record kind: S_INLINESITE"); 689 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 690 691 OS.AddComment("PtrParent"); 692 OS.EmitIntValue(0, 4); 693 OS.AddComment("PtrEnd"); 694 OS.EmitIntValue(0, 4); 695 OS.AddComment("Inlinee type index"); 696 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 697 698 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 699 unsigned StartLineNum = Site.Inlinee->getLine(); 700 701 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 702 FI.Begin, FI.End); 703 704 OS.EmitLabel(InlineEnd); 705 706 emitLocalVariableList(Site.InlinedLocals); 707 708 // Recurse on child inlined call sites before closing the scope. 709 for (const DILocation *ChildSite : Site.ChildSites) { 710 auto I = FI.InlineSites.find(ChildSite); 711 assert(I != FI.InlineSites.end() && 712 "child site not in function inline site map"); 713 emitInlinedCallSite(FI, ChildSite, I->second); 714 } 715 716 // Close the scope. 717 OS.AddComment("Record length"); 718 OS.EmitIntValue(2, 2); // RecordLength 719 OS.AddComment("Record kind: S_INLINESITE_END"); 720 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 721 } 722 723 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 724 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 725 // comdat key. A section may be comdat because of -ffunction-sections or 726 // because it is comdat in the IR. 727 MCSectionCOFF *GVSec = 728 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 729 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 730 731 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 732 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 733 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 734 735 OS.SwitchSection(DebugSec); 736 737 // Emit the magic version number if this is the first time we've switched to 738 // this section. 739 if (ComdatDebugSections.insert(DebugSec).second) 740 emitCodeViewMagicVersion(); 741 } 742 743 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 744 FunctionInfo &FI) { 745 // For each function there is a separate subsection 746 // which holds the PC to file:line table. 747 const MCSymbol *Fn = Asm->getSymbol(GV); 748 assert(Fn); 749 750 // Switch to the to a comdat section, if appropriate. 751 switchToDebugSectionForSymbol(Fn); 752 753 std::string FuncName; 754 auto *SP = GV->getSubprogram(); 755 assert(SP); 756 setCurrentSubprogram(SP); 757 758 // If we have a display name, build the fully qualified name by walking the 759 // chain of scopes. 760 if (!SP->getDisplayName().empty()) 761 FuncName = 762 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 763 764 // If our DISubprogram name is empty, use the mangled name. 765 if (FuncName.empty()) 766 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 767 768 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 769 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 770 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 771 { 772 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 773 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 774 OS.AddComment("Record length"); 775 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 776 OS.EmitLabel(ProcRecordBegin); 777 778 if (GV->hasLocalLinkage()) { 779 OS.AddComment("Record kind: S_LPROC32_ID"); 780 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 781 } else { 782 OS.AddComment("Record kind: S_GPROC32_ID"); 783 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 784 } 785 786 // These fields are filled in by tools like CVPACK which run after the fact. 787 OS.AddComment("PtrParent"); 788 OS.EmitIntValue(0, 4); 789 OS.AddComment("PtrEnd"); 790 OS.EmitIntValue(0, 4); 791 OS.AddComment("PtrNext"); 792 OS.EmitIntValue(0, 4); 793 // This is the important bit that tells the debugger where the function 794 // code is located and what's its size: 795 OS.AddComment("Code size"); 796 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 797 OS.AddComment("Offset after prologue"); 798 OS.EmitIntValue(0, 4); 799 OS.AddComment("Offset before epilogue"); 800 OS.EmitIntValue(0, 4); 801 OS.AddComment("Function type index"); 802 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 803 OS.AddComment("Function section relative address"); 804 OS.EmitCOFFSecRel32(Fn); 805 OS.AddComment("Function section index"); 806 OS.EmitCOFFSectionIndex(Fn); 807 OS.AddComment("Flags"); 808 OS.EmitIntValue(0, 1); 809 // Emit the function display name as a null-terminated string. 810 OS.AddComment("Function name"); 811 // Truncate the name so we won't overflow the record length field. 812 emitNullTerminatedSymbolName(OS, FuncName); 813 OS.EmitLabel(ProcRecordEnd); 814 815 emitLocalVariableList(FI.Locals); 816 817 // Emit inlined call site information. Only emit functions inlined directly 818 // into the parent function. We'll emit the other sites recursively as part 819 // of their parent inline site. 820 for (const DILocation *InlinedAt : FI.ChildSites) { 821 auto I = FI.InlineSites.find(InlinedAt); 822 assert(I != FI.InlineSites.end() && 823 "child site not in function inline site map"); 824 emitInlinedCallSite(FI, InlinedAt, I->second); 825 } 826 827 if (SP != nullptr) 828 emitDebugInfoForUDTs(LocalUDTs); 829 830 // We're done with this function. 831 OS.AddComment("Record length"); 832 OS.EmitIntValue(0x0002, 2); 833 OS.AddComment("Record kind: S_PROC_ID_END"); 834 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 835 } 836 endCVSubsection(SymbolsEnd); 837 838 // We have an assembler directive that takes care of the whole line table. 839 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 840 } 841 842 CodeViewDebug::LocalVarDefRange 843 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 844 LocalVarDefRange DR; 845 DR.InMemory = -1; 846 DR.DataOffset = Offset; 847 assert(DR.DataOffset == Offset && "truncation"); 848 DR.IsSubfield = 0; 849 DR.StructOffset = 0; 850 DR.CVRegister = CVRegister; 851 return DR; 852 } 853 854 CodeViewDebug::LocalVarDefRange 855 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 856 int Offset, bool IsSubfield, 857 uint16_t StructOffset) { 858 LocalVarDefRange DR; 859 DR.InMemory = InMemory; 860 DR.DataOffset = Offset; 861 DR.IsSubfield = IsSubfield; 862 DR.StructOffset = StructOffset; 863 DR.CVRegister = CVRegister; 864 return DR; 865 } 866 867 void CodeViewDebug::collectVariableInfoFromMMITable( 868 DenseSet<InlinedVariable> &Processed) { 869 const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget(); 870 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 871 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 872 873 for (const MachineModuleInfo::VariableDbgInfo &VI : 874 MMI->getVariableDbgInfo()) { 875 if (!VI.Var) 876 continue; 877 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 878 "Expected inlined-at fields to agree"); 879 880 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 881 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 882 883 // If variable scope is not found then skip this variable. 884 if (!Scope) 885 continue; 886 887 // Get the frame register used and the offset. 888 unsigned FrameReg = 0; 889 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 890 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 891 892 // Calculate the label ranges. 893 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 894 for (const InsnRange &Range : Scope->getRanges()) { 895 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 896 const MCSymbol *End = getLabelAfterInsn(Range.second); 897 End = End ? End : Asm->getFunctionEnd(); 898 DefRange.Ranges.emplace_back(Begin, End); 899 } 900 901 LocalVariable Var; 902 Var.DIVar = VI.Var; 903 Var.DefRanges.emplace_back(std::move(DefRange)); 904 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 905 } 906 } 907 908 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 909 DenseSet<InlinedVariable> Processed; 910 // Grab the variable info that was squirreled away in the MMI side-table. 911 collectVariableInfoFromMMITable(Processed); 912 913 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 914 915 for (const auto &I : DbgValues) { 916 InlinedVariable IV = I.first; 917 if (Processed.count(IV)) 918 continue; 919 const DILocalVariable *DIVar = IV.first; 920 const DILocation *InlinedAt = IV.second; 921 922 // Instruction ranges, specifying where IV is accessible. 923 const auto &Ranges = I.second; 924 925 LexicalScope *Scope = nullptr; 926 if (InlinedAt) 927 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 928 else 929 Scope = LScopes.findLexicalScope(DIVar->getScope()); 930 // If variable scope is not found then skip this variable. 931 if (!Scope) 932 continue; 933 934 LocalVariable Var; 935 Var.DIVar = DIVar; 936 937 // Calculate the definition ranges. 938 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 939 const InsnRange &Range = *I; 940 const MachineInstr *DVInst = Range.first; 941 assert(DVInst->isDebugValue() && "Invalid History entry"); 942 const DIExpression *DIExpr = DVInst->getDebugExpression(); 943 bool IsSubfield = false; 944 unsigned StructOffset = 0; 945 946 // Handle bitpieces. 947 if (DIExpr && DIExpr->isBitPiece()) { 948 IsSubfield = true; 949 StructOffset = DIExpr->getBitPieceOffset() / 8; 950 } else if (DIExpr && DIExpr->getNumElements() > 0) { 951 continue; // Ignore unrecognized exprs. 952 } 953 954 // Bail if operand 0 is not a valid register. This means the variable is a 955 // simple constant, or is described by a complex expression. 956 // FIXME: Find a way to represent constant variables, since they are 957 // relatively common. 958 unsigned Reg = 959 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 960 if (Reg == 0) 961 continue; 962 963 // Handle the two cases we can handle: indirect in memory and in register. 964 unsigned CVReg = TRI->getCodeViewRegNum(Reg); 965 bool InMemory = DVInst->getOperand(1).isImm(); 966 int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0; 967 { 968 LocalVarDefRange DR; 969 DR.CVRegister = CVReg; 970 DR.InMemory = InMemory; 971 DR.DataOffset = Offset; 972 DR.IsSubfield = IsSubfield; 973 DR.StructOffset = StructOffset; 974 975 if (Var.DefRanges.empty() || 976 Var.DefRanges.back().isDifferentLocation(DR)) { 977 Var.DefRanges.emplace_back(std::move(DR)); 978 } 979 } 980 981 // Compute the label range. 982 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 983 const MCSymbol *End = getLabelAfterInsn(Range.second); 984 if (!End) { 985 // This range is valid until the next overlapping bitpiece. In the 986 // common case, ranges will not be bitpieces, so they will overlap. 987 auto J = std::next(I); 988 while (J != E && !piecesOverlap(DIExpr, J->first->getDebugExpression())) 989 ++J; 990 if (J != E) 991 End = getLabelBeforeInsn(J->first); 992 else 993 End = Asm->getFunctionEnd(); 994 } 995 996 // If the last range end is our begin, just extend the last range. 997 // Otherwise make a new range. 998 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 999 Var.DefRanges.back().Ranges; 1000 if (!Ranges.empty() && Ranges.back().second == Begin) 1001 Ranges.back().second = End; 1002 else 1003 Ranges.emplace_back(Begin, End); 1004 1005 // FIXME: Do more range combining. 1006 } 1007 1008 recordLocalVariable(std::move(Var), InlinedAt); 1009 } 1010 } 1011 1012 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 1013 assert(!CurFn && "Can't process two functions at once!"); 1014 1015 if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram()) 1016 return; 1017 1018 DebugHandlerBase::beginFunction(MF); 1019 1020 const Function *GV = MF->getFunction(); 1021 assert(FnDebugInfo.count(GV) == false); 1022 CurFn = &FnDebugInfo[GV]; 1023 CurFn->FuncId = NextFuncId++; 1024 CurFn->Begin = Asm->getFunctionBegin(); 1025 1026 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1027 1028 // Find the end of the function prolog. First known non-DBG_VALUE and 1029 // non-frame setup location marks the beginning of the function body. 1030 // FIXME: is there a simpler a way to do this? Can we just search 1031 // for the first instruction of the function, not the last of the prolog? 1032 DebugLoc PrologEndLoc; 1033 bool EmptyPrologue = true; 1034 for (const auto &MBB : *MF) { 1035 for (const auto &MI : MBB) { 1036 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 1037 MI.getDebugLoc()) { 1038 PrologEndLoc = MI.getDebugLoc(); 1039 break; 1040 } else if (!MI.isDebugValue()) { 1041 EmptyPrologue = false; 1042 } 1043 } 1044 } 1045 1046 // Record beginning of function if we have a non-empty prologue. 1047 if (PrologEndLoc && !EmptyPrologue) { 1048 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1049 maybeRecordLocation(FnStartDL, MF); 1050 } 1051 } 1052 1053 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 1054 // Don't record empty UDTs. 1055 if (Ty->getName().empty()) 1056 return; 1057 1058 SmallVector<StringRef, 5> QualifiedNameComponents; 1059 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1060 Ty->getScope().resolve(), QualifiedNameComponents); 1061 1062 std::string FullyQualifiedName = 1063 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1064 1065 if (ClosestSubprogram == nullptr) 1066 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1067 else if (ClosestSubprogram == CurrentSubprogram) 1068 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1069 1070 // TODO: What if the ClosestSubprogram is neither null or the current 1071 // subprogram? Currently, the UDT just gets dropped on the floor. 1072 // 1073 // The current behavior is not desirable. To get maximal fidelity, we would 1074 // need to perform all type translation before beginning emission of .debug$S 1075 // and then make LocalUDTs a member of FunctionInfo 1076 } 1077 1078 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1079 // Generic dispatch for lowering an unknown type. 1080 switch (Ty->getTag()) { 1081 case dwarf::DW_TAG_array_type: 1082 return lowerTypeArray(cast<DICompositeType>(Ty)); 1083 case dwarf::DW_TAG_typedef: 1084 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1085 case dwarf::DW_TAG_base_type: 1086 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1087 case dwarf::DW_TAG_pointer_type: 1088 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1089 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1090 LLVM_FALLTHROUGH; 1091 case dwarf::DW_TAG_reference_type: 1092 case dwarf::DW_TAG_rvalue_reference_type: 1093 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1094 case dwarf::DW_TAG_ptr_to_member_type: 1095 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1096 case dwarf::DW_TAG_const_type: 1097 case dwarf::DW_TAG_volatile_type: 1098 // TODO: add support for DW_TAG_atomic_type here 1099 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1100 case dwarf::DW_TAG_subroutine_type: 1101 if (ClassTy) { 1102 // The member function type of a member function pointer has no 1103 // ThisAdjustment. 1104 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1105 /*ThisAdjustment=*/0); 1106 } 1107 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1108 case dwarf::DW_TAG_enumeration_type: 1109 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1110 case dwarf::DW_TAG_class_type: 1111 case dwarf::DW_TAG_structure_type: 1112 return lowerTypeClass(cast<DICompositeType>(Ty)); 1113 case dwarf::DW_TAG_union_type: 1114 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1115 default: 1116 // Use the null type index. 1117 return TypeIndex(); 1118 } 1119 } 1120 1121 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1122 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1123 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1124 StringRef TypeName = Ty->getName(); 1125 1126 addToUDTs(Ty, UnderlyingTypeIndex); 1127 1128 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1129 TypeName == "HRESULT") 1130 return TypeIndex(SimpleTypeKind::HResult); 1131 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1132 TypeName == "wchar_t") 1133 return TypeIndex(SimpleTypeKind::WideCharacter); 1134 1135 return UnderlyingTypeIndex; 1136 } 1137 1138 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1139 DITypeRef ElementTypeRef = Ty->getBaseType(); 1140 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1141 // IndexType is size_t, which depends on the bitness of the target. 1142 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 1143 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1144 : TypeIndex(SimpleTypeKind::UInt32Long); 1145 1146 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1147 1148 1149 // We want to assert that the element type multiplied by the array lengths 1150 // match the size of the overall array. However, if we don't have complete 1151 // type information for the base type, we can't make this assertion. This 1152 // happens if limited debug info is enabled in this case: 1153 // struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); }; 1154 // VTableOptzn array[3]; 1155 // The DICompositeType of VTableOptzn will have size zero, and the array will 1156 // have size 3 * sizeof(void*), and we should avoid asserting. 1157 // 1158 // There is a related bug in the front-end where an array of a structure, 1159 // which was declared as incomplete structure first, ends up not getting a 1160 // size assigned to it. (PR28303) 1161 // Example: 1162 // struct A(*p)[3]; 1163 // struct A { int f; } a[3]; 1164 bool PartiallyIncomplete = false; 1165 if (Ty->getSizeInBits() == 0 || ElementSize == 0) { 1166 PartiallyIncomplete = true; 1167 } 1168 1169 // Add subranges to array type. 1170 DINodeArray Elements = Ty->getElements(); 1171 for (int i = Elements.size() - 1; i >= 0; --i) { 1172 const DINode *Element = Elements[i]; 1173 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1174 1175 const DISubrange *Subrange = cast<DISubrange>(Element); 1176 assert(Subrange->getLowerBound() == 0 && 1177 "codeview doesn't support subranges with lower bounds"); 1178 int64_t Count = Subrange->getCount(); 1179 1180 // Variable Length Array (VLA) has Count equal to '-1'. 1181 // Replace with Count '1', assume it is the minimum VLA length. 1182 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1183 if (Count == -1) { 1184 Count = 1; 1185 PartiallyIncomplete = true; 1186 } 1187 1188 // Update the element size and element type index for subsequent subranges. 1189 ElementSize *= Count; 1190 1191 // If this is the outermost array, use the size from the array. It will be 1192 // more accurate if PartiallyIncomplete is true. 1193 uint64_t ArraySize = 1194 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1195 1196 StringRef Name = (i == 0) ? Ty->getName() : ""; 1197 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1198 ElementTypeIndex = TypeTable.writeKnownType(AR); 1199 } 1200 1201 (void)PartiallyIncomplete; 1202 assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8)); 1203 1204 return ElementTypeIndex; 1205 } 1206 1207 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1208 TypeIndex Index; 1209 dwarf::TypeKind Kind; 1210 uint32_t ByteSize; 1211 1212 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1213 ByteSize = Ty->getSizeInBits() / 8; 1214 1215 SimpleTypeKind STK = SimpleTypeKind::None; 1216 switch (Kind) { 1217 case dwarf::DW_ATE_address: 1218 // FIXME: Translate 1219 break; 1220 case dwarf::DW_ATE_boolean: 1221 switch (ByteSize) { 1222 case 1: STK = SimpleTypeKind::Boolean8; break; 1223 case 2: STK = SimpleTypeKind::Boolean16; break; 1224 case 4: STK = SimpleTypeKind::Boolean32; break; 1225 case 8: STK = SimpleTypeKind::Boolean64; break; 1226 case 16: STK = SimpleTypeKind::Boolean128; break; 1227 } 1228 break; 1229 case dwarf::DW_ATE_complex_float: 1230 switch (ByteSize) { 1231 case 2: STK = SimpleTypeKind::Complex16; break; 1232 case 4: STK = SimpleTypeKind::Complex32; break; 1233 case 8: STK = SimpleTypeKind::Complex64; break; 1234 case 10: STK = SimpleTypeKind::Complex80; break; 1235 case 16: STK = SimpleTypeKind::Complex128; break; 1236 } 1237 break; 1238 case dwarf::DW_ATE_float: 1239 switch (ByteSize) { 1240 case 2: STK = SimpleTypeKind::Float16; break; 1241 case 4: STK = SimpleTypeKind::Float32; break; 1242 case 6: STK = SimpleTypeKind::Float48; break; 1243 case 8: STK = SimpleTypeKind::Float64; break; 1244 case 10: STK = SimpleTypeKind::Float80; break; 1245 case 16: STK = SimpleTypeKind::Float128; break; 1246 } 1247 break; 1248 case dwarf::DW_ATE_signed: 1249 switch (ByteSize) { 1250 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1251 case 2: STK = SimpleTypeKind::Int16Short; break; 1252 case 4: STK = SimpleTypeKind::Int32; break; 1253 case 8: STK = SimpleTypeKind::Int64Quad; break; 1254 case 16: STK = SimpleTypeKind::Int128Oct; break; 1255 } 1256 break; 1257 case dwarf::DW_ATE_unsigned: 1258 switch (ByteSize) { 1259 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1260 case 2: STK = SimpleTypeKind::UInt16Short; break; 1261 case 4: STK = SimpleTypeKind::UInt32; break; 1262 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1263 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1264 } 1265 break; 1266 case dwarf::DW_ATE_UTF: 1267 switch (ByteSize) { 1268 case 2: STK = SimpleTypeKind::Character16; break; 1269 case 4: STK = SimpleTypeKind::Character32; break; 1270 } 1271 break; 1272 case dwarf::DW_ATE_signed_char: 1273 if (ByteSize == 1) 1274 STK = SimpleTypeKind::SignedCharacter; 1275 break; 1276 case dwarf::DW_ATE_unsigned_char: 1277 if (ByteSize == 1) 1278 STK = SimpleTypeKind::UnsignedCharacter; 1279 break; 1280 default: 1281 break; 1282 } 1283 1284 // Apply some fixups based on the source-level type name. 1285 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1286 STK = SimpleTypeKind::Int32Long; 1287 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1288 STK = SimpleTypeKind::UInt32Long; 1289 if (STK == SimpleTypeKind::UInt16Short && 1290 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1291 STK = SimpleTypeKind::WideCharacter; 1292 if ((STK == SimpleTypeKind::SignedCharacter || 1293 STK == SimpleTypeKind::UnsignedCharacter) && 1294 Ty->getName() == "char") 1295 STK = SimpleTypeKind::NarrowCharacter; 1296 1297 return TypeIndex(STK); 1298 } 1299 1300 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1301 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1302 1303 // Pointers to simple types can use SimpleTypeMode, rather than having a 1304 // dedicated pointer type record. 1305 if (PointeeTI.isSimple() && 1306 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1307 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1308 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1309 ? SimpleTypeMode::NearPointer64 1310 : SimpleTypeMode::NearPointer32; 1311 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1312 } 1313 1314 PointerKind PK = 1315 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1316 PointerMode PM = PointerMode::Pointer; 1317 switch (Ty->getTag()) { 1318 default: llvm_unreachable("not a pointer tag type"); 1319 case dwarf::DW_TAG_pointer_type: 1320 PM = PointerMode::Pointer; 1321 break; 1322 case dwarf::DW_TAG_reference_type: 1323 PM = PointerMode::LValueReference; 1324 break; 1325 case dwarf::DW_TAG_rvalue_reference_type: 1326 PM = PointerMode::RValueReference; 1327 break; 1328 } 1329 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1330 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1331 // do. 1332 PointerOptions PO = PointerOptions::None; 1333 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1334 return TypeTable.writeKnownType(PR); 1335 } 1336 1337 static PointerToMemberRepresentation 1338 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1339 // SizeInBytes being zero generally implies that the member pointer type was 1340 // incomplete, which can happen if it is part of a function prototype. In this 1341 // case, use the unknown model instead of the general model. 1342 if (IsPMF) { 1343 switch (Flags & DINode::FlagPtrToMemberRep) { 1344 case 0: 1345 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1346 : PointerToMemberRepresentation::GeneralFunction; 1347 case DINode::FlagSingleInheritance: 1348 return PointerToMemberRepresentation::SingleInheritanceFunction; 1349 case DINode::FlagMultipleInheritance: 1350 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1351 case DINode::FlagVirtualInheritance: 1352 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1353 } 1354 } else { 1355 switch (Flags & DINode::FlagPtrToMemberRep) { 1356 case 0: 1357 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1358 : PointerToMemberRepresentation::GeneralData; 1359 case DINode::FlagSingleInheritance: 1360 return PointerToMemberRepresentation::SingleInheritanceData; 1361 case DINode::FlagMultipleInheritance: 1362 return PointerToMemberRepresentation::MultipleInheritanceData; 1363 case DINode::FlagVirtualInheritance: 1364 return PointerToMemberRepresentation::VirtualInheritanceData; 1365 } 1366 } 1367 llvm_unreachable("invalid ptr to member representation"); 1368 } 1369 1370 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1371 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1372 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1373 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1374 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1375 : PointerKind::Near32; 1376 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1377 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1378 : PointerMode::PointerToDataMember; 1379 PointerOptions PO = PointerOptions::None; // FIXME 1380 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1381 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1382 MemberPointerInfo MPI( 1383 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1384 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1385 return TypeTable.writeKnownType(PR); 1386 } 1387 1388 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1389 /// have a translation, use the NearC convention. 1390 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1391 switch (DwarfCC) { 1392 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1393 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1394 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1395 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1396 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1397 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1398 } 1399 return CallingConvention::NearC; 1400 } 1401 1402 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1403 ModifierOptions Mods = ModifierOptions::None; 1404 bool IsModifier = true; 1405 const DIType *BaseTy = Ty; 1406 while (IsModifier && BaseTy) { 1407 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1408 switch (BaseTy->getTag()) { 1409 case dwarf::DW_TAG_const_type: 1410 Mods |= ModifierOptions::Const; 1411 break; 1412 case dwarf::DW_TAG_volatile_type: 1413 Mods |= ModifierOptions::Volatile; 1414 break; 1415 default: 1416 IsModifier = false; 1417 break; 1418 } 1419 if (IsModifier) 1420 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1421 } 1422 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1423 ModifierRecord MR(ModifiedTI, Mods); 1424 return TypeTable.writeKnownType(MR); 1425 } 1426 1427 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1428 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1429 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1430 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1431 1432 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1433 ArrayRef<TypeIndex> ArgTypeIndices = None; 1434 if (!ReturnAndArgTypeIndices.empty()) { 1435 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1436 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1437 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1438 } 1439 1440 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1441 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1442 1443 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1444 1445 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1446 ArgTypeIndices.size(), ArgListIndex); 1447 return TypeTable.writeKnownType(Procedure); 1448 } 1449 1450 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1451 const DIType *ClassTy, 1452 int ThisAdjustment) { 1453 // Lower the containing class type. 1454 TypeIndex ClassType = getTypeIndex(ClassTy); 1455 1456 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1457 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1458 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1459 1460 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1461 ArrayRef<TypeIndex> ArgTypeIndices = None; 1462 if (!ReturnAndArgTypeIndices.empty()) { 1463 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1464 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1465 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1466 } 1467 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1468 if (!ArgTypeIndices.empty()) { 1469 ThisTypeIndex = ArgTypeIndices.front(); 1470 ArgTypeIndices = ArgTypeIndices.drop_front(); 1471 } 1472 1473 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1474 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1475 1476 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1477 1478 // TODO: Need to use the correct values for: 1479 // FunctionOptions 1480 // ThisPointerAdjustment. 1481 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1482 FunctionOptions::None, ArgTypeIndices.size(), 1483 ArgListIndex, ThisAdjustment); 1484 TypeIndex TI = TypeTable.writeKnownType(MFR); 1485 1486 return TI; 1487 } 1488 1489 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1490 unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize()); 1491 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1492 1493 VFTableShapeRecord VFTSR(Slots); 1494 return TypeTable.writeKnownType(VFTSR); 1495 } 1496 1497 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1498 switch (Flags & DINode::FlagAccessibility) { 1499 case DINode::FlagPrivate: return MemberAccess::Private; 1500 case DINode::FlagPublic: return MemberAccess::Public; 1501 case DINode::FlagProtected: return MemberAccess::Protected; 1502 case 0: 1503 // If there was no explicit access control, provide the default for the tag. 1504 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1505 : MemberAccess::Public; 1506 } 1507 llvm_unreachable("access flags are exclusive"); 1508 } 1509 1510 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1511 if (SP->isArtificial()) 1512 return MethodOptions::CompilerGenerated; 1513 1514 // FIXME: Handle other MethodOptions. 1515 1516 return MethodOptions::None; 1517 } 1518 1519 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1520 bool Introduced) { 1521 switch (SP->getVirtuality()) { 1522 case dwarf::DW_VIRTUALITY_none: 1523 break; 1524 case dwarf::DW_VIRTUALITY_virtual: 1525 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1526 case dwarf::DW_VIRTUALITY_pure_virtual: 1527 return Introduced ? MethodKind::PureIntroducingVirtual 1528 : MethodKind::PureVirtual; 1529 default: 1530 llvm_unreachable("unhandled virtuality case"); 1531 } 1532 1533 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1534 1535 return MethodKind::Vanilla; 1536 } 1537 1538 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1539 switch (Ty->getTag()) { 1540 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1541 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1542 } 1543 llvm_unreachable("unexpected tag"); 1544 } 1545 1546 /// Return ClassOptions that should be present on both the forward declaration 1547 /// and the defintion of a tag type. 1548 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1549 ClassOptions CO = ClassOptions::None; 1550 1551 // MSVC always sets this flag, even for local types. Clang doesn't always 1552 // appear to give every type a linkage name, which may be problematic for us. 1553 // FIXME: Investigate the consequences of not following them here. 1554 if (!Ty->getIdentifier().empty()) 1555 CO |= ClassOptions::HasUniqueName; 1556 1557 // Put the Nested flag on a type if it appears immediately inside a tag type. 1558 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1559 // here. That flag is only set on definitions, and not forward declarations. 1560 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1561 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1562 CO |= ClassOptions::Nested; 1563 1564 // Put the Scoped flag on function-local types. 1565 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1566 Scope = Scope->getScope().resolve()) { 1567 if (isa<DISubprogram>(Scope)) { 1568 CO |= ClassOptions::Scoped; 1569 break; 1570 } 1571 } 1572 1573 return CO; 1574 } 1575 1576 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1577 ClassOptions CO = getCommonClassOptions(Ty); 1578 TypeIndex FTI; 1579 unsigned EnumeratorCount = 0; 1580 1581 if (Ty->isForwardDecl()) { 1582 CO |= ClassOptions::ForwardReference; 1583 } else { 1584 FieldListRecordBuilder FLRB(TypeTable); 1585 1586 FLRB.begin(); 1587 for (const DINode *Element : Ty->getElements()) { 1588 // We assume that the frontend provides all members in source declaration 1589 // order, which is what MSVC does. 1590 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1591 EnumeratorRecord ER(MemberAccess::Public, 1592 APSInt::getUnsigned(Enumerator->getValue()), 1593 Enumerator->getName()); 1594 FLRB.writeMemberType(ER); 1595 EnumeratorCount++; 1596 } 1597 } 1598 FTI = FLRB.end(); 1599 } 1600 1601 std::string FullName = getFullyQualifiedName(Ty); 1602 1603 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1604 getTypeIndex(Ty->getBaseType())); 1605 return TypeTable.writeKnownType(ER); 1606 } 1607 1608 //===----------------------------------------------------------------------===// 1609 // ClassInfo 1610 //===----------------------------------------------------------------------===// 1611 1612 struct llvm::ClassInfo { 1613 struct MemberInfo { 1614 const DIDerivedType *MemberTypeNode; 1615 uint64_t BaseOffset; 1616 }; 1617 // [MemberInfo] 1618 typedef std::vector<MemberInfo> MemberList; 1619 1620 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1621 // MethodName -> MethodsList 1622 typedef MapVector<MDString *, MethodsList> MethodsMap; 1623 1624 /// Base classes. 1625 std::vector<const DIDerivedType *> Inheritance; 1626 1627 /// Direct members. 1628 MemberList Members; 1629 // Direct overloaded methods gathered by name. 1630 MethodsMap Methods; 1631 1632 TypeIndex VShapeTI; 1633 1634 std::vector<const DICompositeType *> NestedClasses; 1635 }; 1636 1637 void CodeViewDebug::clear() { 1638 assert(CurFn == nullptr); 1639 FileIdMap.clear(); 1640 FnDebugInfo.clear(); 1641 FileToFilepathMap.clear(); 1642 LocalUDTs.clear(); 1643 GlobalUDTs.clear(); 1644 TypeIndices.clear(); 1645 CompleteTypeIndices.clear(); 1646 } 1647 1648 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1649 const DIDerivedType *DDTy) { 1650 if (!DDTy->getName().empty()) { 1651 Info.Members.push_back({DDTy, 0}); 1652 return; 1653 } 1654 // An unnamed member must represent a nested struct or union. Add all the 1655 // indirect fields to the current record. 1656 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1657 uint64_t Offset = DDTy->getOffsetInBits(); 1658 const DIType *Ty = DDTy->getBaseType().resolve(); 1659 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1660 ClassInfo NestedInfo = collectClassInfo(DCTy); 1661 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1662 Info.Members.push_back( 1663 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1664 } 1665 1666 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1667 ClassInfo Info; 1668 // Add elements to structure type. 1669 DINodeArray Elements = Ty->getElements(); 1670 for (auto *Element : Elements) { 1671 // We assume that the frontend provides all members in source declaration 1672 // order, which is what MSVC does. 1673 if (!Element) 1674 continue; 1675 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1676 Info.Methods[SP->getRawName()].push_back(SP); 1677 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1678 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1679 collectMemberInfo(Info, DDTy); 1680 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1681 Info.Inheritance.push_back(DDTy); 1682 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1683 DDTy->getName() == "__vtbl_ptr_type") { 1684 Info.VShapeTI = getTypeIndex(DDTy); 1685 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1686 // Ignore friend members. It appears that MSVC emitted info about 1687 // friends in the past, but modern versions do not. 1688 } 1689 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1690 Info.NestedClasses.push_back(Composite); 1691 } 1692 // Skip other unrecognized kinds of elements. 1693 } 1694 return Info; 1695 } 1696 1697 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1698 // First, construct the forward decl. Don't look into Ty to compute the 1699 // forward decl options, since it might not be available in all TUs. 1700 TypeRecordKind Kind = getRecordKind(Ty); 1701 ClassOptions CO = 1702 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1703 std::string FullName = getFullyQualifiedName(Ty); 1704 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1705 FullName, Ty->getIdentifier()); 1706 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1707 if (!Ty->isForwardDecl()) 1708 DeferredCompleteTypes.push_back(Ty); 1709 return FwdDeclTI; 1710 } 1711 1712 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1713 // Construct the field list and complete type record. 1714 TypeRecordKind Kind = getRecordKind(Ty); 1715 ClassOptions CO = getCommonClassOptions(Ty); 1716 TypeIndex FieldTI; 1717 TypeIndex VShapeTI; 1718 unsigned FieldCount; 1719 bool ContainsNestedClass; 1720 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1721 lowerRecordFieldList(Ty); 1722 1723 if (ContainsNestedClass) 1724 CO |= ClassOptions::ContainsNestedClass; 1725 1726 std::string FullName = getFullyQualifiedName(Ty); 1727 1728 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1729 1730 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1731 SizeInBytes, FullName, Ty->getIdentifier()); 1732 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1733 1734 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1735 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1736 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1737 TypeTable.writeKnownType(USLR); 1738 1739 addToUDTs(Ty, ClassTI); 1740 1741 return ClassTI; 1742 } 1743 1744 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1745 ClassOptions CO = 1746 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1747 std::string FullName = getFullyQualifiedName(Ty); 1748 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1749 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1750 if (!Ty->isForwardDecl()) 1751 DeferredCompleteTypes.push_back(Ty); 1752 return FwdDeclTI; 1753 } 1754 1755 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1756 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1757 TypeIndex FieldTI; 1758 unsigned FieldCount; 1759 bool ContainsNestedClass; 1760 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1761 lowerRecordFieldList(Ty); 1762 1763 if (ContainsNestedClass) 1764 CO |= ClassOptions::ContainsNestedClass; 1765 1766 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1767 std::string FullName = getFullyQualifiedName(Ty); 1768 1769 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1770 Ty->getIdentifier()); 1771 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1772 1773 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1774 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1775 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1776 TypeTable.writeKnownType(USLR); 1777 1778 addToUDTs(Ty, UnionTI); 1779 1780 return UnionTI; 1781 } 1782 1783 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1784 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1785 // Manually count members. MSVC appears to count everything that generates a 1786 // field list record. Each individual overload in a method overload group 1787 // contributes to this count, even though the overload group is a single field 1788 // list record. 1789 unsigned MemberCount = 0; 1790 ClassInfo Info = collectClassInfo(Ty); 1791 FieldListRecordBuilder FLBR(TypeTable); 1792 FLBR.begin(); 1793 1794 // Create base classes. 1795 for (const DIDerivedType *I : Info.Inheritance) { 1796 if (I->getFlags() & DINode::FlagVirtual) { 1797 // Virtual base. 1798 // FIXME: Emit VBPtrOffset when the frontend provides it. 1799 unsigned VBPtrOffset = 0; 1800 // FIXME: Despite the accessor name, the offset is really in bytes. 1801 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1802 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1803 ? TypeRecordKind::IndirectVirtualBaseClass 1804 : TypeRecordKind::VirtualBaseClass; 1805 VirtualBaseClassRecord VBCR( 1806 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1807 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1808 VBTableIndex); 1809 1810 FLBR.writeMemberType(VBCR); 1811 } else { 1812 assert(I->getOffsetInBits() % 8 == 0 && 1813 "bases must be on byte boundaries"); 1814 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1815 getTypeIndex(I->getBaseType()), 1816 I->getOffsetInBits() / 8); 1817 FLBR.writeMemberType(BCR); 1818 } 1819 } 1820 1821 // Create members. 1822 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1823 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1824 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1825 StringRef MemberName = Member->getName(); 1826 MemberAccess Access = 1827 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1828 1829 if (Member->isStaticMember()) { 1830 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1831 FLBR.writeMemberType(SDMR); 1832 MemberCount++; 1833 continue; 1834 } 1835 1836 // Virtual function pointer member. 1837 if ((Member->getFlags() & DINode::FlagArtificial) && 1838 Member->getName().startswith("_vptr$")) { 1839 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1840 FLBR.writeMemberType(VFPR); 1841 MemberCount++; 1842 continue; 1843 } 1844 1845 // Data member. 1846 uint64_t MemberOffsetInBits = 1847 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1848 if (Member->isBitField()) { 1849 uint64_t StartBitOffset = MemberOffsetInBits; 1850 if (const auto *CI = 1851 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1852 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1853 } 1854 StartBitOffset -= MemberOffsetInBits; 1855 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1856 StartBitOffset); 1857 MemberBaseType = TypeTable.writeKnownType(BFR); 1858 } 1859 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1860 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1861 MemberName); 1862 FLBR.writeMemberType(DMR); 1863 MemberCount++; 1864 } 1865 1866 // Create methods 1867 for (auto &MethodItr : Info.Methods) { 1868 StringRef Name = MethodItr.first->getString(); 1869 1870 std::vector<OneMethodRecord> Methods; 1871 for (const DISubprogram *SP : MethodItr.second) { 1872 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1873 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1874 1875 unsigned VFTableOffset = -1; 1876 if (Introduced) 1877 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1878 1879 Methods.push_back(OneMethodRecord( 1880 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1881 translateMethodKindFlags(SP, Introduced), 1882 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1883 MemberCount++; 1884 } 1885 assert(Methods.size() > 0 && "Empty methods map entry"); 1886 if (Methods.size() == 1) 1887 FLBR.writeMemberType(Methods[0]); 1888 else { 1889 MethodOverloadListRecord MOLR(Methods); 1890 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1891 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1892 FLBR.writeMemberType(OMR); 1893 } 1894 } 1895 1896 // Create nested classes. 1897 for (const DICompositeType *Nested : Info.NestedClasses) { 1898 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1899 FLBR.writeMemberType(R); 1900 MemberCount++; 1901 } 1902 1903 TypeIndex FieldTI = FLBR.end(); 1904 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1905 !Info.NestedClasses.empty()); 1906 } 1907 1908 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1909 if (!VBPType.getIndex()) { 1910 // Make a 'const int *' type. 1911 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1912 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1913 1914 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1915 : PointerKind::Near32; 1916 PointerMode PM = PointerMode::Pointer; 1917 PointerOptions PO = PointerOptions::None; 1918 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1919 1920 VBPType = TypeTable.writeKnownType(PR); 1921 } 1922 1923 return VBPType; 1924 } 1925 1926 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1927 const DIType *Ty = TypeRef.resolve(); 1928 const DIType *ClassTy = ClassTyRef.resolve(); 1929 1930 // The null DIType is the void type. Don't try to hash it. 1931 if (!Ty) 1932 return TypeIndex::Void(); 1933 1934 // Check if we've already translated this type. Don't try to do a 1935 // get-or-create style insertion that caches the hash lookup across the 1936 // lowerType call. It will update the TypeIndices map. 1937 auto I = TypeIndices.find({Ty, ClassTy}); 1938 if (I != TypeIndices.end()) 1939 return I->second; 1940 1941 TypeLoweringScope S(*this); 1942 TypeIndex TI = lowerType(Ty, ClassTy); 1943 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1944 } 1945 1946 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1947 const DIType *Ty = TypeRef.resolve(); 1948 1949 // The null DIType is the void type. Don't try to hash it. 1950 if (!Ty) 1951 return TypeIndex::Void(); 1952 1953 // If this is a non-record type, the complete type index is the same as the 1954 // normal type index. Just call getTypeIndex. 1955 switch (Ty->getTag()) { 1956 case dwarf::DW_TAG_class_type: 1957 case dwarf::DW_TAG_structure_type: 1958 case dwarf::DW_TAG_union_type: 1959 break; 1960 default: 1961 return getTypeIndex(Ty); 1962 } 1963 1964 // Check if we've already translated the complete record type. Lowering a 1965 // complete type should never trigger lowering another complete type, so we 1966 // can reuse the hash table lookup result. 1967 const auto *CTy = cast<DICompositeType>(Ty); 1968 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1969 if (!InsertResult.second) 1970 return InsertResult.first->second; 1971 1972 TypeLoweringScope S(*this); 1973 1974 // Make sure the forward declaration is emitted first. It's unclear if this 1975 // is necessary, but MSVC does it, and we should follow suit until we can show 1976 // otherwise. 1977 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1978 1979 // Just use the forward decl if we don't have complete type info. This might 1980 // happen if the frontend is using modules and expects the complete definition 1981 // to be emitted elsewhere. 1982 if (CTy->isForwardDecl()) 1983 return FwdDeclTI; 1984 1985 TypeIndex TI; 1986 switch (CTy->getTag()) { 1987 case dwarf::DW_TAG_class_type: 1988 case dwarf::DW_TAG_structure_type: 1989 TI = lowerCompleteTypeClass(CTy); 1990 break; 1991 case dwarf::DW_TAG_union_type: 1992 TI = lowerCompleteTypeUnion(CTy); 1993 break; 1994 default: 1995 llvm_unreachable("not a record"); 1996 } 1997 1998 InsertResult.first->second = TI; 1999 return TI; 2000 } 2001 2002 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2003 /// and do this until fixpoint, as each complete record type typically 2004 /// references 2005 /// many other record types. 2006 void CodeViewDebug::emitDeferredCompleteTypes() { 2007 SmallVector<const DICompositeType *, 4> TypesToEmit; 2008 while (!DeferredCompleteTypes.empty()) { 2009 std::swap(DeferredCompleteTypes, TypesToEmit); 2010 for (const DICompositeType *RecordTy : TypesToEmit) 2011 getCompleteTypeIndex(RecordTy); 2012 TypesToEmit.clear(); 2013 } 2014 } 2015 2016 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2017 // Get the sorted list of parameters and emit them first. 2018 SmallVector<const LocalVariable *, 6> Params; 2019 for (const LocalVariable &L : Locals) 2020 if (L.DIVar->isParameter()) 2021 Params.push_back(&L); 2022 std::sort(Params.begin(), Params.end(), 2023 [](const LocalVariable *L, const LocalVariable *R) { 2024 return L->DIVar->getArg() < R->DIVar->getArg(); 2025 }); 2026 for (const LocalVariable *L : Params) 2027 emitLocalVariable(*L); 2028 2029 // Next emit all non-parameters in the order that we found them. 2030 for (const LocalVariable &L : Locals) 2031 if (!L.DIVar->isParameter()) 2032 emitLocalVariable(L); 2033 } 2034 2035 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2036 // LocalSym record, see SymbolRecord.h for more info. 2037 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2038 *LocalEnd = MMI->getContext().createTempSymbol(); 2039 OS.AddComment("Record length"); 2040 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2041 OS.EmitLabel(LocalBegin); 2042 2043 OS.AddComment("Record kind: S_LOCAL"); 2044 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2045 2046 LocalSymFlags Flags = LocalSymFlags::None; 2047 if (Var.DIVar->isParameter()) 2048 Flags |= LocalSymFlags::IsParameter; 2049 if (Var.DefRanges.empty()) 2050 Flags |= LocalSymFlags::IsOptimizedOut; 2051 2052 OS.AddComment("TypeIndex"); 2053 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 2054 OS.EmitIntValue(TI.getIndex(), 4); 2055 OS.AddComment("Flags"); 2056 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2057 // Truncate the name so we won't overflow the record length field. 2058 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2059 OS.EmitLabel(LocalEnd); 2060 2061 // Calculate the on disk prefix of the appropriate def range record. The 2062 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2063 // should be big enough to hold all forms without memory allocation. 2064 SmallString<20> BytePrefix; 2065 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2066 BytePrefix.clear(); 2067 if (DefRange.InMemory) { 2068 uint16_t RegRelFlags = 0; 2069 if (DefRange.IsSubfield) { 2070 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2071 (DefRange.StructOffset 2072 << DefRangeRegisterRelSym::OffsetInParentShift); 2073 } 2074 DefRangeRegisterRelSym Sym(DefRange.CVRegister, RegRelFlags, 2075 DefRange.DataOffset, None); 2076 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2077 BytePrefix += 2078 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2079 BytePrefix += 2080 StringRef(reinterpret_cast<const char *>(&Sym.Header), 2081 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 2082 } else { 2083 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2084 if (DefRange.IsSubfield) { 2085 // Unclear what matters here. 2086 DefRangeSubfieldRegisterSym Sym(DefRange.CVRegister, 0, 2087 DefRange.StructOffset, None); 2088 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2089 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2090 sizeof(SymKind)); 2091 BytePrefix += 2092 StringRef(reinterpret_cast<const char *>(&Sym.Header), 2093 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 2094 } else { 2095 // Unclear what matters here. 2096 DefRangeRegisterSym Sym(DefRange.CVRegister, 0, None); 2097 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2098 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2099 sizeof(SymKind)); 2100 BytePrefix += 2101 StringRef(reinterpret_cast<const char *>(&Sym.Header), 2102 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 2103 } 2104 } 2105 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2106 } 2107 } 2108 2109 void CodeViewDebug::endFunction(const MachineFunction *MF) { 2110 if (!Asm || !CurFn) // We haven't created any debug info for this function. 2111 return; 2112 2113 const Function *GV = MF->getFunction(); 2114 assert(FnDebugInfo.count(GV)); 2115 assert(CurFn == &FnDebugInfo[GV]); 2116 2117 collectVariableInfo(GV->getSubprogram()); 2118 2119 DebugHandlerBase::endFunction(MF); 2120 2121 // Don't emit anything if we don't have any line tables. 2122 if (!CurFn->HaveLineInfo) { 2123 FnDebugInfo.erase(GV); 2124 CurFn = nullptr; 2125 return; 2126 } 2127 2128 CurFn->End = Asm->getFunctionEnd(); 2129 2130 CurFn = nullptr; 2131 } 2132 2133 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2134 DebugHandlerBase::beginInstruction(MI); 2135 2136 // Ignore DBG_VALUE locations and function prologue. 2137 if (!Asm || !CurFn || MI->isDebugValue() || 2138 MI->getFlag(MachineInstr::FrameSetup)) 2139 return; 2140 DebugLoc DL = MI->getDebugLoc(); 2141 if (DL == PrevInstLoc || !DL) 2142 return; 2143 maybeRecordLocation(DL, Asm->MF); 2144 } 2145 2146 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 2147 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2148 *EndLabel = MMI->getContext().createTempSymbol(); 2149 OS.EmitIntValue(unsigned(Kind), 4); 2150 OS.AddComment("Subsection size"); 2151 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2152 OS.EmitLabel(BeginLabel); 2153 return EndLabel; 2154 } 2155 2156 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2157 OS.EmitLabel(EndLabel); 2158 // Every subsection must be aligned to a 4-byte boundary. 2159 OS.EmitValueToAlignment(4); 2160 } 2161 2162 void CodeViewDebug::emitDebugInfoForUDTs( 2163 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 2164 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 2165 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2166 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2167 OS.AddComment("Record length"); 2168 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2169 OS.EmitLabel(UDTRecordBegin); 2170 2171 OS.AddComment("Record kind: S_UDT"); 2172 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2173 2174 OS.AddComment("Type"); 2175 OS.EmitIntValue(UDT.second.getIndex(), 4); 2176 2177 emitNullTerminatedSymbolName(OS, UDT.first); 2178 OS.EmitLabel(UDTRecordEnd); 2179 } 2180 } 2181 2182 void CodeViewDebug::emitDebugInfoForGlobals() { 2183 DenseMap<const DIGlobalVariable *, const GlobalVariable *> GlobalMap; 2184 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2185 SmallVector<MDNode *, 1> MDs; 2186 GV.getMetadata(LLVMContext::MD_dbg, MDs); 2187 for (MDNode *MD : MDs) 2188 GlobalMap[cast<DIGlobalVariable>(MD)] = &GV; 2189 } 2190 2191 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2192 for (const MDNode *Node : CUs->operands()) { 2193 const auto *CU = cast<DICompileUnit>(Node); 2194 2195 // First, emit all globals that are not in a comdat in a single symbol 2196 // substream. MSVC doesn't like it if the substream is empty, so only open 2197 // it if we have at least one global to emit. 2198 switchToDebugSectionForSymbol(nullptr); 2199 MCSymbol *EndLabel = nullptr; 2200 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 2201 if (const auto *GV = GlobalMap.lookup(G)) 2202 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2203 if (!EndLabel) { 2204 OS.AddComment("Symbol subsection for globals"); 2205 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2206 } 2207 emitDebugInfoForGlobal(G, GV, Asm->getSymbol(GV)); 2208 } 2209 } 2210 if (EndLabel) 2211 endCVSubsection(EndLabel); 2212 2213 // Second, emit each global that is in a comdat into its own .debug$S 2214 // section along with its own symbol substream. 2215 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 2216 if (const auto *GV = GlobalMap.lookup(G)) { 2217 if (GV->hasComdat()) { 2218 MCSymbol *GVSym = Asm->getSymbol(GV); 2219 OS.AddComment("Symbol subsection for " + 2220 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 2221 switchToDebugSectionForSymbol(GVSym); 2222 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2223 emitDebugInfoForGlobal(G, GV, GVSym); 2224 endCVSubsection(EndLabel); 2225 } 2226 } 2227 } 2228 } 2229 } 2230 2231 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2232 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2233 for (const MDNode *Node : CUs->operands()) { 2234 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2235 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2236 getTypeIndex(RT); 2237 // FIXME: Add to global/local DTU list. 2238 } 2239 } 2240 } 2241 } 2242 2243 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2244 const GlobalVariable *GV, 2245 MCSymbol *GVSym) { 2246 // DataSym record, see SymbolRecord.h for more info. 2247 // FIXME: Thread local data, etc 2248 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2249 *DataEnd = MMI->getContext().createTempSymbol(); 2250 OS.AddComment("Record length"); 2251 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2252 OS.EmitLabel(DataBegin); 2253 if (DIGV->isLocalToUnit()) { 2254 if (GV->isThreadLocal()) { 2255 OS.AddComment("Record kind: S_LTHREAD32"); 2256 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2257 } else { 2258 OS.AddComment("Record kind: S_LDATA32"); 2259 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2260 } 2261 } else { 2262 if (GV->isThreadLocal()) { 2263 OS.AddComment("Record kind: S_GTHREAD32"); 2264 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2265 } else { 2266 OS.AddComment("Record kind: S_GDATA32"); 2267 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2268 } 2269 } 2270 OS.AddComment("Type"); 2271 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2272 OS.AddComment("DataOffset"); 2273 OS.EmitCOFFSecRel32(GVSym); 2274 OS.AddComment("Segment"); 2275 OS.EmitCOFFSectionIndex(GVSym); 2276 OS.AddComment("Name"); 2277 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2278 OS.EmitLabel(DataEnd); 2279 } 2280