1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
17 #include "llvm/DebugInfo/CodeView/CodeView.h"
18 #include "llvm/DebugInfo/CodeView/Line.h"
19 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
20 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
21 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
22 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
23 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
24 #include "llvm/DebugInfo/MSF/ByteStream.h"
25 #include "llvm/DebugInfo/MSF/StreamReader.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCSectionCOFF.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/COFF.h"
32 #include "llvm/Support/ScopedPrinter.h"
33 #include "llvm/Target/TargetFrameLowering.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 
37 using namespace llvm;
38 using namespace llvm::codeview;
39 using namespace llvm::msf;
40 
41 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
42     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(),
43       TypeTable(Allocator), CurFn(nullptr) {
44   // If module doesn't have named metadata anchors or COFF debug section
45   // is not available, skip any debug info related stuff.
46   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
47       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
48     Asm = nullptr;
49     return;
50   }
51 
52   // Tell MMI that we have debug info.
53   MMI->setDebugInfoAvailability(true);
54 }
55 
56 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
57   std::string &Filepath = FileToFilepathMap[File];
58   if (!Filepath.empty())
59     return Filepath;
60 
61   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
62 
63   // Clang emits directory and relative filename info into the IR, but CodeView
64   // operates on full paths.  We could change Clang to emit full paths too, but
65   // that would increase the IR size and probably not needed for other users.
66   // For now, just concatenate and canonicalize the path here.
67   if (Filename.find(':') == 1)
68     Filepath = Filename;
69   else
70     Filepath = (Dir + "\\" + Filename).str();
71 
72   // Canonicalize the path.  We have to do it textually because we may no longer
73   // have access the file in the filesystem.
74   // First, replace all slashes with backslashes.
75   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
76 
77   // Remove all "\.\" with "\".
78   size_t Cursor = 0;
79   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
80     Filepath.erase(Cursor, 2);
81 
82   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
83   // path should be well-formatted, e.g. start with a drive letter, etc.
84   Cursor = 0;
85   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
86     // Something's wrong if the path starts with "\..\", abort.
87     if (Cursor == 0)
88       break;
89 
90     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
91     if (PrevSlash == std::string::npos)
92       // Something's wrong, abort.
93       break;
94 
95     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
96     // The next ".." might be following the one we've just erased.
97     Cursor = PrevSlash;
98   }
99 
100   // Remove all duplicate backslashes.
101   Cursor = 0;
102   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
103     Filepath.erase(Cursor, 1);
104 
105   return Filepath;
106 }
107 
108 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
109   unsigned NextId = FileIdMap.size() + 1;
110   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
111   if (Insertion.second) {
112     // We have to compute the full filepath and emit a .cv_file directive.
113     StringRef FullPath = getFullFilepath(F);
114     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
115     (void)Success;
116     assert(Success && ".cv_file directive failed");
117   }
118   return Insertion.first->second;
119 }
120 
121 CodeViewDebug::InlineSite &
122 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
123                              const DISubprogram *Inlinee) {
124   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
125   InlineSite *Site = &SiteInsertion.first->second;
126   if (SiteInsertion.second) {
127     unsigned ParentFuncId = CurFn->FuncId;
128     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
129       ParentFuncId =
130           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
131               .SiteFuncId;
132 
133     Site->SiteFuncId = NextFuncId++;
134     OS.EmitCVInlineSiteIdDirective(
135         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
136         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
137     Site->Inlinee = Inlinee;
138     InlinedSubprograms.insert(Inlinee);
139     getFuncIdForSubprogram(Inlinee);
140   }
141   return *Site;
142 }
143 
144 static StringRef getPrettyScopeName(const DIScope *Scope) {
145   StringRef ScopeName = Scope->getName();
146   if (!ScopeName.empty())
147     return ScopeName;
148 
149   switch (Scope->getTag()) {
150   case dwarf::DW_TAG_enumeration_type:
151   case dwarf::DW_TAG_class_type:
152   case dwarf::DW_TAG_structure_type:
153   case dwarf::DW_TAG_union_type:
154     return "<unnamed-tag>";
155   case dwarf::DW_TAG_namespace:
156     return "`anonymous namespace'";
157   }
158 
159   return StringRef();
160 }
161 
162 static const DISubprogram *getQualifiedNameComponents(
163     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
164   const DISubprogram *ClosestSubprogram = nullptr;
165   while (Scope != nullptr) {
166     if (ClosestSubprogram == nullptr)
167       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
168     StringRef ScopeName = getPrettyScopeName(Scope);
169     if (!ScopeName.empty())
170       QualifiedNameComponents.push_back(ScopeName);
171     Scope = Scope->getScope().resolve();
172   }
173   return ClosestSubprogram;
174 }
175 
176 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
177                                     StringRef TypeName) {
178   std::string FullyQualifiedName;
179   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
180     FullyQualifiedName.append(QualifiedNameComponent);
181     FullyQualifiedName.append("::");
182   }
183   FullyQualifiedName.append(TypeName);
184   return FullyQualifiedName;
185 }
186 
187 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
188   SmallVector<StringRef, 5> QualifiedNameComponents;
189   getQualifiedNameComponents(Scope, QualifiedNameComponents);
190   return getQualifiedName(QualifiedNameComponents, Name);
191 }
192 
193 struct CodeViewDebug::TypeLoweringScope {
194   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
195   ~TypeLoweringScope() {
196     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
197     // inner TypeLoweringScopes don't attempt to emit deferred types.
198     if (CVD.TypeEmissionLevel == 1)
199       CVD.emitDeferredCompleteTypes();
200     --CVD.TypeEmissionLevel;
201   }
202   CodeViewDebug &CVD;
203 };
204 
205 static std::string getFullyQualifiedName(const DIScope *Ty) {
206   const DIScope *Scope = Ty->getScope().resolve();
207   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
208 }
209 
210 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
211   // No scope means global scope and that uses the zero index.
212   if (!Scope || isa<DIFile>(Scope))
213     return TypeIndex();
214 
215   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
216 
217   // Check if we've already translated this scope.
218   auto I = TypeIndices.find({Scope, nullptr});
219   if (I != TypeIndices.end())
220     return I->second;
221 
222   // Build the fully qualified name of the scope.
223   std::string ScopeName = getFullyQualifiedName(Scope);
224   StringIdRecord SID(TypeIndex(), ScopeName);
225   auto TI = TypeTable.writeKnownType(SID);
226   return recordTypeIndexForDINode(Scope, TI);
227 }
228 
229 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
230   assert(SP);
231 
232   // Check if we've already translated this subprogram.
233   auto I = TypeIndices.find({SP, nullptr});
234   if (I != TypeIndices.end())
235     return I->second;
236 
237   // The display name includes function template arguments. Drop them to match
238   // MSVC.
239   StringRef DisplayName = SP->getDisplayName().split('<').first;
240 
241   const DIScope *Scope = SP->getScope().resolve();
242   TypeIndex TI;
243   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
244     // If the scope is a DICompositeType, then this must be a method. Member
245     // function types take some special handling, and require access to the
246     // subprogram.
247     TypeIndex ClassType = getTypeIndex(Class);
248     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
249                                DisplayName);
250     TI = TypeTable.writeKnownType(MFuncId);
251   } else {
252     // Otherwise, this must be a free function.
253     TypeIndex ParentScope = getScopeIndex(Scope);
254     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
255     TI = TypeTable.writeKnownType(FuncId);
256   }
257 
258   return recordTypeIndexForDINode(SP, TI);
259 }
260 
261 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
262                                                const DICompositeType *Class) {
263   // Always use the method declaration as the key for the function type. The
264   // method declaration contains the this adjustment.
265   if (SP->getDeclaration())
266     SP = SP->getDeclaration();
267   assert(!SP->getDeclaration() && "should use declaration as key");
268 
269   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
270   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
271   auto I = TypeIndices.find({SP, Class});
272   if (I != TypeIndices.end())
273     return I->second;
274 
275   // Make sure complete type info for the class is emitted *after* the member
276   // function type, as the complete class type is likely to reference this
277   // member function type.
278   TypeLoweringScope S(*this);
279   TypeIndex TI =
280       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
281   return recordTypeIndexForDINode(SP, TI, Class);
282 }
283 
284 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
285                                                   TypeIndex TI,
286                                                   const DIType *ClassTy) {
287   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
288   (void)InsertResult;
289   assert(InsertResult.second && "DINode was already assigned a type index");
290   return TI;
291 }
292 
293 unsigned CodeViewDebug::getPointerSizeInBytes() {
294   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
295 }
296 
297 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
298                                         const DILocation *InlinedAt) {
299   if (InlinedAt) {
300     // This variable was inlined. Associate it with the InlineSite.
301     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
302     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
303     Site.InlinedLocals.emplace_back(Var);
304   } else {
305     // This variable goes in the main ProcSym.
306     CurFn->Locals.emplace_back(Var);
307   }
308 }
309 
310 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
311                                const DILocation *Loc) {
312   auto B = Locs.begin(), E = Locs.end();
313   if (std::find(B, E, Loc) == E)
314     Locs.push_back(Loc);
315 }
316 
317 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
318                                         const MachineFunction *MF) {
319   // Skip this instruction if it has the same location as the previous one.
320   if (DL == CurFn->LastLoc)
321     return;
322 
323   const DIScope *Scope = DL.get()->getScope();
324   if (!Scope)
325     return;
326 
327   // Skip this line if it is longer than the maximum we can record.
328   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
329   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
330       LI.isNeverStepInto())
331     return;
332 
333   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
334   if (CI.getStartColumn() != DL.getCol())
335     return;
336 
337   if (!CurFn->HaveLineInfo)
338     CurFn->HaveLineInfo = true;
339   unsigned FileId = 0;
340   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
341     FileId = CurFn->LastFileId;
342   else
343     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
344   CurFn->LastLoc = DL;
345 
346   unsigned FuncId = CurFn->FuncId;
347   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
348     const DILocation *Loc = DL.get();
349 
350     // If this location was actually inlined from somewhere else, give it the ID
351     // of the inline call site.
352     FuncId =
353         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
354 
355     // Ensure we have links in the tree of inline call sites.
356     bool FirstLoc = true;
357     while ((SiteLoc = Loc->getInlinedAt())) {
358       InlineSite &Site =
359           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
360       if (!FirstLoc)
361         addLocIfNotPresent(Site.ChildSites, Loc);
362       FirstLoc = false;
363       Loc = SiteLoc;
364     }
365     addLocIfNotPresent(CurFn->ChildSites, Loc);
366   }
367 
368   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
369                         /*PrologueEnd=*/false, /*IsStmt=*/false,
370                         DL->getFilename(), SMLoc());
371 }
372 
373 void CodeViewDebug::emitCodeViewMagicVersion() {
374   OS.EmitValueToAlignment(4);
375   OS.AddComment("Debug section magic");
376   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
377 }
378 
379 void CodeViewDebug::endModule() {
380   if (!Asm || !MMI->hasDebugInfo())
381     return;
382 
383   assert(Asm != nullptr);
384 
385   // The COFF .debug$S section consists of several subsections, each starting
386   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
387   // of the payload followed by the payload itself.  The subsections are 4-byte
388   // aligned.
389 
390   // Use the generic .debug$S section, and make a subsection for all the inlined
391   // subprograms.
392   switchToDebugSectionForSymbol(nullptr);
393 
394   MCSymbol *CompilerInfo = beginCVSubsection(ModuleSubstreamKind::Symbols);
395   emitCompilerInformation();
396   endCVSubsection(CompilerInfo);
397 
398   emitInlineeLinesSubsection();
399 
400   // Emit per-function debug information.
401   for (auto &P : FnDebugInfo)
402     if (!P.first->isDeclarationForLinker())
403       emitDebugInfoForFunction(P.first, P.second);
404 
405   // Emit global variable debug information.
406   setCurrentSubprogram(nullptr);
407   emitDebugInfoForGlobals();
408 
409   // Emit retained types.
410   emitDebugInfoForRetainedTypes();
411 
412   // Switch back to the generic .debug$S section after potentially processing
413   // comdat symbol sections.
414   switchToDebugSectionForSymbol(nullptr);
415 
416   // Emit UDT records for any types used by global variables.
417   if (!GlobalUDTs.empty()) {
418     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
419     emitDebugInfoForUDTs(GlobalUDTs);
420     endCVSubsection(SymbolsEnd);
421   }
422 
423   // This subsection holds a file index to offset in string table table.
424   OS.AddComment("File index to string table offset subsection");
425   OS.EmitCVFileChecksumsDirective();
426 
427   // This subsection holds the string table.
428   OS.AddComment("String table");
429   OS.EmitCVStringTableDirective();
430 
431   // Emit type information last, so that any types we translate while emitting
432   // function info are included.
433   emitTypeInformation();
434 
435   clear();
436 }
437 
438 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
439   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
440   // after a fixed length portion of the record. The fixed length portion should
441   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
442   // overall record size is less than the maximum allowed.
443   unsigned MaxFixedRecordLength = 0xF00;
444   SmallString<32> NullTerminatedString(
445       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
446   NullTerminatedString.push_back('\0');
447   OS.EmitBytes(NullTerminatedString);
448 }
449 
450 void CodeViewDebug::emitTypeInformation() {
451   // Do nothing if we have no debug info or if no non-trivial types were emitted
452   // to TypeTable during codegen.
453   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
454   if (!CU_Nodes)
455     return;
456   if (TypeTable.empty())
457     return;
458 
459   // Start the .debug$T section with 0x4.
460   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
461   emitCodeViewMagicVersion();
462 
463   SmallString<8> CommentPrefix;
464   if (OS.isVerboseAsm()) {
465     CommentPrefix += '\t';
466     CommentPrefix += Asm->MAI->getCommentString();
467     CommentPrefix += ' ';
468   }
469 
470   CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
471   TypeTable.ForEachRecord([&](TypeIndex Index, ArrayRef<uint8_t> Record) {
472     if (OS.isVerboseAsm()) {
473       // Emit a block comment describing the type record for readability.
474       SmallString<512> CommentBlock;
475       raw_svector_ostream CommentOS(CommentBlock);
476       ScopedPrinter SP(CommentOS);
477       SP.setPrefix(CommentPrefix);
478       CVTD.setPrinter(&SP);
479       Error E = CVTD.dump(Record);
480       if (E) {
481         logAllUnhandledErrors(std::move(E), errs(), "error: ");
482         llvm_unreachable("produced malformed type record");
483       }
484       // emitRawComment will insert its own tab and comment string before
485       // the first line, so strip off our first one. It also prints its own
486       // newline.
487       OS.emitRawComment(
488           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
489     } else {
490 #ifndef NDEBUG
491       // Assert that the type data is valid even if we aren't dumping
492       // comments. The MSVC linker doesn't do much type record validation,
493       // so the first link of an invalid type record can succeed while
494       // subsequent links will fail with LNK1285.
495       ByteStream Stream(Record);
496       CVTypeArray Types;
497       StreamReader Reader(Stream);
498       Error E = Reader.readArray(Types, Reader.getLength());
499       if (!E) {
500         TypeVisitorCallbacks C;
501         E = CVTypeVisitor(C).visitTypeStream(Types);
502       }
503       if (E) {
504         logAllUnhandledErrors(std::move(E), errs(), "error: ");
505         llvm_unreachable("produced malformed type record");
506       }
507 #endif
508     }
509     StringRef S(reinterpret_cast<const char *>(Record.data()), Record.size());
510     OS.EmitBinaryData(S);
511   });
512 }
513 
514 namespace {
515 
516 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
517   switch (DWLang) {
518   case dwarf::DW_LANG_C:
519   case dwarf::DW_LANG_C89:
520   case dwarf::DW_LANG_C99:
521   case dwarf::DW_LANG_C11:
522   case dwarf::DW_LANG_ObjC:
523     return SourceLanguage::C;
524   case dwarf::DW_LANG_C_plus_plus:
525   case dwarf::DW_LANG_C_plus_plus_03:
526   case dwarf::DW_LANG_C_plus_plus_11:
527   case dwarf::DW_LANG_C_plus_plus_14:
528     return SourceLanguage::Cpp;
529   case dwarf::DW_LANG_Fortran77:
530   case dwarf::DW_LANG_Fortran90:
531   case dwarf::DW_LANG_Fortran03:
532   case dwarf::DW_LANG_Fortran08:
533     return SourceLanguage::Fortran;
534   case dwarf::DW_LANG_Pascal83:
535     return SourceLanguage::Pascal;
536   case dwarf::DW_LANG_Cobol74:
537   case dwarf::DW_LANG_Cobol85:
538     return SourceLanguage::Cobol;
539   case dwarf::DW_LANG_Java:
540     return SourceLanguage::Java;
541   default:
542     // There's no CodeView representation for this language, and CV doesn't
543     // have an "unknown" option for the language field, so we'll use MASM,
544     // as it's very low level.
545     return SourceLanguage::Masm;
546   }
547 }
548 
549 struct Version {
550   int Part[4];
551 };
552 
553 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
554 // the version number.
555 static Version parseVersion(StringRef Name) {
556   Version V = {{0}};
557   int N = 0;
558   for (const char C : Name) {
559     if (isdigit(C)) {
560       V.Part[N] *= 10;
561       V.Part[N] += C - '0';
562     } else if (C == '.') {
563       ++N;
564       if (N >= 4)
565         return V;
566     } else if (N > 0)
567       return V;
568   }
569   return V;
570 }
571 
572 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
573   switch (Type) {
574     case Triple::ArchType::x86:
575       return CPUType::Pentium3;
576     case Triple::ArchType::x86_64:
577       return CPUType::X64;
578     case Triple::ArchType::thumb:
579       return CPUType::Thumb;
580     default:
581       report_fatal_error("target architecture doesn't map to a CodeView "
582                          "CPUType");
583   }
584 }
585 
586 }  // anonymous namespace
587 
588 void CodeViewDebug::emitCompilerInformation() {
589   MCContext &Context = MMI->getContext();
590   MCSymbol *CompilerBegin = Context.createTempSymbol(),
591            *CompilerEnd = Context.createTempSymbol();
592   OS.AddComment("Record length");
593   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
594   OS.EmitLabel(CompilerBegin);
595   OS.AddComment("Record kind: S_COMPILE3");
596   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
597   uint32_t Flags = 0;
598 
599   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
600   const MDNode *Node = *CUs->operands().begin();
601   const auto *CU = cast<DICompileUnit>(Node);
602 
603   // The low byte of the flags indicates the source language.
604   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
605   // TODO:  Figure out which other flags need to be set.
606 
607   OS.AddComment("Flags and language");
608   OS.EmitIntValue(Flags, 4);
609 
610   OS.AddComment("CPUType");
611   CPUType CPU =
612       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
613   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
614 
615   StringRef CompilerVersion = CU->getProducer();
616   Version FrontVer = parseVersion(CompilerVersion);
617   OS.AddComment("Frontend version");
618   for (int N = 0; N < 4; ++N)
619     OS.EmitIntValue(FrontVer.Part[N], 2);
620 
621   // Some Microsoft tools, like Binscope, expect a backend version number of at
622   // least 8.something, so we'll coerce the LLVM version into a form that
623   // guarantees it'll be big enough without really lying about the version.
624   int Major = 1000 * LLVM_VERSION_MAJOR +
625               10 * LLVM_VERSION_MINOR +
626               LLVM_VERSION_PATCH;
627   // Clamp it for builds that use unusually large version numbers.
628   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
629   Version BackVer = {{ Major, 0, 0, 0 }};
630   OS.AddComment("Backend version");
631   for (int N = 0; N < 4; ++N)
632     OS.EmitIntValue(BackVer.Part[N], 2);
633 
634   OS.AddComment("Null-terminated compiler version string");
635   emitNullTerminatedSymbolName(OS, CompilerVersion);
636 
637   OS.EmitLabel(CompilerEnd);
638 }
639 
640 void CodeViewDebug::emitInlineeLinesSubsection() {
641   if (InlinedSubprograms.empty())
642     return;
643 
644   OS.AddComment("Inlinee lines subsection");
645   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
646 
647   // We don't provide any extra file info.
648   // FIXME: Find out if debuggers use this info.
649   OS.AddComment("Inlinee lines signature");
650   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
651 
652   for (const DISubprogram *SP : InlinedSubprograms) {
653     assert(TypeIndices.count({SP, nullptr}));
654     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
655 
656     OS.AddBlankLine();
657     unsigned FileId = maybeRecordFile(SP->getFile());
658     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
659                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
660     OS.AddBlankLine();
661     // The filechecksum table uses 8 byte entries for now, and file ids start at
662     // 1.
663     unsigned FileOffset = (FileId - 1) * 8;
664     OS.AddComment("Type index of inlined function");
665     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
666     OS.AddComment("Offset into filechecksum table");
667     OS.EmitIntValue(FileOffset, 4);
668     OS.AddComment("Starting line number");
669     OS.EmitIntValue(SP->getLine(), 4);
670   }
671 
672   endCVSubsection(InlineEnd);
673 }
674 
675 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
676                                         const DILocation *InlinedAt,
677                                         const InlineSite &Site) {
678   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
679            *InlineEnd = MMI->getContext().createTempSymbol();
680 
681   assert(TypeIndices.count({Site.Inlinee, nullptr}));
682   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
683 
684   // SymbolRecord
685   OS.AddComment("Record length");
686   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
687   OS.EmitLabel(InlineBegin);
688   OS.AddComment("Record kind: S_INLINESITE");
689   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
690 
691   OS.AddComment("PtrParent");
692   OS.EmitIntValue(0, 4);
693   OS.AddComment("PtrEnd");
694   OS.EmitIntValue(0, 4);
695   OS.AddComment("Inlinee type index");
696   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
697 
698   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
699   unsigned StartLineNum = Site.Inlinee->getLine();
700 
701   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
702                                     FI.Begin, FI.End);
703 
704   OS.EmitLabel(InlineEnd);
705 
706   emitLocalVariableList(Site.InlinedLocals);
707 
708   // Recurse on child inlined call sites before closing the scope.
709   for (const DILocation *ChildSite : Site.ChildSites) {
710     auto I = FI.InlineSites.find(ChildSite);
711     assert(I != FI.InlineSites.end() &&
712            "child site not in function inline site map");
713     emitInlinedCallSite(FI, ChildSite, I->second);
714   }
715 
716   // Close the scope.
717   OS.AddComment("Record length");
718   OS.EmitIntValue(2, 2);                                  // RecordLength
719   OS.AddComment("Record kind: S_INLINESITE_END");
720   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
721 }
722 
723 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
724   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
725   // comdat key. A section may be comdat because of -ffunction-sections or
726   // because it is comdat in the IR.
727   MCSectionCOFF *GVSec =
728       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
729   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
730 
731   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
732       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
733   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
734 
735   OS.SwitchSection(DebugSec);
736 
737   // Emit the magic version number if this is the first time we've switched to
738   // this section.
739   if (ComdatDebugSections.insert(DebugSec).second)
740     emitCodeViewMagicVersion();
741 }
742 
743 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
744                                              FunctionInfo &FI) {
745   // For each function there is a separate subsection
746   // which holds the PC to file:line table.
747   const MCSymbol *Fn = Asm->getSymbol(GV);
748   assert(Fn);
749 
750   // Switch to the to a comdat section, if appropriate.
751   switchToDebugSectionForSymbol(Fn);
752 
753   std::string FuncName;
754   auto *SP = GV->getSubprogram();
755   assert(SP);
756   setCurrentSubprogram(SP);
757 
758   // If we have a display name, build the fully qualified name by walking the
759   // chain of scopes.
760   if (!SP->getDisplayName().empty())
761     FuncName =
762         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
763 
764   // If our DISubprogram name is empty, use the mangled name.
765   if (FuncName.empty())
766     FuncName = GlobalValue::getRealLinkageName(GV->getName());
767 
768   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
769   OS.AddComment("Symbol subsection for " + Twine(FuncName));
770   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
771   {
772     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
773              *ProcRecordEnd = MMI->getContext().createTempSymbol();
774     OS.AddComment("Record length");
775     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
776     OS.EmitLabel(ProcRecordBegin);
777 
778     if (GV->hasLocalLinkage()) {
779       OS.AddComment("Record kind: S_LPROC32_ID");
780       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
781     } else {
782       OS.AddComment("Record kind: S_GPROC32_ID");
783       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
784     }
785 
786     // These fields are filled in by tools like CVPACK which run after the fact.
787     OS.AddComment("PtrParent");
788     OS.EmitIntValue(0, 4);
789     OS.AddComment("PtrEnd");
790     OS.EmitIntValue(0, 4);
791     OS.AddComment("PtrNext");
792     OS.EmitIntValue(0, 4);
793     // This is the important bit that tells the debugger where the function
794     // code is located and what's its size:
795     OS.AddComment("Code size");
796     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
797     OS.AddComment("Offset after prologue");
798     OS.EmitIntValue(0, 4);
799     OS.AddComment("Offset before epilogue");
800     OS.EmitIntValue(0, 4);
801     OS.AddComment("Function type index");
802     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
803     OS.AddComment("Function section relative address");
804     OS.EmitCOFFSecRel32(Fn);
805     OS.AddComment("Function section index");
806     OS.EmitCOFFSectionIndex(Fn);
807     OS.AddComment("Flags");
808     OS.EmitIntValue(0, 1);
809     // Emit the function display name as a null-terminated string.
810     OS.AddComment("Function name");
811     // Truncate the name so we won't overflow the record length field.
812     emitNullTerminatedSymbolName(OS, FuncName);
813     OS.EmitLabel(ProcRecordEnd);
814 
815     emitLocalVariableList(FI.Locals);
816 
817     // Emit inlined call site information. Only emit functions inlined directly
818     // into the parent function. We'll emit the other sites recursively as part
819     // of their parent inline site.
820     for (const DILocation *InlinedAt : FI.ChildSites) {
821       auto I = FI.InlineSites.find(InlinedAt);
822       assert(I != FI.InlineSites.end() &&
823              "child site not in function inline site map");
824       emitInlinedCallSite(FI, InlinedAt, I->second);
825     }
826 
827     if (SP != nullptr)
828       emitDebugInfoForUDTs(LocalUDTs);
829 
830     // We're done with this function.
831     OS.AddComment("Record length");
832     OS.EmitIntValue(0x0002, 2);
833     OS.AddComment("Record kind: S_PROC_ID_END");
834     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
835   }
836   endCVSubsection(SymbolsEnd);
837 
838   // We have an assembler directive that takes care of the whole line table.
839   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
840 }
841 
842 CodeViewDebug::LocalVarDefRange
843 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
844   LocalVarDefRange DR;
845   DR.InMemory = -1;
846   DR.DataOffset = Offset;
847   assert(DR.DataOffset == Offset && "truncation");
848   DR.IsSubfield = 0;
849   DR.StructOffset = 0;
850   DR.CVRegister = CVRegister;
851   return DR;
852 }
853 
854 CodeViewDebug::LocalVarDefRange
855 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
856                                      int Offset, bool IsSubfield,
857                                      uint16_t StructOffset) {
858   LocalVarDefRange DR;
859   DR.InMemory = InMemory;
860   DR.DataOffset = Offset;
861   DR.IsSubfield = IsSubfield;
862   DR.StructOffset = StructOffset;
863   DR.CVRegister = CVRegister;
864   return DR;
865 }
866 
867 void CodeViewDebug::collectVariableInfoFromMMITable(
868     DenseSet<InlinedVariable> &Processed) {
869   const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
870   const TargetFrameLowering *TFI = TSI.getFrameLowering();
871   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
872 
873   for (const MachineModuleInfo::VariableDbgInfo &VI :
874        MMI->getVariableDbgInfo()) {
875     if (!VI.Var)
876       continue;
877     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
878            "Expected inlined-at fields to agree");
879 
880     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
881     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
882 
883     // If variable scope is not found then skip this variable.
884     if (!Scope)
885       continue;
886 
887     // Get the frame register used and the offset.
888     unsigned FrameReg = 0;
889     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
890     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
891 
892     // Calculate the label ranges.
893     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
894     for (const InsnRange &Range : Scope->getRanges()) {
895       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
896       const MCSymbol *End = getLabelAfterInsn(Range.second);
897       End = End ? End : Asm->getFunctionEnd();
898       DefRange.Ranges.emplace_back(Begin, End);
899     }
900 
901     LocalVariable Var;
902     Var.DIVar = VI.Var;
903     Var.DefRanges.emplace_back(std::move(DefRange));
904     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
905   }
906 }
907 
908 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
909   DenseSet<InlinedVariable> Processed;
910   // Grab the variable info that was squirreled away in the MMI side-table.
911   collectVariableInfoFromMMITable(Processed);
912 
913   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
914 
915   for (const auto &I : DbgValues) {
916     InlinedVariable IV = I.first;
917     if (Processed.count(IV))
918       continue;
919     const DILocalVariable *DIVar = IV.first;
920     const DILocation *InlinedAt = IV.second;
921 
922     // Instruction ranges, specifying where IV is accessible.
923     const auto &Ranges = I.second;
924 
925     LexicalScope *Scope = nullptr;
926     if (InlinedAt)
927       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
928     else
929       Scope = LScopes.findLexicalScope(DIVar->getScope());
930     // If variable scope is not found then skip this variable.
931     if (!Scope)
932       continue;
933 
934     LocalVariable Var;
935     Var.DIVar = DIVar;
936 
937     // Calculate the definition ranges.
938     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
939       const InsnRange &Range = *I;
940       const MachineInstr *DVInst = Range.first;
941       assert(DVInst->isDebugValue() && "Invalid History entry");
942       const DIExpression *DIExpr = DVInst->getDebugExpression();
943       bool IsSubfield = false;
944       unsigned StructOffset = 0;
945 
946       // Handle bitpieces.
947       if (DIExpr && DIExpr->isBitPiece()) {
948         IsSubfield = true;
949         StructOffset = DIExpr->getBitPieceOffset() / 8;
950       } else if (DIExpr && DIExpr->getNumElements() > 0) {
951         continue; // Ignore unrecognized exprs.
952       }
953 
954       // Bail if operand 0 is not a valid register. This means the variable is a
955       // simple constant, or is described by a complex expression.
956       // FIXME: Find a way to represent constant variables, since they are
957       // relatively common.
958       unsigned Reg =
959           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
960       if (Reg == 0)
961         continue;
962 
963       // Handle the two cases we can handle: indirect in memory and in register.
964       unsigned CVReg = TRI->getCodeViewRegNum(Reg);
965       bool InMemory = DVInst->getOperand(1).isImm();
966       int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0;
967       {
968         LocalVarDefRange DR;
969         DR.CVRegister = CVReg;
970         DR.InMemory = InMemory;
971         DR.DataOffset = Offset;
972         DR.IsSubfield = IsSubfield;
973         DR.StructOffset = StructOffset;
974 
975         if (Var.DefRanges.empty() ||
976             Var.DefRanges.back().isDifferentLocation(DR)) {
977           Var.DefRanges.emplace_back(std::move(DR));
978         }
979       }
980 
981       // Compute the label range.
982       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
983       const MCSymbol *End = getLabelAfterInsn(Range.second);
984       if (!End) {
985         // This range is valid until the next overlapping bitpiece. In the
986         // common case, ranges will not be bitpieces, so they will overlap.
987         auto J = std::next(I);
988         while (J != E && !piecesOverlap(DIExpr, J->first->getDebugExpression()))
989           ++J;
990         if (J != E)
991           End = getLabelBeforeInsn(J->first);
992         else
993           End = Asm->getFunctionEnd();
994       }
995 
996       // If the last range end is our begin, just extend the last range.
997       // Otherwise make a new range.
998       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
999           Var.DefRanges.back().Ranges;
1000       if (!Ranges.empty() && Ranges.back().second == Begin)
1001         Ranges.back().second = End;
1002       else
1003         Ranges.emplace_back(Begin, End);
1004 
1005       // FIXME: Do more range combining.
1006     }
1007 
1008     recordLocalVariable(std::move(Var), InlinedAt);
1009   }
1010 }
1011 
1012 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
1013   assert(!CurFn && "Can't process two functions at once!");
1014 
1015   if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram())
1016     return;
1017 
1018   DebugHandlerBase::beginFunction(MF);
1019 
1020   const Function *GV = MF->getFunction();
1021   assert(FnDebugInfo.count(GV) == false);
1022   CurFn = &FnDebugInfo[GV];
1023   CurFn->FuncId = NextFuncId++;
1024   CurFn->Begin = Asm->getFunctionBegin();
1025 
1026   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1027 
1028   // Find the end of the function prolog.  First known non-DBG_VALUE and
1029   // non-frame setup location marks the beginning of the function body.
1030   // FIXME: is there a simpler a way to do this? Can we just search
1031   // for the first instruction of the function, not the last of the prolog?
1032   DebugLoc PrologEndLoc;
1033   bool EmptyPrologue = true;
1034   for (const auto &MBB : *MF) {
1035     for (const auto &MI : MBB) {
1036       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
1037           MI.getDebugLoc()) {
1038         PrologEndLoc = MI.getDebugLoc();
1039         break;
1040       } else if (!MI.isDebugValue()) {
1041         EmptyPrologue = false;
1042       }
1043     }
1044   }
1045 
1046   // Record beginning of function if we have a non-empty prologue.
1047   if (PrologEndLoc && !EmptyPrologue) {
1048     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1049     maybeRecordLocation(FnStartDL, MF);
1050   }
1051 }
1052 
1053 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
1054   // Don't record empty UDTs.
1055   if (Ty->getName().empty())
1056     return;
1057 
1058   SmallVector<StringRef, 5> QualifiedNameComponents;
1059   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1060       Ty->getScope().resolve(), QualifiedNameComponents);
1061 
1062   std::string FullyQualifiedName =
1063       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1064 
1065   if (ClosestSubprogram == nullptr)
1066     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1067   else if (ClosestSubprogram == CurrentSubprogram)
1068     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1069 
1070   // TODO: What if the ClosestSubprogram is neither null or the current
1071   // subprogram?  Currently, the UDT just gets dropped on the floor.
1072   //
1073   // The current behavior is not desirable.  To get maximal fidelity, we would
1074   // need to perform all type translation before beginning emission of .debug$S
1075   // and then make LocalUDTs a member of FunctionInfo
1076 }
1077 
1078 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1079   // Generic dispatch for lowering an unknown type.
1080   switch (Ty->getTag()) {
1081   case dwarf::DW_TAG_array_type:
1082     return lowerTypeArray(cast<DICompositeType>(Ty));
1083   case dwarf::DW_TAG_typedef:
1084     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1085   case dwarf::DW_TAG_base_type:
1086     return lowerTypeBasic(cast<DIBasicType>(Ty));
1087   case dwarf::DW_TAG_pointer_type:
1088     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1089       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1090     LLVM_FALLTHROUGH;
1091   case dwarf::DW_TAG_reference_type:
1092   case dwarf::DW_TAG_rvalue_reference_type:
1093     return lowerTypePointer(cast<DIDerivedType>(Ty));
1094   case dwarf::DW_TAG_ptr_to_member_type:
1095     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1096   case dwarf::DW_TAG_const_type:
1097   case dwarf::DW_TAG_volatile_type:
1098   // TODO: add support for DW_TAG_atomic_type here
1099     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1100   case dwarf::DW_TAG_subroutine_type:
1101     if (ClassTy) {
1102       // The member function type of a member function pointer has no
1103       // ThisAdjustment.
1104       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1105                                      /*ThisAdjustment=*/0);
1106     }
1107     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1108   case dwarf::DW_TAG_enumeration_type:
1109     return lowerTypeEnum(cast<DICompositeType>(Ty));
1110   case dwarf::DW_TAG_class_type:
1111   case dwarf::DW_TAG_structure_type:
1112     return lowerTypeClass(cast<DICompositeType>(Ty));
1113   case dwarf::DW_TAG_union_type:
1114     return lowerTypeUnion(cast<DICompositeType>(Ty));
1115   default:
1116     // Use the null type index.
1117     return TypeIndex();
1118   }
1119 }
1120 
1121 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1122   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1123   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1124   StringRef TypeName = Ty->getName();
1125 
1126   addToUDTs(Ty, UnderlyingTypeIndex);
1127 
1128   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1129       TypeName == "HRESULT")
1130     return TypeIndex(SimpleTypeKind::HResult);
1131   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1132       TypeName == "wchar_t")
1133     return TypeIndex(SimpleTypeKind::WideCharacter);
1134 
1135   return UnderlyingTypeIndex;
1136 }
1137 
1138 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1139   DITypeRef ElementTypeRef = Ty->getBaseType();
1140   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1141   // IndexType is size_t, which depends on the bitness of the target.
1142   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
1143                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1144                             : TypeIndex(SimpleTypeKind::UInt32Long);
1145 
1146   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1147 
1148 
1149   // We want to assert that the element type multiplied by the array lengths
1150   // match the size of the overall array. However, if we don't have complete
1151   // type information for the base type, we can't make this assertion. This
1152   // happens if limited debug info is enabled in this case:
1153   //   struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); };
1154   //   VTableOptzn array[3];
1155   // The DICompositeType of VTableOptzn will have size zero, and the array will
1156   // have size 3 * sizeof(void*), and we should avoid asserting.
1157   //
1158   // There is a related bug in the front-end where an array of a structure,
1159   // which was declared as incomplete structure first, ends up not getting a
1160   // size assigned to it. (PR28303)
1161   // Example:
1162   //   struct A(*p)[3];
1163   //   struct A { int f; } a[3];
1164   bool PartiallyIncomplete = false;
1165   if (Ty->getSizeInBits() == 0 || ElementSize == 0) {
1166     PartiallyIncomplete = true;
1167   }
1168 
1169   // Add subranges to array type.
1170   DINodeArray Elements = Ty->getElements();
1171   for (int i = Elements.size() - 1; i >= 0; --i) {
1172     const DINode *Element = Elements[i];
1173     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1174 
1175     const DISubrange *Subrange = cast<DISubrange>(Element);
1176     assert(Subrange->getLowerBound() == 0 &&
1177            "codeview doesn't support subranges with lower bounds");
1178     int64_t Count = Subrange->getCount();
1179 
1180     // Variable Length Array (VLA) has Count equal to '-1'.
1181     // Replace with Count '1', assume it is the minimum VLA length.
1182     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1183     if (Count == -1) {
1184       Count = 1;
1185       PartiallyIncomplete = true;
1186     }
1187 
1188     // Update the element size and element type index for subsequent subranges.
1189     ElementSize *= Count;
1190 
1191     // If this is the outermost array, use the size from the array. It will be
1192     // more accurate if PartiallyIncomplete is true.
1193     uint64_t ArraySize =
1194         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1195 
1196     StringRef Name = (i == 0) ? Ty->getName() : "";
1197     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1198     ElementTypeIndex = TypeTable.writeKnownType(AR);
1199   }
1200 
1201   (void)PartiallyIncomplete;
1202   assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8));
1203 
1204   return ElementTypeIndex;
1205 }
1206 
1207 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1208   TypeIndex Index;
1209   dwarf::TypeKind Kind;
1210   uint32_t ByteSize;
1211 
1212   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1213   ByteSize = Ty->getSizeInBits() / 8;
1214 
1215   SimpleTypeKind STK = SimpleTypeKind::None;
1216   switch (Kind) {
1217   case dwarf::DW_ATE_address:
1218     // FIXME: Translate
1219     break;
1220   case dwarf::DW_ATE_boolean:
1221     switch (ByteSize) {
1222     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1223     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1224     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1225     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1226     case 16: STK = SimpleTypeKind::Boolean128; break;
1227     }
1228     break;
1229   case dwarf::DW_ATE_complex_float:
1230     switch (ByteSize) {
1231     case 2:  STK = SimpleTypeKind::Complex16;  break;
1232     case 4:  STK = SimpleTypeKind::Complex32;  break;
1233     case 8:  STK = SimpleTypeKind::Complex64;  break;
1234     case 10: STK = SimpleTypeKind::Complex80;  break;
1235     case 16: STK = SimpleTypeKind::Complex128; break;
1236     }
1237     break;
1238   case dwarf::DW_ATE_float:
1239     switch (ByteSize) {
1240     case 2:  STK = SimpleTypeKind::Float16;  break;
1241     case 4:  STK = SimpleTypeKind::Float32;  break;
1242     case 6:  STK = SimpleTypeKind::Float48;  break;
1243     case 8:  STK = SimpleTypeKind::Float64;  break;
1244     case 10: STK = SimpleTypeKind::Float80;  break;
1245     case 16: STK = SimpleTypeKind::Float128; break;
1246     }
1247     break;
1248   case dwarf::DW_ATE_signed:
1249     switch (ByteSize) {
1250     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1251     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1252     case 4:  STK = SimpleTypeKind::Int32;           break;
1253     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1254     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1255     }
1256     break;
1257   case dwarf::DW_ATE_unsigned:
1258     switch (ByteSize) {
1259     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1260     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1261     case 4:  STK = SimpleTypeKind::UInt32;            break;
1262     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1263     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1264     }
1265     break;
1266   case dwarf::DW_ATE_UTF:
1267     switch (ByteSize) {
1268     case 2: STK = SimpleTypeKind::Character16; break;
1269     case 4: STK = SimpleTypeKind::Character32; break;
1270     }
1271     break;
1272   case dwarf::DW_ATE_signed_char:
1273     if (ByteSize == 1)
1274       STK = SimpleTypeKind::SignedCharacter;
1275     break;
1276   case dwarf::DW_ATE_unsigned_char:
1277     if (ByteSize == 1)
1278       STK = SimpleTypeKind::UnsignedCharacter;
1279     break;
1280   default:
1281     break;
1282   }
1283 
1284   // Apply some fixups based on the source-level type name.
1285   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1286     STK = SimpleTypeKind::Int32Long;
1287   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1288     STK = SimpleTypeKind::UInt32Long;
1289   if (STK == SimpleTypeKind::UInt16Short &&
1290       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1291     STK = SimpleTypeKind::WideCharacter;
1292   if ((STK == SimpleTypeKind::SignedCharacter ||
1293        STK == SimpleTypeKind::UnsignedCharacter) &&
1294       Ty->getName() == "char")
1295     STK = SimpleTypeKind::NarrowCharacter;
1296 
1297   return TypeIndex(STK);
1298 }
1299 
1300 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1301   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1302 
1303   // Pointers to simple types can use SimpleTypeMode, rather than having a
1304   // dedicated pointer type record.
1305   if (PointeeTI.isSimple() &&
1306       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1307       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1308     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1309                               ? SimpleTypeMode::NearPointer64
1310                               : SimpleTypeMode::NearPointer32;
1311     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1312   }
1313 
1314   PointerKind PK =
1315       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1316   PointerMode PM = PointerMode::Pointer;
1317   switch (Ty->getTag()) {
1318   default: llvm_unreachable("not a pointer tag type");
1319   case dwarf::DW_TAG_pointer_type:
1320     PM = PointerMode::Pointer;
1321     break;
1322   case dwarf::DW_TAG_reference_type:
1323     PM = PointerMode::LValueReference;
1324     break;
1325   case dwarf::DW_TAG_rvalue_reference_type:
1326     PM = PointerMode::RValueReference;
1327     break;
1328   }
1329   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1330   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1331   // do.
1332   PointerOptions PO = PointerOptions::None;
1333   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1334   return TypeTable.writeKnownType(PR);
1335 }
1336 
1337 static PointerToMemberRepresentation
1338 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1339   // SizeInBytes being zero generally implies that the member pointer type was
1340   // incomplete, which can happen if it is part of a function prototype. In this
1341   // case, use the unknown model instead of the general model.
1342   if (IsPMF) {
1343     switch (Flags & DINode::FlagPtrToMemberRep) {
1344     case 0:
1345       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1346                               : PointerToMemberRepresentation::GeneralFunction;
1347     case DINode::FlagSingleInheritance:
1348       return PointerToMemberRepresentation::SingleInheritanceFunction;
1349     case DINode::FlagMultipleInheritance:
1350       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1351     case DINode::FlagVirtualInheritance:
1352       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1353     }
1354   } else {
1355     switch (Flags & DINode::FlagPtrToMemberRep) {
1356     case 0:
1357       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1358                               : PointerToMemberRepresentation::GeneralData;
1359     case DINode::FlagSingleInheritance:
1360       return PointerToMemberRepresentation::SingleInheritanceData;
1361     case DINode::FlagMultipleInheritance:
1362       return PointerToMemberRepresentation::MultipleInheritanceData;
1363     case DINode::FlagVirtualInheritance:
1364       return PointerToMemberRepresentation::VirtualInheritanceData;
1365     }
1366   }
1367   llvm_unreachable("invalid ptr to member representation");
1368 }
1369 
1370 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1371   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1372   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1373   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1374   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1375                                                    : PointerKind::Near32;
1376   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1377   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1378                          : PointerMode::PointerToDataMember;
1379   PointerOptions PO = PointerOptions::None; // FIXME
1380   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1381   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1382   MemberPointerInfo MPI(
1383       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1384   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1385   return TypeTable.writeKnownType(PR);
1386 }
1387 
1388 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1389 /// have a translation, use the NearC convention.
1390 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1391   switch (DwarfCC) {
1392   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1393   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1394   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1395   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1396   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1397   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1398   }
1399   return CallingConvention::NearC;
1400 }
1401 
1402 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1403   ModifierOptions Mods = ModifierOptions::None;
1404   bool IsModifier = true;
1405   const DIType *BaseTy = Ty;
1406   while (IsModifier && BaseTy) {
1407     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1408     switch (BaseTy->getTag()) {
1409     case dwarf::DW_TAG_const_type:
1410       Mods |= ModifierOptions::Const;
1411       break;
1412     case dwarf::DW_TAG_volatile_type:
1413       Mods |= ModifierOptions::Volatile;
1414       break;
1415     default:
1416       IsModifier = false;
1417       break;
1418     }
1419     if (IsModifier)
1420       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1421   }
1422   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1423   ModifierRecord MR(ModifiedTI, Mods);
1424   return TypeTable.writeKnownType(MR);
1425 }
1426 
1427 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1428   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1429   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1430     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1431 
1432   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1433   ArrayRef<TypeIndex> ArgTypeIndices = None;
1434   if (!ReturnAndArgTypeIndices.empty()) {
1435     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1436     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1437     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1438   }
1439 
1440   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1441   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1442 
1443   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1444 
1445   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1446                             ArgTypeIndices.size(), ArgListIndex);
1447   return TypeTable.writeKnownType(Procedure);
1448 }
1449 
1450 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1451                                                  const DIType *ClassTy,
1452                                                  int ThisAdjustment) {
1453   // Lower the containing class type.
1454   TypeIndex ClassType = getTypeIndex(ClassTy);
1455 
1456   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1457   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1458     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1459 
1460   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1461   ArrayRef<TypeIndex> ArgTypeIndices = None;
1462   if (!ReturnAndArgTypeIndices.empty()) {
1463     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1464     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1465     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1466   }
1467   TypeIndex ThisTypeIndex = TypeIndex::Void();
1468   if (!ArgTypeIndices.empty()) {
1469     ThisTypeIndex = ArgTypeIndices.front();
1470     ArgTypeIndices = ArgTypeIndices.drop_front();
1471   }
1472 
1473   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1474   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1475 
1476   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1477 
1478   // TODO: Need to use the correct values for:
1479   //       FunctionOptions
1480   //       ThisPointerAdjustment.
1481   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1482                            FunctionOptions::None, ArgTypeIndices.size(),
1483                            ArgListIndex, ThisAdjustment);
1484   TypeIndex TI = TypeTable.writeKnownType(MFR);
1485 
1486   return TI;
1487 }
1488 
1489 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1490   unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize());
1491   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1492 
1493   VFTableShapeRecord VFTSR(Slots);
1494   return TypeTable.writeKnownType(VFTSR);
1495 }
1496 
1497 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1498   switch (Flags & DINode::FlagAccessibility) {
1499   case DINode::FlagPrivate:   return MemberAccess::Private;
1500   case DINode::FlagPublic:    return MemberAccess::Public;
1501   case DINode::FlagProtected: return MemberAccess::Protected;
1502   case 0:
1503     // If there was no explicit access control, provide the default for the tag.
1504     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1505                                                  : MemberAccess::Public;
1506   }
1507   llvm_unreachable("access flags are exclusive");
1508 }
1509 
1510 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1511   if (SP->isArtificial())
1512     return MethodOptions::CompilerGenerated;
1513 
1514   // FIXME: Handle other MethodOptions.
1515 
1516   return MethodOptions::None;
1517 }
1518 
1519 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1520                                            bool Introduced) {
1521   switch (SP->getVirtuality()) {
1522   case dwarf::DW_VIRTUALITY_none:
1523     break;
1524   case dwarf::DW_VIRTUALITY_virtual:
1525     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1526   case dwarf::DW_VIRTUALITY_pure_virtual:
1527     return Introduced ? MethodKind::PureIntroducingVirtual
1528                       : MethodKind::PureVirtual;
1529   default:
1530     llvm_unreachable("unhandled virtuality case");
1531   }
1532 
1533   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1534 
1535   return MethodKind::Vanilla;
1536 }
1537 
1538 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1539   switch (Ty->getTag()) {
1540   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1541   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1542   }
1543   llvm_unreachable("unexpected tag");
1544 }
1545 
1546 /// Return ClassOptions that should be present on both the forward declaration
1547 /// and the defintion of a tag type.
1548 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1549   ClassOptions CO = ClassOptions::None;
1550 
1551   // MSVC always sets this flag, even for local types. Clang doesn't always
1552   // appear to give every type a linkage name, which may be problematic for us.
1553   // FIXME: Investigate the consequences of not following them here.
1554   if (!Ty->getIdentifier().empty())
1555     CO |= ClassOptions::HasUniqueName;
1556 
1557   // Put the Nested flag on a type if it appears immediately inside a tag type.
1558   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1559   // here. That flag is only set on definitions, and not forward declarations.
1560   const DIScope *ImmediateScope = Ty->getScope().resolve();
1561   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1562     CO |= ClassOptions::Nested;
1563 
1564   // Put the Scoped flag on function-local types.
1565   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1566        Scope = Scope->getScope().resolve()) {
1567     if (isa<DISubprogram>(Scope)) {
1568       CO |= ClassOptions::Scoped;
1569       break;
1570     }
1571   }
1572 
1573   return CO;
1574 }
1575 
1576 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1577   ClassOptions CO = getCommonClassOptions(Ty);
1578   TypeIndex FTI;
1579   unsigned EnumeratorCount = 0;
1580 
1581   if (Ty->isForwardDecl()) {
1582     CO |= ClassOptions::ForwardReference;
1583   } else {
1584     FieldListRecordBuilder FLRB(TypeTable);
1585 
1586     FLRB.begin();
1587     for (const DINode *Element : Ty->getElements()) {
1588       // We assume that the frontend provides all members in source declaration
1589       // order, which is what MSVC does.
1590       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1591         EnumeratorRecord ER(MemberAccess::Public,
1592                             APSInt::getUnsigned(Enumerator->getValue()),
1593                             Enumerator->getName());
1594         FLRB.writeMemberType(ER);
1595         EnumeratorCount++;
1596       }
1597     }
1598     FTI = FLRB.end();
1599   }
1600 
1601   std::string FullName = getFullyQualifiedName(Ty);
1602 
1603   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1604                 getTypeIndex(Ty->getBaseType()));
1605   return TypeTable.writeKnownType(ER);
1606 }
1607 
1608 //===----------------------------------------------------------------------===//
1609 // ClassInfo
1610 //===----------------------------------------------------------------------===//
1611 
1612 struct llvm::ClassInfo {
1613   struct MemberInfo {
1614     const DIDerivedType *MemberTypeNode;
1615     uint64_t BaseOffset;
1616   };
1617   // [MemberInfo]
1618   typedef std::vector<MemberInfo> MemberList;
1619 
1620   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1621   // MethodName -> MethodsList
1622   typedef MapVector<MDString *, MethodsList> MethodsMap;
1623 
1624   /// Base classes.
1625   std::vector<const DIDerivedType *> Inheritance;
1626 
1627   /// Direct members.
1628   MemberList Members;
1629   // Direct overloaded methods gathered by name.
1630   MethodsMap Methods;
1631 
1632   TypeIndex VShapeTI;
1633 
1634   std::vector<const DICompositeType *> NestedClasses;
1635 };
1636 
1637 void CodeViewDebug::clear() {
1638   assert(CurFn == nullptr);
1639   FileIdMap.clear();
1640   FnDebugInfo.clear();
1641   FileToFilepathMap.clear();
1642   LocalUDTs.clear();
1643   GlobalUDTs.clear();
1644   TypeIndices.clear();
1645   CompleteTypeIndices.clear();
1646 }
1647 
1648 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1649                                       const DIDerivedType *DDTy) {
1650   if (!DDTy->getName().empty()) {
1651     Info.Members.push_back({DDTy, 0});
1652     return;
1653   }
1654   // An unnamed member must represent a nested struct or union. Add all the
1655   // indirect fields to the current record.
1656   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1657   uint64_t Offset = DDTy->getOffsetInBits();
1658   const DIType *Ty = DDTy->getBaseType().resolve();
1659   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1660   ClassInfo NestedInfo = collectClassInfo(DCTy);
1661   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1662     Info.Members.push_back(
1663         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1664 }
1665 
1666 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1667   ClassInfo Info;
1668   // Add elements to structure type.
1669   DINodeArray Elements = Ty->getElements();
1670   for (auto *Element : Elements) {
1671     // We assume that the frontend provides all members in source declaration
1672     // order, which is what MSVC does.
1673     if (!Element)
1674       continue;
1675     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1676       Info.Methods[SP->getRawName()].push_back(SP);
1677     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1678       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1679         collectMemberInfo(Info, DDTy);
1680       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1681         Info.Inheritance.push_back(DDTy);
1682       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1683                  DDTy->getName() == "__vtbl_ptr_type") {
1684         Info.VShapeTI = getTypeIndex(DDTy);
1685       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1686         // Ignore friend members. It appears that MSVC emitted info about
1687         // friends in the past, but modern versions do not.
1688       }
1689     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1690       Info.NestedClasses.push_back(Composite);
1691     }
1692     // Skip other unrecognized kinds of elements.
1693   }
1694   return Info;
1695 }
1696 
1697 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1698   // First, construct the forward decl.  Don't look into Ty to compute the
1699   // forward decl options, since it might not be available in all TUs.
1700   TypeRecordKind Kind = getRecordKind(Ty);
1701   ClassOptions CO =
1702       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1703   std::string FullName = getFullyQualifiedName(Ty);
1704   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1705                  FullName, Ty->getIdentifier());
1706   TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR);
1707   if (!Ty->isForwardDecl())
1708     DeferredCompleteTypes.push_back(Ty);
1709   return FwdDeclTI;
1710 }
1711 
1712 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1713   // Construct the field list and complete type record.
1714   TypeRecordKind Kind = getRecordKind(Ty);
1715   ClassOptions CO = getCommonClassOptions(Ty);
1716   TypeIndex FieldTI;
1717   TypeIndex VShapeTI;
1718   unsigned FieldCount;
1719   bool ContainsNestedClass;
1720   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1721       lowerRecordFieldList(Ty);
1722 
1723   if (ContainsNestedClass)
1724     CO |= ClassOptions::ContainsNestedClass;
1725 
1726   std::string FullName = getFullyQualifiedName(Ty);
1727 
1728   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1729 
1730   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1731                  SizeInBytes, FullName, Ty->getIdentifier());
1732   TypeIndex ClassTI = TypeTable.writeKnownType(CR);
1733 
1734   StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1735   TypeIndex SIDI = TypeTable.writeKnownType(SIDR);
1736   UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
1737   TypeTable.writeKnownType(USLR);
1738 
1739   addToUDTs(Ty, ClassTI);
1740 
1741   return ClassTI;
1742 }
1743 
1744 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1745   ClassOptions CO =
1746       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1747   std::string FullName = getFullyQualifiedName(Ty);
1748   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1749   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR);
1750   if (!Ty->isForwardDecl())
1751     DeferredCompleteTypes.push_back(Ty);
1752   return FwdDeclTI;
1753 }
1754 
1755 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1756   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1757   TypeIndex FieldTI;
1758   unsigned FieldCount;
1759   bool ContainsNestedClass;
1760   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1761       lowerRecordFieldList(Ty);
1762 
1763   if (ContainsNestedClass)
1764     CO |= ClassOptions::ContainsNestedClass;
1765 
1766   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1767   std::string FullName = getFullyQualifiedName(Ty);
1768 
1769   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
1770                  Ty->getIdentifier());
1771   TypeIndex UnionTI = TypeTable.writeKnownType(UR);
1772 
1773   StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1774   TypeIndex SIRI = TypeTable.writeKnownType(SIR);
1775   UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
1776   TypeTable.writeKnownType(USLR);
1777 
1778   addToUDTs(Ty, UnionTI);
1779 
1780   return UnionTI;
1781 }
1782 
1783 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1784 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1785   // Manually count members. MSVC appears to count everything that generates a
1786   // field list record. Each individual overload in a method overload group
1787   // contributes to this count, even though the overload group is a single field
1788   // list record.
1789   unsigned MemberCount = 0;
1790   ClassInfo Info = collectClassInfo(Ty);
1791   FieldListRecordBuilder FLBR(TypeTable);
1792   FLBR.begin();
1793 
1794   // Create base classes.
1795   for (const DIDerivedType *I : Info.Inheritance) {
1796     if (I->getFlags() & DINode::FlagVirtual) {
1797       // Virtual base.
1798       // FIXME: Emit VBPtrOffset when the frontend provides it.
1799       unsigned VBPtrOffset = 0;
1800       // FIXME: Despite the accessor name, the offset is really in bytes.
1801       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1802       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
1803                             ? TypeRecordKind::IndirectVirtualBaseClass
1804                             : TypeRecordKind::VirtualBaseClass;
1805       VirtualBaseClassRecord VBCR(
1806           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
1807           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1808           VBTableIndex);
1809 
1810       FLBR.writeMemberType(VBCR);
1811     } else {
1812       assert(I->getOffsetInBits() % 8 == 0 &&
1813              "bases must be on byte boundaries");
1814       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
1815                           getTypeIndex(I->getBaseType()),
1816                           I->getOffsetInBits() / 8);
1817       FLBR.writeMemberType(BCR);
1818     }
1819   }
1820 
1821   // Create members.
1822   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1823     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1824     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1825     StringRef MemberName = Member->getName();
1826     MemberAccess Access =
1827         translateAccessFlags(Ty->getTag(), Member->getFlags());
1828 
1829     if (Member->isStaticMember()) {
1830       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
1831       FLBR.writeMemberType(SDMR);
1832       MemberCount++;
1833       continue;
1834     }
1835 
1836     // Virtual function pointer member.
1837     if ((Member->getFlags() & DINode::FlagArtificial) &&
1838         Member->getName().startswith("_vptr$")) {
1839       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
1840       FLBR.writeMemberType(VFPR);
1841       MemberCount++;
1842       continue;
1843     }
1844 
1845     // Data member.
1846     uint64_t MemberOffsetInBits =
1847         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1848     if (Member->isBitField()) {
1849       uint64_t StartBitOffset = MemberOffsetInBits;
1850       if (const auto *CI =
1851               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1852         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1853       }
1854       StartBitOffset -= MemberOffsetInBits;
1855       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
1856                          StartBitOffset);
1857       MemberBaseType = TypeTable.writeKnownType(BFR);
1858     }
1859     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1860     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
1861                          MemberName);
1862     FLBR.writeMemberType(DMR);
1863     MemberCount++;
1864   }
1865 
1866   // Create methods
1867   for (auto &MethodItr : Info.Methods) {
1868     StringRef Name = MethodItr.first->getString();
1869 
1870     std::vector<OneMethodRecord> Methods;
1871     for (const DISubprogram *SP : MethodItr.second) {
1872       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1873       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1874 
1875       unsigned VFTableOffset = -1;
1876       if (Introduced)
1877         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1878 
1879       Methods.push_back(OneMethodRecord(
1880           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
1881           translateMethodKindFlags(SP, Introduced),
1882           translateMethodOptionFlags(SP), VFTableOffset, Name));
1883       MemberCount++;
1884     }
1885     assert(Methods.size() > 0 && "Empty methods map entry");
1886     if (Methods.size() == 1)
1887       FLBR.writeMemberType(Methods[0]);
1888     else {
1889       MethodOverloadListRecord MOLR(Methods);
1890       TypeIndex MethodList = TypeTable.writeKnownType(MOLR);
1891       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
1892       FLBR.writeMemberType(OMR);
1893     }
1894   }
1895 
1896   // Create nested classes.
1897   for (const DICompositeType *Nested : Info.NestedClasses) {
1898     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1899     FLBR.writeMemberType(R);
1900     MemberCount++;
1901   }
1902 
1903   TypeIndex FieldTI = FLBR.end();
1904   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1905                          !Info.NestedClasses.empty());
1906 }
1907 
1908 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1909   if (!VBPType.getIndex()) {
1910     // Make a 'const int *' type.
1911     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1912     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1913 
1914     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1915                                                   : PointerKind::Near32;
1916     PointerMode PM = PointerMode::Pointer;
1917     PointerOptions PO = PointerOptions::None;
1918     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1919 
1920     VBPType = TypeTable.writeKnownType(PR);
1921   }
1922 
1923   return VBPType;
1924 }
1925 
1926 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1927   const DIType *Ty = TypeRef.resolve();
1928   const DIType *ClassTy = ClassTyRef.resolve();
1929 
1930   // The null DIType is the void type. Don't try to hash it.
1931   if (!Ty)
1932     return TypeIndex::Void();
1933 
1934   // Check if we've already translated this type. Don't try to do a
1935   // get-or-create style insertion that caches the hash lookup across the
1936   // lowerType call. It will update the TypeIndices map.
1937   auto I = TypeIndices.find({Ty, ClassTy});
1938   if (I != TypeIndices.end())
1939     return I->second;
1940 
1941   TypeLoweringScope S(*this);
1942   TypeIndex TI = lowerType(Ty, ClassTy);
1943   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1944 }
1945 
1946 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1947   const DIType *Ty = TypeRef.resolve();
1948 
1949   // The null DIType is the void type. Don't try to hash it.
1950   if (!Ty)
1951     return TypeIndex::Void();
1952 
1953   // If this is a non-record type, the complete type index is the same as the
1954   // normal type index. Just call getTypeIndex.
1955   switch (Ty->getTag()) {
1956   case dwarf::DW_TAG_class_type:
1957   case dwarf::DW_TAG_structure_type:
1958   case dwarf::DW_TAG_union_type:
1959     break;
1960   default:
1961     return getTypeIndex(Ty);
1962   }
1963 
1964   // Check if we've already translated the complete record type.  Lowering a
1965   // complete type should never trigger lowering another complete type, so we
1966   // can reuse the hash table lookup result.
1967   const auto *CTy = cast<DICompositeType>(Ty);
1968   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1969   if (!InsertResult.second)
1970     return InsertResult.first->second;
1971 
1972   TypeLoweringScope S(*this);
1973 
1974   // Make sure the forward declaration is emitted first. It's unclear if this
1975   // is necessary, but MSVC does it, and we should follow suit until we can show
1976   // otherwise.
1977   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1978 
1979   // Just use the forward decl if we don't have complete type info. This might
1980   // happen if the frontend is using modules and expects the complete definition
1981   // to be emitted elsewhere.
1982   if (CTy->isForwardDecl())
1983     return FwdDeclTI;
1984 
1985   TypeIndex TI;
1986   switch (CTy->getTag()) {
1987   case dwarf::DW_TAG_class_type:
1988   case dwarf::DW_TAG_structure_type:
1989     TI = lowerCompleteTypeClass(CTy);
1990     break;
1991   case dwarf::DW_TAG_union_type:
1992     TI = lowerCompleteTypeUnion(CTy);
1993     break;
1994   default:
1995     llvm_unreachable("not a record");
1996   }
1997 
1998   InsertResult.first->second = TI;
1999   return TI;
2000 }
2001 
2002 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2003 /// and do this until fixpoint, as each complete record type typically
2004 /// references
2005 /// many other record types.
2006 void CodeViewDebug::emitDeferredCompleteTypes() {
2007   SmallVector<const DICompositeType *, 4> TypesToEmit;
2008   while (!DeferredCompleteTypes.empty()) {
2009     std::swap(DeferredCompleteTypes, TypesToEmit);
2010     for (const DICompositeType *RecordTy : TypesToEmit)
2011       getCompleteTypeIndex(RecordTy);
2012     TypesToEmit.clear();
2013   }
2014 }
2015 
2016 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2017   // Get the sorted list of parameters and emit them first.
2018   SmallVector<const LocalVariable *, 6> Params;
2019   for (const LocalVariable &L : Locals)
2020     if (L.DIVar->isParameter())
2021       Params.push_back(&L);
2022   std::sort(Params.begin(), Params.end(),
2023             [](const LocalVariable *L, const LocalVariable *R) {
2024               return L->DIVar->getArg() < R->DIVar->getArg();
2025             });
2026   for (const LocalVariable *L : Params)
2027     emitLocalVariable(*L);
2028 
2029   // Next emit all non-parameters in the order that we found them.
2030   for (const LocalVariable &L : Locals)
2031     if (!L.DIVar->isParameter())
2032       emitLocalVariable(L);
2033 }
2034 
2035 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2036   // LocalSym record, see SymbolRecord.h for more info.
2037   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2038            *LocalEnd = MMI->getContext().createTempSymbol();
2039   OS.AddComment("Record length");
2040   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2041   OS.EmitLabel(LocalBegin);
2042 
2043   OS.AddComment("Record kind: S_LOCAL");
2044   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2045 
2046   LocalSymFlags Flags = LocalSymFlags::None;
2047   if (Var.DIVar->isParameter())
2048     Flags |= LocalSymFlags::IsParameter;
2049   if (Var.DefRanges.empty())
2050     Flags |= LocalSymFlags::IsOptimizedOut;
2051 
2052   OS.AddComment("TypeIndex");
2053   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
2054   OS.EmitIntValue(TI.getIndex(), 4);
2055   OS.AddComment("Flags");
2056   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2057   // Truncate the name so we won't overflow the record length field.
2058   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2059   OS.EmitLabel(LocalEnd);
2060 
2061   // Calculate the on disk prefix of the appropriate def range record. The
2062   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2063   // should be big enough to hold all forms without memory allocation.
2064   SmallString<20> BytePrefix;
2065   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2066     BytePrefix.clear();
2067     if (DefRange.InMemory) {
2068       uint16_t RegRelFlags = 0;
2069       if (DefRange.IsSubfield) {
2070         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2071                       (DefRange.StructOffset
2072                        << DefRangeRegisterRelSym::OffsetInParentShift);
2073       }
2074       DefRangeRegisterRelSym Sym(DefRange.CVRegister, RegRelFlags,
2075                                  DefRange.DataOffset, None);
2076       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2077       BytePrefix +=
2078           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2079       BytePrefix +=
2080           StringRef(reinterpret_cast<const char *>(&Sym.Header),
2081                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
2082     } else {
2083       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2084       if (DefRange.IsSubfield) {
2085         // Unclear what matters here.
2086         DefRangeSubfieldRegisterSym Sym(DefRange.CVRegister, 0,
2087                                         DefRange.StructOffset, None);
2088         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2089         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2090                                 sizeof(SymKind));
2091         BytePrefix +=
2092             StringRef(reinterpret_cast<const char *>(&Sym.Header),
2093                       sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
2094       } else {
2095         // Unclear what matters here.
2096         DefRangeRegisterSym Sym(DefRange.CVRegister, 0, None);
2097         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2098         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2099                                 sizeof(SymKind));
2100         BytePrefix +=
2101             StringRef(reinterpret_cast<const char *>(&Sym.Header),
2102                       sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
2103       }
2104     }
2105     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2106   }
2107 }
2108 
2109 void CodeViewDebug::endFunction(const MachineFunction *MF) {
2110   if (!Asm || !CurFn)  // We haven't created any debug info for this function.
2111     return;
2112 
2113   const Function *GV = MF->getFunction();
2114   assert(FnDebugInfo.count(GV));
2115   assert(CurFn == &FnDebugInfo[GV]);
2116 
2117   collectVariableInfo(GV->getSubprogram());
2118 
2119   DebugHandlerBase::endFunction(MF);
2120 
2121   // Don't emit anything if we don't have any line tables.
2122   if (!CurFn->HaveLineInfo) {
2123     FnDebugInfo.erase(GV);
2124     CurFn = nullptr;
2125     return;
2126   }
2127 
2128   CurFn->End = Asm->getFunctionEnd();
2129 
2130   CurFn = nullptr;
2131 }
2132 
2133 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2134   DebugHandlerBase::beginInstruction(MI);
2135 
2136   // Ignore DBG_VALUE locations and function prologue.
2137   if (!Asm || !CurFn || MI->isDebugValue() ||
2138       MI->getFlag(MachineInstr::FrameSetup))
2139     return;
2140   DebugLoc DL = MI->getDebugLoc();
2141   if (DL == PrevInstLoc || !DL)
2142     return;
2143   maybeRecordLocation(DL, Asm->MF);
2144 }
2145 
2146 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
2147   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2148            *EndLabel = MMI->getContext().createTempSymbol();
2149   OS.EmitIntValue(unsigned(Kind), 4);
2150   OS.AddComment("Subsection size");
2151   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2152   OS.EmitLabel(BeginLabel);
2153   return EndLabel;
2154 }
2155 
2156 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2157   OS.EmitLabel(EndLabel);
2158   // Every subsection must be aligned to a 4-byte boundary.
2159   OS.EmitValueToAlignment(4);
2160 }
2161 
2162 void CodeViewDebug::emitDebugInfoForUDTs(
2163     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
2164   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
2165     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2166              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2167     OS.AddComment("Record length");
2168     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2169     OS.EmitLabel(UDTRecordBegin);
2170 
2171     OS.AddComment("Record kind: S_UDT");
2172     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2173 
2174     OS.AddComment("Type");
2175     OS.EmitIntValue(UDT.second.getIndex(), 4);
2176 
2177     emitNullTerminatedSymbolName(OS, UDT.first);
2178     OS.EmitLabel(UDTRecordEnd);
2179   }
2180 }
2181 
2182 void CodeViewDebug::emitDebugInfoForGlobals() {
2183   DenseMap<const DIGlobalVariable *, const GlobalVariable *> GlobalMap;
2184   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2185     SmallVector<MDNode *, 1> MDs;
2186     GV.getMetadata(LLVMContext::MD_dbg, MDs);
2187     for (MDNode *MD : MDs)
2188       GlobalMap[cast<DIGlobalVariable>(MD)] = &GV;
2189   }
2190 
2191   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2192   for (const MDNode *Node : CUs->operands()) {
2193     const auto *CU = cast<DICompileUnit>(Node);
2194 
2195     // First, emit all globals that are not in a comdat in a single symbol
2196     // substream. MSVC doesn't like it if the substream is empty, so only open
2197     // it if we have at least one global to emit.
2198     switchToDebugSectionForSymbol(nullptr);
2199     MCSymbol *EndLabel = nullptr;
2200     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2201       if (const auto *GV = GlobalMap.lookup(G))
2202         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2203           if (!EndLabel) {
2204             OS.AddComment("Symbol subsection for globals");
2205             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2206           }
2207           emitDebugInfoForGlobal(G, GV, Asm->getSymbol(GV));
2208         }
2209     }
2210     if (EndLabel)
2211       endCVSubsection(EndLabel);
2212 
2213     // Second, emit each global that is in a comdat into its own .debug$S
2214     // section along with its own symbol substream.
2215     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2216       if (const auto *GV = GlobalMap.lookup(G)) {
2217         if (GV->hasComdat()) {
2218           MCSymbol *GVSym = Asm->getSymbol(GV);
2219           OS.AddComment("Symbol subsection for " +
2220                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
2221           switchToDebugSectionForSymbol(GVSym);
2222           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2223           emitDebugInfoForGlobal(G, GV, GVSym);
2224           endCVSubsection(EndLabel);
2225         }
2226       }
2227     }
2228   }
2229 }
2230 
2231 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2232   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2233   for (const MDNode *Node : CUs->operands()) {
2234     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2235       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2236         getTypeIndex(RT);
2237         // FIXME: Add to global/local DTU list.
2238       }
2239     }
2240   }
2241 }
2242 
2243 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2244                                            const GlobalVariable *GV,
2245                                            MCSymbol *GVSym) {
2246   // DataSym record, see SymbolRecord.h for more info.
2247   // FIXME: Thread local data, etc
2248   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2249            *DataEnd = MMI->getContext().createTempSymbol();
2250   OS.AddComment("Record length");
2251   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2252   OS.EmitLabel(DataBegin);
2253   if (DIGV->isLocalToUnit()) {
2254     if (GV->isThreadLocal()) {
2255       OS.AddComment("Record kind: S_LTHREAD32");
2256       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2257     } else {
2258       OS.AddComment("Record kind: S_LDATA32");
2259       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2260     }
2261   } else {
2262     if (GV->isThreadLocal()) {
2263       OS.AddComment("Record kind: S_GTHREAD32");
2264       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2265     } else {
2266       OS.AddComment("Record kind: S_GDATA32");
2267       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2268     }
2269   }
2270   OS.AddComment("Type");
2271   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2272   OS.AddComment("DataOffset");
2273   OS.EmitCOFFSecRel32(GVSym);
2274   OS.AddComment("Segment");
2275   OS.EmitCOFFSectionIndex(GVSym);
2276   OS.AddComment("Name");
2277   emitNullTerminatedSymbolName(OS, DIGV->getName());
2278   OS.EmitLabel(DataEnd);
2279 }
2280