1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineModuleInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/TargetFrameLowering.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 44 #include "llvm/DebugInfo/CodeView/CodeView.h" 45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 47 #include "llvm/DebugInfo/CodeView/EnumTables.h" 48 #include "llvm/DebugInfo/CodeView/Line.h" 49 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 50 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 51 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 52 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 53 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugInfoMetadata.h" 57 #include "llvm/IR/DebugLoc.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GlobalValue.h" 60 #include "llvm/IR/GlobalVariable.h" 61 #include "llvm/IR/Metadata.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCContext.h" 65 #include "llvm/MC/MCSectionCOFF.h" 66 #include "llvm/MC/MCStreamer.h" 67 #include "llvm/MC/MCSymbol.h" 68 #include "llvm/Support/BinaryByteStream.h" 69 #include "llvm/Support/BinaryStreamReader.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Endian.h" 74 #include "llvm/Support/Error.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/FormatVariadic.h" 77 #include "llvm/Support/Path.h" 78 #include "llvm/Support/SMLoc.h" 79 #include "llvm/Support/ScopedPrinter.h" 80 #include "llvm/Target/TargetLoweringObjectFile.h" 81 #include "llvm/Target/TargetMachine.h" 82 #include <algorithm> 83 #include <cassert> 84 #include <cctype> 85 #include <cstddef> 86 #include <cstdint> 87 #include <iterator> 88 #include <limits> 89 #include <string> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 using namespace llvm::codeview; 95 96 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 97 switch (Type) { 98 case Triple::ArchType::x86: 99 return CPUType::Pentium3; 100 case Triple::ArchType::x86_64: 101 return CPUType::X64; 102 case Triple::ArchType::thumb: 103 return CPUType::Thumb; 104 case Triple::ArchType::aarch64: 105 return CPUType::ARM64; 106 default: 107 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 108 } 109 } 110 111 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 112 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 113 // If module doesn't have named metadata anchors or COFF debug section 114 // is not available, skip any debug info related stuff. 115 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 116 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 117 Asm = nullptr; 118 MMI->setDebugInfoAvailability(false); 119 return; 120 } 121 // Tell MMI that we have debug info. 122 MMI->setDebugInfoAvailability(true); 123 124 TheCPU = 125 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 126 127 // Check if we should emit type record hashes. 128 ConstantInt *GH = mdconst::extract_or_null<ConstantInt>( 129 MMI->getModule()->getModuleFlag("CodeViewGHash")); 130 EmitDebugGlobalHashes = GH && !GH->isZero(); 131 } 132 133 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 134 std::string &Filepath = FileToFilepathMap[File]; 135 if (!Filepath.empty()) 136 return Filepath; 137 138 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 139 140 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 141 // it textually because one of the path components could be a symlink. 142 if (Dir.startswith("/") || Filename.startswith("/")) { 143 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 144 return Filename; 145 Filepath = Dir; 146 if (Dir.back() != '/') 147 Filepath += '/'; 148 Filepath += Filename; 149 return Filepath; 150 } 151 152 // Clang emits directory and relative filename info into the IR, but CodeView 153 // operates on full paths. We could change Clang to emit full paths too, but 154 // that would increase the IR size and probably not needed for other users. 155 // For now, just concatenate and canonicalize the path here. 156 if (Filename.find(':') == 1) 157 Filepath = Filename; 158 else 159 Filepath = (Dir + "\\" + Filename).str(); 160 161 // Canonicalize the path. We have to do it textually because we may no longer 162 // have access the file in the filesystem. 163 // First, replace all slashes with backslashes. 164 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 165 166 // Remove all "\.\" with "\". 167 size_t Cursor = 0; 168 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 169 Filepath.erase(Cursor, 2); 170 171 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 172 // path should be well-formatted, e.g. start with a drive letter, etc. 173 Cursor = 0; 174 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 175 // Something's wrong if the path starts with "\..\", abort. 176 if (Cursor == 0) 177 break; 178 179 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 180 if (PrevSlash == std::string::npos) 181 // Something's wrong, abort. 182 break; 183 184 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 185 // The next ".." might be following the one we've just erased. 186 Cursor = PrevSlash; 187 } 188 189 // Remove all duplicate backslashes. 190 Cursor = 0; 191 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 192 Filepath.erase(Cursor, 1); 193 194 return Filepath; 195 } 196 197 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 198 StringRef FullPath = getFullFilepath(F); 199 unsigned NextId = FileIdMap.size() + 1; 200 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 201 if (Insertion.second) { 202 // We have to compute the full filepath and emit a .cv_file directive. 203 ArrayRef<uint8_t> ChecksumAsBytes; 204 FileChecksumKind CSKind = FileChecksumKind::None; 205 if (F->getChecksum()) { 206 std::string Checksum = fromHex(F->getChecksum()->Value); 207 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 208 memcpy(CKMem, Checksum.data(), Checksum.size()); 209 ChecksumAsBytes = ArrayRef<uint8_t>( 210 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 211 switch (F->getChecksum()->Kind) { 212 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 213 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 214 } 215 } 216 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 217 static_cast<unsigned>(CSKind)); 218 (void)Success; 219 assert(Success && ".cv_file directive failed"); 220 } 221 return Insertion.first->second; 222 } 223 224 CodeViewDebug::InlineSite & 225 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 226 const DISubprogram *Inlinee) { 227 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 228 InlineSite *Site = &SiteInsertion.first->second; 229 if (SiteInsertion.second) { 230 unsigned ParentFuncId = CurFn->FuncId; 231 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 232 ParentFuncId = 233 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 234 .SiteFuncId; 235 236 Site->SiteFuncId = NextFuncId++; 237 OS.EmitCVInlineSiteIdDirective( 238 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 239 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 240 Site->Inlinee = Inlinee; 241 InlinedSubprograms.insert(Inlinee); 242 getFuncIdForSubprogram(Inlinee); 243 } 244 return *Site; 245 } 246 247 static StringRef getPrettyScopeName(const DIScope *Scope) { 248 StringRef ScopeName = Scope->getName(); 249 if (!ScopeName.empty()) 250 return ScopeName; 251 252 switch (Scope->getTag()) { 253 case dwarf::DW_TAG_enumeration_type: 254 case dwarf::DW_TAG_class_type: 255 case dwarf::DW_TAG_structure_type: 256 case dwarf::DW_TAG_union_type: 257 return "<unnamed-tag>"; 258 case dwarf::DW_TAG_namespace: 259 return "`anonymous namespace'"; 260 } 261 262 return StringRef(); 263 } 264 265 static const DISubprogram *getQualifiedNameComponents( 266 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 267 const DISubprogram *ClosestSubprogram = nullptr; 268 while (Scope != nullptr) { 269 if (ClosestSubprogram == nullptr) 270 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 271 StringRef ScopeName = getPrettyScopeName(Scope); 272 if (!ScopeName.empty()) 273 QualifiedNameComponents.push_back(ScopeName); 274 Scope = Scope->getScope().resolve(); 275 } 276 return ClosestSubprogram; 277 } 278 279 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 280 StringRef TypeName) { 281 std::string FullyQualifiedName; 282 for (StringRef QualifiedNameComponent : 283 llvm::reverse(QualifiedNameComponents)) { 284 FullyQualifiedName.append(QualifiedNameComponent); 285 FullyQualifiedName.append("::"); 286 } 287 FullyQualifiedName.append(TypeName); 288 return FullyQualifiedName; 289 } 290 291 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 292 SmallVector<StringRef, 5> QualifiedNameComponents; 293 getQualifiedNameComponents(Scope, QualifiedNameComponents); 294 return getQualifiedName(QualifiedNameComponents, Name); 295 } 296 297 struct CodeViewDebug::TypeLoweringScope { 298 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 299 ~TypeLoweringScope() { 300 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 301 // inner TypeLoweringScopes don't attempt to emit deferred types. 302 if (CVD.TypeEmissionLevel == 1) 303 CVD.emitDeferredCompleteTypes(); 304 --CVD.TypeEmissionLevel; 305 } 306 CodeViewDebug &CVD; 307 }; 308 309 static std::string getFullyQualifiedName(const DIScope *Ty) { 310 const DIScope *Scope = Ty->getScope().resolve(); 311 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 312 } 313 314 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 315 // No scope means global scope and that uses the zero index. 316 if (!Scope || isa<DIFile>(Scope)) 317 return TypeIndex(); 318 319 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 320 321 // Check if we've already translated this scope. 322 auto I = TypeIndices.find({Scope, nullptr}); 323 if (I != TypeIndices.end()) 324 return I->second; 325 326 // Build the fully qualified name of the scope. 327 std::string ScopeName = getFullyQualifiedName(Scope); 328 StringIdRecord SID(TypeIndex(), ScopeName); 329 auto TI = TypeTable.writeLeafType(SID); 330 return recordTypeIndexForDINode(Scope, TI); 331 } 332 333 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 334 assert(SP); 335 336 // Check if we've already translated this subprogram. 337 auto I = TypeIndices.find({SP, nullptr}); 338 if (I != TypeIndices.end()) 339 return I->second; 340 341 // The display name includes function template arguments. Drop them to match 342 // MSVC. 343 StringRef DisplayName = SP->getName().split('<').first; 344 345 const DIScope *Scope = SP->getScope().resolve(); 346 TypeIndex TI; 347 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 348 // If the scope is a DICompositeType, then this must be a method. Member 349 // function types take some special handling, and require access to the 350 // subprogram. 351 TypeIndex ClassType = getTypeIndex(Class); 352 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 353 DisplayName); 354 TI = TypeTable.writeLeafType(MFuncId); 355 } else { 356 // Otherwise, this must be a free function. 357 TypeIndex ParentScope = getScopeIndex(Scope); 358 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 359 TI = TypeTable.writeLeafType(FuncId); 360 } 361 362 return recordTypeIndexForDINode(SP, TI); 363 } 364 365 static bool isTrivial(const DICompositeType *DCTy) { 366 return ((DCTy->getFlags() & DINode::FlagTrivial) == DINode::FlagTrivial); 367 } 368 369 static FunctionOptions 370 getFunctionOptions(const DISubroutineType *Ty, 371 const DICompositeType *ClassTy = nullptr, 372 StringRef SPName = StringRef("")) { 373 FunctionOptions FO = FunctionOptions::None; 374 const DIType *ReturnTy = nullptr; 375 if (auto TypeArray = Ty->getTypeArray()) { 376 if (TypeArray.size()) 377 ReturnTy = TypeArray[0].resolve(); 378 } 379 380 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) { 381 if (!isTrivial(ReturnDCTy)) 382 FO |= FunctionOptions::CxxReturnUdt; 383 } 384 385 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 386 if (ClassTy && !isTrivial(ClassTy) && SPName == ClassTy->getName()) { 387 FO |= FunctionOptions::Constructor; 388 389 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 390 391 } 392 return FO; 393 } 394 395 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 396 const DICompositeType *Class) { 397 // Always use the method declaration as the key for the function type. The 398 // method declaration contains the this adjustment. 399 if (SP->getDeclaration()) 400 SP = SP->getDeclaration(); 401 assert(!SP->getDeclaration() && "should use declaration as key"); 402 403 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 404 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 405 auto I = TypeIndices.find({SP, Class}); 406 if (I != TypeIndices.end()) 407 return I->second; 408 409 // Make sure complete type info for the class is emitted *after* the member 410 // function type, as the complete class type is likely to reference this 411 // member function type. 412 TypeLoweringScope S(*this); 413 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 414 415 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 416 TypeIndex TI = lowerTypeMemberFunction( 417 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 418 return recordTypeIndexForDINode(SP, TI, Class); 419 } 420 421 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 422 TypeIndex TI, 423 const DIType *ClassTy) { 424 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 425 (void)InsertResult; 426 assert(InsertResult.second && "DINode was already assigned a type index"); 427 return TI; 428 } 429 430 unsigned CodeViewDebug::getPointerSizeInBytes() { 431 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 432 } 433 434 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 435 const LexicalScope *LS) { 436 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 437 // This variable was inlined. Associate it with the InlineSite. 438 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 439 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 440 Site.InlinedLocals.emplace_back(Var); 441 } else { 442 // This variable goes into the corresponding lexical scope. 443 ScopeVariables[LS].emplace_back(Var); 444 } 445 } 446 447 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 448 const DILocation *Loc) { 449 auto B = Locs.begin(), E = Locs.end(); 450 if (std::find(B, E, Loc) == E) 451 Locs.push_back(Loc); 452 } 453 454 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 455 const MachineFunction *MF) { 456 // Skip this instruction if it has the same location as the previous one. 457 if (!DL || DL == PrevInstLoc) 458 return; 459 460 const DIScope *Scope = DL.get()->getScope(); 461 if (!Scope) 462 return; 463 464 // Skip this line if it is longer than the maximum we can record. 465 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 466 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 467 LI.isNeverStepInto()) 468 return; 469 470 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 471 if (CI.getStartColumn() != DL.getCol()) 472 return; 473 474 if (!CurFn->HaveLineInfo) 475 CurFn->HaveLineInfo = true; 476 unsigned FileId = 0; 477 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 478 FileId = CurFn->LastFileId; 479 else 480 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 481 PrevInstLoc = DL; 482 483 unsigned FuncId = CurFn->FuncId; 484 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 485 const DILocation *Loc = DL.get(); 486 487 // If this location was actually inlined from somewhere else, give it the ID 488 // of the inline call site. 489 FuncId = 490 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 491 492 // Ensure we have links in the tree of inline call sites. 493 bool FirstLoc = true; 494 while ((SiteLoc = Loc->getInlinedAt())) { 495 InlineSite &Site = 496 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 497 if (!FirstLoc) 498 addLocIfNotPresent(Site.ChildSites, Loc); 499 FirstLoc = false; 500 Loc = SiteLoc; 501 } 502 addLocIfNotPresent(CurFn->ChildSites, Loc); 503 } 504 505 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 506 /*PrologueEnd=*/false, /*IsStmt=*/false, 507 DL->getFilename(), SMLoc()); 508 } 509 510 void CodeViewDebug::emitCodeViewMagicVersion() { 511 OS.EmitValueToAlignment(4); 512 OS.AddComment("Debug section magic"); 513 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 514 } 515 516 void CodeViewDebug::endModule() { 517 if (!Asm || !MMI->hasDebugInfo()) 518 return; 519 520 assert(Asm != nullptr); 521 522 // The COFF .debug$S section consists of several subsections, each starting 523 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 524 // of the payload followed by the payload itself. The subsections are 4-byte 525 // aligned. 526 527 // Use the generic .debug$S section, and make a subsection for all the inlined 528 // subprograms. 529 switchToDebugSectionForSymbol(nullptr); 530 531 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 532 emitCompilerInformation(); 533 endCVSubsection(CompilerInfo); 534 535 emitInlineeLinesSubsection(); 536 537 // Emit per-function debug information. 538 for (auto &P : FnDebugInfo) 539 if (!P.first->isDeclarationForLinker()) 540 emitDebugInfoForFunction(P.first, *P.second); 541 542 // Emit global variable debug information. 543 setCurrentSubprogram(nullptr); 544 emitDebugInfoForGlobals(); 545 546 // Emit retained types. 547 emitDebugInfoForRetainedTypes(); 548 549 // Switch back to the generic .debug$S section after potentially processing 550 // comdat symbol sections. 551 switchToDebugSectionForSymbol(nullptr); 552 553 // Emit UDT records for any types used by global variables. 554 if (!GlobalUDTs.empty()) { 555 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 556 emitDebugInfoForUDTs(GlobalUDTs); 557 endCVSubsection(SymbolsEnd); 558 } 559 560 // This subsection holds a file index to offset in string table table. 561 OS.AddComment("File index to string table offset subsection"); 562 OS.EmitCVFileChecksumsDirective(); 563 564 // This subsection holds the string table. 565 OS.AddComment("String table"); 566 OS.EmitCVStringTableDirective(); 567 568 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 569 // subsection in the generic .debug$S section at the end. There is no 570 // particular reason for this ordering other than to match MSVC. 571 emitBuildInfo(); 572 573 // Emit type information and hashes last, so that any types we translate while 574 // emitting function info are included. 575 emitTypeInformation(); 576 577 if (EmitDebugGlobalHashes) 578 emitTypeGlobalHashes(); 579 580 clear(); 581 } 582 583 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 584 unsigned MaxFixedRecordLength = 0xF00) { 585 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 586 // after a fixed length portion of the record. The fixed length portion should 587 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 588 // overall record size is less than the maximum allowed. 589 SmallString<32> NullTerminatedString( 590 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 591 NullTerminatedString.push_back('\0'); 592 OS.EmitBytes(NullTerminatedString); 593 } 594 595 void CodeViewDebug::emitTypeInformation() { 596 if (TypeTable.empty()) 597 return; 598 599 // Start the .debug$T or .debug$P section with 0x4. 600 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 601 emitCodeViewMagicVersion(); 602 603 SmallString<8> CommentPrefix; 604 if (OS.isVerboseAsm()) { 605 CommentPrefix += '\t'; 606 CommentPrefix += Asm->MAI->getCommentString(); 607 CommentPrefix += ' '; 608 } 609 610 TypeTableCollection Table(TypeTable.records()); 611 Optional<TypeIndex> B = Table.getFirst(); 612 while (B) { 613 // This will fail if the record data is invalid. 614 CVType Record = Table.getType(*B); 615 616 if (OS.isVerboseAsm()) { 617 // Emit a block comment describing the type record for readability. 618 SmallString<512> CommentBlock; 619 raw_svector_ostream CommentOS(CommentBlock); 620 ScopedPrinter SP(CommentOS); 621 SP.setPrefix(CommentPrefix); 622 TypeDumpVisitor TDV(Table, &SP, false); 623 624 Error E = codeview::visitTypeRecord(Record, *B, TDV); 625 if (E) { 626 logAllUnhandledErrors(std::move(E), errs(), "error: "); 627 llvm_unreachable("produced malformed type record"); 628 } 629 // emitRawComment will insert its own tab and comment string before 630 // the first line, so strip off our first one. It also prints its own 631 // newline. 632 OS.emitRawComment( 633 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 634 } 635 OS.EmitBinaryData(Record.str_data()); 636 B = Table.getNext(*B); 637 } 638 } 639 640 void CodeViewDebug::emitTypeGlobalHashes() { 641 if (TypeTable.empty()) 642 return; 643 644 // Start the .debug$H section with the version and hash algorithm, currently 645 // hardcoded to version 0, SHA1. 646 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 647 648 OS.EmitValueToAlignment(4); 649 OS.AddComment("Magic"); 650 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 651 OS.AddComment("Section Version"); 652 OS.EmitIntValue(0, 2); 653 OS.AddComment("Hash Algorithm"); 654 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); 655 656 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 657 for (const auto &GHR : TypeTable.hashes()) { 658 if (OS.isVerboseAsm()) { 659 // Emit an EOL-comment describing which TypeIndex this hash corresponds 660 // to, as well as the stringified SHA1 hash. 661 SmallString<32> Comment; 662 raw_svector_ostream CommentOS(Comment); 663 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 664 OS.AddComment(Comment); 665 ++TI; 666 } 667 assert(GHR.Hash.size() == 8); 668 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 669 GHR.Hash.size()); 670 OS.EmitBinaryData(S); 671 } 672 } 673 674 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 675 switch (DWLang) { 676 case dwarf::DW_LANG_C: 677 case dwarf::DW_LANG_C89: 678 case dwarf::DW_LANG_C99: 679 case dwarf::DW_LANG_C11: 680 case dwarf::DW_LANG_ObjC: 681 return SourceLanguage::C; 682 case dwarf::DW_LANG_C_plus_plus: 683 case dwarf::DW_LANG_C_plus_plus_03: 684 case dwarf::DW_LANG_C_plus_plus_11: 685 case dwarf::DW_LANG_C_plus_plus_14: 686 return SourceLanguage::Cpp; 687 case dwarf::DW_LANG_Fortran77: 688 case dwarf::DW_LANG_Fortran90: 689 case dwarf::DW_LANG_Fortran03: 690 case dwarf::DW_LANG_Fortran08: 691 return SourceLanguage::Fortran; 692 case dwarf::DW_LANG_Pascal83: 693 return SourceLanguage::Pascal; 694 case dwarf::DW_LANG_Cobol74: 695 case dwarf::DW_LANG_Cobol85: 696 return SourceLanguage::Cobol; 697 case dwarf::DW_LANG_Java: 698 return SourceLanguage::Java; 699 case dwarf::DW_LANG_D: 700 return SourceLanguage::D; 701 default: 702 // There's no CodeView representation for this language, and CV doesn't 703 // have an "unknown" option for the language field, so we'll use MASM, 704 // as it's very low level. 705 return SourceLanguage::Masm; 706 } 707 } 708 709 namespace { 710 struct Version { 711 int Part[4]; 712 }; 713 } // end anonymous namespace 714 715 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 716 // the version number. 717 static Version parseVersion(StringRef Name) { 718 Version V = {{0}}; 719 int N = 0; 720 for (const char C : Name) { 721 if (isdigit(C)) { 722 V.Part[N] *= 10; 723 V.Part[N] += C - '0'; 724 } else if (C == '.') { 725 ++N; 726 if (N >= 4) 727 return V; 728 } else if (N > 0) 729 return V; 730 } 731 return V; 732 } 733 734 void CodeViewDebug::emitCompilerInformation() { 735 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 736 uint32_t Flags = 0; 737 738 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 739 const MDNode *Node = *CUs->operands().begin(); 740 const auto *CU = cast<DICompileUnit>(Node); 741 742 // The low byte of the flags indicates the source language. 743 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 744 // TODO: Figure out which other flags need to be set. 745 746 OS.AddComment("Flags and language"); 747 OS.EmitIntValue(Flags, 4); 748 749 OS.AddComment("CPUType"); 750 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2); 751 752 StringRef CompilerVersion = CU->getProducer(); 753 Version FrontVer = parseVersion(CompilerVersion); 754 OS.AddComment("Frontend version"); 755 for (int N = 0; N < 4; ++N) 756 OS.EmitIntValue(FrontVer.Part[N], 2); 757 758 // Some Microsoft tools, like Binscope, expect a backend version number of at 759 // least 8.something, so we'll coerce the LLVM version into a form that 760 // guarantees it'll be big enough without really lying about the version. 761 int Major = 1000 * LLVM_VERSION_MAJOR + 762 10 * LLVM_VERSION_MINOR + 763 LLVM_VERSION_PATCH; 764 // Clamp it for builds that use unusually large version numbers. 765 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 766 Version BackVer = {{ Major, 0, 0, 0 }}; 767 OS.AddComment("Backend version"); 768 for (int N = 0; N < 4; ++N) 769 OS.EmitIntValue(BackVer.Part[N], 2); 770 771 OS.AddComment("Null-terminated compiler version string"); 772 emitNullTerminatedSymbolName(OS, CompilerVersion); 773 774 endSymbolRecord(CompilerEnd); 775 } 776 777 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 778 StringRef S) { 779 StringIdRecord SIR(TypeIndex(0x0), S); 780 return TypeTable.writeLeafType(SIR); 781 } 782 783 void CodeViewDebug::emitBuildInfo() { 784 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 785 // build info. The known prefix is: 786 // - Absolute path of current directory 787 // - Compiler path 788 // - Main source file path, relative to CWD or absolute 789 // - Type server PDB file 790 // - Canonical compiler command line 791 // If frontend and backend compilation are separated (think llc or LTO), it's 792 // not clear if the compiler path should refer to the executable for the 793 // frontend or the backend. Leave it blank for now. 794 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 795 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 796 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 797 const auto *CU = cast<DICompileUnit>(Node); 798 const DIFile *MainSourceFile = CU->getFile(); 799 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 800 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 801 BuildInfoArgs[BuildInfoRecord::SourceFile] = 802 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 803 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 804 // we implement /Zi type servers. 805 BuildInfoRecord BIR(BuildInfoArgs); 806 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 807 808 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 809 // from the module symbols into the type stream. 810 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 811 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 812 OS.AddComment("LF_BUILDINFO index"); 813 OS.EmitIntValue(BuildInfoIndex.getIndex(), 4); 814 endSymbolRecord(BIEnd); 815 endCVSubsection(BISubsecEnd); 816 } 817 818 void CodeViewDebug::emitInlineeLinesSubsection() { 819 if (InlinedSubprograms.empty()) 820 return; 821 822 OS.AddComment("Inlinee lines subsection"); 823 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 824 825 // We emit the checksum info for files. This is used by debuggers to 826 // determine if a pdb matches the source before loading it. Visual Studio, 827 // for instance, will display a warning that the breakpoints are not valid if 828 // the pdb does not match the source. 829 OS.AddComment("Inlinee lines signature"); 830 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 831 832 for (const DISubprogram *SP : InlinedSubprograms) { 833 assert(TypeIndices.count({SP, nullptr})); 834 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 835 836 OS.AddBlankLine(); 837 unsigned FileId = maybeRecordFile(SP->getFile()); 838 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 839 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 840 OS.AddBlankLine(); 841 OS.AddComment("Type index of inlined function"); 842 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 843 OS.AddComment("Offset into filechecksum table"); 844 OS.EmitCVFileChecksumOffsetDirective(FileId); 845 OS.AddComment("Starting line number"); 846 OS.EmitIntValue(SP->getLine(), 4); 847 } 848 849 endCVSubsection(InlineEnd); 850 } 851 852 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 853 const DILocation *InlinedAt, 854 const InlineSite &Site) { 855 assert(TypeIndices.count({Site.Inlinee, nullptr})); 856 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 857 858 // SymbolRecord 859 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 860 861 OS.AddComment("PtrParent"); 862 OS.EmitIntValue(0, 4); 863 OS.AddComment("PtrEnd"); 864 OS.EmitIntValue(0, 4); 865 OS.AddComment("Inlinee type index"); 866 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 867 868 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 869 unsigned StartLineNum = Site.Inlinee->getLine(); 870 871 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 872 FI.Begin, FI.End); 873 874 endSymbolRecord(InlineEnd); 875 876 emitLocalVariableList(FI, Site.InlinedLocals); 877 878 // Recurse on child inlined call sites before closing the scope. 879 for (const DILocation *ChildSite : Site.ChildSites) { 880 auto I = FI.InlineSites.find(ChildSite); 881 assert(I != FI.InlineSites.end() && 882 "child site not in function inline site map"); 883 emitInlinedCallSite(FI, ChildSite, I->second); 884 } 885 886 // Close the scope. 887 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 888 } 889 890 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 891 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 892 // comdat key. A section may be comdat because of -ffunction-sections or 893 // because it is comdat in the IR. 894 MCSectionCOFF *GVSec = 895 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 896 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 897 898 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 899 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 900 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 901 902 OS.SwitchSection(DebugSec); 903 904 // Emit the magic version number if this is the first time we've switched to 905 // this section. 906 if (ComdatDebugSections.insert(DebugSec).second) 907 emitCodeViewMagicVersion(); 908 } 909 910 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 911 // The only supported thunk ordinal is currently the standard type. 912 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 913 FunctionInfo &FI, 914 const MCSymbol *Fn) { 915 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 916 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 917 918 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 919 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 920 921 // Emit S_THUNK32 922 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 923 OS.AddComment("PtrParent"); 924 OS.EmitIntValue(0, 4); 925 OS.AddComment("PtrEnd"); 926 OS.EmitIntValue(0, 4); 927 OS.AddComment("PtrNext"); 928 OS.EmitIntValue(0, 4); 929 OS.AddComment("Thunk section relative address"); 930 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 931 OS.AddComment("Thunk section index"); 932 OS.EmitCOFFSectionIndex(Fn); 933 OS.AddComment("Code size"); 934 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 935 OS.AddComment("Ordinal"); 936 OS.EmitIntValue(unsigned(ordinal), 1); 937 OS.AddComment("Function name"); 938 emitNullTerminatedSymbolName(OS, FuncName); 939 // Additional fields specific to the thunk ordinal would go here. 940 endSymbolRecord(ThunkRecordEnd); 941 942 // Local variables/inlined routines are purposely omitted here. The point of 943 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 944 945 // Emit S_PROC_ID_END 946 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 947 948 endCVSubsection(SymbolsEnd); 949 } 950 951 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 952 FunctionInfo &FI) { 953 // For each function there is a separate subsection which holds the PC to 954 // file:line table. 955 const MCSymbol *Fn = Asm->getSymbol(GV); 956 assert(Fn); 957 958 // Switch to the to a comdat section, if appropriate. 959 switchToDebugSectionForSymbol(Fn); 960 961 std::string FuncName; 962 auto *SP = GV->getSubprogram(); 963 assert(SP); 964 setCurrentSubprogram(SP); 965 966 if (SP->isThunk()) { 967 emitDebugInfoForThunk(GV, FI, Fn); 968 return; 969 } 970 971 // If we have a display name, build the fully qualified name by walking the 972 // chain of scopes. 973 if (!SP->getName().empty()) 974 FuncName = 975 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 976 977 // If our DISubprogram name is empty, use the mangled name. 978 if (FuncName.empty()) 979 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 980 981 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 982 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 983 OS.EmitCVFPOData(Fn); 984 985 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 986 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 987 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 988 { 989 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 990 : SymbolKind::S_GPROC32_ID; 991 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 992 993 // These fields are filled in by tools like CVPACK which run after the fact. 994 OS.AddComment("PtrParent"); 995 OS.EmitIntValue(0, 4); 996 OS.AddComment("PtrEnd"); 997 OS.EmitIntValue(0, 4); 998 OS.AddComment("PtrNext"); 999 OS.EmitIntValue(0, 4); 1000 // This is the important bit that tells the debugger where the function 1001 // code is located and what's its size: 1002 OS.AddComment("Code size"); 1003 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1004 OS.AddComment("Offset after prologue"); 1005 OS.EmitIntValue(0, 4); 1006 OS.AddComment("Offset before epilogue"); 1007 OS.EmitIntValue(0, 4); 1008 OS.AddComment("Function type index"); 1009 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 1010 OS.AddComment("Function section relative address"); 1011 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1012 OS.AddComment("Function section index"); 1013 OS.EmitCOFFSectionIndex(Fn); 1014 OS.AddComment("Flags"); 1015 OS.EmitIntValue(0, 1); 1016 // Emit the function display name as a null-terminated string. 1017 OS.AddComment("Function name"); 1018 // Truncate the name so we won't overflow the record length field. 1019 emitNullTerminatedSymbolName(OS, FuncName); 1020 endSymbolRecord(ProcRecordEnd); 1021 1022 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1023 // Subtract out the CSR size since MSVC excludes that and we include it. 1024 OS.AddComment("FrameSize"); 1025 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4); 1026 OS.AddComment("Padding"); 1027 OS.EmitIntValue(0, 4); 1028 OS.AddComment("Offset of padding"); 1029 OS.EmitIntValue(0, 4); 1030 OS.AddComment("Bytes of callee saved registers"); 1031 OS.EmitIntValue(FI.CSRSize, 4); 1032 OS.AddComment("Exception handler offset"); 1033 OS.EmitIntValue(0, 4); 1034 OS.AddComment("Exception handler section"); 1035 OS.EmitIntValue(0, 2); 1036 OS.AddComment("Flags (defines frame register)"); 1037 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4); 1038 endSymbolRecord(FrameProcEnd); 1039 1040 emitLocalVariableList(FI, FI.Locals); 1041 emitLexicalBlockList(FI.ChildBlocks, FI); 1042 1043 // Emit inlined call site information. Only emit functions inlined directly 1044 // into the parent function. We'll emit the other sites recursively as part 1045 // of their parent inline site. 1046 for (const DILocation *InlinedAt : FI.ChildSites) { 1047 auto I = FI.InlineSites.find(InlinedAt); 1048 assert(I != FI.InlineSites.end() && 1049 "child site not in function inline site map"); 1050 emitInlinedCallSite(FI, InlinedAt, I->second); 1051 } 1052 1053 for (auto Annot : FI.Annotations) { 1054 MCSymbol *Label = Annot.first; 1055 MDTuple *Strs = cast<MDTuple>(Annot.second); 1056 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1057 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1058 // FIXME: Make sure we don't overflow the max record size. 1059 OS.EmitCOFFSectionIndex(Label); 1060 OS.EmitIntValue(Strs->getNumOperands(), 2); 1061 for (Metadata *MD : Strs->operands()) { 1062 // MDStrings are null terminated, so we can do EmitBytes and get the 1063 // nice .asciz directive. 1064 StringRef Str = cast<MDString>(MD)->getString(); 1065 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1066 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 1067 } 1068 endSymbolRecord(AnnotEnd); 1069 } 1070 1071 if (SP != nullptr) 1072 emitDebugInfoForUDTs(LocalUDTs); 1073 1074 // We're done with this function. 1075 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1076 } 1077 endCVSubsection(SymbolsEnd); 1078 1079 // We have an assembler directive that takes care of the whole line table. 1080 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1081 } 1082 1083 CodeViewDebug::LocalVarDefRange 1084 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1085 LocalVarDefRange DR; 1086 DR.InMemory = -1; 1087 DR.DataOffset = Offset; 1088 assert(DR.DataOffset == Offset && "truncation"); 1089 DR.IsSubfield = 0; 1090 DR.StructOffset = 0; 1091 DR.CVRegister = CVRegister; 1092 return DR; 1093 } 1094 1095 void CodeViewDebug::collectVariableInfoFromMFTable( 1096 DenseSet<InlinedEntity> &Processed) { 1097 const MachineFunction &MF = *Asm->MF; 1098 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1099 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1100 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1101 1102 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1103 if (!VI.Var) 1104 continue; 1105 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1106 "Expected inlined-at fields to agree"); 1107 1108 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1109 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1110 1111 // If variable scope is not found then skip this variable. 1112 if (!Scope) 1113 continue; 1114 1115 // If the variable has an attached offset expression, extract it. 1116 // FIXME: Try to handle DW_OP_deref as well. 1117 int64_t ExprOffset = 0; 1118 if (VI.Expr) 1119 if (!VI.Expr->extractIfOffset(ExprOffset)) 1120 continue; 1121 1122 // Get the frame register used and the offset. 1123 unsigned FrameReg = 0; 1124 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1125 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1126 1127 // Calculate the label ranges. 1128 LocalVarDefRange DefRange = 1129 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1130 for (const InsnRange &Range : Scope->getRanges()) { 1131 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1132 const MCSymbol *End = getLabelAfterInsn(Range.second); 1133 End = End ? End : Asm->getFunctionEnd(); 1134 DefRange.Ranges.emplace_back(Begin, End); 1135 } 1136 1137 LocalVariable Var; 1138 Var.DIVar = VI.Var; 1139 Var.DefRanges.emplace_back(std::move(DefRange)); 1140 recordLocalVariable(std::move(Var), Scope); 1141 } 1142 } 1143 1144 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1145 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1146 } 1147 1148 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1149 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1150 } 1151 1152 void CodeViewDebug::calculateRanges( 1153 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 1154 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1155 1156 // Calculate the definition ranges. 1157 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1158 const InsnRange &Range = *I; 1159 const MachineInstr *DVInst = Range.first; 1160 assert(DVInst->isDebugValue() && "Invalid History entry"); 1161 // FIXME: Find a way to represent constant variables, since they are 1162 // relatively common. 1163 Optional<DbgVariableLocation> Location = 1164 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1165 if (!Location) 1166 continue; 1167 1168 // CodeView can only express variables in register and variables in memory 1169 // at a constant offset from a register. However, for variables passed 1170 // indirectly by pointer, it is common for that pointer to be spilled to a 1171 // stack location. For the special case of one offseted load followed by a 1172 // zero offset load (a pointer spilled to the stack), we change the type of 1173 // the local variable from a value type to a reference type. This tricks the 1174 // debugger into doing the load for us. 1175 if (Var.UseReferenceType) { 1176 // We're using a reference type. Drop the last zero offset load. 1177 if (canUseReferenceType(*Location)) 1178 Location->LoadChain.pop_back(); 1179 else 1180 continue; 1181 } else if (needsReferenceType(*Location)) { 1182 // This location can't be expressed without switching to a reference type. 1183 // Start over using that. 1184 Var.UseReferenceType = true; 1185 Var.DefRanges.clear(); 1186 calculateRanges(Var, Ranges); 1187 return; 1188 } 1189 1190 // We can only handle a register or an offseted load of a register. 1191 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1192 continue; 1193 { 1194 LocalVarDefRange DR; 1195 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1196 DR.InMemory = !Location->LoadChain.empty(); 1197 DR.DataOffset = 1198 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1199 if (Location->FragmentInfo) { 1200 DR.IsSubfield = true; 1201 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1202 } else { 1203 DR.IsSubfield = false; 1204 DR.StructOffset = 0; 1205 } 1206 1207 if (Var.DefRanges.empty() || 1208 Var.DefRanges.back().isDifferentLocation(DR)) { 1209 Var.DefRanges.emplace_back(std::move(DR)); 1210 } 1211 } 1212 1213 // Compute the label range. 1214 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1215 const MCSymbol *End = getLabelAfterInsn(Range.second); 1216 if (!End) { 1217 // This range is valid until the next overlapping bitpiece. In the 1218 // common case, ranges will not be bitpieces, so they will overlap. 1219 auto J = std::next(I); 1220 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1221 while (J != E && 1222 !DIExpr->fragmentsOverlap(J->first->getDebugExpression())) 1223 ++J; 1224 if (J != E) 1225 End = getLabelBeforeInsn(J->first); 1226 else 1227 End = Asm->getFunctionEnd(); 1228 } 1229 1230 // If the last range end is our begin, just extend the last range. 1231 // Otherwise make a new range. 1232 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1233 Var.DefRanges.back().Ranges; 1234 if (!R.empty() && R.back().second == Begin) 1235 R.back().second = End; 1236 else 1237 R.emplace_back(Begin, End); 1238 1239 // FIXME: Do more range combining. 1240 } 1241 } 1242 1243 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1244 DenseSet<InlinedEntity> Processed; 1245 // Grab the variable info that was squirreled away in the MMI side-table. 1246 collectVariableInfoFromMFTable(Processed); 1247 1248 for (const auto &I : DbgValues) { 1249 InlinedEntity IV = I.first; 1250 if (Processed.count(IV)) 1251 continue; 1252 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1253 const DILocation *InlinedAt = IV.second; 1254 1255 // Instruction ranges, specifying where IV is accessible. 1256 const auto &Ranges = I.second; 1257 1258 LexicalScope *Scope = nullptr; 1259 if (InlinedAt) 1260 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1261 else 1262 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1263 // If variable scope is not found then skip this variable. 1264 if (!Scope) 1265 continue; 1266 1267 LocalVariable Var; 1268 Var.DIVar = DIVar; 1269 1270 calculateRanges(Var, Ranges); 1271 recordLocalVariable(std::move(Var), Scope); 1272 } 1273 } 1274 1275 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1276 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1277 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1278 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1279 const Function &GV = MF->getFunction(); 1280 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()}); 1281 assert(Insertion.second && "function already has info"); 1282 CurFn = Insertion.first->second.get(); 1283 CurFn->FuncId = NextFuncId++; 1284 CurFn->Begin = Asm->getFunctionBegin(); 1285 1286 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1287 // callee-saved registers were used. For targets that don't use a PUSH 1288 // instruction (AArch64), this will be zero. 1289 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1290 CurFn->FrameSize = MFI.getStackSize(); 1291 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1292 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1293 1294 // For this function S_FRAMEPROC record, figure out which codeview register 1295 // will be the frame pointer. 1296 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1297 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1298 if (CurFn->FrameSize > 0) { 1299 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1300 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1301 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1302 } else { 1303 // If there is an FP, parameters are always relative to it. 1304 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1305 if (CurFn->HasStackRealignment) { 1306 // If the stack needs realignment, locals are relative to SP or VFRAME. 1307 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1308 } else { 1309 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1310 // other stack adjustments. 1311 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1312 } 1313 } 1314 } 1315 1316 // Compute other frame procedure options. 1317 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1318 if (MFI.hasVarSizedObjects()) 1319 FPO |= FrameProcedureOptions::HasAlloca; 1320 if (MF->exposesReturnsTwice()) 1321 FPO |= FrameProcedureOptions::HasSetJmp; 1322 // FIXME: Set HasLongJmp if we ever track that info. 1323 if (MF->hasInlineAsm()) 1324 FPO |= FrameProcedureOptions::HasInlineAssembly; 1325 if (GV.hasPersonalityFn()) { 1326 if (isAsynchronousEHPersonality( 1327 classifyEHPersonality(GV.getPersonalityFn()))) 1328 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1329 else 1330 FPO |= FrameProcedureOptions::HasExceptionHandling; 1331 } 1332 if (GV.hasFnAttribute(Attribute::InlineHint)) 1333 FPO |= FrameProcedureOptions::MarkedInline; 1334 if (GV.hasFnAttribute(Attribute::Naked)) 1335 FPO |= FrameProcedureOptions::Naked; 1336 if (MFI.hasStackProtectorIndex()) 1337 FPO |= FrameProcedureOptions::SecurityChecks; 1338 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1339 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1340 if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.optForSize() && 1341 !GV.hasFnAttribute(Attribute::OptimizeNone)) 1342 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1343 // FIXME: Set GuardCfg when it is implemented. 1344 CurFn->FrameProcOpts = FPO; 1345 1346 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1347 1348 // Find the end of the function prolog. First known non-DBG_VALUE and 1349 // non-frame setup location marks the beginning of the function body. 1350 // FIXME: is there a simpler a way to do this? Can we just search 1351 // for the first instruction of the function, not the last of the prolog? 1352 DebugLoc PrologEndLoc; 1353 bool EmptyPrologue = true; 1354 for (const auto &MBB : *MF) { 1355 for (const auto &MI : MBB) { 1356 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1357 MI.getDebugLoc()) { 1358 PrologEndLoc = MI.getDebugLoc(); 1359 break; 1360 } else if (!MI.isMetaInstruction()) { 1361 EmptyPrologue = false; 1362 } 1363 } 1364 } 1365 1366 // Record beginning of function if we have a non-empty prologue. 1367 if (PrologEndLoc && !EmptyPrologue) { 1368 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1369 maybeRecordLocation(FnStartDL, MF); 1370 } 1371 } 1372 1373 static bool shouldEmitUdt(const DIType *T) { 1374 if (!T) 1375 return false; 1376 1377 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1378 if (T->getTag() == dwarf::DW_TAG_typedef) { 1379 if (DIScope *Scope = T->getScope().resolve()) { 1380 switch (Scope->getTag()) { 1381 case dwarf::DW_TAG_structure_type: 1382 case dwarf::DW_TAG_class_type: 1383 case dwarf::DW_TAG_union_type: 1384 return false; 1385 } 1386 } 1387 } 1388 1389 while (true) { 1390 if (!T || T->isForwardDecl()) 1391 return false; 1392 1393 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1394 if (!DT) 1395 return true; 1396 T = DT->getBaseType().resolve(); 1397 } 1398 return true; 1399 } 1400 1401 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1402 // Don't record empty UDTs. 1403 if (Ty->getName().empty()) 1404 return; 1405 if (!shouldEmitUdt(Ty)) 1406 return; 1407 1408 SmallVector<StringRef, 5> QualifiedNameComponents; 1409 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1410 Ty->getScope().resolve(), QualifiedNameComponents); 1411 1412 std::string FullyQualifiedName = 1413 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1414 1415 if (ClosestSubprogram == nullptr) { 1416 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1417 } else if (ClosestSubprogram == CurrentSubprogram) { 1418 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1419 } 1420 1421 // TODO: What if the ClosestSubprogram is neither null or the current 1422 // subprogram? Currently, the UDT just gets dropped on the floor. 1423 // 1424 // The current behavior is not desirable. To get maximal fidelity, we would 1425 // need to perform all type translation before beginning emission of .debug$S 1426 // and then make LocalUDTs a member of FunctionInfo 1427 } 1428 1429 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1430 // Generic dispatch for lowering an unknown type. 1431 switch (Ty->getTag()) { 1432 case dwarf::DW_TAG_array_type: 1433 return lowerTypeArray(cast<DICompositeType>(Ty)); 1434 case dwarf::DW_TAG_typedef: 1435 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1436 case dwarf::DW_TAG_base_type: 1437 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1438 case dwarf::DW_TAG_pointer_type: 1439 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1440 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1441 LLVM_FALLTHROUGH; 1442 case dwarf::DW_TAG_reference_type: 1443 case dwarf::DW_TAG_rvalue_reference_type: 1444 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1445 case dwarf::DW_TAG_ptr_to_member_type: 1446 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1447 case dwarf::DW_TAG_restrict_type: 1448 case dwarf::DW_TAG_const_type: 1449 case dwarf::DW_TAG_volatile_type: 1450 // TODO: add support for DW_TAG_atomic_type here 1451 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1452 case dwarf::DW_TAG_subroutine_type: 1453 if (ClassTy) { 1454 // The member function type of a member function pointer has no 1455 // ThisAdjustment. 1456 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1457 /*ThisAdjustment=*/0, 1458 /*IsStaticMethod=*/false); 1459 } 1460 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1461 case dwarf::DW_TAG_enumeration_type: 1462 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1463 case dwarf::DW_TAG_class_type: 1464 case dwarf::DW_TAG_structure_type: 1465 return lowerTypeClass(cast<DICompositeType>(Ty)); 1466 case dwarf::DW_TAG_union_type: 1467 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1468 case dwarf::DW_TAG_unspecified_type: 1469 if (Ty->getName() == "decltype(nullptr)") 1470 return TypeIndex::NullptrT(); 1471 return TypeIndex::None(); 1472 default: 1473 // Use the null type index. 1474 return TypeIndex(); 1475 } 1476 } 1477 1478 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1479 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1480 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1481 StringRef TypeName = Ty->getName(); 1482 1483 addToUDTs(Ty); 1484 1485 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1486 TypeName == "HRESULT") 1487 return TypeIndex(SimpleTypeKind::HResult); 1488 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1489 TypeName == "wchar_t") 1490 return TypeIndex(SimpleTypeKind::WideCharacter); 1491 1492 return UnderlyingTypeIndex; 1493 } 1494 1495 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1496 DITypeRef ElementTypeRef = Ty->getBaseType(); 1497 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1498 // IndexType is size_t, which depends on the bitness of the target. 1499 TypeIndex IndexType = getPointerSizeInBytes() == 8 1500 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1501 : TypeIndex(SimpleTypeKind::UInt32Long); 1502 1503 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1504 1505 // Add subranges to array type. 1506 DINodeArray Elements = Ty->getElements(); 1507 for (int i = Elements.size() - 1; i >= 0; --i) { 1508 const DINode *Element = Elements[i]; 1509 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1510 1511 const DISubrange *Subrange = cast<DISubrange>(Element); 1512 assert(Subrange->getLowerBound() == 0 && 1513 "codeview doesn't support subranges with lower bounds"); 1514 int64_t Count = -1; 1515 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1516 Count = CI->getSExtValue(); 1517 1518 // Forward declarations of arrays without a size and VLAs use a count of -1. 1519 // Emit a count of zero in these cases to match what MSVC does for arrays 1520 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1521 // should do for them even if we could distinguish them. 1522 if (Count == -1) 1523 Count = 0; 1524 1525 // Update the element size and element type index for subsequent subranges. 1526 ElementSize *= Count; 1527 1528 // If this is the outermost array, use the size from the array. It will be 1529 // more accurate if we had a VLA or an incomplete element type size. 1530 uint64_t ArraySize = 1531 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1532 1533 StringRef Name = (i == 0) ? Ty->getName() : ""; 1534 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1535 ElementTypeIndex = TypeTable.writeLeafType(AR); 1536 } 1537 1538 return ElementTypeIndex; 1539 } 1540 1541 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1542 TypeIndex Index; 1543 dwarf::TypeKind Kind; 1544 uint32_t ByteSize; 1545 1546 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1547 ByteSize = Ty->getSizeInBits() / 8; 1548 1549 SimpleTypeKind STK = SimpleTypeKind::None; 1550 switch (Kind) { 1551 case dwarf::DW_ATE_address: 1552 // FIXME: Translate 1553 break; 1554 case dwarf::DW_ATE_boolean: 1555 switch (ByteSize) { 1556 case 1: STK = SimpleTypeKind::Boolean8; break; 1557 case 2: STK = SimpleTypeKind::Boolean16; break; 1558 case 4: STK = SimpleTypeKind::Boolean32; break; 1559 case 8: STK = SimpleTypeKind::Boolean64; break; 1560 case 16: STK = SimpleTypeKind::Boolean128; break; 1561 } 1562 break; 1563 case dwarf::DW_ATE_complex_float: 1564 switch (ByteSize) { 1565 case 2: STK = SimpleTypeKind::Complex16; break; 1566 case 4: STK = SimpleTypeKind::Complex32; break; 1567 case 8: STK = SimpleTypeKind::Complex64; break; 1568 case 10: STK = SimpleTypeKind::Complex80; break; 1569 case 16: STK = SimpleTypeKind::Complex128; break; 1570 } 1571 break; 1572 case dwarf::DW_ATE_float: 1573 switch (ByteSize) { 1574 case 2: STK = SimpleTypeKind::Float16; break; 1575 case 4: STK = SimpleTypeKind::Float32; break; 1576 case 6: STK = SimpleTypeKind::Float48; break; 1577 case 8: STK = SimpleTypeKind::Float64; break; 1578 case 10: STK = SimpleTypeKind::Float80; break; 1579 case 16: STK = SimpleTypeKind::Float128; break; 1580 } 1581 break; 1582 case dwarf::DW_ATE_signed: 1583 switch (ByteSize) { 1584 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1585 case 2: STK = SimpleTypeKind::Int16Short; break; 1586 case 4: STK = SimpleTypeKind::Int32; break; 1587 case 8: STK = SimpleTypeKind::Int64Quad; break; 1588 case 16: STK = SimpleTypeKind::Int128Oct; break; 1589 } 1590 break; 1591 case dwarf::DW_ATE_unsigned: 1592 switch (ByteSize) { 1593 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1594 case 2: STK = SimpleTypeKind::UInt16Short; break; 1595 case 4: STK = SimpleTypeKind::UInt32; break; 1596 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1597 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1598 } 1599 break; 1600 case dwarf::DW_ATE_UTF: 1601 switch (ByteSize) { 1602 case 2: STK = SimpleTypeKind::Character16; break; 1603 case 4: STK = SimpleTypeKind::Character32; break; 1604 } 1605 break; 1606 case dwarf::DW_ATE_signed_char: 1607 if (ByteSize == 1) 1608 STK = SimpleTypeKind::SignedCharacter; 1609 break; 1610 case dwarf::DW_ATE_unsigned_char: 1611 if (ByteSize == 1) 1612 STK = SimpleTypeKind::UnsignedCharacter; 1613 break; 1614 default: 1615 break; 1616 } 1617 1618 // Apply some fixups based on the source-level type name. 1619 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1620 STK = SimpleTypeKind::Int32Long; 1621 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1622 STK = SimpleTypeKind::UInt32Long; 1623 if (STK == SimpleTypeKind::UInt16Short && 1624 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1625 STK = SimpleTypeKind::WideCharacter; 1626 if ((STK == SimpleTypeKind::SignedCharacter || 1627 STK == SimpleTypeKind::UnsignedCharacter) && 1628 Ty->getName() == "char") 1629 STK = SimpleTypeKind::NarrowCharacter; 1630 1631 return TypeIndex(STK); 1632 } 1633 1634 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1635 PointerOptions PO) { 1636 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1637 1638 // Pointers to simple types without any options can use SimpleTypeMode, rather 1639 // than having a dedicated pointer type record. 1640 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1641 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1642 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1643 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1644 ? SimpleTypeMode::NearPointer64 1645 : SimpleTypeMode::NearPointer32; 1646 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1647 } 1648 1649 PointerKind PK = 1650 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1651 PointerMode PM = PointerMode::Pointer; 1652 switch (Ty->getTag()) { 1653 default: llvm_unreachable("not a pointer tag type"); 1654 case dwarf::DW_TAG_pointer_type: 1655 PM = PointerMode::Pointer; 1656 break; 1657 case dwarf::DW_TAG_reference_type: 1658 PM = PointerMode::LValueReference; 1659 break; 1660 case dwarf::DW_TAG_rvalue_reference_type: 1661 PM = PointerMode::RValueReference; 1662 break; 1663 } 1664 1665 if (Ty->isObjectPointer()) 1666 PO |= PointerOptions::Const; 1667 1668 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1669 return TypeTable.writeLeafType(PR); 1670 } 1671 1672 static PointerToMemberRepresentation 1673 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1674 // SizeInBytes being zero generally implies that the member pointer type was 1675 // incomplete, which can happen if it is part of a function prototype. In this 1676 // case, use the unknown model instead of the general model. 1677 if (IsPMF) { 1678 switch (Flags & DINode::FlagPtrToMemberRep) { 1679 case 0: 1680 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1681 : PointerToMemberRepresentation::GeneralFunction; 1682 case DINode::FlagSingleInheritance: 1683 return PointerToMemberRepresentation::SingleInheritanceFunction; 1684 case DINode::FlagMultipleInheritance: 1685 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1686 case DINode::FlagVirtualInheritance: 1687 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1688 } 1689 } else { 1690 switch (Flags & DINode::FlagPtrToMemberRep) { 1691 case 0: 1692 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1693 : PointerToMemberRepresentation::GeneralData; 1694 case DINode::FlagSingleInheritance: 1695 return PointerToMemberRepresentation::SingleInheritanceData; 1696 case DINode::FlagMultipleInheritance: 1697 return PointerToMemberRepresentation::MultipleInheritanceData; 1698 case DINode::FlagVirtualInheritance: 1699 return PointerToMemberRepresentation::VirtualInheritanceData; 1700 } 1701 } 1702 llvm_unreachable("invalid ptr to member representation"); 1703 } 1704 1705 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1706 PointerOptions PO) { 1707 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1708 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1709 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1710 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1711 : PointerKind::Near32; 1712 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1713 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1714 : PointerMode::PointerToDataMember; 1715 1716 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1717 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1718 MemberPointerInfo MPI( 1719 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1720 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1721 return TypeTable.writeLeafType(PR); 1722 } 1723 1724 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1725 /// have a translation, use the NearC convention. 1726 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1727 switch (DwarfCC) { 1728 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1729 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1730 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1731 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1732 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1733 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1734 } 1735 return CallingConvention::NearC; 1736 } 1737 1738 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1739 ModifierOptions Mods = ModifierOptions::None; 1740 PointerOptions PO = PointerOptions::None; 1741 bool IsModifier = true; 1742 const DIType *BaseTy = Ty; 1743 while (IsModifier && BaseTy) { 1744 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1745 switch (BaseTy->getTag()) { 1746 case dwarf::DW_TAG_const_type: 1747 Mods |= ModifierOptions::Const; 1748 PO |= PointerOptions::Const; 1749 break; 1750 case dwarf::DW_TAG_volatile_type: 1751 Mods |= ModifierOptions::Volatile; 1752 PO |= PointerOptions::Volatile; 1753 break; 1754 case dwarf::DW_TAG_restrict_type: 1755 // Only pointer types be marked with __restrict. There is no known flag 1756 // for __restrict in LF_MODIFIER records. 1757 PO |= PointerOptions::Restrict; 1758 break; 1759 default: 1760 IsModifier = false; 1761 break; 1762 } 1763 if (IsModifier) 1764 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1765 } 1766 1767 // Check if the inner type will use an LF_POINTER record. If so, the 1768 // qualifiers will go in the LF_POINTER record. This comes up for types like 1769 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1770 // char *'. 1771 if (BaseTy) { 1772 switch (BaseTy->getTag()) { 1773 case dwarf::DW_TAG_pointer_type: 1774 case dwarf::DW_TAG_reference_type: 1775 case dwarf::DW_TAG_rvalue_reference_type: 1776 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1777 case dwarf::DW_TAG_ptr_to_member_type: 1778 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1779 default: 1780 break; 1781 } 1782 } 1783 1784 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1785 1786 // Return the base type index if there aren't any modifiers. For example, the 1787 // metadata could contain restrict wrappers around non-pointer types. 1788 if (Mods == ModifierOptions::None) 1789 return ModifiedTI; 1790 1791 ModifierRecord MR(ModifiedTI, Mods); 1792 return TypeTable.writeLeafType(MR); 1793 } 1794 1795 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1796 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1797 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1798 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1799 1800 // MSVC uses type none for variadic argument. 1801 if (ReturnAndArgTypeIndices.size() > 1 && 1802 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1803 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1804 } 1805 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1806 ArrayRef<TypeIndex> ArgTypeIndices = None; 1807 if (!ReturnAndArgTypeIndices.empty()) { 1808 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1809 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1810 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1811 } 1812 1813 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1814 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1815 1816 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1817 1818 FunctionOptions FO = getFunctionOptions(Ty); 1819 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1820 ArgListIndex); 1821 return TypeTable.writeLeafType(Procedure); 1822 } 1823 1824 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1825 const DIType *ClassTy, 1826 int ThisAdjustment, 1827 bool IsStaticMethod, 1828 FunctionOptions FO) { 1829 // Lower the containing class type. 1830 TypeIndex ClassType = getTypeIndex(ClassTy); 1831 1832 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1833 1834 unsigned Index = 0; 1835 SmallVector<TypeIndex, 8> ArgTypeIndices; 1836 TypeIndex ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 1837 1838 TypeIndex ThisTypeIndex; 1839 if (!IsStaticMethod && ReturnAndArgs.size() > 1) 1840 ThisTypeIndex = getTypeIndexForThisPtr(ReturnAndArgs[Index++], Ty); 1841 1842 while (Index < ReturnAndArgs.size()) 1843 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 1844 1845 // MSVC uses type none for variadic argument. 1846 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 1847 ArgTypeIndices.back() = TypeIndex::None(); 1848 1849 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1850 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1851 1852 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1853 1854 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1855 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1856 return TypeTable.writeLeafType(MFR); 1857 } 1858 1859 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1860 unsigned VSlotCount = 1861 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1862 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1863 1864 VFTableShapeRecord VFTSR(Slots); 1865 return TypeTable.writeLeafType(VFTSR); 1866 } 1867 1868 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1869 switch (Flags & DINode::FlagAccessibility) { 1870 case DINode::FlagPrivate: return MemberAccess::Private; 1871 case DINode::FlagPublic: return MemberAccess::Public; 1872 case DINode::FlagProtected: return MemberAccess::Protected; 1873 case 0: 1874 // If there was no explicit access control, provide the default for the tag. 1875 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1876 : MemberAccess::Public; 1877 } 1878 llvm_unreachable("access flags are exclusive"); 1879 } 1880 1881 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1882 if (SP->isArtificial()) 1883 return MethodOptions::CompilerGenerated; 1884 1885 // FIXME: Handle other MethodOptions. 1886 1887 return MethodOptions::None; 1888 } 1889 1890 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1891 bool Introduced) { 1892 if (SP->getFlags() & DINode::FlagStaticMember) 1893 return MethodKind::Static; 1894 1895 switch (SP->getVirtuality()) { 1896 case dwarf::DW_VIRTUALITY_none: 1897 break; 1898 case dwarf::DW_VIRTUALITY_virtual: 1899 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1900 case dwarf::DW_VIRTUALITY_pure_virtual: 1901 return Introduced ? MethodKind::PureIntroducingVirtual 1902 : MethodKind::PureVirtual; 1903 default: 1904 llvm_unreachable("unhandled virtuality case"); 1905 } 1906 1907 return MethodKind::Vanilla; 1908 } 1909 1910 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1911 switch (Ty->getTag()) { 1912 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1913 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1914 } 1915 llvm_unreachable("unexpected tag"); 1916 } 1917 1918 /// Return ClassOptions that should be present on both the forward declaration 1919 /// and the defintion of a tag type. 1920 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1921 ClassOptions CO = ClassOptions::None; 1922 1923 // MSVC always sets this flag, even for local types. Clang doesn't always 1924 // appear to give every type a linkage name, which may be problematic for us. 1925 // FIXME: Investigate the consequences of not following them here. 1926 if (!Ty->getIdentifier().empty()) 1927 CO |= ClassOptions::HasUniqueName; 1928 1929 // Put the Nested flag on a type if it appears immediately inside a tag type. 1930 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1931 // here. That flag is only set on definitions, and not forward declarations. 1932 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1933 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1934 CO |= ClassOptions::Nested; 1935 1936 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 1937 // type only when it has an immediate function scope. Clang never puts enums 1938 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 1939 // always in function, class, or file scopes. 1940 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 1941 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 1942 CO |= ClassOptions::Scoped; 1943 } else { 1944 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1945 Scope = Scope->getScope().resolve()) { 1946 if (isa<DISubprogram>(Scope)) { 1947 CO |= ClassOptions::Scoped; 1948 break; 1949 } 1950 } 1951 } 1952 1953 return CO; 1954 } 1955 1956 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 1957 switch (Ty->getTag()) { 1958 case dwarf::DW_TAG_class_type: 1959 case dwarf::DW_TAG_structure_type: 1960 case dwarf::DW_TAG_union_type: 1961 case dwarf::DW_TAG_enumeration_type: 1962 break; 1963 default: 1964 return; 1965 } 1966 1967 if (const auto *File = Ty->getFile()) { 1968 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1969 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 1970 1971 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 1972 TypeTable.writeLeafType(USLR); 1973 } 1974 } 1975 1976 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1977 ClassOptions CO = getCommonClassOptions(Ty); 1978 TypeIndex FTI; 1979 unsigned EnumeratorCount = 0; 1980 1981 if (Ty->isForwardDecl()) { 1982 CO |= ClassOptions::ForwardReference; 1983 } else { 1984 ContinuationRecordBuilder ContinuationBuilder; 1985 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 1986 for (const DINode *Element : Ty->getElements()) { 1987 // We assume that the frontend provides all members in source declaration 1988 // order, which is what MSVC does. 1989 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1990 EnumeratorRecord ER(MemberAccess::Public, 1991 APSInt::getUnsigned(Enumerator->getValue()), 1992 Enumerator->getName()); 1993 ContinuationBuilder.writeMemberType(ER); 1994 EnumeratorCount++; 1995 } 1996 } 1997 FTI = TypeTable.insertRecord(ContinuationBuilder); 1998 } 1999 2000 std::string FullName = getFullyQualifiedName(Ty); 2001 2002 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2003 getTypeIndex(Ty->getBaseType())); 2004 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2005 2006 addUDTSrcLine(Ty, EnumTI); 2007 2008 return EnumTI; 2009 } 2010 2011 //===----------------------------------------------------------------------===// 2012 // ClassInfo 2013 //===----------------------------------------------------------------------===// 2014 2015 struct llvm::ClassInfo { 2016 struct MemberInfo { 2017 const DIDerivedType *MemberTypeNode; 2018 uint64_t BaseOffset; 2019 }; 2020 // [MemberInfo] 2021 using MemberList = std::vector<MemberInfo>; 2022 2023 using MethodsList = TinyPtrVector<const DISubprogram *>; 2024 // MethodName -> MethodsList 2025 using MethodsMap = MapVector<MDString *, MethodsList>; 2026 2027 /// Base classes. 2028 std::vector<const DIDerivedType *> Inheritance; 2029 2030 /// Direct members. 2031 MemberList Members; 2032 // Direct overloaded methods gathered by name. 2033 MethodsMap Methods; 2034 2035 TypeIndex VShapeTI; 2036 2037 std::vector<const DIType *> NestedTypes; 2038 }; 2039 2040 void CodeViewDebug::clear() { 2041 assert(CurFn == nullptr); 2042 FileIdMap.clear(); 2043 FnDebugInfo.clear(); 2044 FileToFilepathMap.clear(); 2045 LocalUDTs.clear(); 2046 GlobalUDTs.clear(); 2047 TypeIndices.clear(); 2048 CompleteTypeIndices.clear(); 2049 } 2050 2051 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2052 const DIDerivedType *DDTy) { 2053 if (!DDTy->getName().empty()) { 2054 Info.Members.push_back({DDTy, 0}); 2055 return; 2056 } 2057 2058 // An unnamed member may represent a nested struct or union. Attempt to 2059 // interpret the unnamed member as a DICompositeType possibly wrapped in 2060 // qualifier types. Add all the indirect fields to the current record if that 2061 // succeeds, and drop the member if that fails. 2062 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2063 uint64_t Offset = DDTy->getOffsetInBits(); 2064 const DIType *Ty = DDTy->getBaseType().resolve(); 2065 bool FullyResolved = false; 2066 while (!FullyResolved) { 2067 switch (Ty->getTag()) { 2068 case dwarf::DW_TAG_const_type: 2069 case dwarf::DW_TAG_volatile_type: 2070 // FIXME: we should apply the qualifier types to the indirect fields 2071 // rather than dropping them. 2072 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 2073 break; 2074 default: 2075 FullyResolved = true; 2076 break; 2077 } 2078 } 2079 2080 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2081 if (!DCTy) 2082 return; 2083 2084 ClassInfo NestedInfo = collectClassInfo(DCTy); 2085 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2086 Info.Members.push_back( 2087 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2088 } 2089 2090 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2091 ClassInfo Info; 2092 // Add elements to structure type. 2093 DINodeArray Elements = Ty->getElements(); 2094 for (auto *Element : Elements) { 2095 // We assume that the frontend provides all members in source declaration 2096 // order, which is what MSVC does. 2097 if (!Element) 2098 continue; 2099 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2100 Info.Methods[SP->getRawName()].push_back(SP); 2101 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2102 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2103 collectMemberInfo(Info, DDTy); 2104 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2105 Info.Inheritance.push_back(DDTy); 2106 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2107 DDTy->getName() == "__vtbl_ptr_type") { 2108 Info.VShapeTI = getTypeIndex(DDTy); 2109 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2110 Info.NestedTypes.push_back(DDTy); 2111 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2112 // Ignore friend members. It appears that MSVC emitted info about 2113 // friends in the past, but modern versions do not. 2114 } 2115 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2116 Info.NestedTypes.push_back(Composite); 2117 } 2118 // Skip other unrecognized kinds of elements. 2119 } 2120 return Info; 2121 } 2122 2123 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2124 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2125 // if a complete type should be emitted instead of a forward reference. 2126 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2127 !Ty->isForwardDecl(); 2128 } 2129 2130 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2131 // Emit the complete type for unnamed structs. C++ classes with methods 2132 // which have a circular reference back to the class type are expected to 2133 // be named by the front-end and should not be "unnamed". C unnamed 2134 // structs should not have circular references. 2135 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2136 // If this unnamed complete type is already in the process of being defined 2137 // then the description of the type is malformed and cannot be emitted 2138 // into CodeView correctly so report a fatal error. 2139 auto I = CompleteTypeIndices.find(Ty); 2140 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2141 report_fatal_error("cannot debug circular reference to unnamed type"); 2142 return getCompleteTypeIndex(Ty); 2143 } 2144 2145 // First, construct the forward decl. Don't look into Ty to compute the 2146 // forward decl options, since it might not be available in all TUs. 2147 TypeRecordKind Kind = getRecordKind(Ty); 2148 ClassOptions CO = 2149 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2150 std::string FullName = getFullyQualifiedName(Ty); 2151 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2152 FullName, Ty->getIdentifier()); 2153 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2154 if (!Ty->isForwardDecl()) 2155 DeferredCompleteTypes.push_back(Ty); 2156 return FwdDeclTI; 2157 } 2158 2159 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2160 // Construct the field list and complete type record. 2161 TypeRecordKind Kind = getRecordKind(Ty); 2162 ClassOptions CO = getCommonClassOptions(Ty); 2163 TypeIndex FieldTI; 2164 TypeIndex VShapeTI; 2165 unsigned FieldCount; 2166 bool ContainsNestedClass; 2167 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2168 lowerRecordFieldList(Ty); 2169 2170 if (ContainsNestedClass) 2171 CO |= ClassOptions::ContainsNestedClass; 2172 2173 std::string FullName = getFullyQualifiedName(Ty); 2174 2175 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2176 2177 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2178 SizeInBytes, FullName, Ty->getIdentifier()); 2179 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2180 2181 addUDTSrcLine(Ty, ClassTI); 2182 2183 addToUDTs(Ty); 2184 2185 return ClassTI; 2186 } 2187 2188 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2189 // Emit the complete type for unnamed unions. 2190 if (shouldAlwaysEmitCompleteClassType(Ty)) 2191 return getCompleteTypeIndex(Ty); 2192 2193 ClassOptions CO = 2194 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2195 std::string FullName = getFullyQualifiedName(Ty); 2196 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2197 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2198 if (!Ty->isForwardDecl()) 2199 DeferredCompleteTypes.push_back(Ty); 2200 return FwdDeclTI; 2201 } 2202 2203 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2204 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2205 TypeIndex FieldTI; 2206 unsigned FieldCount; 2207 bool ContainsNestedClass; 2208 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2209 lowerRecordFieldList(Ty); 2210 2211 if (ContainsNestedClass) 2212 CO |= ClassOptions::ContainsNestedClass; 2213 2214 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2215 std::string FullName = getFullyQualifiedName(Ty); 2216 2217 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2218 Ty->getIdentifier()); 2219 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2220 2221 addUDTSrcLine(Ty, UnionTI); 2222 2223 addToUDTs(Ty); 2224 2225 return UnionTI; 2226 } 2227 2228 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2229 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2230 // Manually count members. MSVC appears to count everything that generates a 2231 // field list record. Each individual overload in a method overload group 2232 // contributes to this count, even though the overload group is a single field 2233 // list record. 2234 unsigned MemberCount = 0; 2235 ClassInfo Info = collectClassInfo(Ty); 2236 ContinuationRecordBuilder ContinuationBuilder; 2237 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2238 2239 // Create base classes. 2240 for (const DIDerivedType *I : Info.Inheritance) { 2241 if (I->getFlags() & DINode::FlagVirtual) { 2242 // Virtual base. 2243 unsigned VBPtrOffset = I->getVBPtrOffset(); 2244 // FIXME: Despite the accessor name, the offset is really in bytes. 2245 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2246 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2247 ? TypeRecordKind::IndirectVirtualBaseClass 2248 : TypeRecordKind::VirtualBaseClass; 2249 VirtualBaseClassRecord VBCR( 2250 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2251 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2252 VBTableIndex); 2253 2254 ContinuationBuilder.writeMemberType(VBCR); 2255 MemberCount++; 2256 } else { 2257 assert(I->getOffsetInBits() % 8 == 0 && 2258 "bases must be on byte boundaries"); 2259 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2260 getTypeIndex(I->getBaseType()), 2261 I->getOffsetInBits() / 8); 2262 ContinuationBuilder.writeMemberType(BCR); 2263 MemberCount++; 2264 } 2265 } 2266 2267 // Create members. 2268 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2269 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2270 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2271 StringRef MemberName = Member->getName(); 2272 MemberAccess Access = 2273 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2274 2275 if (Member->isStaticMember()) { 2276 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2277 ContinuationBuilder.writeMemberType(SDMR); 2278 MemberCount++; 2279 continue; 2280 } 2281 2282 // Virtual function pointer member. 2283 if ((Member->getFlags() & DINode::FlagArtificial) && 2284 Member->getName().startswith("_vptr$")) { 2285 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2286 ContinuationBuilder.writeMemberType(VFPR); 2287 MemberCount++; 2288 continue; 2289 } 2290 2291 // Data member. 2292 uint64_t MemberOffsetInBits = 2293 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2294 if (Member->isBitField()) { 2295 uint64_t StartBitOffset = MemberOffsetInBits; 2296 if (const auto *CI = 2297 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2298 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2299 } 2300 StartBitOffset -= MemberOffsetInBits; 2301 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2302 StartBitOffset); 2303 MemberBaseType = TypeTable.writeLeafType(BFR); 2304 } 2305 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2306 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2307 MemberName); 2308 ContinuationBuilder.writeMemberType(DMR); 2309 MemberCount++; 2310 } 2311 2312 // Create methods 2313 for (auto &MethodItr : Info.Methods) { 2314 StringRef Name = MethodItr.first->getString(); 2315 2316 std::vector<OneMethodRecord> Methods; 2317 for (const DISubprogram *SP : MethodItr.second) { 2318 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2319 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2320 2321 unsigned VFTableOffset = -1; 2322 if (Introduced) 2323 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2324 2325 Methods.push_back(OneMethodRecord( 2326 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2327 translateMethodKindFlags(SP, Introduced), 2328 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2329 MemberCount++; 2330 } 2331 assert(!Methods.empty() && "Empty methods map entry"); 2332 if (Methods.size() == 1) 2333 ContinuationBuilder.writeMemberType(Methods[0]); 2334 else { 2335 // FIXME: Make this use its own ContinuationBuilder so that 2336 // MethodOverloadList can be split correctly. 2337 MethodOverloadListRecord MOLR(Methods); 2338 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2339 2340 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2341 ContinuationBuilder.writeMemberType(OMR); 2342 } 2343 } 2344 2345 // Create nested classes. 2346 for (const DIType *Nested : Info.NestedTypes) { 2347 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2348 ContinuationBuilder.writeMemberType(R); 2349 MemberCount++; 2350 } 2351 2352 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2353 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2354 !Info.NestedTypes.empty()); 2355 } 2356 2357 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2358 if (!VBPType.getIndex()) { 2359 // Make a 'const int *' type. 2360 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2361 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2362 2363 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2364 : PointerKind::Near32; 2365 PointerMode PM = PointerMode::Pointer; 2366 PointerOptions PO = PointerOptions::None; 2367 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2368 VBPType = TypeTable.writeLeafType(PR); 2369 } 2370 2371 return VBPType; 2372 } 2373 2374 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2375 const DIType *Ty = TypeRef.resolve(); 2376 const DIType *ClassTy = ClassTyRef.resolve(); 2377 2378 // The null DIType is the void type. Don't try to hash it. 2379 if (!Ty) 2380 return TypeIndex::Void(); 2381 2382 // Check if we've already translated this type. Don't try to do a 2383 // get-or-create style insertion that caches the hash lookup across the 2384 // lowerType call. It will update the TypeIndices map. 2385 auto I = TypeIndices.find({Ty, ClassTy}); 2386 if (I != TypeIndices.end()) 2387 return I->second; 2388 2389 TypeLoweringScope S(*this); 2390 TypeIndex TI = lowerType(Ty, ClassTy); 2391 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2392 } 2393 2394 codeview::TypeIndex 2395 CodeViewDebug::getTypeIndexForThisPtr(DITypeRef TypeRef, 2396 const DISubroutineType *SubroutineTy) { 2397 const DIType *Ty = TypeRef.resolve(); 2398 2399 PointerOptions Options = PointerOptions::None; 2400 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2401 Options = PointerOptions::LValueRefThisPointer; 2402 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2403 Options = PointerOptions::RValueRefThisPointer; 2404 2405 // Check if we've already translated this type. If there is no ref qualifier 2406 // on the function then we look up this pointer type with no associated class 2407 // so that the TypeIndex for the this pointer can be shared with the type 2408 // index for other pointers to this class type. If there is a ref qualifier 2409 // then we lookup the pointer using the subroutine as the parent type. 2410 auto I = TypeIndices.find({Ty, SubroutineTy}); 2411 if (I != TypeIndices.end()) 2412 return I->second; 2413 2414 TypeLoweringScope S(*this); 2415 TypeIndex TI = lowerTypePointer(cast<DIDerivedType>(Ty), Options); 2416 return recordTypeIndexForDINode(Ty, TI, SubroutineTy); 2417 } 2418 2419 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2420 DIType *Ty = TypeRef.resolve(); 2421 PointerRecord PR(getTypeIndex(Ty), 2422 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2423 : PointerKind::Near32, 2424 PointerMode::LValueReference, PointerOptions::None, 2425 Ty->getSizeInBits() / 8); 2426 return TypeTable.writeLeafType(PR); 2427 } 2428 2429 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2430 const DIType *Ty = TypeRef.resolve(); 2431 2432 // The null DIType is the void type. Don't try to hash it. 2433 if (!Ty) 2434 return TypeIndex::Void(); 2435 2436 // Look through typedefs when getting the complete type index. Call 2437 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2438 // emitted only once. 2439 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2440 (void)getTypeIndex(Ty); 2441 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2442 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 2443 2444 // If this is a non-record type, the complete type index is the same as the 2445 // normal type index. Just call getTypeIndex. 2446 switch (Ty->getTag()) { 2447 case dwarf::DW_TAG_class_type: 2448 case dwarf::DW_TAG_structure_type: 2449 case dwarf::DW_TAG_union_type: 2450 break; 2451 default: 2452 return getTypeIndex(Ty); 2453 } 2454 2455 // Check if we've already translated the complete record type. 2456 const auto *CTy = cast<DICompositeType>(Ty); 2457 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2458 if (!InsertResult.second) 2459 return InsertResult.first->second; 2460 2461 TypeLoweringScope S(*this); 2462 2463 // Make sure the forward declaration is emitted first. It's unclear if this 2464 // is necessary, but MSVC does it, and we should follow suit until we can show 2465 // otherwise. 2466 // We only emit a forward declaration for named types. 2467 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2468 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2469 2470 // Just use the forward decl if we don't have complete type info. This 2471 // might happen if the frontend is using modules and expects the complete 2472 // definition to be emitted elsewhere. 2473 if (CTy->isForwardDecl()) 2474 return FwdDeclTI; 2475 } 2476 2477 TypeIndex TI; 2478 switch (CTy->getTag()) { 2479 case dwarf::DW_TAG_class_type: 2480 case dwarf::DW_TAG_structure_type: 2481 TI = lowerCompleteTypeClass(CTy); 2482 break; 2483 case dwarf::DW_TAG_union_type: 2484 TI = lowerCompleteTypeUnion(CTy); 2485 break; 2486 default: 2487 llvm_unreachable("not a record"); 2488 } 2489 2490 // Update the type index associated with this CompositeType. This cannot 2491 // use the 'InsertResult' iterator above because it is potentially 2492 // invalidated by map insertions which can occur while lowering the class 2493 // type above. 2494 CompleteTypeIndices[CTy] = TI; 2495 return TI; 2496 } 2497 2498 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2499 /// and do this until fixpoint, as each complete record type typically 2500 /// references 2501 /// many other record types. 2502 void CodeViewDebug::emitDeferredCompleteTypes() { 2503 SmallVector<const DICompositeType *, 4> TypesToEmit; 2504 while (!DeferredCompleteTypes.empty()) { 2505 std::swap(DeferredCompleteTypes, TypesToEmit); 2506 for (const DICompositeType *RecordTy : TypesToEmit) 2507 getCompleteTypeIndex(RecordTy); 2508 TypesToEmit.clear(); 2509 } 2510 } 2511 2512 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2513 ArrayRef<LocalVariable> Locals) { 2514 // Get the sorted list of parameters and emit them first. 2515 SmallVector<const LocalVariable *, 6> Params; 2516 for (const LocalVariable &L : Locals) 2517 if (L.DIVar->isParameter()) 2518 Params.push_back(&L); 2519 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2520 return L->DIVar->getArg() < R->DIVar->getArg(); 2521 }); 2522 for (const LocalVariable *L : Params) 2523 emitLocalVariable(FI, *L); 2524 2525 // Next emit all non-parameters in the order that we found them. 2526 for (const LocalVariable &L : Locals) 2527 if (!L.DIVar->isParameter()) 2528 emitLocalVariable(FI, L); 2529 } 2530 2531 /// Only call this on endian-specific types like ulittle16_t and little32_t, or 2532 /// structs composed of them. 2533 template <typename T> 2534 static void copyBytesForDefRange(SmallString<20> &BytePrefix, 2535 SymbolKind SymKind, const T &DefRangeHeader) { 2536 BytePrefix.resize(2 + sizeof(T)); 2537 ulittle16_t SymKindLE = ulittle16_t(SymKind); 2538 memcpy(&BytePrefix[0], &SymKindLE, 2); 2539 memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T)); 2540 } 2541 2542 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2543 const LocalVariable &Var) { 2544 // LocalSym record, see SymbolRecord.h for more info. 2545 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2546 2547 LocalSymFlags Flags = LocalSymFlags::None; 2548 if (Var.DIVar->isParameter()) 2549 Flags |= LocalSymFlags::IsParameter; 2550 if (Var.DefRanges.empty()) 2551 Flags |= LocalSymFlags::IsOptimizedOut; 2552 2553 OS.AddComment("TypeIndex"); 2554 TypeIndex TI = Var.UseReferenceType 2555 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2556 : getCompleteTypeIndex(Var.DIVar->getType()); 2557 OS.EmitIntValue(TI.getIndex(), 4); 2558 OS.AddComment("Flags"); 2559 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2560 // Truncate the name so we won't overflow the record length field. 2561 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2562 endSymbolRecord(LocalEnd); 2563 2564 // Calculate the on disk prefix of the appropriate def range record. The 2565 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2566 // should be big enough to hold all forms without memory allocation. 2567 SmallString<20> BytePrefix; 2568 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2569 BytePrefix.clear(); 2570 if (DefRange.InMemory) { 2571 int Offset = DefRange.DataOffset; 2572 unsigned Reg = DefRange.CVRegister; 2573 2574 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2575 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2576 // instead. In frames without stack realignment, $T0 will be the CFA. 2577 if (RegisterId(Reg) == RegisterId::ESP) { 2578 Reg = unsigned(RegisterId::VFRAME); 2579 Offset += FI.OffsetAdjustment; 2580 } 2581 2582 // If we can use the chosen frame pointer for the frame and this isn't a 2583 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2584 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2585 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2586 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2587 (bool(Flags & LocalSymFlags::IsParameter) 2588 ? (EncFP == FI.EncodedParamFramePtrReg) 2589 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2590 little32_t FPOffset = little32_t(Offset); 2591 copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset); 2592 } else { 2593 uint16_t RegRelFlags = 0; 2594 if (DefRange.IsSubfield) { 2595 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2596 (DefRange.StructOffset 2597 << DefRangeRegisterRelSym::OffsetInParentShift); 2598 } 2599 DefRangeRegisterRelSym::Header DRHdr; 2600 DRHdr.Register = Reg; 2601 DRHdr.Flags = RegRelFlags; 2602 DRHdr.BasePointerOffset = Offset; 2603 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr); 2604 } 2605 } else { 2606 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2607 if (DefRange.IsSubfield) { 2608 DefRangeSubfieldRegisterSym::Header DRHdr; 2609 DRHdr.Register = DefRange.CVRegister; 2610 DRHdr.MayHaveNoName = 0; 2611 DRHdr.OffsetInParent = DefRange.StructOffset; 2612 copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr); 2613 } else { 2614 DefRangeRegisterSym::Header DRHdr; 2615 DRHdr.Register = DefRange.CVRegister; 2616 DRHdr.MayHaveNoName = 0; 2617 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr); 2618 } 2619 } 2620 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2621 } 2622 } 2623 2624 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2625 const FunctionInfo& FI) { 2626 for (LexicalBlock *Block : Blocks) 2627 emitLexicalBlock(*Block, FI); 2628 } 2629 2630 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2631 /// lexical block scope. 2632 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2633 const FunctionInfo& FI) { 2634 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2635 OS.AddComment("PtrParent"); 2636 OS.EmitIntValue(0, 4); // PtrParent 2637 OS.AddComment("PtrEnd"); 2638 OS.EmitIntValue(0, 4); // PtrEnd 2639 OS.AddComment("Code size"); 2640 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2641 OS.AddComment("Function section relative address"); 2642 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2643 OS.AddComment("Function section index"); 2644 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2645 OS.AddComment("Lexical block name"); 2646 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2647 endSymbolRecord(RecordEnd); 2648 2649 // Emit variables local to this lexical block. 2650 emitLocalVariableList(FI, Block.Locals); 2651 2652 // Emit lexical blocks contained within this block. 2653 emitLexicalBlockList(Block.Children, FI); 2654 2655 // Close the lexical block scope. 2656 emitEndSymbolRecord(SymbolKind::S_END); 2657 } 2658 2659 /// Convenience routine for collecting lexical block information for a list 2660 /// of lexical scopes. 2661 void CodeViewDebug::collectLexicalBlockInfo( 2662 SmallVectorImpl<LexicalScope *> &Scopes, 2663 SmallVectorImpl<LexicalBlock *> &Blocks, 2664 SmallVectorImpl<LocalVariable> &Locals) { 2665 for (LexicalScope *Scope : Scopes) 2666 collectLexicalBlockInfo(*Scope, Blocks, Locals); 2667 } 2668 2669 /// Populate the lexical blocks and local variable lists of the parent with 2670 /// information about the specified lexical scope. 2671 void CodeViewDebug::collectLexicalBlockInfo( 2672 LexicalScope &Scope, 2673 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2674 SmallVectorImpl<LocalVariable> &ParentLocals) { 2675 if (Scope.isAbstractScope()) 2676 return; 2677 2678 auto LocalsIter = ScopeVariables.find(&Scope); 2679 if (LocalsIter == ScopeVariables.end()) { 2680 // This scope does not contain variables and can be eliminated. 2681 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2682 return; 2683 } 2684 SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second; 2685 2686 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2687 if (!DILB) { 2688 // This scope is not a lexical block and can be eliminated, but keep any 2689 // local variables it contains. 2690 ParentLocals.append(Locals.begin(), Locals.end()); 2691 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2692 return; 2693 } 2694 2695 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2696 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) { 2697 // This lexical block scope has too many address ranges to represent in the 2698 // current CodeView format or does not have a valid address range. 2699 // Eliminate this lexical scope and promote any locals it contains to the 2700 // parent scope. 2701 // 2702 // For lexical scopes with multiple address ranges you may be tempted to 2703 // construct a single range covering every instruction where the block is 2704 // live and everything in between. Unfortunately, Visual Studio only 2705 // displays variables from the first matching lexical block scope. If the 2706 // first lexical block contains exception handling code or cold code which 2707 // is moved to the bottom of the routine creating a single range covering 2708 // nearly the entire routine, then it will hide all other lexical blocks 2709 // and the variables they contain. 2710 // 2711 ParentLocals.append(Locals.begin(), Locals.end()); 2712 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2713 return; 2714 } 2715 2716 // Create a new CodeView lexical block for this lexical scope. If we've 2717 // seen this DILexicalBlock before then the scope tree is malformed and 2718 // we can handle this gracefully by not processing it a second time. 2719 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2720 if (!BlockInsertion.second) 2721 return; 2722 2723 // Create a lexical block containing the local variables and collect the 2724 // the lexical block information for the children. 2725 const InsnRange &Range = Ranges.front(); 2726 assert(Range.first && Range.second); 2727 LexicalBlock &Block = BlockInsertion.first->second; 2728 Block.Begin = getLabelBeforeInsn(Range.first); 2729 Block.End = getLabelAfterInsn(Range.second); 2730 assert(Block.Begin && "missing label for scope begin"); 2731 assert(Block.End && "missing label for scope end"); 2732 Block.Name = DILB->getName(); 2733 Block.Locals = std::move(Locals); 2734 ParentBlocks.push_back(&Block); 2735 collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals); 2736 } 2737 2738 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2739 const Function &GV = MF->getFunction(); 2740 assert(FnDebugInfo.count(&GV)); 2741 assert(CurFn == FnDebugInfo[&GV].get()); 2742 2743 collectVariableInfo(GV.getSubprogram()); 2744 2745 // Build the lexical block structure to emit for this routine. 2746 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2747 collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals); 2748 2749 // Clear the scope and variable information from the map which will not be 2750 // valid after we have finished processing this routine. This also prepares 2751 // the map for the subsequent routine. 2752 ScopeVariables.clear(); 2753 2754 // Don't emit anything if we don't have any line tables. 2755 // Thunks are compiler-generated and probably won't have source correlation. 2756 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2757 FnDebugInfo.erase(&GV); 2758 CurFn = nullptr; 2759 return; 2760 } 2761 2762 CurFn->Annotations = MF->getCodeViewAnnotations(); 2763 2764 CurFn->End = Asm->getFunctionEnd(); 2765 2766 CurFn = nullptr; 2767 } 2768 2769 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2770 DebugHandlerBase::beginInstruction(MI); 2771 2772 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2773 if (!Asm || !CurFn || MI->isDebugInstr() || 2774 MI->getFlag(MachineInstr::FrameSetup)) 2775 return; 2776 2777 // If the first instruction of a new MBB has no location, find the first 2778 // instruction with a location and use that. 2779 DebugLoc DL = MI->getDebugLoc(); 2780 if (!DL && MI->getParent() != PrevInstBB) { 2781 for (const auto &NextMI : *MI->getParent()) { 2782 if (NextMI.isDebugInstr()) 2783 continue; 2784 DL = NextMI.getDebugLoc(); 2785 if (DL) 2786 break; 2787 } 2788 } 2789 PrevInstBB = MI->getParent(); 2790 2791 // If we still don't have a debug location, don't record a location. 2792 if (!DL) 2793 return; 2794 2795 maybeRecordLocation(DL, Asm->MF); 2796 } 2797 2798 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2799 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2800 *EndLabel = MMI->getContext().createTempSymbol(); 2801 OS.EmitIntValue(unsigned(Kind), 4); 2802 OS.AddComment("Subsection size"); 2803 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2804 OS.EmitLabel(BeginLabel); 2805 return EndLabel; 2806 } 2807 2808 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2809 OS.EmitLabel(EndLabel); 2810 // Every subsection must be aligned to a 4-byte boundary. 2811 OS.EmitValueToAlignment(4); 2812 } 2813 2814 static StringRef getSymbolName(SymbolKind SymKind) { 2815 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 2816 if (EE.Value == SymKind) 2817 return EE.Name; 2818 return ""; 2819 } 2820 2821 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 2822 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2823 *EndLabel = MMI->getContext().createTempSymbol(); 2824 OS.AddComment("Record length"); 2825 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 2826 OS.EmitLabel(BeginLabel); 2827 if (OS.isVerboseAsm()) 2828 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 2829 OS.EmitIntValue(unsigned(SymKind), 2); 2830 return EndLabel; 2831 } 2832 2833 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 2834 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 2835 // an extra copy of every symbol record in LLD. This increases object file 2836 // size by less than 1% in the clang build, and is compatible with the Visual 2837 // C++ linker. 2838 OS.EmitValueToAlignment(4); 2839 OS.EmitLabel(SymEnd); 2840 } 2841 2842 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 2843 OS.AddComment("Record length"); 2844 OS.EmitIntValue(2, 2); 2845 if (OS.isVerboseAsm()) 2846 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 2847 OS.EmitIntValue(unsigned(EndKind), 2); // Record Kind 2848 } 2849 2850 void CodeViewDebug::emitDebugInfoForUDTs( 2851 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2852 for (const auto &UDT : UDTs) { 2853 const DIType *T = UDT.second; 2854 assert(shouldEmitUdt(T)); 2855 2856 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 2857 OS.AddComment("Type"); 2858 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2859 emitNullTerminatedSymbolName(OS, UDT.first); 2860 endSymbolRecord(UDTRecordEnd); 2861 } 2862 } 2863 2864 void CodeViewDebug::emitDebugInfoForGlobals() { 2865 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2866 GlobalMap; 2867 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2868 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2869 GV.getDebugInfo(GVEs); 2870 for (const auto *GVE : GVEs) 2871 GlobalMap[GVE] = &GV; 2872 } 2873 2874 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2875 for (const MDNode *Node : CUs->operands()) { 2876 const auto *CU = cast<DICompileUnit>(Node); 2877 2878 // First, emit all globals that are not in a comdat in a single symbol 2879 // substream. MSVC doesn't like it if the substream is empty, so only open 2880 // it if we have at least one global to emit. 2881 switchToDebugSectionForSymbol(nullptr); 2882 MCSymbol *EndLabel = nullptr; 2883 for (const auto *GVE : CU->getGlobalVariables()) { 2884 if (const auto *GV = GlobalMap.lookup(GVE)) 2885 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2886 if (!EndLabel) { 2887 OS.AddComment("Symbol subsection for globals"); 2888 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2889 } 2890 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2891 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2892 } 2893 } 2894 if (EndLabel) 2895 endCVSubsection(EndLabel); 2896 2897 // Second, emit each global that is in a comdat into its own .debug$S 2898 // section along with its own symbol substream. 2899 for (const auto *GVE : CU->getGlobalVariables()) { 2900 if (const auto *GV = GlobalMap.lookup(GVE)) { 2901 if (GV->hasComdat()) { 2902 MCSymbol *GVSym = Asm->getSymbol(GV); 2903 OS.AddComment("Symbol subsection for " + 2904 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2905 switchToDebugSectionForSymbol(GVSym); 2906 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2907 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2908 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2909 endCVSubsection(EndLabel); 2910 } 2911 } 2912 } 2913 } 2914 } 2915 2916 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2917 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2918 for (const MDNode *Node : CUs->operands()) { 2919 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2920 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2921 getTypeIndex(RT); 2922 // FIXME: Add to global/local DTU list. 2923 } 2924 } 2925 } 2926 } 2927 2928 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2929 const GlobalVariable *GV, 2930 MCSymbol *GVSym) { 2931 // DataSym record, see SymbolRecord.h for more info. Thread local data 2932 // happens to have the same format as global data. 2933 SymbolKind DataSym = GV->isThreadLocal() 2934 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 2935 : SymbolKind::S_GTHREAD32) 2936 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 2937 : SymbolKind::S_GDATA32); 2938 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 2939 OS.AddComment("Type"); 2940 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2941 OS.AddComment("DataOffset"); 2942 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2943 OS.AddComment("Segment"); 2944 OS.EmitCOFFSectionIndex(GVSym); 2945 OS.AddComment("Name"); 2946 const unsigned LengthOfDataRecord = 12; 2947 emitNullTerminatedSymbolName(OS, DIGV->getName(), LengthOfDataRecord); 2948 endSymbolRecord(DataEnd); 2949 } 2950