1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/TinyPtrVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/BinaryFormat/COFF.h" 30 #include "llvm/BinaryFormat/Dwarf.h" 31 #include "llvm/CodeGen/AsmPrinter.h" 32 #include "llvm/CodeGen/LexicalScopes.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/Config/llvm-config.h" 38 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 39 #include "llvm/DebugInfo/CodeView/CodeView.h" 40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 41 #include "llvm/DebugInfo/CodeView/Line.h" 42 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 43 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 44 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 45 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/MC/MCAsmInfo.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSectionCOFF.h" 59 #include "llvm/MC/MCStreamer.h" 60 #include "llvm/MC/MCSymbol.h" 61 #include "llvm/Support/BinaryByteStream.h" 62 #include "llvm/Support/BinaryStreamReader.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ScopedPrinter.h" 69 #include "llvm/Support/SMLoc.h" 70 #include "llvm/Target/TargetFrameLowering.h" 71 #include "llvm/Target/TargetLoweringObjectFile.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include "llvm/Target/TargetRegisterInfo.h" 74 #include "llvm/Target/TargetSubtargetInfo.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <cstdint> 80 #include <iterator> 81 #include <limits> 82 #include <string> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 using namespace llvm::codeview; 88 89 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 90 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 91 // If module doesn't have named metadata anchors or COFF debug section 92 // is not available, skip any debug info related stuff. 93 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 94 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 95 Asm = nullptr; 96 return; 97 } 98 99 // Tell MMI that we have debug info. 100 MMI->setDebugInfoAvailability(true); 101 } 102 103 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 104 std::string &Filepath = FileToFilepathMap[File]; 105 if (!Filepath.empty()) 106 return Filepath; 107 108 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 109 110 // Clang emits directory and relative filename info into the IR, but CodeView 111 // operates on full paths. We could change Clang to emit full paths too, but 112 // that would increase the IR size and probably not needed for other users. 113 // For now, just concatenate and canonicalize the path here. 114 if (Filename.find(':') == 1) 115 Filepath = Filename; 116 else 117 Filepath = (Dir + "\\" + Filename).str(); 118 119 // Canonicalize the path. We have to do it textually because we may no longer 120 // have access the file in the filesystem. 121 // First, replace all slashes with backslashes. 122 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 123 124 // Remove all "\.\" with "\". 125 size_t Cursor = 0; 126 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 127 Filepath.erase(Cursor, 2); 128 129 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 130 // path should be well-formatted, e.g. start with a drive letter, etc. 131 Cursor = 0; 132 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 133 // Something's wrong if the path starts with "\..\", abort. 134 if (Cursor == 0) 135 break; 136 137 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 138 if (PrevSlash == std::string::npos) 139 // Something's wrong, abort. 140 break; 141 142 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 143 // The next ".." might be following the one we've just erased. 144 Cursor = PrevSlash; 145 } 146 147 // Remove all duplicate backslashes. 148 Cursor = 0; 149 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 150 Filepath.erase(Cursor, 1); 151 152 return Filepath; 153 } 154 155 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 156 unsigned NextId = FileIdMap.size() + 1; 157 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 158 if (Insertion.second) { 159 // We have to compute the full filepath and emit a .cv_file directive. 160 StringRef FullPath = getFullFilepath(F); 161 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 162 (void)Success; 163 assert(Success && ".cv_file directive failed"); 164 } 165 return Insertion.first->second; 166 } 167 168 CodeViewDebug::InlineSite & 169 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 170 const DISubprogram *Inlinee) { 171 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 172 InlineSite *Site = &SiteInsertion.first->second; 173 if (SiteInsertion.second) { 174 unsigned ParentFuncId = CurFn->FuncId; 175 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 176 ParentFuncId = 177 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 178 .SiteFuncId; 179 180 Site->SiteFuncId = NextFuncId++; 181 OS.EmitCVInlineSiteIdDirective( 182 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 183 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 184 Site->Inlinee = Inlinee; 185 InlinedSubprograms.insert(Inlinee); 186 getFuncIdForSubprogram(Inlinee); 187 } 188 return *Site; 189 } 190 191 static StringRef getPrettyScopeName(const DIScope *Scope) { 192 StringRef ScopeName = Scope->getName(); 193 if (!ScopeName.empty()) 194 return ScopeName; 195 196 switch (Scope->getTag()) { 197 case dwarf::DW_TAG_enumeration_type: 198 case dwarf::DW_TAG_class_type: 199 case dwarf::DW_TAG_structure_type: 200 case dwarf::DW_TAG_union_type: 201 return "<unnamed-tag>"; 202 case dwarf::DW_TAG_namespace: 203 return "`anonymous namespace'"; 204 } 205 206 return StringRef(); 207 } 208 209 static const DISubprogram *getQualifiedNameComponents( 210 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 211 const DISubprogram *ClosestSubprogram = nullptr; 212 while (Scope != nullptr) { 213 if (ClosestSubprogram == nullptr) 214 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 215 StringRef ScopeName = getPrettyScopeName(Scope); 216 if (!ScopeName.empty()) 217 QualifiedNameComponents.push_back(ScopeName); 218 Scope = Scope->getScope().resolve(); 219 } 220 return ClosestSubprogram; 221 } 222 223 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 224 StringRef TypeName) { 225 std::string FullyQualifiedName; 226 for (StringRef QualifiedNameComponent : 227 llvm::reverse(QualifiedNameComponents)) { 228 FullyQualifiedName.append(QualifiedNameComponent); 229 FullyQualifiedName.append("::"); 230 } 231 FullyQualifiedName.append(TypeName); 232 return FullyQualifiedName; 233 } 234 235 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 236 SmallVector<StringRef, 5> QualifiedNameComponents; 237 getQualifiedNameComponents(Scope, QualifiedNameComponents); 238 return getQualifiedName(QualifiedNameComponents, Name); 239 } 240 241 struct CodeViewDebug::TypeLoweringScope { 242 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 243 ~TypeLoweringScope() { 244 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 245 // inner TypeLoweringScopes don't attempt to emit deferred types. 246 if (CVD.TypeEmissionLevel == 1) 247 CVD.emitDeferredCompleteTypes(); 248 --CVD.TypeEmissionLevel; 249 } 250 CodeViewDebug &CVD; 251 }; 252 253 static std::string getFullyQualifiedName(const DIScope *Ty) { 254 const DIScope *Scope = Ty->getScope().resolve(); 255 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 256 } 257 258 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 259 // No scope means global scope and that uses the zero index. 260 if (!Scope || isa<DIFile>(Scope)) 261 return TypeIndex(); 262 263 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 264 265 // Check if we've already translated this scope. 266 auto I = TypeIndices.find({Scope, nullptr}); 267 if (I != TypeIndices.end()) 268 return I->second; 269 270 // Build the fully qualified name of the scope. 271 std::string ScopeName = getFullyQualifiedName(Scope); 272 StringIdRecord SID(TypeIndex(), ScopeName); 273 auto TI = TypeTable.writeKnownType(SID); 274 return recordTypeIndexForDINode(Scope, TI); 275 } 276 277 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 278 assert(SP); 279 280 // Check if we've already translated this subprogram. 281 auto I = TypeIndices.find({SP, nullptr}); 282 if (I != TypeIndices.end()) 283 return I->second; 284 285 // The display name includes function template arguments. Drop them to match 286 // MSVC. 287 StringRef DisplayName = SP->getName().split('<').first; 288 289 const DIScope *Scope = SP->getScope().resolve(); 290 TypeIndex TI; 291 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 292 // If the scope is a DICompositeType, then this must be a method. Member 293 // function types take some special handling, and require access to the 294 // subprogram. 295 TypeIndex ClassType = getTypeIndex(Class); 296 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 297 DisplayName); 298 TI = TypeTable.writeKnownType(MFuncId); 299 } else { 300 // Otherwise, this must be a free function. 301 TypeIndex ParentScope = getScopeIndex(Scope); 302 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 303 TI = TypeTable.writeKnownType(FuncId); 304 } 305 306 return recordTypeIndexForDINode(SP, TI); 307 } 308 309 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 310 const DICompositeType *Class) { 311 // Always use the method declaration as the key for the function type. The 312 // method declaration contains the this adjustment. 313 if (SP->getDeclaration()) 314 SP = SP->getDeclaration(); 315 assert(!SP->getDeclaration() && "should use declaration as key"); 316 317 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 318 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 319 auto I = TypeIndices.find({SP, Class}); 320 if (I != TypeIndices.end()) 321 return I->second; 322 323 // Make sure complete type info for the class is emitted *after* the member 324 // function type, as the complete class type is likely to reference this 325 // member function type. 326 TypeLoweringScope S(*this); 327 TypeIndex TI = 328 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 329 return recordTypeIndexForDINode(SP, TI, Class); 330 } 331 332 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 333 TypeIndex TI, 334 const DIType *ClassTy) { 335 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 336 (void)InsertResult; 337 assert(InsertResult.second && "DINode was already assigned a type index"); 338 return TI; 339 } 340 341 unsigned CodeViewDebug::getPointerSizeInBytes() { 342 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 343 } 344 345 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 346 const DILocation *InlinedAt) { 347 if (InlinedAt) { 348 // This variable was inlined. Associate it with the InlineSite. 349 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 350 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 351 Site.InlinedLocals.emplace_back(Var); 352 } else { 353 // This variable goes in the main ProcSym. 354 CurFn->Locals.emplace_back(Var); 355 } 356 } 357 358 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 359 const DILocation *Loc) { 360 auto B = Locs.begin(), E = Locs.end(); 361 if (std::find(B, E, Loc) == E) 362 Locs.push_back(Loc); 363 } 364 365 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 366 const MachineFunction *MF) { 367 // Skip this instruction if it has the same location as the previous one. 368 if (!DL || DL == PrevInstLoc) 369 return; 370 371 const DIScope *Scope = DL.get()->getScope(); 372 if (!Scope) 373 return; 374 375 // Skip this line if it is longer than the maximum we can record. 376 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 377 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 378 LI.isNeverStepInto()) 379 return; 380 381 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 382 if (CI.getStartColumn() != DL.getCol()) 383 return; 384 385 if (!CurFn->HaveLineInfo) 386 CurFn->HaveLineInfo = true; 387 unsigned FileId = 0; 388 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 389 FileId = CurFn->LastFileId; 390 else 391 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 392 PrevInstLoc = DL; 393 394 unsigned FuncId = CurFn->FuncId; 395 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 396 const DILocation *Loc = DL.get(); 397 398 // If this location was actually inlined from somewhere else, give it the ID 399 // of the inline call site. 400 FuncId = 401 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 402 403 // Ensure we have links in the tree of inline call sites. 404 bool FirstLoc = true; 405 while ((SiteLoc = Loc->getInlinedAt())) { 406 InlineSite &Site = 407 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 408 if (!FirstLoc) 409 addLocIfNotPresent(Site.ChildSites, Loc); 410 FirstLoc = false; 411 Loc = SiteLoc; 412 } 413 addLocIfNotPresent(CurFn->ChildSites, Loc); 414 } 415 416 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 417 /*PrologueEnd=*/false, /*IsStmt=*/false, 418 DL->getFilename(), SMLoc()); 419 } 420 421 void CodeViewDebug::emitCodeViewMagicVersion() { 422 OS.EmitValueToAlignment(4); 423 OS.AddComment("Debug section magic"); 424 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 425 } 426 427 void CodeViewDebug::endModule() { 428 if (!Asm || !MMI->hasDebugInfo()) 429 return; 430 431 assert(Asm != nullptr); 432 433 // The COFF .debug$S section consists of several subsections, each starting 434 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 435 // of the payload followed by the payload itself. The subsections are 4-byte 436 // aligned. 437 438 // Use the generic .debug$S section, and make a subsection for all the inlined 439 // subprograms. 440 switchToDebugSectionForSymbol(nullptr); 441 442 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 443 emitCompilerInformation(); 444 endCVSubsection(CompilerInfo); 445 446 emitInlineeLinesSubsection(); 447 448 // Emit per-function debug information. 449 for (auto &P : FnDebugInfo) 450 if (!P.first->isDeclarationForLinker()) 451 emitDebugInfoForFunction(P.first, P.second); 452 453 // Emit global variable debug information. 454 setCurrentSubprogram(nullptr); 455 emitDebugInfoForGlobals(); 456 457 // Emit retained types. 458 emitDebugInfoForRetainedTypes(); 459 460 // Switch back to the generic .debug$S section after potentially processing 461 // comdat symbol sections. 462 switchToDebugSectionForSymbol(nullptr); 463 464 // Emit UDT records for any types used by global variables. 465 if (!GlobalUDTs.empty()) { 466 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 467 emitDebugInfoForUDTs(GlobalUDTs); 468 endCVSubsection(SymbolsEnd); 469 } 470 471 // This subsection holds a file index to offset in string table table. 472 OS.AddComment("File index to string table offset subsection"); 473 OS.EmitCVFileChecksumsDirective(); 474 475 // This subsection holds the string table. 476 OS.AddComment("String table"); 477 OS.EmitCVStringTableDirective(); 478 479 // Emit type information last, so that any types we translate while emitting 480 // function info are included. 481 emitTypeInformation(); 482 483 clear(); 484 } 485 486 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 487 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 488 // after a fixed length portion of the record. The fixed length portion should 489 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 490 // overall record size is less than the maximum allowed. 491 unsigned MaxFixedRecordLength = 0xF00; 492 SmallString<32> NullTerminatedString( 493 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 494 NullTerminatedString.push_back('\0'); 495 OS.EmitBytes(NullTerminatedString); 496 } 497 498 void CodeViewDebug::emitTypeInformation() { 499 // Do nothing if we have no debug info or if no non-trivial types were emitted 500 // to TypeTable during codegen. 501 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 502 if (!CU_Nodes) 503 return; 504 if (TypeTable.empty()) 505 return; 506 507 // Start the .debug$T section with 0x4. 508 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 509 emitCodeViewMagicVersion(); 510 511 SmallString<8> CommentPrefix; 512 if (OS.isVerboseAsm()) { 513 CommentPrefix += '\t'; 514 CommentPrefix += Asm->MAI->getCommentString(); 515 CommentPrefix += ' '; 516 } 517 518 TypeTableCollection Table(TypeTable.records()); 519 Optional<TypeIndex> B = Table.getFirst(); 520 while (B) { 521 // This will fail if the record data is invalid. 522 CVType Record = Table.getType(*B); 523 524 if (OS.isVerboseAsm()) { 525 // Emit a block comment describing the type record for readability. 526 SmallString<512> CommentBlock; 527 raw_svector_ostream CommentOS(CommentBlock); 528 ScopedPrinter SP(CommentOS); 529 SP.setPrefix(CommentPrefix); 530 TypeDumpVisitor TDV(Table, &SP, false); 531 532 Error E = codeview::visitTypeRecord(Record, *B, TDV); 533 if (E) { 534 logAllUnhandledErrors(std::move(E), errs(), "error: "); 535 llvm_unreachable("produced malformed type record"); 536 } 537 // emitRawComment will insert its own tab and comment string before 538 // the first line, so strip off our first one. It also prints its own 539 // newline. 540 OS.emitRawComment( 541 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 542 } 543 OS.EmitBinaryData(Record.str_data()); 544 B = Table.getNext(*B); 545 } 546 } 547 548 namespace { 549 550 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 551 switch (DWLang) { 552 case dwarf::DW_LANG_C: 553 case dwarf::DW_LANG_C89: 554 case dwarf::DW_LANG_C99: 555 case dwarf::DW_LANG_C11: 556 case dwarf::DW_LANG_ObjC: 557 return SourceLanguage::C; 558 case dwarf::DW_LANG_C_plus_plus: 559 case dwarf::DW_LANG_C_plus_plus_03: 560 case dwarf::DW_LANG_C_plus_plus_11: 561 case dwarf::DW_LANG_C_plus_plus_14: 562 return SourceLanguage::Cpp; 563 case dwarf::DW_LANG_Fortran77: 564 case dwarf::DW_LANG_Fortran90: 565 case dwarf::DW_LANG_Fortran03: 566 case dwarf::DW_LANG_Fortran08: 567 return SourceLanguage::Fortran; 568 case dwarf::DW_LANG_Pascal83: 569 return SourceLanguage::Pascal; 570 case dwarf::DW_LANG_Cobol74: 571 case dwarf::DW_LANG_Cobol85: 572 return SourceLanguage::Cobol; 573 case dwarf::DW_LANG_Java: 574 return SourceLanguage::Java; 575 default: 576 // There's no CodeView representation for this language, and CV doesn't 577 // have an "unknown" option for the language field, so we'll use MASM, 578 // as it's very low level. 579 return SourceLanguage::Masm; 580 } 581 } 582 583 struct Version { 584 int Part[4]; 585 }; 586 587 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 588 // the version number. 589 static Version parseVersion(StringRef Name) { 590 Version V = {{0}}; 591 int N = 0; 592 for (const char C : Name) { 593 if (isdigit(C)) { 594 V.Part[N] *= 10; 595 V.Part[N] += C - '0'; 596 } else if (C == '.') { 597 ++N; 598 if (N >= 4) 599 return V; 600 } else if (N > 0) 601 return V; 602 } 603 return V; 604 } 605 606 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 607 switch (Type) { 608 case Triple::ArchType::x86: 609 return CPUType::Pentium3; 610 case Triple::ArchType::x86_64: 611 return CPUType::X64; 612 case Triple::ArchType::thumb: 613 return CPUType::Thumb; 614 case Triple::ArchType::aarch64: 615 return CPUType::ARM64; 616 default: 617 report_fatal_error("target architecture doesn't map to a CodeView " 618 "CPUType"); 619 } 620 } 621 622 } // end anonymous namespace 623 624 void CodeViewDebug::emitCompilerInformation() { 625 MCContext &Context = MMI->getContext(); 626 MCSymbol *CompilerBegin = Context.createTempSymbol(), 627 *CompilerEnd = Context.createTempSymbol(); 628 OS.AddComment("Record length"); 629 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 630 OS.EmitLabel(CompilerBegin); 631 OS.AddComment("Record kind: S_COMPILE3"); 632 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 633 uint32_t Flags = 0; 634 635 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 636 const MDNode *Node = *CUs->operands().begin(); 637 const auto *CU = cast<DICompileUnit>(Node); 638 639 // The low byte of the flags indicates the source language. 640 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 641 // TODO: Figure out which other flags need to be set. 642 643 OS.AddComment("Flags and language"); 644 OS.EmitIntValue(Flags, 4); 645 646 OS.AddComment("CPUType"); 647 CPUType CPU = 648 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 649 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 650 651 StringRef CompilerVersion = CU->getProducer(); 652 Version FrontVer = parseVersion(CompilerVersion); 653 OS.AddComment("Frontend version"); 654 for (int N = 0; N < 4; ++N) 655 OS.EmitIntValue(FrontVer.Part[N], 2); 656 657 // Some Microsoft tools, like Binscope, expect a backend version number of at 658 // least 8.something, so we'll coerce the LLVM version into a form that 659 // guarantees it'll be big enough without really lying about the version. 660 int Major = 1000 * LLVM_VERSION_MAJOR + 661 10 * LLVM_VERSION_MINOR + 662 LLVM_VERSION_PATCH; 663 // Clamp it for builds that use unusually large version numbers. 664 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 665 Version BackVer = {{ Major, 0, 0, 0 }}; 666 OS.AddComment("Backend version"); 667 for (int N = 0; N < 4; ++N) 668 OS.EmitIntValue(BackVer.Part[N], 2); 669 670 OS.AddComment("Null-terminated compiler version string"); 671 emitNullTerminatedSymbolName(OS, CompilerVersion); 672 673 OS.EmitLabel(CompilerEnd); 674 } 675 676 void CodeViewDebug::emitInlineeLinesSubsection() { 677 if (InlinedSubprograms.empty()) 678 return; 679 680 OS.AddComment("Inlinee lines subsection"); 681 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 682 683 // We don't provide any extra file info. 684 // FIXME: Find out if debuggers use this info. 685 OS.AddComment("Inlinee lines signature"); 686 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 687 688 for (const DISubprogram *SP : InlinedSubprograms) { 689 assert(TypeIndices.count({SP, nullptr})); 690 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 691 692 OS.AddBlankLine(); 693 unsigned FileId = maybeRecordFile(SP->getFile()); 694 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 695 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 696 OS.AddBlankLine(); 697 // The filechecksum table uses 8 byte entries for now, and file ids start at 698 // 1. 699 unsigned FileOffset = (FileId - 1) * 8; 700 OS.AddComment("Type index of inlined function"); 701 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 702 OS.AddComment("Offset into filechecksum table"); 703 OS.EmitIntValue(FileOffset, 4); 704 OS.AddComment("Starting line number"); 705 OS.EmitIntValue(SP->getLine(), 4); 706 } 707 708 endCVSubsection(InlineEnd); 709 } 710 711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 712 const DILocation *InlinedAt, 713 const InlineSite &Site) { 714 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 715 *InlineEnd = MMI->getContext().createTempSymbol(); 716 717 assert(TypeIndices.count({Site.Inlinee, nullptr})); 718 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 719 720 // SymbolRecord 721 OS.AddComment("Record length"); 722 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 723 OS.EmitLabel(InlineBegin); 724 OS.AddComment("Record kind: S_INLINESITE"); 725 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 726 727 OS.AddComment("PtrParent"); 728 OS.EmitIntValue(0, 4); 729 OS.AddComment("PtrEnd"); 730 OS.EmitIntValue(0, 4); 731 OS.AddComment("Inlinee type index"); 732 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 733 734 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 735 unsigned StartLineNum = Site.Inlinee->getLine(); 736 737 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 738 FI.Begin, FI.End); 739 740 OS.EmitLabel(InlineEnd); 741 742 emitLocalVariableList(Site.InlinedLocals); 743 744 // Recurse on child inlined call sites before closing the scope. 745 for (const DILocation *ChildSite : Site.ChildSites) { 746 auto I = FI.InlineSites.find(ChildSite); 747 assert(I != FI.InlineSites.end() && 748 "child site not in function inline site map"); 749 emitInlinedCallSite(FI, ChildSite, I->second); 750 } 751 752 // Close the scope. 753 OS.AddComment("Record length"); 754 OS.EmitIntValue(2, 2); // RecordLength 755 OS.AddComment("Record kind: S_INLINESITE_END"); 756 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 757 } 758 759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 760 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 761 // comdat key. A section may be comdat because of -ffunction-sections or 762 // because it is comdat in the IR. 763 MCSectionCOFF *GVSec = 764 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 765 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 766 767 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 768 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 769 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 770 771 OS.SwitchSection(DebugSec); 772 773 // Emit the magic version number if this is the first time we've switched to 774 // this section. 775 if (ComdatDebugSections.insert(DebugSec).second) 776 emitCodeViewMagicVersion(); 777 } 778 779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 780 FunctionInfo &FI) { 781 // For each function there is a separate subsection 782 // which holds the PC to file:line table. 783 const MCSymbol *Fn = Asm->getSymbol(GV); 784 assert(Fn); 785 786 // Switch to the to a comdat section, if appropriate. 787 switchToDebugSectionForSymbol(Fn); 788 789 std::string FuncName; 790 auto *SP = GV->getSubprogram(); 791 assert(SP); 792 setCurrentSubprogram(SP); 793 794 // If we have a display name, build the fully qualified name by walking the 795 // chain of scopes. 796 if (!SP->getName().empty()) 797 FuncName = 798 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 799 800 // If our DISubprogram name is empty, use the mangled name. 801 if (FuncName.empty()) 802 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 803 804 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 805 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 806 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 807 { 808 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 809 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 810 OS.AddComment("Record length"); 811 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 812 OS.EmitLabel(ProcRecordBegin); 813 814 if (GV->hasLocalLinkage()) { 815 OS.AddComment("Record kind: S_LPROC32_ID"); 816 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 817 } else { 818 OS.AddComment("Record kind: S_GPROC32_ID"); 819 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 820 } 821 822 // These fields are filled in by tools like CVPACK which run after the fact. 823 OS.AddComment("PtrParent"); 824 OS.EmitIntValue(0, 4); 825 OS.AddComment("PtrEnd"); 826 OS.EmitIntValue(0, 4); 827 OS.AddComment("PtrNext"); 828 OS.EmitIntValue(0, 4); 829 // This is the important bit that tells the debugger where the function 830 // code is located and what's its size: 831 OS.AddComment("Code size"); 832 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 833 OS.AddComment("Offset after prologue"); 834 OS.EmitIntValue(0, 4); 835 OS.AddComment("Offset before epilogue"); 836 OS.EmitIntValue(0, 4); 837 OS.AddComment("Function type index"); 838 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 839 OS.AddComment("Function section relative address"); 840 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 841 OS.AddComment("Function section index"); 842 OS.EmitCOFFSectionIndex(Fn); 843 OS.AddComment("Flags"); 844 OS.EmitIntValue(0, 1); 845 // Emit the function display name as a null-terminated string. 846 OS.AddComment("Function name"); 847 // Truncate the name so we won't overflow the record length field. 848 emitNullTerminatedSymbolName(OS, FuncName); 849 OS.EmitLabel(ProcRecordEnd); 850 851 emitLocalVariableList(FI.Locals); 852 853 // Emit inlined call site information. Only emit functions inlined directly 854 // into the parent function. We'll emit the other sites recursively as part 855 // of their parent inline site. 856 for (const DILocation *InlinedAt : FI.ChildSites) { 857 auto I = FI.InlineSites.find(InlinedAt); 858 assert(I != FI.InlineSites.end() && 859 "child site not in function inline site map"); 860 emitInlinedCallSite(FI, InlinedAt, I->second); 861 } 862 863 if (SP != nullptr) 864 emitDebugInfoForUDTs(LocalUDTs); 865 866 // We're done with this function. 867 OS.AddComment("Record length"); 868 OS.EmitIntValue(0x0002, 2); 869 OS.AddComment("Record kind: S_PROC_ID_END"); 870 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 871 } 872 endCVSubsection(SymbolsEnd); 873 874 // We have an assembler directive that takes care of the whole line table. 875 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 876 } 877 878 CodeViewDebug::LocalVarDefRange 879 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 880 LocalVarDefRange DR; 881 DR.InMemory = -1; 882 DR.DataOffset = Offset; 883 assert(DR.DataOffset == Offset && "truncation"); 884 DR.IsSubfield = 0; 885 DR.StructOffset = 0; 886 DR.CVRegister = CVRegister; 887 return DR; 888 } 889 890 CodeViewDebug::LocalVarDefRange 891 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 892 int Offset, bool IsSubfield, 893 uint16_t StructOffset) { 894 LocalVarDefRange DR; 895 DR.InMemory = InMemory; 896 DR.DataOffset = Offset; 897 DR.IsSubfield = IsSubfield; 898 DR.StructOffset = StructOffset; 899 DR.CVRegister = CVRegister; 900 return DR; 901 } 902 903 void CodeViewDebug::collectVariableInfoFromMFTable( 904 DenseSet<InlinedVariable> &Processed) { 905 const MachineFunction &MF = *Asm->MF; 906 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 907 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 908 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 909 910 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 911 if (!VI.Var) 912 continue; 913 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 914 "Expected inlined-at fields to agree"); 915 916 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 917 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 918 919 // If variable scope is not found then skip this variable. 920 if (!Scope) 921 continue; 922 923 // If the variable has an attached offset expression, extract it. 924 // FIXME: Try to handle DW_OP_deref as well. 925 int64_t ExprOffset = 0; 926 if (VI.Expr) 927 if (!VI.Expr->extractIfOffset(ExprOffset)) 928 continue; 929 930 // Get the frame register used and the offset. 931 unsigned FrameReg = 0; 932 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 933 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 934 935 // Calculate the label ranges. 936 LocalVarDefRange DefRange = 937 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 938 for (const InsnRange &Range : Scope->getRanges()) { 939 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 940 const MCSymbol *End = getLabelAfterInsn(Range.second); 941 End = End ? End : Asm->getFunctionEnd(); 942 DefRange.Ranges.emplace_back(Begin, End); 943 } 944 945 LocalVariable Var; 946 Var.DIVar = VI.Var; 947 Var.DefRanges.emplace_back(std::move(DefRange)); 948 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 949 } 950 } 951 952 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 953 DenseSet<InlinedVariable> Processed; 954 // Grab the variable info that was squirreled away in the MMI side-table. 955 collectVariableInfoFromMFTable(Processed); 956 957 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 958 959 for (const auto &I : DbgValues) { 960 InlinedVariable IV = I.first; 961 if (Processed.count(IV)) 962 continue; 963 const DILocalVariable *DIVar = IV.first; 964 const DILocation *InlinedAt = IV.second; 965 966 // Instruction ranges, specifying where IV is accessible. 967 const auto &Ranges = I.second; 968 969 LexicalScope *Scope = nullptr; 970 if (InlinedAt) 971 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 972 else 973 Scope = LScopes.findLexicalScope(DIVar->getScope()); 974 // If variable scope is not found then skip this variable. 975 if (!Scope) 976 continue; 977 978 LocalVariable Var; 979 Var.DIVar = DIVar; 980 981 // Calculate the definition ranges. 982 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 983 const InsnRange &Range = *I; 984 const MachineInstr *DVInst = Range.first; 985 assert(DVInst->isDebugValue() && "Invalid History entry"); 986 const DIExpression *DIExpr = DVInst->getDebugExpression(); 987 bool IsSubfield = false; 988 unsigned StructOffset = 0; 989 990 // Handle fragments. 991 auto Fragment = DIExpr->getFragmentInfo(); 992 if (Fragment) { 993 IsSubfield = true; 994 StructOffset = Fragment->OffsetInBits / 8; 995 } else if (DIExpr->getNumElements() > 0) { 996 continue; // Ignore unrecognized exprs. 997 } 998 999 // Bail if operand 0 is not a valid register. This means the variable is a 1000 // simple constant, or is described by a complex expression. 1001 // FIXME: Find a way to represent constant variables, since they are 1002 // relatively common. 1003 unsigned Reg = 1004 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 1005 if (Reg == 0) 1006 continue; 1007 1008 // Handle the two cases we can handle: indirect in memory and in register. 1009 unsigned CVReg = TRI->getCodeViewRegNum(Reg); 1010 bool InMemory = DVInst->getOperand(1).isImm(); 1011 int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0; 1012 { 1013 LocalVarDefRange DR; 1014 DR.CVRegister = CVReg; 1015 DR.InMemory = InMemory; 1016 DR.DataOffset = Offset; 1017 DR.IsSubfield = IsSubfield; 1018 DR.StructOffset = StructOffset; 1019 1020 if (Var.DefRanges.empty() || 1021 Var.DefRanges.back().isDifferentLocation(DR)) { 1022 Var.DefRanges.emplace_back(std::move(DR)); 1023 } 1024 } 1025 1026 // Compute the label range. 1027 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1028 const MCSymbol *End = getLabelAfterInsn(Range.second); 1029 if (!End) { 1030 // This range is valid until the next overlapping bitpiece. In the 1031 // common case, ranges will not be bitpieces, so they will overlap. 1032 auto J = std::next(I); 1033 while (J != E && 1034 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1035 ++J; 1036 if (J != E) 1037 End = getLabelBeforeInsn(J->first); 1038 else 1039 End = Asm->getFunctionEnd(); 1040 } 1041 1042 // If the last range end is our begin, just extend the last range. 1043 // Otherwise make a new range. 1044 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 1045 Var.DefRanges.back().Ranges; 1046 if (!Ranges.empty() && Ranges.back().second == Begin) 1047 Ranges.back().second = End; 1048 else 1049 Ranges.emplace_back(Begin, End); 1050 1051 // FIXME: Do more range combining. 1052 } 1053 1054 recordLocalVariable(std::move(Var), InlinedAt); 1055 } 1056 } 1057 1058 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1059 const Function *GV = MF->getFunction(); 1060 assert(FnDebugInfo.count(GV) == false); 1061 CurFn = &FnDebugInfo[GV]; 1062 CurFn->FuncId = NextFuncId++; 1063 CurFn->Begin = Asm->getFunctionBegin(); 1064 1065 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1066 1067 // Find the end of the function prolog. First known non-DBG_VALUE and 1068 // non-frame setup location marks the beginning of the function body. 1069 // FIXME: is there a simpler a way to do this? Can we just search 1070 // for the first instruction of the function, not the last of the prolog? 1071 DebugLoc PrologEndLoc; 1072 bool EmptyPrologue = true; 1073 for (const auto &MBB : *MF) { 1074 for (const auto &MI : MBB) { 1075 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1076 MI.getDebugLoc()) { 1077 PrologEndLoc = MI.getDebugLoc(); 1078 break; 1079 } else if (!MI.isMetaInstruction()) { 1080 EmptyPrologue = false; 1081 } 1082 } 1083 } 1084 1085 // Record beginning of function if we have a non-empty prologue. 1086 if (PrologEndLoc && !EmptyPrologue) { 1087 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1088 maybeRecordLocation(FnStartDL, MF); 1089 } 1090 } 1091 1092 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 1093 // Don't record empty UDTs. 1094 if (Ty->getName().empty()) 1095 return; 1096 1097 SmallVector<StringRef, 5> QualifiedNameComponents; 1098 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1099 Ty->getScope().resolve(), QualifiedNameComponents); 1100 1101 std::string FullyQualifiedName = 1102 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1103 1104 if (ClosestSubprogram == nullptr) 1105 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1106 else if (ClosestSubprogram == CurrentSubprogram) 1107 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1108 1109 // TODO: What if the ClosestSubprogram is neither null or the current 1110 // subprogram? Currently, the UDT just gets dropped on the floor. 1111 // 1112 // The current behavior is not desirable. To get maximal fidelity, we would 1113 // need to perform all type translation before beginning emission of .debug$S 1114 // and then make LocalUDTs a member of FunctionInfo 1115 } 1116 1117 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1118 // Generic dispatch for lowering an unknown type. 1119 switch (Ty->getTag()) { 1120 case dwarf::DW_TAG_array_type: 1121 return lowerTypeArray(cast<DICompositeType>(Ty)); 1122 case dwarf::DW_TAG_typedef: 1123 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1124 case dwarf::DW_TAG_base_type: 1125 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1126 case dwarf::DW_TAG_pointer_type: 1127 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1128 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1129 LLVM_FALLTHROUGH; 1130 case dwarf::DW_TAG_reference_type: 1131 case dwarf::DW_TAG_rvalue_reference_type: 1132 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1133 case dwarf::DW_TAG_ptr_to_member_type: 1134 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1135 case dwarf::DW_TAG_const_type: 1136 case dwarf::DW_TAG_volatile_type: 1137 // TODO: add support for DW_TAG_atomic_type here 1138 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1139 case dwarf::DW_TAG_subroutine_type: 1140 if (ClassTy) { 1141 // The member function type of a member function pointer has no 1142 // ThisAdjustment. 1143 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1144 /*ThisAdjustment=*/0); 1145 } 1146 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1147 case dwarf::DW_TAG_enumeration_type: 1148 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1149 case dwarf::DW_TAG_class_type: 1150 case dwarf::DW_TAG_structure_type: 1151 return lowerTypeClass(cast<DICompositeType>(Ty)); 1152 case dwarf::DW_TAG_union_type: 1153 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1154 default: 1155 // Use the null type index. 1156 return TypeIndex(); 1157 } 1158 } 1159 1160 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1161 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1162 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1163 StringRef TypeName = Ty->getName(); 1164 1165 addToUDTs(Ty, UnderlyingTypeIndex); 1166 1167 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1168 TypeName == "HRESULT") 1169 return TypeIndex(SimpleTypeKind::HResult); 1170 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1171 TypeName == "wchar_t") 1172 return TypeIndex(SimpleTypeKind::WideCharacter); 1173 1174 return UnderlyingTypeIndex; 1175 } 1176 1177 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1178 DITypeRef ElementTypeRef = Ty->getBaseType(); 1179 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1180 // IndexType is size_t, which depends on the bitness of the target. 1181 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1182 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1183 : TypeIndex(SimpleTypeKind::UInt32Long); 1184 1185 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1186 1187 // Add subranges to array type. 1188 DINodeArray Elements = Ty->getElements(); 1189 for (int i = Elements.size() - 1; i >= 0; --i) { 1190 const DINode *Element = Elements[i]; 1191 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1192 1193 const DISubrange *Subrange = cast<DISubrange>(Element); 1194 assert(Subrange->getLowerBound() == 0 && 1195 "codeview doesn't support subranges with lower bounds"); 1196 int64_t Count = Subrange->getCount(); 1197 1198 // Variable Length Array (VLA) has Count equal to '-1'. 1199 // Replace with Count '1', assume it is the minimum VLA length. 1200 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1201 if (Count == -1) 1202 Count = 1; 1203 1204 // Update the element size and element type index for subsequent subranges. 1205 ElementSize *= Count; 1206 1207 // If this is the outermost array, use the size from the array. It will be 1208 // more accurate if we had a VLA or an incomplete element type size. 1209 uint64_t ArraySize = 1210 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1211 1212 StringRef Name = (i == 0) ? Ty->getName() : ""; 1213 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1214 ElementTypeIndex = TypeTable.writeKnownType(AR); 1215 } 1216 1217 return ElementTypeIndex; 1218 } 1219 1220 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1221 TypeIndex Index; 1222 dwarf::TypeKind Kind; 1223 uint32_t ByteSize; 1224 1225 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1226 ByteSize = Ty->getSizeInBits() / 8; 1227 1228 SimpleTypeKind STK = SimpleTypeKind::None; 1229 switch (Kind) { 1230 case dwarf::DW_ATE_address: 1231 // FIXME: Translate 1232 break; 1233 case dwarf::DW_ATE_boolean: 1234 switch (ByteSize) { 1235 case 1: STK = SimpleTypeKind::Boolean8; break; 1236 case 2: STK = SimpleTypeKind::Boolean16; break; 1237 case 4: STK = SimpleTypeKind::Boolean32; break; 1238 case 8: STK = SimpleTypeKind::Boolean64; break; 1239 case 16: STK = SimpleTypeKind::Boolean128; break; 1240 } 1241 break; 1242 case dwarf::DW_ATE_complex_float: 1243 switch (ByteSize) { 1244 case 2: STK = SimpleTypeKind::Complex16; break; 1245 case 4: STK = SimpleTypeKind::Complex32; break; 1246 case 8: STK = SimpleTypeKind::Complex64; break; 1247 case 10: STK = SimpleTypeKind::Complex80; break; 1248 case 16: STK = SimpleTypeKind::Complex128; break; 1249 } 1250 break; 1251 case dwarf::DW_ATE_float: 1252 switch (ByteSize) { 1253 case 2: STK = SimpleTypeKind::Float16; break; 1254 case 4: STK = SimpleTypeKind::Float32; break; 1255 case 6: STK = SimpleTypeKind::Float48; break; 1256 case 8: STK = SimpleTypeKind::Float64; break; 1257 case 10: STK = SimpleTypeKind::Float80; break; 1258 case 16: STK = SimpleTypeKind::Float128; break; 1259 } 1260 break; 1261 case dwarf::DW_ATE_signed: 1262 switch (ByteSize) { 1263 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1264 case 2: STK = SimpleTypeKind::Int16Short; break; 1265 case 4: STK = SimpleTypeKind::Int32; break; 1266 case 8: STK = SimpleTypeKind::Int64Quad; break; 1267 case 16: STK = SimpleTypeKind::Int128Oct; break; 1268 } 1269 break; 1270 case dwarf::DW_ATE_unsigned: 1271 switch (ByteSize) { 1272 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1273 case 2: STK = SimpleTypeKind::UInt16Short; break; 1274 case 4: STK = SimpleTypeKind::UInt32; break; 1275 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1276 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1277 } 1278 break; 1279 case dwarf::DW_ATE_UTF: 1280 switch (ByteSize) { 1281 case 2: STK = SimpleTypeKind::Character16; break; 1282 case 4: STK = SimpleTypeKind::Character32; break; 1283 } 1284 break; 1285 case dwarf::DW_ATE_signed_char: 1286 if (ByteSize == 1) 1287 STK = SimpleTypeKind::SignedCharacter; 1288 break; 1289 case dwarf::DW_ATE_unsigned_char: 1290 if (ByteSize == 1) 1291 STK = SimpleTypeKind::UnsignedCharacter; 1292 break; 1293 default: 1294 break; 1295 } 1296 1297 // Apply some fixups based on the source-level type name. 1298 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1299 STK = SimpleTypeKind::Int32Long; 1300 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1301 STK = SimpleTypeKind::UInt32Long; 1302 if (STK == SimpleTypeKind::UInt16Short && 1303 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1304 STK = SimpleTypeKind::WideCharacter; 1305 if ((STK == SimpleTypeKind::SignedCharacter || 1306 STK == SimpleTypeKind::UnsignedCharacter) && 1307 Ty->getName() == "char") 1308 STK = SimpleTypeKind::NarrowCharacter; 1309 1310 return TypeIndex(STK); 1311 } 1312 1313 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1314 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1315 1316 // Pointers to simple types can use SimpleTypeMode, rather than having a 1317 // dedicated pointer type record. 1318 if (PointeeTI.isSimple() && 1319 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1320 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1321 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1322 ? SimpleTypeMode::NearPointer64 1323 : SimpleTypeMode::NearPointer32; 1324 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1325 } 1326 1327 PointerKind PK = 1328 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1329 PointerMode PM = PointerMode::Pointer; 1330 switch (Ty->getTag()) { 1331 default: llvm_unreachable("not a pointer tag type"); 1332 case dwarf::DW_TAG_pointer_type: 1333 PM = PointerMode::Pointer; 1334 break; 1335 case dwarf::DW_TAG_reference_type: 1336 PM = PointerMode::LValueReference; 1337 break; 1338 case dwarf::DW_TAG_rvalue_reference_type: 1339 PM = PointerMode::RValueReference; 1340 break; 1341 } 1342 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1343 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1344 // do. 1345 PointerOptions PO = PointerOptions::None; 1346 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1347 return TypeTable.writeKnownType(PR); 1348 } 1349 1350 static PointerToMemberRepresentation 1351 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1352 // SizeInBytes being zero generally implies that the member pointer type was 1353 // incomplete, which can happen if it is part of a function prototype. In this 1354 // case, use the unknown model instead of the general model. 1355 if (IsPMF) { 1356 switch (Flags & DINode::FlagPtrToMemberRep) { 1357 case 0: 1358 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1359 : PointerToMemberRepresentation::GeneralFunction; 1360 case DINode::FlagSingleInheritance: 1361 return PointerToMemberRepresentation::SingleInheritanceFunction; 1362 case DINode::FlagMultipleInheritance: 1363 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1364 case DINode::FlagVirtualInheritance: 1365 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1366 } 1367 } else { 1368 switch (Flags & DINode::FlagPtrToMemberRep) { 1369 case 0: 1370 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1371 : PointerToMemberRepresentation::GeneralData; 1372 case DINode::FlagSingleInheritance: 1373 return PointerToMemberRepresentation::SingleInheritanceData; 1374 case DINode::FlagMultipleInheritance: 1375 return PointerToMemberRepresentation::MultipleInheritanceData; 1376 case DINode::FlagVirtualInheritance: 1377 return PointerToMemberRepresentation::VirtualInheritanceData; 1378 } 1379 } 1380 llvm_unreachable("invalid ptr to member representation"); 1381 } 1382 1383 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1384 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1385 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1386 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1387 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1388 : PointerKind::Near32; 1389 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1390 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1391 : PointerMode::PointerToDataMember; 1392 PointerOptions PO = PointerOptions::None; // FIXME 1393 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1394 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1395 MemberPointerInfo MPI( 1396 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1397 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1398 return TypeTable.writeKnownType(PR); 1399 } 1400 1401 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1402 /// have a translation, use the NearC convention. 1403 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1404 switch (DwarfCC) { 1405 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1406 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1407 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1408 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1409 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1410 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1411 } 1412 return CallingConvention::NearC; 1413 } 1414 1415 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1416 ModifierOptions Mods = ModifierOptions::None; 1417 bool IsModifier = true; 1418 const DIType *BaseTy = Ty; 1419 while (IsModifier && BaseTy) { 1420 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1421 switch (BaseTy->getTag()) { 1422 case dwarf::DW_TAG_const_type: 1423 Mods |= ModifierOptions::Const; 1424 break; 1425 case dwarf::DW_TAG_volatile_type: 1426 Mods |= ModifierOptions::Volatile; 1427 break; 1428 default: 1429 IsModifier = false; 1430 break; 1431 } 1432 if (IsModifier) 1433 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1434 } 1435 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1436 ModifierRecord MR(ModifiedTI, Mods); 1437 return TypeTable.writeKnownType(MR); 1438 } 1439 1440 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1441 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1442 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1443 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1444 1445 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1446 ArrayRef<TypeIndex> ArgTypeIndices = None; 1447 if (!ReturnAndArgTypeIndices.empty()) { 1448 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1449 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1450 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1451 } 1452 1453 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1454 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1455 1456 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1457 1458 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1459 ArgTypeIndices.size(), ArgListIndex); 1460 return TypeTable.writeKnownType(Procedure); 1461 } 1462 1463 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1464 const DIType *ClassTy, 1465 int ThisAdjustment) { 1466 // Lower the containing class type. 1467 TypeIndex ClassType = getTypeIndex(ClassTy); 1468 1469 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1470 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1471 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1472 1473 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1474 ArrayRef<TypeIndex> ArgTypeIndices = None; 1475 if (!ReturnAndArgTypeIndices.empty()) { 1476 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1477 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1478 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1479 } 1480 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1481 if (!ArgTypeIndices.empty()) { 1482 ThisTypeIndex = ArgTypeIndices.front(); 1483 ArgTypeIndices = ArgTypeIndices.drop_front(); 1484 } 1485 1486 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1487 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1488 1489 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1490 1491 // TODO: Need to use the correct values for: 1492 // FunctionOptions 1493 // ThisPointerAdjustment. 1494 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1495 FunctionOptions::None, ArgTypeIndices.size(), 1496 ArgListIndex, ThisAdjustment); 1497 TypeIndex TI = TypeTable.writeKnownType(MFR); 1498 1499 return TI; 1500 } 1501 1502 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1503 unsigned VSlotCount = 1504 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1505 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1506 1507 VFTableShapeRecord VFTSR(Slots); 1508 return TypeTable.writeKnownType(VFTSR); 1509 } 1510 1511 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1512 switch (Flags & DINode::FlagAccessibility) { 1513 case DINode::FlagPrivate: return MemberAccess::Private; 1514 case DINode::FlagPublic: return MemberAccess::Public; 1515 case DINode::FlagProtected: return MemberAccess::Protected; 1516 case 0: 1517 // If there was no explicit access control, provide the default for the tag. 1518 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1519 : MemberAccess::Public; 1520 } 1521 llvm_unreachable("access flags are exclusive"); 1522 } 1523 1524 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1525 if (SP->isArtificial()) 1526 return MethodOptions::CompilerGenerated; 1527 1528 // FIXME: Handle other MethodOptions. 1529 1530 return MethodOptions::None; 1531 } 1532 1533 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1534 bool Introduced) { 1535 switch (SP->getVirtuality()) { 1536 case dwarf::DW_VIRTUALITY_none: 1537 break; 1538 case dwarf::DW_VIRTUALITY_virtual: 1539 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1540 case dwarf::DW_VIRTUALITY_pure_virtual: 1541 return Introduced ? MethodKind::PureIntroducingVirtual 1542 : MethodKind::PureVirtual; 1543 default: 1544 llvm_unreachable("unhandled virtuality case"); 1545 } 1546 1547 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1548 1549 return MethodKind::Vanilla; 1550 } 1551 1552 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1553 switch (Ty->getTag()) { 1554 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1555 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1556 } 1557 llvm_unreachable("unexpected tag"); 1558 } 1559 1560 /// Return ClassOptions that should be present on both the forward declaration 1561 /// and the defintion of a tag type. 1562 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1563 ClassOptions CO = ClassOptions::None; 1564 1565 // MSVC always sets this flag, even for local types. Clang doesn't always 1566 // appear to give every type a linkage name, which may be problematic for us. 1567 // FIXME: Investigate the consequences of not following them here. 1568 if (!Ty->getIdentifier().empty()) 1569 CO |= ClassOptions::HasUniqueName; 1570 1571 // Put the Nested flag on a type if it appears immediately inside a tag type. 1572 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1573 // here. That flag is only set on definitions, and not forward declarations. 1574 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1575 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1576 CO |= ClassOptions::Nested; 1577 1578 // Put the Scoped flag on function-local types. 1579 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1580 Scope = Scope->getScope().resolve()) { 1581 if (isa<DISubprogram>(Scope)) { 1582 CO |= ClassOptions::Scoped; 1583 break; 1584 } 1585 } 1586 1587 return CO; 1588 } 1589 1590 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1591 ClassOptions CO = getCommonClassOptions(Ty); 1592 TypeIndex FTI; 1593 unsigned EnumeratorCount = 0; 1594 1595 if (Ty->isForwardDecl()) { 1596 CO |= ClassOptions::ForwardReference; 1597 } else { 1598 FieldListRecordBuilder FLRB(TypeTable); 1599 1600 FLRB.begin(); 1601 for (const DINode *Element : Ty->getElements()) { 1602 // We assume that the frontend provides all members in source declaration 1603 // order, which is what MSVC does. 1604 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1605 EnumeratorRecord ER(MemberAccess::Public, 1606 APSInt::getUnsigned(Enumerator->getValue()), 1607 Enumerator->getName()); 1608 FLRB.writeMemberType(ER); 1609 EnumeratorCount++; 1610 } 1611 } 1612 FTI = FLRB.end(true); 1613 } 1614 1615 std::string FullName = getFullyQualifiedName(Ty); 1616 1617 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1618 getTypeIndex(Ty->getBaseType())); 1619 return TypeTable.writeKnownType(ER); 1620 } 1621 1622 //===----------------------------------------------------------------------===// 1623 // ClassInfo 1624 //===----------------------------------------------------------------------===// 1625 1626 struct llvm::ClassInfo { 1627 struct MemberInfo { 1628 const DIDerivedType *MemberTypeNode; 1629 uint64_t BaseOffset; 1630 }; 1631 // [MemberInfo] 1632 using MemberList = std::vector<MemberInfo>; 1633 1634 using MethodsList = TinyPtrVector<const DISubprogram *>; 1635 // MethodName -> MethodsList 1636 using MethodsMap = MapVector<MDString *, MethodsList>; 1637 1638 /// Base classes. 1639 std::vector<const DIDerivedType *> Inheritance; 1640 1641 /// Direct members. 1642 MemberList Members; 1643 // Direct overloaded methods gathered by name. 1644 MethodsMap Methods; 1645 1646 TypeIndex VShapeTI; 1647 1648 std::vector<const DICompositeType *> NestedClasses; 1649 }; 1650 1651 void CodeViewDebug::clear() { 1652 assert(CurFn == nullptr); 1653 FileIdMap.clear(); 1654 FnDebugInfo.clear(); 1655 FileToFilepathMap.clear(); 1656 LocalUDTs.clear(); 1657 GlobalUDTs.clear(); 1658 TypeIndices.clear(); 1659 CompleteTypeIndices.clear(); 1660 } 1661 1662 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1663 const DIDerivedType *DDTy) { 1664 if (!DDTy->getName().empty()) { 1665 Info.Members.push_back({DDTy, 0}); 1666 return; 1667 } 1668 // An unnamed member must represent a nested struct or union. Add all the 1669 // indirect fields to the current record. 1670 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1671 uint64_t Offset = DDTy->getOffsetInBits(); 1672 const DIType *Ty = DDTy->getBaseType().resolve(); 1673 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1674 ClassInfo NestedInfo = collectClassInfo(DCTy); 1675 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1676 Info.Members.push_back( 1677 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1678 } 1679 1680 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1681 ClassInfo Info; 1682 // Add elements to structure type. 1683 DINodeArray Elements = Ty->getElements(); 1684 for (auto *Element : Elements) { 1685 // We assume that the frontend provides all members in source declaration 1686 // order, which is what MSVC does. 1687 if (!Element) 1688 continue; 1689 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1690 Info.Methods[SP->getRawName()].push_back(SP); 1691 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1692 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1693 collectMemberInfo(Info, DDTy); 1694 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1695 Info.Inheritance.push_back(DDTy); 1696 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1697 DDTy->getName() == "__vtbl_ptr_type") { 1698 Info.VShapeTI = getTypeIndex(DDTy); 1699 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1700 // Ignore friend members. It appears that MSVC emitted info about 1701 // friends in the past, but modern versions do not. 1702 } 1703 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1704 Info.NestedClasses.push_back(Composite); 1705 } 1706 // Skip other unrecognized kinds of elements. 1707 } 1708 return Info; 1709 } 1710 1711 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1712 // First, construct the forward decl. Don't look into Ty to compute the 1713 // forward decl options, since it might not be available in all TUs. 1714 TypeRecordKind Kind = getRecordKind(Ty); 1715 ClassOptions CO = 1716 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1717 std::string FullName = getFullyQualifiedName(Ty); 1718 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1719 FullName, Ty->getIdentifier()); 1720 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1721 if (!Ty->isForwardDecl()) 1722 DeferredCompleteTypes.push_back(Ty); 1723 return FwdDeclTI; 1724 } 1725 1726 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1727 // Construct the field list and complete type record. 1728 TypeRecordKind Kind = getRecordKind(Ty); 1729 ClassOptions CO = getCommonClassOptions(Ty); 1730 TypeIndex FieldTI; 1731 TypeIndex VShapeTI; 1732 unsigned FieldCount; 1733 bool ContainsNestedClass; 1734 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1735 lowerRecordFieldList(Ty); 1736 1737 if (ContainsNestedClass) 1738 CO |= ClassOptions::ContainsNestedClass; 1739 1740 std::string FullName = getFullyQualifiedName(Ty); 1741 1742 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1743 1744 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1745 SizeInBytes, FullName, Ty->getIdentifier()); 1746 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1747 1748 if (const auto *File = Ty->getFile()) { 1749 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1750 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1751 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1752 TypeTable.writeKnownType(USLR); 1753 } 1754 1755 addToUDTs(Ty, ClassTI); 1756 1757 return ClassTI; 1758 } 1759 1760 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1761 ClassOptions CO = 1762 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1763 std::string FullName = getFullyQualifiedName(Ty); 1764 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1765 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1766 if (!Ty->isForwardDecl()) 1767 DeferredCompleteTypes.push_back(Ty); 1768 return FwdDeclTI; 1769 } 1770 1771 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1772 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1773 TypeIndex FieldTI; 1774 unsigned FieldCount; 1775 bool ContainsNestedClass; 1776 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1777 lowerRecordFieldList(Ty); 1778 1779 if (ContainsNestedClass) 1780 CO |= ClassOptions::ContainsNestedClass; 1781 1782 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1783 std::string FullName = getFullyQualifiedName(Ty); 1784 1785 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1786 Ty->getIdentifier()); 1787 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1788 1789 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1790 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1791 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1792 TypeTable.writeKnownType(USLR); 1793 1794 addToUDTs(Ty, UnionTI); 1795 1796 return UnionTI; 1797 } 1798 1799 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1800 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1801 // Manually count members. MSVC appears to count everything that generates a 1802 // field list record. Each individual overload in a method overload group 1803 // contributes to this count, even though the overload group is a single field 1804 // list record. 1805 unsigned MemberCount = 0; 1806 ClassInfo Info = collectClassInfo(Ty); 1807 FieldListRecordBuilder FLBR(TypeTable); 1808 FLBR.begin(); 1809 1810 // Create base classes. 1811 for (const DIDerivedType *I : Info.Inheritance) { 1812 if (I->getFlags() & DINode::FlagVirtual) { 1813 // Virtual base. 1814 // FIXME: Emit VBPtrOffset when the frontend provides it. 1815 unsigned VBPtrOffset = 0; 1816 // FIXME: Despite the accessor name, the offset is really in bytes. 1817 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1818 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1819 ? TypeRecordKind::IndirectVirtualBaseClass 1820 : TypeRecordKind::VirtualBaseClass; 1821 VirtualBaseClassRecord VBCR( 1822 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1823 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1824 VBTableIndex); 1825 1826 FLBR.writeMemberType(VBCR); 1827 } else { 1828 assert(I->getOffsetInBits() % 8 == 0 && 1829 "bases must be on byte boundaries"); 1830 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1831 getTypeIndex(I->getBaseType()), 1832 I->getOffsetInBits() / 8); 1833 FLBR.writeMemberType(BCR); 1834 } 1835 } 1836 1837 // Create members. 1838 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1839 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1840 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1841 StringRef MemberName = Member->getName(); 1842 MemberAccess Access = 1843 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1844 1845 if (Member->isStaticMember()) { 1846 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1847 FLBR.writeMemberType(SDMR); 1848 MemberCount++; 1849 continue; 1850 } 1851 1852 // Virtual function pointer member. 1853 if ((Member->getFlags() & DINode::FlagArtificial) && 1854 Member->getName().startswith("_vptr$")) { 1855 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1856 FLBR.writeMemberType(VFPR); 1857 MemberCount++; 1858 continue; 1859 } 1860 1861 // Data member. 1862 uint64_t MemberOffsetInBits = 1863 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1864 if (Member->isBitField()) { 1865 uint64_t StartBitOffset = MemberOffsetInBits; 1866 if (const auto *CI = 1867 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1868 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1869 } 1870 StartBitOffset -= MemberOffsetInBits; 1871 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1872 StartBitOffset); 1873 MemberBaseType = TypeTable.writeKnownType(BFR); 1874 } 1875 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1876 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1877 MemberName); 1878 FLBR.writeMemberType(DMR); 1879 MemberCount++; 1880 } 1881 1882 // Create methods 1883 for (auto &MethodItr : Info.Methods) { 1884 StringRef Name = MethodItr.first->getString(); 1885 1886 std::vector<OneMethodRecord> Methods; 1887 for (const DISubprogram *SP : MethodItr.second) { 1888 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1889 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1890 1891 unsigned VFTableOffset = -1; 1892 if (Introduced) 1893 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1894 1895 Methods.push_back(OneMethodRecord( 1896 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1897 translateMethodKindFlags(SP, Introduced), 1898 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1899 MemberCount++; 1900 } 1901 assert(!Methods.empty() && "Empty methods map entry"); 1902 if (Methods.size() == 1) 1903 FLBR.writeMemberType(Methods[0]); 1904 else { 1905 MethodOverloadListRecord MOLR(Methods); 1906 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1907 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1908 FLBR.writeMemberType(OMR); 1909 } 1910 } 1911 1912 // Create nested classes. 1913 for (const DICompositeType *Nested : Info.NestedClasses) { 1914 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1915 FLBR.writeMemberType(R); 1916 MemberCount++; 1917 } 1918 1919 TypeIndex FieldTI = FLBR.end(true); 1920 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1921 !Info.NestedClasses.empty()); 1922 } 1923 1924 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1925 if (!VBPType.getIndex()) { 1926 // Make a 'const int *' type. 1927 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1928 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1929 1930 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1931 : PointerKind::Near32; 1932 PointerMode PM = PointerMode::Pointer; 1933 PointerOptions PO = PointerOptions::None; 1934 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1935 1936 VBPType = TypeTable.writeKnownType(PR); 1937 } 1938 1939 return VBPType; 1940 } 1941 1942 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1943 const DIType *Ty = TypeRef.resolve(); 1944 const DIType *ClassTy = ClassTyRef.resolve(); 1945 1946 // The null DIType is the void type. Don't try to hash it. 1947 if (!Ty) 1948 return TypeIndex::Void(); 1949 1950 // Check if we've already translated this type. Don't try to do a 1951 // get-or-create style insertion that caches the hash lookup across the 1952 // lowerType call. It will update the TypeIndices map. 1953 auto I = TypeIndices.find({Ty, ClassTy}); 1954 if (I != TypeIndices.end()) 1955 return I->second; 1956 1957 TypeLoweringScope S(*this); 1958 TypeIndex TI = lowerType(Ty, ClassTy); 1959 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1960 } 1961 1962 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1963 const DIType *Ty = TypeRef.resolve(); 1964 1965 // The null DIType is the void type. Don't try to hash it. 1966 if (!Ty) 1967 return TypeIndex::Void(); 1968 1969 // If this is a non-record type, the complete type index is the same as the 1970 // normal type index. Just call getTypeIndex. 1971 switch (Ty->getTag()) { 1972 case dwarf::DW_TAG_class_type: 1973 case dwarf::DW_TAG_structure_type: 1974 case dwarf::DW_TAG_union_type: 1975 break; 1976 default: 1977 return getTypeIndex(Ty); 1978 } 1979 1980 // Check if we've already translated the complete record type. Lowering a 1981 // complete type should never trigger lowering another complete type, so we 1982 // can reuse the hash table lookup result. 1983 const auto *CTy = cast<DICompositeType>(Ty); 1984 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1985 if (!InsertResult.second) 1986 return InsertResult.first->second; 1987 1988 TypeLoweringScope S(*this); 1989 1990 // Make sure the forward declaration is emitted first. It's unclear if this 1991 // is necessary, but MSVC does it, and we should follow suit until we can show 1992 // otherwise. 1993 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1994 1995 // Just use the forward decl if we don't have complete type info. This might 1996 // happen if the frontend is using modules and expects the complete definition 1997 // to be emitted elsewhere. 1998 if (CTy->isForwardDecl()) 1999 return FwdDeclTI; 2000 2001 TypeIndex TI; 2002 switch (CTy->getTag()) { 2003 case dwarf::DW_TAG_class_type: 2004 case dwarf::DW_TAG_structure_type: 2005 TI = lowerCompleteTypeClass(CTy); 2006 break; 2007 case dwarf::DW_TAG_union_type: 2008 TI = lowerCompleteTypeUnion(CTy); 2009 break; 2010 default: 2011 llvm_unreachable("not a record"); 2012 } 2013 2014 InsertResult.first->second = TI; 2015 return TI; 2016 } 2017 2018 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2019 /// and do this until fixpoint, as each complete record type typically 2020 /// references 2021 /// many other record types. 2022 void CodeViewDebug::emitDeferredCompleteTypes() { 2023 SmallVector<const DICompositeType *, 4> TypesToEmit; 2024 while (!DeferredCompleteTypes.empty()) { 2025 std::swap(DeferredCompleteTypes, TypesToEmit); 2026 for (const DICompositeType *RecordTy : TypesToEmit) 2027 getCompleteTypeIndex(RecordTy); 2028 TypesToEmit.clear(); 2029 } 2030 } 2031 2032 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2033 // Get the sorted list of parameters and emit them first. 2034 SmallVector<const LocalVariable *, 6> Params; 2035 for (const LocalVariable &L : Locals) 2036 if (L.DIVar->isParameter()) 2037 Params.push_back(&L); 2038 std::sort(Params.begin(), Params.end(), 2039 [](const LocalVariable *L, const LocalVariable *R) { 2040 return L->DIVar->getArg() < R->DIVar->getArg(); 2041 }); 2042 for (const LocalVariable *L : Params) 2043 emitLocalVariable(*L); 2044 2045 // Next emit all non-parameters in the order that we found them. 2046 for (const LocalVariable &L : Locals) 2047 if (!L.DIVar->isParameter()) 2048 emitLocalVariable(L); 2049 } 2050 2051 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2052 // LocalSym record, see SymbolRecord.h for more info. 2053 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2054 *LocalEnd = MMI->getContext().createTempSymbol(); 2055 OS.AddComment("Record length"); 2056 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2057 OS.EmitLabel(LocalBegin); 2058 2059 OS.AddComment("Record kind: S_LOCAL"); 2060 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2061 2062 LocalSymFlags Flags = LocalSymFlags::None; 2063 if (Var.DIVar->isParameter()) 2064 Flags |= LocalSymFlags::IsParameter; 2065 if (Var.DefRanges.empty()) 2066 Flags |= LocalSymFlags::IsOptimizedOut; 2067 2068 OS.AddComment("TypeIndex"); 2069 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 2070 OS.EmitIntValue(TI.getIndex(), 4); 2071 OS.AddComment("Flags"); 2072 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2073 // Truncate the name so we won't overflow the record length field. 2074 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2075 OS.EmitLabel(LocalEnd); 2076 2077 // Calculate the on disk prefix of the appropriate def range record. The 2078 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2079 // should be big enough to hold all forms without memory allocation. 2080 SmallString<20> BytePrefix; 2081 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2082 BytePrefix.clear(); 2083 if (DefRange.InMemory) { 2084 uint16_t RegRelFlags = 0; 2085 if (DefRange.IsSubfield) { 2086 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2087 (DefRange.StructOffset 2088 << DefRangeRegisterRelSym::OffsetInParentShift); 2089 } 2090 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2091 Sym.Hdr.Register = DefRange.CVRegister; 2092 Sym.Hdr.Flags = RegRelFlags; 2093 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2094 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2095 BytePrefix += 2096 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2097 BytePrefix += 2098 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2099 } else { 2100 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2101 if (DefRange.IsSubfield) { 2102 // Unclear what matters here. 2103 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2104 Sym.Hdr.Register = DefRange.CVRegister; 2105 Sym.Hdr.MayHaveNoName = 0; 2106 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2107 2108 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2109 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2110 sizeof(SymKind)); 2111 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2112 sizeof(Sym.Hdr)); 2113 } else { 2114 // Unclear what matters here. 2115 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2116 Sym.Hdr.Register = DefRange.CVRegister; 2117 Sym.Hdr.MayHaveNoName = 0; 2118 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2119 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2120 sizeof(SymKind)); 2121 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2122 sizeof(Sym.Hdr)); 2123 } 2124 } 2125 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2126 } 2127 } 2128 2129 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2130 const Function *GV = MF->getFunction(); 2131 assert(FnDebugInfo.count(GV)); 2132 assert(CurFn == &FnDebugInfo[GV]); 2133 2134 collectVariableInfo(GV->getSubprogram()); 2135 2136 // Don't emit anything if we don't have any line tables. 2137 if (!CurFn->HaveLineInfo) { 2138 FnDebugInfo.erase(GV); 2139 CurFn = nullptr; 2140 return; 2141 } 2142 2143 CurFn->End = Asm->getFunctionEnd(); 2144 2145 CurFn = nullptr; 2146 } 2147 2148 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2149 DebugHandlerBase::beginInstruction(MI); 2150 2151 // Ignore DBG_VALUE locations and function prologue. 2152 if (!Asm || !CurFn || MI->isDebugValue() || 2153 MI->getFlag(MachineInstr::FrameSetup)) 2154 return; 2155 2156 // If the first instruction of a new MBB has no location, find the first 2157 // instruction with a location and use that. 2158 DebugLoc DL = MI->getDebugLoc(); 2159 if (!DL && MI->getParent() != PrevInstBB) { 2160 for (const auto &NextMI : *MI->getParent()) { 2161 DL = NextMI.getDebugLoc(); 2162 if (DL) 2163 break; 2164 } 2165 } 2166 PrevInstBB = MI->getParent(); 2167 2168 // If we still don't have a debug location, don't record a location. 2169 if (!DL) 2170 return; 2171 2172 maybeRecordLocation(DL, Asm->MF); 2173 } 2174 2175 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2176 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2177 *EndLabel = MMI->getContext().createTempSymbol(); 2178 OS.EmitIntValue(unsigned(Kind), 4); 2179 OS.AddComment("Subsection size"); 2180 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2181 OS.EmitLabel(BeginLabel); 2182 return EndLabel; 2183 } 2184 2185 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2186 OS.EmitLabel(EndLabel); 2187 // Every subsection must be aligned to a 4-byte boundary. 2188 OS.EmitValueToAlignment(4); 2189 } 2190 2191 void CodeViewDebug::emitDebugInfoForUDTs( 2192 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 2193 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 2194 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2195 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2196 OS.AddComment("Record length"); 2197 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2198 OS.EmitLabel(UDTRecordBegin); 2199 2200 OS.AddComment("Record kind: S_UDT"); 2201 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2202 2203 OS.AddComment("Type"); 2204 OS.EmitIntValue(UDT.second.getIndex(), 4); 2205 2206 emitNullTerminatedSymbolName(OS, UDT.first); 2207 OS.EmitLabel(UDTRecordEnd); 2208 } 2209 } 2210 2211 void CodeViewDebug::emitDebugInfoForGlobals() { 2212 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2213 GlobalMap; 2214 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2215 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2216 GV.getDebugInfo(GVEs); 2217 for (const auto *GVE : GVEs) 2218 GlobalMap[GVE] = &GV; 2219 } 2220 2221 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2222 for (const MDNode *Node : CUs->operands()) { 2223 const auto *CU = cast<DICompileUnit>(Node); 2224 2225 // First, emit all globals that are not in a comdat in a single symbol 2226 // substream. MSVC doesn't like it if the substream is empty, so only open 2227 // it if we have at least one global to emit. 2228 switchToDebugSectionForSymbol(nullptr); 2229 MCSymbol *EndLabel = nullptr; 2230 for (const auto *GVE : CU->getGlobalVariables()) { 2231 if (const auto *GV = GlobalMap.lookup(GVE)) 2232 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2233 if (!EndLabel) { 2234 OS.AddComment("Symbol subsection for globals"); 2235 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2236 } 2237 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2238 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2239 } 2240 } 2241 if (EndLabel) 2242 endCVSubsection(EndLabel); 2243 2244 // Second, emit each global that is in a comdat into its own .debug$S 2245 // section along with its own symbol substream. 2246 for (const auto *GVE : CU->getGlobalVariables()) { 2247 if (const auto *GV = GlobalMap.lookup(GVE)) { 2248 if (GV->hasComdat()) { 2249 MCSymbol *GVSym = Asm->getSymbol(GV); 2250 OS.AddComment("Symbol subsection for " + 2251 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2252 switchToDebugSectionForSymbol(GVSym); 2253 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2254 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2255 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2256 endCVSubsection(EndLabel); 2257 } 2258 } 2259 } 2260 } 2261 } 2262 2263 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2264 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2265 for (const MDNode *Node : CUs->operands()) { 2266 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2267 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2268 getTypeIndex(RT); 2269 // FIXME: Add to global/local DTU list. 2270 } 2271 } 2272 } 2273 } 2274 2275 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2276 const GlobalVariable *GV, 2277 MCSymbol *GVSym) { 2278 // DataSym record, see SymbolRecord.h for more info. 2279 // FIXME: Thread local data, etc 2280 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2281 *DataEnd = MMI->getContext().createTempSymbol(); 2282 OS.AddComment("Record length"); 2283 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2284 OS.EmitLabel(DataBegin); 2285 if (DIGV->isLocalToUnit()) { 2286 if (GV->isThreadLocal()) { 2287 OS.AddComment("Record kind: S_LTHREAD32"); 2288 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2289 } else { 2290 OS.AddComment("Record kind: S_LDATA32"); 2291 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2292 } 2293 } else { 2294 if (GV->isThreadLocal()) { 2295 OS.AddComment("Record kind: S_GTHREAD32"); 2296 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2297 } else { 2298 OS.AddComment("Record kind: S_GDATA32"); 2299 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2300 } 2301 } 2302 OS.AddComment("Type"); 2303 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2304 OS.AddComment("DataOffset"); 2305 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2306 OS.AddComment("Segment"); 2307 OS.EmitCOFFSectionIndex(GVSym); 2308 OS.AddComment("Name"); 2309 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2310 OS.EmitLabel(DataEnd); 2311 } 2312