1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
17 #include "llvm/DebugInfo/CodeView/CodeView.h"
18 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
19 #include "llvm/DebugInfo/CodeView/Line.h"
20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
21 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
22 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
23 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
24 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
25 #include "llvm/DebugInfo/MSF/ByteStream.h"
26 #include "llvm/DebugInfo/MSF/StreamReader.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCSectionCOFF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/COFF.h"
33 #include "llvm/Support/ScopedPrinter.h"
34 #include "llvm/Target/TargetFrameLowering.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/Target/TargetSubtargetInfo.h"
37 
38 using namespace llvm;
39 using namespace llvm::codeview;
40 using namespace llvm::msf;
41 
42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
43     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(),
44       TypeTable(Allocator), CurFn(nullptr) {
45   // If module doesn't have named metadata anchors or COFF debug section
46   // is not available, skip any debug info related stuff.
47   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
48       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
49     Asm = nullptr;
50     return;
51   }
52 
53   // Tell MMI that we have debug info.
54   MMI->setDebugInfoAvailability(true);
55 }
56 
57 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
58   std::string &Filepath = FileToFilepathMap[File];
59   if (!Filepath.empty())
60     return Filepath;
61 
62   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
63 
64   // Clang emits directory and relative filename info into the IR, but CodeView
65   // operates on full paths.  We could change Clang to emit full paths too, but
66   // that would increase the IR size and probably not needed for other users.
67   // For now, just concatenate and canonicalize the path here.
68   if (Filename.find(':') == 1)
69     Filepath = Filename;
70   else
71     Filepath = (Dir + "\\" + Filename).str();
72 
73   // Canonicalize the path.  We have to do it textually because we may no longer
74   // have access the file in the filesystem.
75   // First, replace all slashes with backslashes.
76   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
77 
78   // Remove all "\.\" with "\".
79   size_t Cursor = 0;
80   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
81     Filepath.erase(Cursor, 2);
82 
83   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
84   // path should be well-formatted, e.g. start with a drive letter, etc.
85   Cursor = 0;
86   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
87     // Something's wrong if the path starts with "\..\", abort.
88     if (Cursor == 0)
89       break;
90 
91     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
92     if (PrevSlash == std::string::npos)
93       // Something's wrong, abort.
94       break;
95 
96     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
97     // The next ".." might be following the one we've just erased.
98     Cursor = PrevSlash;
99   }
100 
101   // Remove all duplicate backslashes.
102   Cursor = 0;
103   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
104     Filepath.erase(Cursor, 1);
105 
106   return Filepath;
107 }
108 
109 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
110   unsigned NextId = FileIdMap.size() + 1;
111   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
112   if (Insertion.second) {
113     // We have to compute the full filepath and emit a .cv_file directive.
114     StringRef FullPath = getFullFilepath(F);
115     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
116     (void)Success;
117     assert(Success && ".cv_file directive failed");
118   }
119   return Insertion.first->second;
120 }
121 
122 CodeViewDebug::InlineSite &
123 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
124                              const DISubprogram *Inlinee) {
125   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
126   InlineSite *Site = &SiteInsertion.first->second;
127   if (SiteInsertion.second) {
128     unsigned ParentFuncId = CurFn->FuncId;
129     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
130       ParentFuncId =
131           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
132               .SiteFuncId;
133 
134     Site->SiteFuncId = NextFuncId++;
135     OS.EmitCVInlineSiteIdDirective(
136         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
137         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
138     Site->Inlinee = Inlinee;
139     InlinedSubprograms.insert(Inlinee);
140     getFuncIdForSubprogram(Inlinee);
141   }
142   return *Site;
143 }
144 
145 static StringRef getPrettyScopeName(const DIScope *Scope) {
146   StringRef ScopeName = Scope->getName();
147   if (!ScopeName.empty())
148     return ScopeName;
149 
150   switch (Scope->getTag()) {
151   case dwarf::DW_TAG_enumeration_type:
152   case dwarf::DW_TAG_class_type:
153   case dwarf::DW_TAG_structure_type:
154   case dwarf::DW_TAG_union_type:
155     return "<unnamed-tag>";
156   case dwarf::DW_TAG_namespace:
157     return "`anonymous namespace'";
158   }
159 
160   return StringRef();
161 }
162 
163 static const DISubprogram *getQualifiedNameComponents(
164     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
165   const DISubprogram *ClosestSubprogram = nullptr;
166   while (Scope != nullptr) {
167     if (ClosestSubprogram == nullptr)
168       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
169     StringRef ScopeName = getPrettyScopeName(Scope);
170     if (!ScopeName.empty())
171       QualifiedNameComponents.push_back(ScopeName);
172     Scope = Scope->getScope().resolve();
173   }
174   return ClosestSubprogram;
175 }
176 
177 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
178                                     StringRef TypeName) {
179   std::string FullyQualifiedName;
180   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
181     FullyQualifiedName.append(QualifiedNameComponent);
182     FullyQualifiedName.append("::");
183   }
184   FullyQualifiedName.append(TypeName);
185   return FullyQualifiedName;
186 }
187 
188 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
189   SmallVector<StringRef, 5> QualifiedNameComponents;
190   getQualifiedNameComponents(Scope, QualifiedNameComponents);
191   return getQualifiedName(QualifiedNameComponents, Name);
192 }
193 
194 struct CodeViewDebug::TypeLoweringScope {
195   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
196   ~TypeLoweringScope() {
197     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
198     // inner TypeLoweringScopes don't attempt to emit deferred types.
199     if (CVD.TypeEmissionLevel == 1)
200       CVD.emitDeferredCompleteTypes();
201     --CVD.TypeEmissionLevel;
202   }
203   CodeViewDebug &CVD;
204 };
205 
206 static std::string getFullyQualifiedName(const DIScope *Ty) {
207   const DIScope *Scope = Ty->getScope().resolve();
208   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
209 }
210 
211 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
212   // No scope means global scope and that uses the zero index.
213   if (!Scope || isa<DIFile>(Scope))
214     return TypeIndex();
215 
216   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
217 
218   // Check if we've already translated this scope.
219   auto I = TypeIndices.find({Scope, nullptr});
220   if (I != TypeIndices.end())
221     return I->second;
222 
223   // Build the fully qualified name of the scope.
224   std::string ScopeName = getFullyQualifiedName(Scope);
225   TypeIndex TI =
226       TypeTable.writeKnownType(StringIdRecord(TypeIndex(), ScopeName));
227   return recordTypeIndexForDINode(Scope, TI);
228 }
229 
230 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
231   assert(SP);
232 
233   // Check if we've already translated this subprogram.
234   auto I = TypeIndices.find({SP, nullptr});
235   if (I != TypeIndices.end())
236     return I->second;
237 
238   // The display name includes function template arguments. Drop them to match
239   // MSVC.
240   StringRef DisplayName = SP->getDisplayName().split('<').first;
241 
242   const DIScope *Scope = SP->getScope().resolve();
243   TypeIndex TI;
244   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
245     // If the scope is a DICompositeType, then this must be a method. Member
246     // function types take some special handling, and require access to the
247     // subprogram.
248     TypeIndex ClassType = getTypeIndex(Class);
249     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
250                                DisplayName);
251     TI = TypeTable.writeKnownType(MFuncId);
252   } else {
253     // Otherwise, this must be a free function.
254     TypeIndex ParentScope = getScopeIndex(Scope);
255     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
256     TI = TypeTable.writeKnownType(FuncId);
257   }
258 
259   return recordTypeIndexForDINode(SP, TI);
260 }
261 
262 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
263                                                const DICompositeType *Class) {
264   // Always use the method declaration as the key for the function type. The
265   // method declaration contains the this adjustment.
266   if (SP->getDeclaration())
267     SP = SP->getDeclaration();
268   assert(!SP->getDeclaration() && "should use declaration as key");
269 
270   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
271   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
272   auto I = TypeIndices.find({SP, Class});
273   if (I != TypeIndices.end())
274     return I->second;
275 
276   // Make sure complete type info for the class is emitted *after* the member
277   // function type, as the complete class type is likely to reference this
278   // member function type.
279   TypeLoweringScope S(*this);
280   TypeIndex TI =
281       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
282   return recordTypeIndexForDINode(SP, TI, Class);
283 }
284 
285 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
286                                                   TypeIndex TI,
287                                                   const DIType *ClassTy) {
288   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
289   (void)InsertResult;
290   assert(InsertResult.second && "DINode was already assigned a type index");
291   return TI;
292 }
293 
294 unsigned CodeViewDebug::getPointerSizeInBytes() {
295   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
296 }
297 
298 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
299                                         const DILocation *InlinedAt) {
300   if (InlinedAt) {
301     // This variable was inlined. Associate it with the InlineSite.
302     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
303     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
304     Site.InlinedLocals.emplace_back(Var);
305   } else {
306     // This variable goes in the main ProcSym.
307     CurFn->Locals.emplace_back(Var);
308   }
309 }
310 
311 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
312                                const DILocation *Loc) {
313   auto B = Locs.begin(), E = Locs.end();
314   if (std::find(B, E, Loc) == E)
315     Locs.push_back(Loc);
316 }
317 
318 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
319                                         const MachineFunction *MF) {
320   // Skip this instruction if it has the same location as the previous one.
321   if (DL == CurFn->LastLoc)
322     return;
323 
324   const DIScope *Scope = DL.get()->getScope();
325   if (!Scope)
326     return;
327 
328   // Skip this line if it is longer than the maximum we can record.
329   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
330   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
331       LI.isNeverStepInto())
332     return;
333 
334   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
335   if (CI.getStartColumn() != DL.getCol())
336     return;
337 
338   if (!CurFn->HaveLineInfo)
339     CurFn->HaveLineInfo = true;
340   unsigned FileId = 0;
341   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
342     FileId = CurFn->LastFileId;
343   else
344     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
345   CurFn->LastLoc = DL;
346 
347   unsigned FuncId = CurFn->FuncId;
348   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
349     const DILocation *Loc = DL.get();
350 
351     // If this location was actually inlined from somewhere else, give it the ID
352     // of the inline call site.
353     FuncId =
354         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
355 
356     // Ensure we have links in the tree of inline call sites.
357     bool FirstLoc = true;
358     while ((SiteLoc = Loc->getInlinedAt())) {
359       InlineSite &Site =
360           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
361       if (!FirstLoc)
362         addLocIfNotPresent(Site.ChildSites, Loc);
363       FirstLoc = false;
364       Loc = SiteLoc;
365     }
366     addLocIfNotPresent(CurFn->ChildSites, Loc);
367   }
368 
369   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
370                         /*PrologueEnd=*/false, /*IsStmt=*/false,
371                         DL->getFilename(), SMLoc());
372 }
373 
374 void CodeViewDebug::emitCodeViewMagicVersion() {
375   OS.EmitValueToAlignment(4);
376   OS.AddComment("Debug section magic");
377   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
378 }
379 
380 void CodeViewDebug::endModule() {
381   if (!Asm || !MMI->hasDebugInfo())
382     return;
383 
384   assert(Asm != nullptr);
385 
386   // The COFF .debug$S section consists of several subsections, each starting
387   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
388   // of the payload followed by the payload itself.  The subsections are 4-byte
389   // aligned.
390 
391   // Use the generic .debug$S section, and make a subsection for all the inlined
392   // subprograms.
393   switchToDebugSectionForSymbol(nullptr);
394   emitInlineeLinesSubsection();
395 
396   // Emit per-function debug information.
397   for (auto &P : FnDebugInfo)
398     if (!P.first->isDeclarationForLinker())
399       emitDebugInfoForFunction(P.first, P.second);
400 
401   // Emit global variable debug information.
402   setCurrentSubprogram(nullptr);
403   emitDebugInfoForGlobals();
404 
405   // Emit retained types.
406   emitDebugInfoForRetainedTypes();
407 
408   // Switch back to the generic .debug$S section after potentially processing
409   // comdat symbol sections.
410   switchToDebugSectionForSymbol(nullptr);
411 
412   // Emit UDT records for any types used by global variables.
413   if (!GlobalUDTs.empty()) {
414     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
415     emitDebugInfoForUDTs(GlobalUDTs);
416     endCVSubsection(SymbolsEnd);
417   }
418 
419   // This subsection holds a file index to offset in string table table.
420   OS.AddComment("File index to string table offset subsection");
421   OS.EmitCVFileChecksumsDirective();
422 
423   // This subsection holds the string table.
424   OS.AddComment("String table");
425   OS.EmitCVStringTableDirective();
426 
427   // Emit type information last, so that any types we translate while emitting
428   // function info are included.
429   emitTypeInformation();
430 
431   clear();
432 }
433 
434 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
435   // Microsoft's linker seems to have trouble with symbol names longer than
436   // 0xffd8 bytes.
437   S = S.substr(0, 0xffd8);
438   SmallString<32> NullTerminatedString(S);
439   NullTerminatedString.push_back('\0');
440   OS.EmitBytes(NullTerminatedString);
441 }
442 
443 void CodeViewDebug::emitTypeInformation() {
444   // Do nothing if we have no debug info or if no non-trivial types were emitted
445   // to TypeTable during codegen.
446   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
447   if (!CU_Nodes)
448     return;
449   if (TypeTable.empty())
450     return;
451 
452   // Start the .debug$T section with 0x4.
453   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
454   emitCodeViewMagicVersion();
455 
456   SmallString<8> CommentPrefix;
457   if (OS.isVerboseAsm()) {
458     CommentPrefix += '\t';
459     CommentPrefix += Asm->MAI->getCommentString();
460     CommentPrefix += ' ';
461   }
462 
463   CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
464   TypeTable.ForEachRecord(
465       [&](TypeIndex Index, StringRef Record) {
466         if (OS.isVerboseAsm()) {
467           // Emit a block comment describing the type record for readability.
468           SmallString<512> CommentBlock;
469           raw_svector_ostream CommentOS(CommentBlock);
470           ScopedPrinter SP(CommentOS);
471           SP.setPrefix(CommentPrefix);
472           CVTD.setPrinter(&SP);
473           Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
474           if (E) {
475             logAllUnhandledErrors(std::move(E), errs(), "error: ");
476             llvm_unreachable("produced malformed type record");
477           }
478           // emitRawComment will insert its own tab and comment string before
479           // the first line, so strip off our first one. It also prints its own
480           // newline.
481           OS.emitRawComment(
482               CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
483         } else {
484 #ifndef NDEBUG
485           // Assert that the type data is valid even if we aren't dumping
486           // comments. The MSVC linker doesn't do much type record validation,
487           // so the first link of an invalid type record can succeed while
488           // subsequent links will fail with LNK1285.
489           ByteStream Stream({Record.bytes_begin(), Record.bytes_end()});
490           CVTypeArray Types;
491           StreamReader Reader(Stream);
492           Error E = Reader.readArray(Types, Reader.getLength());
493           if (!E) {
494             TypeVisitorCallbacks C;
495             E = CVTypeVisitor(C).visitTypeStream(Types);
496           }
497           if (E) {
498             logAllUnhandledErrors(std::move(E), errs(), "error: ");
499             llvm_unreachable("produced malformed type record");
500           }
501 #endif
502         }
503         OS.EmitBinaryData(Record);
504       });
505 }
506 
507 void CodeViewDebug::emitInlineeLinesSubsection() {
508   if (InlinedSubprograms.empty())
509     return;
510 
511   OS.AddComment("Inlinee lines subsection");
512   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
513 
514   // We don't provide any extra file info.
515   // FIXME: Find out if debuggers use this info.
516   OS.AddComment("Inlinee lines signature");
517   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
518 
519   for (const DISubprogram *SP : InlinedSubprograms) {
520     assert(TypeIndices.count({SP, nullptr}));
521     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
522 
523     OS.AddBlankLine();
524     unsigned FileId = maybeRecordFile(SP->getFile());
525     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
526                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
527     OS.AddBlankLine();
528     // The filechecksum table uses 8 byte entries for now, and file ids start at
529     // 1.
530     unsigned FileOffset = (FileId - 1) * 8;
531     OS.AddComment("Type index of inlined function");
532     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
533     OS.AddComment("Offset into filechecksum table");
534     OS.EmitIntValue(FileOffset, 4);
535     OS.AddComment("Starting line number");
536     OS.EmitIntValue(SP->getLine(), 4);
537   }
538 
539   endCVSubsection(InlineEnd);
540 }
541 
542 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
543                                         const DILocation *InlinedAt,
544                                         const InlineSite &Site) {
545   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
546            *InlineEnd = MMI->getContext().createTempSymbol();
547 
548   assert(TypeIndices.count({Site.Inlinee, nullptr}));
549   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
550 
551   // SymbolRecord
552   OS.AddComment("Record length");
553   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
554   OS.EmitLabel(InlineBegin);
555   OS.AddComment("Record kind: S_INLINESITE");
556   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
557 
558   OS.AddComment("PtrParent");
559   OS.EmitIntValue(0, 4);
560   OS.AddComment("PtrEnd");
561   OS.EmitIntValue(0, 4);
562   OS.AddComment("Inlinee type index");
563   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
564 
565   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
566   unsigned StartLineNum = Site.Inlinee->getLine();
567 
568   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
569                                     FI.Begin, FI.End);
570 
571   OS.EmitLabel(InlineEnd);
572 
573   emitLocalVariableList(Site.InlinedLocals);
574 
575   // Recurse on child inlined call sites before closing the scope.
576   for (const DILocation *ChildSite : Site.ChildSites) {
577     auto I = FI.InlineSites.find(ChildSite);
578     assert(I != FI.InlineSites.end() &&
579            "child site not in function inline site map");
580     emitInlinedCallSite(FI, ChildSite, I->second);
581   }
582 
583   // Close the scope.
584   OS.AddComment("Record length");
585   OS.EmitIntValue(2, 2);                                  // RecordLength
586   OS.AddComment("Record kind: S_INLINESITE_END");
587   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
588 }
589 
590 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
591   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
592   // comdat key. A section may be comdat because of -ffunction-sections or
593   // because it is comdat in the IR.
594   MCSectionCOFF *GVSec =
595       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
596   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
597 
598   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
599       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
600   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
601 
602   OS.SwitchSection(DebugSec);
603 
604   // Emit the magic version number if this is the first time we've switched to
605   // this section.
606   if (ComdatDebugSections.insert(DebugSec).second)
607     emitCodeViewMagicVersion();
608 }
609 
610 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
611                                              FunctionInfo &FI) {
612   // For each function there is a separate subsection
613   // which holds the PC to file:line table.
614   const MCSymbol *Fn = Asm->getSymbol(GV);
615   assert(Fn);
616 
617   // Switch to the to a comdat section, if appropriate.
618   switchToDebugSectionForSymbol(Fn);
619 
620   std::string FuncName;
621   auto *SP = GV->getSubprogram();
622   assert(SP);
623   setCurrentSubprogram(SP);
624 
625   // If we have a display name, build the fully qualified name by walking the
626   // chain of scopes.
627   if (!SP->getDisplayName().empty())
628     FuncName =
629         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
630 
631   // If our DISubprogram name is empty, use the mangled name.
632   if (FuncName.empty())
633     FuncName = GlobalValue::getRealLinkageName(GV->getName());
634 
635   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
636   OS.AddComment("Symbol subsection for " + Twine(FuncName));
637   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
638   {
639     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
640              *ProcRecordEnd = MMI->getContext().createTempSymbol();
641     OS.AddComment("Record length");
642     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
643     OS.EmitLabel(ProcRecordBegin);
644 
645   if (GV->hasLocalLinkage()) {
646     OS.AddComment("Record kind: S_LPROC32_ID");
647     OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
648   } else {
649     OS.AddComment("Record kind: S_GPROC32_ID");
650     OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
651   }
652 
653     // These fields are filled in by tools like CVPACK which run after the fact.
654     OS.AddComment("PtrParent");
655     OS.EmitIntValue(0, 4);
656     OS.AddComment("PtrEnd");
657     OS.EmitIntValue(0, 4);
658     OS.AddComment("PtrNext");
659     OS.EmitIntValue(0, 4);
660     // This is the important bit that tells the debugger where the function
661     // code is located and what's its size:
662     OS.AddComment("Code size");
663     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
664     OS.AddComment("Offset after prologue");
665     OS.EmitIntValue(0, 4);
666     OS.AddComment("Offset before epilogue");
667     OS.EmitIntValue(0, 4);
668     OS.AddComment("Function type index");
669     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
670     OS.AddComment("Function section relative address");
671     OS.EmitCOFFSecRel32(Fn);
672     OS.AddComment("Function section index");
673     OS.EmitCOFFSectionIndex(Fn);
674     OS.AddComment("Flags");
675     OS.EmitIntValue(0, 1);
676     // Emit the function display name as a null-terminated string.
677     OS.AddComment("Function name");
678     // Truncate the name so we won't overflow the record length field.
679     emitNullTerminatedSymbolName(OS, FuncName);
680     OS.EmitLabel(ProcRecordEnd);
681 
682     emitLocalVariableList(FI.Locals);
683 
684     // Emit inlined call site information. Only emit functions inlined directly
685     // into the parent function. We'll emit the other sites recursively as part
686     // of their parent inline site.
687     for (const DILocation *InlinedAt : FI.ChildSites) {
688       auto I = FI.InlineSites.find(InlinedAt);
689       assert(I != FI.InlineSites.end() &&
690              "child site not in function inline site map");
691       emitInlinedCallSite(FI, InlinedAt, I->second);
692     }
693 
694     if (SP != nullptr)
695       emitDebugInfoForUDTs(LocalUDTs);
696 
697     // We're done with this function.
698     OS.AddComment("Record length");
699     OS.EmitIntValue(0x0002, 2);
700     OS.AddComment("Record kind: S_PROC_ID_END");
701     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
702   }
703   endCVSubsection(SymbolsEnd);
704 
705   // We have an assembler directive that takes care of the whole line table.
706   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
707 }
708 
709 CodeViewDebug::LocalVarDefRange
710 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
711   LocalVarDefRange DR;
712   DR.InMemory = -1;
713   DR.DataOffset = Offset;
714   assert(DR.DataOffset == Offset && "truncation");
715   DR.StructOffset = 0;
716   DR.CVRegister = CVRegister;
717   return DR;
718 }
719 
720 CodeViewDebug::LocalVarDefRange
721 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) {
722   LocalVarDefRange DR;
723   DR.InMemory = 0;
724   DR.DataOffset = 0;
725   DR.StructOffset = 0;
726   DR.CVRegister = CVRegister;
727   return DR;
728 }
729 
730 void CodeViewDebug::collectVariableInfoFromMMITable(
731     DenseSet<InlinedVariable> &Processed) {
732   const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
733   const TargetFrameLowering *TFI = TSI.getFrameLowering();
734   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
735 
736   for (const MachineModuleInfo::VariableDbgInfo &VI :
737        MMI->getVariableDbgInfo()) {
738     if (!VI.Var)
739       continue;
740     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
741            "Expected inlined-at fields to agree");
742 
743     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
744     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
745 
746     // If variable scope is not found then skip this variable.
747     if (!Scope)
748       continue;
749 
750     // Get the frame register used and the offset.
751     unsigned FrameReg = 0;
752     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
753     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
754 
755     // Calculate the label ranges.
756     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
757     for (const InsnRange &Range : Scope->getRanges()) {
758       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
759       const MCSymbol *End = getLabelAfterInsn(Range.second);
760       End = End ? End : Asm->getFunctionEnd();
761       DefRange.Ranges.emplace_back(Begin, End);
762     }
763 
764     LocalVariable Var;
765     Var.DIVar = VI.Var;
766     Var.DefRanges.emplace_back(std::move(DefRange));
767     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
768   }
769 }
770 
771 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
772   DenseSet<InlinedVariable> Processed;
773   // Grab the variable info that was squirreled away in the MMI side-table.
774   collectVariableInfoFromMMITable(Processed);
775 
776   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
777 
778   for (const auto &I : DbgValues) {
779     InlinedVariable IV = I.first;
780     if (Processed.count(IV))
781       continue;
782     const DILocalVariable *DIVar = IV.first;
783     const DILocation *InlinedAt = IV.second;
784 
785     // Instruction ranges, specifying where IV is accessible.
786     const auto &Ranges = I.second;
787 
788     LexicalScope *Scope = nullptr;
789     if (InlinedAt)
790       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
791     else
792       Scope = LScopes.findLexicalScope(DIVar->getScope());
793     // If variable scope is not found then skip this variable.
794     if (!Scope)
795       continue;
796 
797     LocalVariable Var;
798     Var.DIVar = DIVar;
799 
800     // Calculate the definition ranges.
801     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
802       const InsnRange &Range = *I;
803       const MachineInstr *DVInst = Range.first;
804       assert(DVInst->isDebugValue() && "Invalid History entry");
805       const DIExpression *DIExpr = DVInst->getDebugExpression();
806 
807       // Bail if there is a complex DWARF expression for now.
808       if (DIExpr && DIExpr->getNumElements() > 0)
809         continue;
810 
811       // Bail if operand 0 is not a valid register. This means the variable is a
812       // simple constant, or is described by a complex expression.
813       // FIXME: Find a way to represent constant variables, since they are
814       // relatively common.
815       unsigned Reg =
816           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
817       if (Reg == 0)
818         continue;
819 
820       // Handle the two cases we can handle: indirect in memory and in register.
821       bool IsIndirect = DVInst->getOperand(1).isImm();
822       unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg());
823       {
824         LocalVarDefRange DefRange;
825         if (IsIndirect) {
826           int64_t Offset = DVInst->getOperand(1).getImm();
827           DefRange = createDefRangeMem(CVReg, Offset);
828         } else {
829           DefRange = createDefRangeReg(CVReg);
830         }
831         if (Var.DefRanges.empty() ||
832             Var.DefRanges.back().isDifferentLocation(DefRange)) {
833           Var.DefRanges.emplace_back(std::move(DefRange));
834         }
835       }
836 
837       // Compute the label range.
838       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
839       const MCSymbol *End = getLabelAfterInsn(Range.second);
840       if (!End) {
841         if (std::next(I) != E)
842           End = getLabelBeforeInsn(std::next(I)->first);
843         else
844           End = Asm->getFunctionEnd();
845       }
846 
847       // If the last range end is our begin, just extend the last range.
848       // Otherwise make a new range.
849       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
850           Var.DefRanges.back().Ranges;
851       if (!Ranges.empty() && Ranges.back().second == Begin)
852         Ranges.back().second = End;
853       else
854         Ranges.emplace_back(Begin, End);
855 
856       // FIXME: Do more range combining.
857     }
858 
859     recordLocalVariable(std::move(Var), InlinedAt);
860   }
861 }
862 
863 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
864   assert(!CurFn && "Can't process two functions at once!");
865 
866   if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram())
867     return;
868 
869   DebugHandlerBase::beginFunction(MF);
870 
871   const Function *GV = MF->getFunction();
872   assert(FnDebugInfo.count(GV) == false);
873   CurFn = &FnDebugInfo[GV];
874   CurFn->FuncId = NextFuncId++;
875   CurFn->Begin = Asm->getFunctionBegin();
876 
877   OS.EmitCVFuncIdDirective(CurFn->FuncId);
878 
879   // Find the end of the function prolog.  First known non-DBG_VALUE and
880   // non-frame setup location marks the beginning of the function body.
881   // FIXME: is there a simpler a way to do this? Can we just search
882   // for the first instruction of the function, not the last of the prolog?
883   DebugLoc PrologEndLoc;
884   bool EmptyPrologue = true;
885   for (const auto &MBB : *MF) {
886     for (const auto &MI : MBB) {
887       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
888           MI.getDebugLoc()) {
889         PrologEndLoc = MI.getDebugLoc();
890         break;
891       } else if (!MI.isDebugValue()) {
892         EmptyPrologue = false;
893       }
894     }
895   }
896 
897   // Record beginning of function if we have a non-empty prologue.
898   if (PrologEndLoc && !EmptyPrologue) {
899     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
900     maybeRecordLocation(FnStartDL, MF);
901   }
902 }
903 
904 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
905   // Don't record empty UDTs.
906   if (Ty->getName().empty())
907     return;
908 
909   SmallVector<StringRef, 5> QualifiedNameComponents;
910   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
911       Ty->getScope().resolve(), QualifiedNameComponents);
912 
913   std::string FullyQualifiedName =
914       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
915 
916   if (ClosestSubprogram == nullptr)
917     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
918   else if (ClosestSubprogram == CurrentSubprogram)
919     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
920 
921   // TODO: What if the ClosestSubprogram is neither null or the current
922   // subprogram?  Currently, the UDT just gets dropped on the floor.
923   //
924   // The current behavior is not desirable.  To get maximal fidelity, we would
925   // need to perform all type translation before beginning emission of .debug$S
926   // and then make LocalUDTs a member of FunctionInfo
927 }
928 
929 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
930   // Generic dispatch for lowering an unknown type.
931   switch (Ty->getTag()) {
932   case dwarf::DW_TAG_array_type:
933     return lowerTypeArray(cast<DICompositeType>(Ty));
934   case dwarf::DW_TAG_typedef:
935     return lowerTypeAlias(cast<DIDerivedType>(Ty));
936   case dwarf::DW_TAG_base_type:
937     return lowerTypeBasic(cast<DIBasicType>(Ty));
938   case dwarf::DW_TAG_pointer_type:
939     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
940       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
941     LLVM_FALLTHROUGH;
942   case dwarf::DW_TAG_reference_type:
943   case dwarf::DW_TAG_rvalue_reference_type:
944     return lowerTypePointer(cast<DIDerivedType>(Ty));
945   case dwarf::DW_TAG_ptr_to_member_type:
946     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
947   case dwarf::DW_TAG_const_type:
948   case dwarf::DW_TAG_volatile_type:
949     return lowerTypeModifier(cast<DIDerivedType>(Ty));
950   case dwarf::DW_TAG_subroutine_type:
951     if (ClassTy) {
952       // The member function type of a member function pointer has no
953       // ThisAdjustment.
954       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
955                                      /*ThisAdjustment=*/0);
956     }
957     return lowerTypeFunction(cast<DISubroutineType>(Ty));
958   case dwarf::DW_TAG_enumeration_type:
959     return lowerTypeEnum(cast<DICompositeType>(Ty));
960   case dwarf::DW_TAG_class_type:
961   case dwarf::DW_TAG_structure_type:
962     return lowerTypeClass(cast<DICompositeType>(Ty));
963   case dwarf::DW_TAG_union_type:
964     return lowerTypeUnion(cast<DICompositeType>(Ty));
965   default:
966     // Use the null type index.
967     return TypeIndex();
968   }
969 }
970 
971 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
972   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
973   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
974   StringRef TypeName = Ty->getName();
975 
976   addToUDTs(Ty, UnderlyingTypeIndex);
977 
978   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
979       TypeName == "HRESULT")
980     return TypeIndex(SimpleTypeKind::HResult);
981   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
982       TypeName == "wchar_t")
983     return TypeIndex(SimpleTypeKind::WideCharacter);
984 
985   return UnderlyingTypeIndex;
986 }
987 
988 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
989   DITypeRef ElementTypeRef = Ty->getBaseType();
990   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
991   // IndexType is size_t, which depends on the bitness of the target.
992   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
993                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
994                             : TypeIndex(SimpleTypeKind::UInt32Long);
995 
996   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
997 
998 
999   // We want to assert that the element type multiplied by the array lengths
1000   // match the size of the overall array. However, if we don't have complete
1001   // type information for the base type, we can't make this assertion. This
1002   // happens if limited debug info is enabled in this case:
1003   //   struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); };
1004   //   VTableOptzn array[3];
1005   // The DICompositeType of VTableOptzn will have size zero, and the array will
1006   // have size 3 * sizeof(void*), and we should avoid asserting.
1007   //
1008   // There is a related bug in the front-end where an array of a structure,
1009   // which was declared as incomplete structure first, ends up not getting a
1010   // size assigned to it. (PR28303)
1011   // Example:
1012   //   struct A(*p)[3];
1013   //   struct A { int f; } a[3];
1014   bool PartiallyIncomplete = false;
1015   if (Ty->getSizeInBits() == 0 || ElementSize == 0) {
1016     PartiallyIncomplete = true;
1017   }
1018 
1019   // Add subranges to array type.
1020   DINodeArray Elements = Ty->getElements();
1021   for (int i = Elements.size() - 1; i >= 0; --i) {
1022     const DINode *Element = Elements[i];
1023     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1024 
1025     const DISubrange *Subrange = cast<DISubrange>(Element);
1026     assert(Subrange->getLowerBound() == 0 &&
1027            "codeview doesn't support subranges with lower bounds");
1028     int64_t Count = Subrange->getCount();
1029 
1030     // Variable Length Array (VLA) has Count equal to '-1'.
1031     // Replace with Count '1', assume it is the minimum VLA length.
1032     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1033     if (Count == -1) {
1034       Count = 1;
1035       PartiallyIncomplete = true;
1036     }
1037 
1038     // Update the element size and element type index for subsequent subranges.
1039     ElementSize *= Count;
1040 
1041     // If this is the outermost array, use the size from the array. It will be
1042     // more accurate if PartiallyIncomplete is true.
1043     uint64_t ArraySize =
1044         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1045 
1046     StringRef Name = (i == 0) ? Ty->getName() : "";
1047     ElementTypeIndex = TypeTable.writeKnownType(
1048         ArrayRecord(ElementTypeIndex, IndexType, ArraySize, Name));
1049   }
1050 
1051   (void)PartiallyIncomplete;
1052   assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8));
1053 
1054   return ElementTypeIndex;
1055 }
1056 
1057 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1058   TypeIndex Index;
1059   dwarf::TypeKind Kind;
1060   uint32_t ByteSize;
1061 
1062   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1063   ByteSize = Ty->getSizeInBits() / 8;
1064 
1065   SimpleTypeKind STK = SimpleTypeKind::None;
1066   switch (Kind) {
1067   case dwarf::DW_ATE_address:
1068     // FIXME: Translate
1069     break;
1070   case dwarf::DW_ATE_boolean:
1071     switch (ByteSize) {
1072     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1073     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1074     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1075     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1076     case 16: STK = SimpleTypeKind::Boolean128; break;
1077     }
1078     break;
1079   case dwarf::DW_ATE_complex_float:
1080     switch (ByteSize) {
1081     case 2:  STK = SimpleTypeKind::Complex16;  break;
1082     case 4:  STK = SimpleTypeKind::Complex32;  break;
1083     case 8:  STK = SimpleTypeKind::Complex64;  break;
1084     case 10: STK = SimpleTypeKind::Complex80;  break;
1085     case 16: STK = SimpleTypeKind::Complex128; break;
1086     }
1087     break;
1088   case dwarf::DW_ATE_float:
1089     switch (ByteSize) {
1090     case 2:  STK = SimpleTypeKind::Float16;  break;
1091     case 4:  STK = SimpleTypeKind::Float32;  break;
1092     case 6:  STK = SimpleTypeKind::Float48;  break;
1093     case 8:  STK = SimpleTypeKind::Float64;  break;
1094     case 10: STK = SimpleTypeKind::Float80;  break;
1095     case 16: STK = SimpleTypeKind::Float128; break;
1096     }
1097     break;
1098   case dwarf::DW_ATE_signed:
1099     switch (ByteSize) {
1100     case 1:  STK = SimpleTypeKind::SByte;      break;
1101     case 2:  STK = SimpleTypeKind::Int16Short; break;
1102     case 4:  STK = SimpleTypeKind::Int32;      break;
1103     case 8:  STK = SimpleTypeKind::Int64Quad;  break;
1104     case 16: STK = SimpleTypeKind::Int128Oct;  break;
1105     }
1106     break;
1107   case dwarf::DW_ATE_unsigned:
1108     switch (ByteSize) {
1109     case 1:  STK = SimpleTypeKind::Byte;        break;
1110     case 2:  STK = SimpleTypeKind::UInt16Short; break;
1111     case 4:  STK = SimpleTypeKind::UInt32;      break;
1112     case 8:  STK = SimpleTypeKind::UInt64Quad;  break;
1113     case 16: STK = SimpleTypeKind::UInt128Oct;  break;
1114     }
1115     break;
1116   case dwarf::DW_ATE_UTF:
1117     switch (ByteSize) {
1118     case 2: STK = SimpleTypeKind::Character16; break;
1119     case 4: STK = SimpleTypeKind::Character32; break;
1120     }
1121     break;
1122   case dwarf::DW_ATE_signed_char:
1123     if (ByteSize == 1)
1124       STK = SimpleTypeKind::SignedCharacter;
1125     break;
1126   case dwarf::DW_ATE_unsigned_char:
1127     if (ByteSize == 1)
1128       STK = SimpleTypeKind::UnsignedCharacter;
1129     break;
1130   default:
1131     break;
1132   }
1133 
1134   // Apply some fixups based on the source-level type name.
1135   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1136     STK = SimpleTypeKind::Int32Long;
1137   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1138     STK = SimpleTypeKind::UInt32Long;
1139   if (STK == SimpleTypeKind::UInt16Short &&
1140       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1141     STK = SimpleTypeKind::WideCharacter;
1142   if ((STK == SimpleTypeKind::SignedCharacter ||
1143        STK == SimpleTypeKind::UnsignedCharacter) &&
1144       Ty->getName() == "char")
1145     STK = SimpleTypeKind::NarrowCharacter;
1146 
1147   return TypeIndex(STK);
1148 }
1149 
1150 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1151   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1152 
1153   // Pointers to simple types can use SimpleTypeMode, rather than having a
1154   // dedicated pointer type record.
1155   if (PointeeTI.isSimple() &&
1156       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1157       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1158     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1159                               ? SimpleTypeMode::NearPointer64
1160                               : SimpleTypeMode::NearPointer32;
1161     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1162   }
1163 
1164   PointerKind PK =
1165       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1166   PointerMode PM = PointerMode::Pointer;
1167   switch (Ty->getTag()) {
1168   default: llvm_unreachable("not a pointer tag type");
1169   case dwarf::DW_TAG_pointer_type:
1170     PM = PointerMode::Pointer;
1171     break;
1172   case dwarf::DW_TAG_reference_type:
1173     PM = PointerMode::LValueReference;
1174     break;
1175   case dwarf::DW_TAG_rvalue_reference_type:
1176     PM = PointerMode::RValueReference;
1177     break;
1178   }
1179   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1180   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1181   // do.
1182   PointerOptions PO = PointerOptions::None;
1183   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1184   return TypeTable.writeKnownType(PR);
1185 }
1186 
1187 static PointerToMemberRepresentation
1188 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1189   // SizeInBytes being zero generally implies that the member pointer type was
1190   // incomplete, which can happen if it is part of a function prototype. In this
1191   // case, use the unknown model instead of the general model.
1192   if (IsPMF) {
1193     switch (Flags & DINode::FlagPtrToMemberRep) {
1194     case 0:
1195       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1196                               : PointerToMemberRepresentation::GeneralFunction;
1197     case DINode::FlagSingleInheritance:
1198       return PointerToMemberRepresentation::SingleInheritanceFunction;
1199     case DINode::FlagMultipleInheritance:
1200       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1201     case DINode::FlagVirtualInheritance:
1202       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1203     }
1204   } else {
1205     switch (Flags & DINode::FlagPtrToMemberRep) {
1206     case 0:
1207       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1208                               : PointerToMemberRepresentation::GeneralData;
1209     case DINode::FlagSingleInheritance:
1210       return PointerToMemberRepresentation::SingleInheritanceData;
1211     case DINode::FlagMultipleInheritance:
1212       return PointerToMemberRepresentation::MultipleInheritanceData;
1213     case DINode::FlagVirtualInheritance:
1214       return PointerToMemberRepresentation::VirtualInheritanceData;
1215     }
1216   }
1217   llvm_unreachable("invalid ptr to member representation");
1218 }
1219 
1220 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1221   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1222   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1223   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1224   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1225                                                    : PointerKind::Near32;
1226   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1227   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1228                          : PointerMode::PointerToDataMember;
1229   PointerOptions PO = PointerOptions::None; // FIXME
1230   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1231   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1232   MemberPointerInfo MPI(
1233       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1234   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1235   return TypeTable.writeKnownType(PR);
1236 }
1237 
1238 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1239 /// have a translation, use the NearC convention.
1240 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1241   switch (DwarfCC) {
1242   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1243   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1244   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1245   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1246   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1247   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1248   }
1249   return CallingConvention::NearC;
1250 }
1251 
1252 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1253   ModifierOptions Mods = ModifierOptions::None;
1254   bool IsModifier = true;
1255   const DIType *BaseTy = Ty;
1256   while (IsModifier && BaseTy) {
1257     // FIXME: Need to add DWARF tag for __unaligned.
1258     switch (BaseTy->getTag()) {
1259     case dwarf::DW_TAG_const_type:
1260       Mods |= ModifierOptions::Const;
1261       break;
1262     case dwarf::DW_TAG_volatile_type:
1263       Mods |= ModifierOptions::Volatile;
1264       break;
1265     default:
1266       IsModifier = false;
1267       break;
1268     }
1269     if (IsModifier)
1270       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1271   }
1272   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1273   return TypeTable.writeKnownType(ModifierRecord(ModifiedTI, Mods));
1274 }
1275 
1276 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1277   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1278   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1279     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1280 
1281   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1282   ArrayRef<TypeIndex> ArgTypeIndices = None;
1283   if (!ReturnAndArgTypeIndices.empty()) {
1284     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1285     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1286     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1287   }
1288 
1289   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1290   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1291 
1292   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1293 
1294   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1295                             ArgTypeIndices.size(), ArgListIndex);
1296   return TypeTable.writeKnownType(Procedure);
1297 }
1298 
1299 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1300                                                  const DIType *ClassTy,
1301                                                  int ThisAdjustment) {
1302   // Lower the containing class type.
1303   TypeIndex ClassType = getTypeIndex(ClassTy);
1304 
1305   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1306   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1307     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1308 
1309   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1310   ArrayRef<TypeIndex> ArgTypeIndices = None;
1311   if (!ReturnAndArgTypeIndices.empty()) {
1312     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1313     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1314     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1315   }
1316   TypeIndex ThisTypeIndex = TypeIndex::Void();
1317   if (!ArgTypeIndices.empty()) {
1318     ThisTypeIndex = ArgTypeIndices.front();
1319     ArgTypeIndices = ArgTypeIndices.drop_front();
1320   }
1321 
1322   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1323   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1324 
1325   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1326 
1327   // TODO: Need to use the correct values for:
1328   //       FunctionOptions
1329   //       ThisPointerAdjustment.
1330   TypeIndex TI = TypeTable.writeKnownType(MemberFunctionRecord(
1331       ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
1332       ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
1333 
1334   return TI;
1335 }
1336 
1337 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1338   unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize());
1339   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1340   return TypeTable.writeKnownType(VFTableShapeRecord(Slots));
1341 }
1342 
1343 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1344   switch (Flags & DINode::FlagAccessibility) {
1345   case DINode::FlagPrivate:   return MemberAccess::Private;
1346   case DINode::FlagPublic:    return MemberAccess::Public;
1347   case DINode::FlagProtected: return MemberAccess::Protected;
1348   case 0:
1349     // If there was no explicit access control, provide the default for the tag.
1350     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1351                                                  : MemberAccess::Public;
1352   }
1353   llvm_unreachable("access flags are exclusive");
1354 }
1355 
1356 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1357   if (SP->isArtificial())
1358     return MethodOptions::CompilerGenerated;
1359 
1360   // FIXME: Handle other MethodOptions.
1361 
1362   return MethodOptions::None;
1363 }
1364 
1365 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1366                                            bool Introduced) {
1367   switch (SP->getVirtuality()) {
1368   case dwarf::DW_VIRTUALITY_none:
1369     break;
1370   case dwarf::DW_VIRTUALITY_virtual:
1371     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1372   case dwarf::DW_VIRTUALITY_pure_virtual:
1373     return Introduced ? MethodKind::PureIntroducingVirtual
1374                       : MethodKind::PureVirtual;
1375   default:
1376     llvm_unreachable("unhandled virtuality case");
1377   }
1378 
1379   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1380 
1381   return MethodKind::Vanilla;
1382 }
1383 
1384 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1385   switch (Ty->getTag()) {
1386   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1387   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1388   }
1389   llvm_unreachable("unexpected tag");
1390 }
1391 
1392 /// Return ClassOptions that should be present on both the forward declaration
1393 /// and the defintion of a tag type.
1394 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1395   ClassOptions CO = ClassOptions::None;
1396 
1397   // MSVC always sets this flag, even for local types. Clang doesn't always
1398   // appear to give every type a linkage name, which may be problematic for us.
1399   // FIXME: Investigate the consequences of not following them here.
1400   if (!Ty->getIdentifier().empty())
1401     CO |= ClassOptions::HasUniqueName;
1402 
1403   // Put the Nested flag on a type if it appears immediately inside a tag type.
1404   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1405   // here. That flag is only set on definitions, and not forward declarations.
1406   const DIScope *ImmediateScope = Ty->getScope().resolve();
1407   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1408     CO |= ClassOptions::Nested;
1409 
1410   // Put the Scoped flag on function-local types.
1411   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1412        Scope = Scope->getScope().resolve()) {
1413     if (isa<DISubprogram>(Scope)) {
1414       CO |= ClassOptions::Scoped;
1415       break;
1416     }
1417   }
1418 
1419   return CO;
1420 }
1421 
1422 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1423   ClassOptions CO = getCommonClassOptions(Ty);
1424   TypeIndex FTI;
1425   unsigned EnumeratorCount = 0;
1426 
1427   if (Ty->isForwardDecl()) {
1428     CO |= ClassOptions::ForwardReference;
1429   } else {
1430     FieldListRecordBuilder Fields;
1431     for (const DINode *Element : Ty->getElements()) {
1432       // We assume that the frontend provides all members in source declaration
1433       // order, which is what MSVC does.
1434       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1435         Fields.writeMemberType(EnumeratorRecord(
1436             MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
1437             Enumerator->getName()));
1438         EnumeratorCount++;
1439       }
1440     }
1441     FTI = TypeTable.writeFieldList(Fields);
1442   }
1443 
1444   std::string FullName = getFullyQualifiedName(Ty);
1445 
1446   return TypeTable.writeKnownType(EnumRecord(EnumeratorCount, CO, FTI, FullName,
1447                                              Ty->getIdentifier(),
1448                                              getTypeIndex(Ty->getBaseType())));
1449 }
1450 
1451 //===----------------------------------------------------------------------===//
1452 // ClassInfo
1453 //===----------------------------------------------------------------------===//
1454 
1455 struct llvm::ClassInfo {
1456   struct MemberInfo {
1457     const DIDerivedType *MemberTypeNode;
1458     uint64_t BaseOffset;
1459   };
1460   // [MemberInfo]
1461   typedef std::vector<MemberInfo> MemberList;
1462 
1463   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1464   // MethodName -> MethodsList
1465   typedef MapVector<MDString *, MethodsList> MethodsMap;
1466 
1467   /// Base classes.
1468   std::vector<const DIDerivedType *> Inheritance;
1469 
1470   /// Direct members.
1471   MemberList Members;
1472   // Direct overloaded methods gathered by name.
1473   MethodsMap Methods;
1474 
1475   TypeIndex VShapeTI;
1476 
1477   std::vector<const DICompositeType *> NestedClasses;
1478 };
1479 
1480 void CodeViewDebug::clear() {
1481   assert(CurFn == nullptr);
1482   FileIdMap.clear();
1483   FnDebugInfo.clear();
1484   FileToFilepathMap.clear();
1485   LocalUDTs.clear();
1486   GlobalUDTs.clear();
1487   TypeIndices.clear();
1488   CompleteTypeIndices.clear();
1489 }
1490 
1491 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1492                                       const DIDerivedType *DDTy) {
1493   if (!DDTy->getName().empty()) {
1494     Info.Members.push_back({DDTy, 0});
1495     return;
1496   }
1497   // An unnamed member must represent a nested struct or union. Add all the
1498   // indirect fields to the current record.
1499   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1500   uint64_t Offset = DDTy->getOffsetInBits();
1501   const DIType *Ty = DDTy->getBaseType().resolve();
1502   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1503   ClassInfo NestedInfo = collectClassInfo(DCTy);
1504   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1505     Info.Members.push_back(
1506         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1507 }
1508 
1509 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1510   ClassInfo Info;
1511   // Add elements to structure type.
1512   DINodeArray Elements = Ty->getElements();
1513   for (auto *Element : Elements) {
1514     // We assume that the frontend provides all members in source declaration
1515     // order, which is what MSVC does.
1516     if (!Element)
1517       continue;
1518     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1519       Info.Methods[SP->getRawName()].push_back(SP);
1520     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1521       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1522         collectMemberInfo(Info, DDTy);
1523       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1524         Info.Inheritance.push_back(DDTy);
1525       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1526                  DDTy->getName() == "__vtbl_ptr_type") {
1527         Info.VShapeTI = getTypeIndex(DDTy);
1528       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1529         // Ignore friend members. It appears that MSVC emitted info about
1530         // friends in the past, but modern versions do not.
1531       }
1532     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1533       Info.NestedClasses.push_back(Composite);
1534     }
1535     // Skip other unrecognized kinds of elements.
1536   }
1537   return Info;
1538 }
1539 
1540 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1541   // First, construct the forward decl.  Don't look into Ty to compute the
1542   // forward decl options, since it might not be available in all TUs.
1543   TypeRecordKind Kind = getRecordKind(Ty);
1544   ClassOptions CO =
1545       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1546   std::string FullName = getFullyQualifiedName(Ty);
1547   TypeIndex FwdDeclTI = TypeTable.writeKnownType(ClassRecord(
1548       Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
1549       TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
1550   if (!Ty->isForwardDecl())
1551     DeferredCompleteTypes.push_back(Ty);
1552   return FwdDeclTI;
1553 }
1554 
1555 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1556   // Construct the field list and complete type record.
1557   TypeRecordKind Kind = getRecordKind(Ty);
1558   ClassOptions CO = getCommonClassOptions(Ty);
1559   TypeIndex FieldTI;
1560   TypeIndex VShapeTI;
1561   unsigned FieldCount;
1562   bool ContainsNestedClass;
1563   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1564       lowerRecordFieldList(Ty);
1565 
1566   if (ContainsNestedClass)
1567     CO |= ClassOptions::ContainsNestedClass;
1568 
1569   std::string FullName = getFullyQualifiedName(Ty);
1570 
1571   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1572 
1573   TypeIndex ClassTI = TypeTable.writeKnownType(ClassRecord(
1574       Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
1575       TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
1576 
1577   TypeTable.writeKnownType(UdtSourceLineRecord(
1578       ClassTI, TypeTable.writeKnownType(StringIdRecord(
1579                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1580       Ty->getLine()));
1581 
1582   addToUDTs(Ty, ClassTI);
1583 
1584   return ClassTI;
1585 }
1586 
1587 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1588   ClassOptions CO =
1589       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1590   std::string FullName = getFullyQualifiedName(Ty);
1591   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UnionRecord(
1592       0, CO, HfaKind::None, TypeIndex(), 0, FullName, Ty->getIdentifier()));
1593   if (!Ty->isForwardDecl())
1594     DeferredCompleteTypes.push_back(Ty);
1595   return FwdDeclTI;
1596 }
1597 
1598 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1599   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1600   TypeIndex FieldTI;
1601   unsigned FieldCount;
1602   bool ContainsNestedClass;
1603   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1604       lowerRecordFieldList(Ty);
1605 
1606   if (ContainsNestedClass)
1607     CO |= ClassOptions::ContainsNestedClass;
1608 
1609   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1610   std::string FullName = getFullyQualifiedName(Ty);
1611 
1612   TypeIndex UnionTI = TypeTable.writeKnownType(
1613       UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
1614                   Ty->getIdentifier()));
1615 
1616   TypeTable.writeKnownType(UdtSourceLineRecord(
1617       UnionTI, TypeTable.writeKnownType(StringIdRecord(
1618                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1619       Ty->getLine()));
1620 
1621   addToUDTs(Ty, UnionTI);
1622 
1623   return UnionTI;
1624 }
1625 
1626 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1627 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1628   // Manually count members. MSVC appears to count everything that generates a
1629   // field list record. Each individual overload in a method overload group
1630   // contributes to this count, even though the overload group is a single field
1631   // list record.
1632   unsigned MemberCount = 0;
1633   ClassInfo Info = collectClassInfo(Ty);
1634   FieldListRecordBuilder Fields;
1635 
1636   // Create base classes.
1637   for (const DIDerivedType *I : Info.Inheritance) {
1638     if (I->getFlags() & DINode::FlagVirtual) {
1639       // Virtual base.
1640       // FIXME: Emit VBPtrOffset when the frontend provides it.
1641       unsigned VBPtrOffset = 0;
1642       // FIXME: Despite the accessor name, the offset is really in bytes.
1643       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1644       Fields.writeMemberType(VirtualBaseClassRecord(
1645           translateAccessFlags(Ty->getTag(), I->getFlags()),
1646           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1647           VBTableIndex));
1648     } else {
1649       assert(I->getOffsetInBits() % 8 == 0 &&
1650              "bases must be on byte boundaries");
1651       Fields.writeMemberType(BaseClassRecord(
1652           translateAccessFlags(Ty->getTag(), I->getFlags()),
1653           getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
1654     }
1655   }
1656 
1657   // Create members.
1658   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1659     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1660     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1661     StringRef MemberName = Member->getName();
1662     MemberAccess Access =
1663         translateAccessFlags(Ty->getTag(), Member->getFlags());
1664 
1665     if (Member->isStaticMember()) {
1666       Fields.writeMemberType(
1667           StaticDataMemberRecord(Access, MemberBaseType, MemberName));
1668       MemberCount++;
1669       continue;
1670     }
1671 
1672     // Virtual function pointer member.
1673     if ((Member->getFlags() & DINode::FlagArtificial) &&
1674         Member->getName().startswith("_vptr$")) {
1675       Fields.writeMemberType(VFPtrRecord(getTypeIndex(Member->getBaseType())));
1676       MemberCount++;
1677       continue;
1678     }
1679 
1680     // Data member.
1681     uint64_t MemberOffsetInBits =
1682         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1683     if (Member->isBitField()) {
1684       uint64_t StartBitOffset = MemberOffsetInBits;
1685       if (const auto *CI =
1686               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1687         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1688       }
1689       StartBitOffset -= MemberOffsetInBits;
1690       MemberBaseType = TypeTable.writeKnownType(BitFieldRecord(
1691           MemberBaseType, Member->getSizeInBits(), StartBitOffset));
1692     }
1693     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1694     Fields.writeMemberType(DataMemberRecord(Access, MemberBaseType,
1695                                             MemberOffsetInBytes, MemberName));
1696     MemberCount++;
1697   }
1698 
1699   // Create methods
1700   for (auto &MethodItr : Info.Methods) {
1701     StringRef Name = MethodItr.first->getString();
1702 
1703     std::vector<OneMethodRecord> Methods;
1704     for (const DISubprogram *SP : MethodItr.second) {
1705       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1706       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1707 
1708       unsigned VFTableOffset = -1;
1709       if (Introduced)
1710         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1711 
1712       Methods.push_back(
1713           OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
1714                           translateMethodOptionFlags(SP),
1715                           translateAccessFlags(Ty->getTag(), SP->getFlags()),
1716                           VFTableOffset, Name));
1717       MemberCount++;
1718     }
1719     assert(Methods.size() > 0 && "Empty methods map entry");
1720     if (Methods.size() == 1)
1721       Fields.writeMemberType(Methods[0]);
1722     else {
1723       TypeIndex MethodList =
1724           TypeTable.writeKnownType(MethodOverloadListRecord(Methods));
1725       Fields.writeMemberType(
1726           OverloadedMethodRecord(Methods.size(), MethodList, Name));
1727     }
1728   }
1729 
1730   // Create nested classes.
1731   for (const DICompositeType *Nested : Info.NestedClasses) {
1732     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1733     Fields.writeMemberType(R);
1734     MemberCount++;
1735   }
1736 
1737   TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
1738   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1739                          !Info.NestedClasses.empty());
1740 }
1741 
1742 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1743   if (!VBPType.getIndex()) {
1744     // Make a 'const int *' type.
1745     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1746     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1747 
1748     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1749                                                   : PointerKind::Near32;
1750     PointerMode PM = PointerMode::Pointer;
1751     PointerOptions PO = PointerOptions::None;
1752     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1753 
1754     VBPType = TypeTable.writeKnownType(PR);
1755   }
1756 
1757   return VBPType;
1758 }
1759 
1760 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1761   const DIType *Ty = TypeRef.resolve();
1762   const DIType *ClassTy = ClassTyRef.resolve();
1763 
1764   // The null DIType is the void type. Don't try to hash it.
1765   if (!Ty)
1766     return TypeIndex::Void();
1767 
1768   // Check if we've already translated this type. Don't try to do a
1769   // get-or-create style insertion that caches the hash lookup across the
1770   // lowerType call. It will update the TypeIndices map.
1771   auto I = TypeIndices.find({Ty, ClassTy});
1772   if (I != TypeIndices.end())
1773     return I->second;
1774 
1775   TypeLoweringScope S(*this);
1776   TypeIndex TI = lowerType(Ty, ClassTy);
1777   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1778 }
1779 
1780 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1781   const DIType *Ty = TypeRef.resolve();
1782 
1783   // The null DIType is the void type. Don't try to hash it.
1784   if (!Ty)
1785     return TypeIndex::Void();
1786 
1787   // If this is a non-record type, the complete type index is the same as the
1788   // normal type index. Just call getTypeIndex.
1789   switch (Ty->getTag()) {
1790   case dwarf::DW_TAG_class_type:
1791   case dwarf::DW_TAG_structure_type:
1792   case dwarf::DW_TAG_union_type:
1793     break;
1794   default:
1795     return getTypeIndex(Ty);
1796   }
1797 
1798   // Check if we've already translated the complete record type.  Lowering a
1799   // complete type should never trigger lowering another complete type, so we
1800   // can reuse the hash table lookup result.
1801   const auto *CTy = cast<DICompositeType>(Ty);
1802   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1803   if (!InsertResult.second)
1804     return InsertResult.first->second;
1805 
1806   TypeLoweringScope S(*this);
1807 
1808   // Make sure the forward declaration is emitted first. It's unclear if this
1809   // is necessary, but MSVC does it, and we should follow suit until we can show
1810   // otherwise.
1811   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1812 
1813   // Just use the forward decl if we don't have complete type info. This might
1814   // happen if the frontend is using modules and expects the complete definition
1815   // to be emitted elsewhere.
1816   if (CTy->isForwardDecl())
1817     return FwdDeclTI;
1818 
1819   TypeIndex TI;
1820   switch (CTy->getTag()) {
1821   case dwarf::DW_TAG_class_type:
1822   case dwarf::DW_TAG_structure_type:
1823     TI = lowerCompleteTypeClass(CTy);
1824     break;
1825   case dwarf::DW_TAG_union_type:
1826     TI = lowerCompleteTypeUnion(CTy);
1827     break;
1828   default:
1829     llvm_unreachable("not a record");
1830   }
1831 
1832   InsertResult.first->second = TI;
1833   return TI;
1834 }
1835 
1836 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1837 /// and do this until fixpoint, as each complete record type typically
1838 /// references
1839 /// many other record types.
1840 void CodeViewDebug::emitDeferredCompleteTypes() {
1841   SmallVector<const DICompositeType *, 4> TypesToEmit;
1842   while (!DeferredCompleteTypes.empty()) {
1843     std::swap(DeferredCompleteTypes, TypesToEmit);
1844     for (const DICompositeType *RecordTy : TypesToEmit)
1845       getCompleteTypeIndex(RecordTy);
1846     TypesToEmit.clear();
1847   }
1848 }
1849 
1850 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1851   // Get the sorted list of parameters and emit them first.
1852   SmallVector<const LocalVariable *, 6> Params;
1853   for (const LocalVariable &L : Locals)
1854     if (L.DIVar->isParameter())
1855       Params.push_back(&L);
1856   std::sort(Params.begin(), Params.end(),
1857             [](const LocalVariable *L, const LocalVariable *R) {
1858               return L->DIVar->getArg() < R->DIVar->getArg();
1859             });
1860   for (const LocalVariable *L : Params)
1861     emitLocalVariable(*L);
1862 
1863   // Next emit all non-parameters in the order that we found them.
1864   for (const LocalVariable &L : Locals)
1865     if (!L.DIVar->isParameter())
1866       emitLocalVariable(L);
1867 }
1868 
1869 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
1870   // LocalSym record, see SymbolRecord.h for more info.
1871   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
1872            *LocalEnd = MMI->getContext().createTempSymbol();
1873   OS.AddComment("Record length");
1874   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
1875   OS.EmitLabel(LocalBegin);
1876 
1877   OS.AddComment("Record kind: S_LOCAL");
1878   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
1879 
1880   LocalSymFlags Flags = LocalSymFlags::None;
1881   if (Var.DIVar->isParameter())
1882     Flags |= LocalSymFlags::IsParameter;
1883   if (Var.DefRanges.empty())
1884     Flags |= LocalSymFlags::IsOptimizedOut;
1885 
1886   OS.AddComment("TypeIndex");
1887   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
1888   OS.EmitIntValue(TI.getIndex(), 4);
1889   OS.AddComment("Flags");
1890   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
1891   // Truncate the name so we won't overflow the record length field.
1892   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
1893   OS.EmitLabel(LocalEnd);
1894 
1895   // Calculate the on disk prefix of the appropriate def range record. The
1896   // records and on disk formats are described in SymbolRecords.h. BytePrefix
1897   // should be big enough to hold all forms without memory allocation.
1898   SmallString<20> BytePrefix;
1899   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
1900     BytePrefix.clear();
1901     // FIXME: Handle bitpieces.
1902     if (DefRange.StructOffset != 0)
1903       continue;
1904 
1905     if (DefRange.InMemory) {
1906       DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0,
1907                                  0, 0, ArrayRef<LocalVariableAddrGap>());
1908       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
1909       BytePrefix +=
1910           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1911       BytePrefix +=
1912           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1913                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1914     } else {
1915       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
1916       // Unclear what matters here.
1917       DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0,
1918                               ArrayRef<LocalVariableAddrGap>());
1919       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
1920       BytePrefix +=
1921           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1922       BytePrefix +=
1923           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1924                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1925     }
1926     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
1927   }
1928 }
1929 
1930 void CodeViewDebug::endFunction(const MachineFunction *MF) {
1931   if (!Asm || !CurFn)  // We haven't created any debug info for this function.
1932     return;
1933 
1934   const Function *GV = MF->getFunction();
1935   assert(FnDebugInfo.count(GV));
1936   assert(CurFn == &FnDebugInfo[GV]);
1937 
1938   collectVariableInfo(GV->getSubprogram());
1939 
1940   DebugHandlerBase::endFunction(MF);
1941 
1942   // Don't emit anything if we don't have any line tables.
1943   if (!CurFn->HaveLineInfo) {
1944     FnDebugInfo.erase(GV);
1945     CurFn = nullptr;
1946     return;
1947   }
1948 
1949   CurFn->End = Asm->getFunctionEnd();
1950 
1951   CurFn = nullptr;
1952 }
1953 
1954 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
1955   DebugHandlerBase::beginInstruction(MI);
1956 
1957   // Ignore DBG_VALUE locations and function prologue.
1958   if (!Asm || !CurFn || MI->isDebugValue() ||
1959       MI->getFlag(MachineInstr::FrameSetup))
1960     return;
1961   DebugLoc DL = MI->getDebugLoc();
1962   if (DL == PrevInstLoc || !DL)
1963     return;
1964   maybeRecordLocation(DL, Asm->MF);
1965 }
1966 
1967 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
1968   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
1969            *EndLabel = MMI->getContext().createTempSymbol();
1970   OS.EmitIntValue(unsigned(Kind), 4);
1971   OS.AddComment("Subsection size");
1972   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1973   OS.EmitLabel(BeginLabel);
1974   return EndLabel;
1975 }
1976 
1977 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
1978   OS.EmitLabel(EndLabel);
1979   // Every subsection must be aligned to a 4-byte boundary.
1980   OS.EmitValueToAlignment(4);
1981 }
1982 
1983 void CodeViewDebug::emitDebugInfoForUDTs(
1984     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
1985   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
1986     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
1987              *UDTRecordEnd = MMI->getContext().createTempSymbol();
1988     OS.AddComment("Record length");
1989     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
1990     OS.EmitLabel(UDTRecordBegin);
1991 
1992     OS.AddComment("Record kind: S_UDT");
1993     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
1994 
1995     OS.AddComment("Type");
1996     OS.EmitIntValue(UDT.second.getIndex(), 4);
1997 
1998     emitNullTerminatedSymbolName(OS, UDT.first);
1999     OS.EmitLabel(UDTRecordEnd);
2000   }
2001 }
2002 
2003 void CodeViewDebug::emitDebugInfoForGlobals() {
2004   DenseMap<const DIGlobalVariable *, const GlobalVariable *> GlobalMap;
2005   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2006     SmallVector<MDNode *, 1> MDs;
2007     GV.getMetadata(LLVMContext::MD_dbg, MDs);
2008     for (MDNode *MD : MDs)
2009       GlobalMap[cast<DIGlobalVariable>(MD)] = &GV;
2010   }
2011 
2012   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2013   for (const MDNode *Node : CUs->operands()) {
2014     const auto *CU = cast<DICompileUnit>(Node);
2015 
2016     // First, emit all globals that are not in a comdat in a single symbol
2017     // substream. MSVC doesn't like it if the substream is empty, so only open
2018     // it if we have at least one global to emit.
2019     switchToDebugSectionForSymbol(nullptr);
2020     MCSymbol *EndLabel = nullptr;
2021     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2022       if (const auto *GV = GlobalMap.lookup(G))
2023         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2024           if (!EndLabel) {
2025             OS.AddComment("Symbol subsection for globals");
2026             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2027           }
2028           emitDebugInfoForGlobal(G, GV, Asm->getSymbol(GV));
2029         }
2030     }
2031     if (EndLabel)
2032       endCVSubsection(EndLabel);
2033 
2034     // Second, emit each global that is in a comdat into its own .debug$S
2035     // section along with its own symbol substream.
2036     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2037       if (const auto *GV = GlobalMap.lookup(G)) {
2038         if (GV->hasComdat()) {
2039           MCSymbol *GVSym = Asm->getSymbol(GV);
2040           OS.AddComment("Symbol subsection for " +
2041                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
2042           switchToDebugSectionForSymbol(GVSym);
2043           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2044           emitDebugInfoForGlobal(G, GV, GVSym);
2045           endCVSubsection(EndLabel);
2046         }
2047       }
2048     }
2049   }
2050 }
2051 
2052 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2053   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2054   for (const MDNode *Node : CUs->operands()) {
2055     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2056       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2057         getTypeIndex(RT);
2058         // FIXME: Add to global/local DTU list.
2059       }
2060     }
2061   }
2062 }
2063 
2064 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2065                                            const GlobalVariable *GV,
2066                                            MCSymbol *GVSym) {
2067   // DataSym record, see SymbolRecord.h for more info.
2068   // FIXME: Thread local data, etc
2069   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2070            *DataEnd = MMI->getContext().createTempSymbol();
2071   OS.AddComment("Record length");
2072   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2073   OS.EmitLabel(DataBegin);
2074   if (DIGV->isLocalToUnit()) {
2075     if (GV->isThreadLocal()) {
2076       OS.AddComment("Record kind: S_LTHREAD32");
2077       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2078     } else {
2079       OS.AddComment("Record kind: S_LDATA32");
2080       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2081     }
2082   } else {
2083     if (GV->isThreadLocal()) {
2084       OS.AddComment("Record kind: S_GTHREAD32");
2085       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2086     } else {
2087       OS.AddComment("Record kind: S_GDATA32");
2088       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2089     }
2090   }
2091   OS.AddComment("Type");
2092   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2093   OS.AddComment("DataOffset");
2094   OS.EmitCOFFSecRel32(GVSym);
2095   OS.AddComment("Segment");
2096   OS.EmitCOFFSectionIndex(GVSym);
2097   OS.AddComment("Name");
2098   emitNullTerminatedSymbolName(OS, DIGV->getName());
2099   OS.EmitLabel(DataEnd);
2100 }
2101