1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/TinyPtrVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/BinaryFormat/COFF.h" 30 #include "llvm/BinaryFormat/Dwarf.h" 31 #include "llvm/CodeGen/AsmPrinter.h" 32 #include "llvm/CodeGen/LexicalScopes.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/Config/llvm-config.h" 38 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 39 #include "llvm/DebugInfo/CodeView/CodeView.h" 40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 41 #include "llvm/DebugInfo/CodeView/Line.h" 42 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 43 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 44 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 45 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/MC/MCAsmInfo.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSectionCOFF.h" 59 #include "llvm/MC/MCStreamer.h" 60 #include "llvm/MC/MCSymbol.h" 61 #include "llvm/Support/BinaryByteStream.h" 62 #include "llvm/Support/BinaryStreamReader.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ScopedPrinter.h" 69 #include "llvm/Support/SMLoc.h" 70 #include "llvm/Target/TargetFrameLowering.h" 71 #include "llvm/Target/TargetLoweringObjectFile.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include "llvm/Target/TargetRegisterInfo.h" 74 #include "llvm/Target/TargetSubtargetInfo.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <cstdint> 80 #include <iterator> 81 #include <limits> 82 #include <string> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 using namespace llvm::codeview; 88 89 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 90 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 91 // If module doesn't have named metadata anchors or COFF debug section 92 // is not available, skip any debug info related stuff. 93 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 94 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 95 Asm = nullptr; 96 return; 97 } 98 99 // Tell MMI that we have debug info. 100 MMI->setDebugInfoAvailability(true); 101 } 102 103 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 104 std::string &Filepath = FileToFilepathMap[File]; 105 if (!Filepath.empty()) 106 return Filepath; 107 108 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 109 110 // Clang emits directory and relative filename info into the IR, but CodeView 111 // operates on full paths. We could change Clang to emit full paths too, but 112 // that would increase the IR size and probably not needed for other users. 113 // For now, just concatenate and canonicalize the path here. 114 if (Filename.find(':') == 1) 115 Filepath = Filename; 116 else 117 Filepath = (Dir + "\\" + Filename).str(); 118 119 // Canonicalize the path. We have to do it textually because we may no longer 120 // have access the file in the filesystem. 121 // First, replace all slashes with backslashes. 122 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 123 124 // Remove all "\.\" with "\". 125 size_t Cursor = 0; 126 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 127 Filepath.erase(Cursor, 2); 128 129 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 130 // path should be well-formatted, e.g. start with a drive letter, etc. 131 Cursor = 0; 132 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 133 // Something's wrong if the path starts with "\..\", abort. 134 if (Cursor == 0) 135 break; 136 137 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 138 if (PrevSlash == std::string::npos) 139 // Something's wrong, abort. 140 break; 141 142 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 143 // The next ".." might be following the one we've just erased. 144 Cursor = PrevSlash; 145 } 146 147 // Remove all duplicate backslashes. 148 Cursor = 0; 149 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 150 Filepath.erase(Cursor, 1); 151 152 return Filepath; 153 } 154 155 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 156 unsigned NextId = FileIdMap.size() + 1; 157 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 158 if (Insertion.second) { 159 // We have to compute the full filepath and emit a .cv_file directive. 160 StringRef FullPath = getFullFilepath(F); 161 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 162 (void)Success; 163 assert(Success && ".cv_file directive failed"); 164 } 165 return Insertion.first->second; 166 } 167 168 CodeViewDebug::InlineSite & 169 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 170 const DISubprogram *Inlinee) { 171 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 172 InlineSite *Site = &SiteInsertion.first->second; 173 if (SiteInsertion.second) { 174 unsigned ParentFuncId = CurFn->FuncId; 175 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 176 ParentFuncId = 177 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 178 .SiteFuncId; 179 180 Site->SiteFuncId = NextFuncId++; 181 OS.EmitCVInlineSiteIdDirective( 182 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 183 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 184 Site->Inlinee = Inlinee; 185 InlinedSubprograms.insert(Inlinee); 186 getFuncIdForSubprogram(Inlinee); 187 } 188 return *Site; 189 } 190 191 static StringRef getPrettyScopeName(const DIScope *Scope) { 192 StringRef ScopeName = Scope->getName(); 193 if (!ScopeName.empty()) 194 return ScopeName; 195 196 switch (Scope->getTag()) { 197 case dwarf::DW_TAG_enumeration_type: 198 case dwarf::DW_TAG_class_type: 199 case dwarf::DW_TAG_structure_type: 200 case dwarf::DW_TAG_union_type: 201 return "<unnamed-tag>"; 202 case dwarf::DW_TAG_namespace: 203 return "`anonymous namespace'"; 204 } 205 206 return StringRef(); 207 } 208 209 static const DISubprogram *getQualifiedNameComponents( 210 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 211 const DISubprogram *ClosestSubprogram = nullptr; 212 while (Scope != nullptr) { 213 if (ClosestSubprogram == nullptr) 214 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 215 StringRef ScopeName = getPrettyScopeName(Scope); 216 if (!ScopeName.empty()) 217 QualifiedNameComponents.push_back(ScopeName); 218 Scope = Scope->getScope().resolve(); 219 } 220 return ClosestSubprogram; 221 } 222 223 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 224 StringRef TypeName) { 225 std::string FullyQualifiedName; 226 for (StringRef QualifiedNameComponent : 227 llvm::reverse(QualifiedNameComponents)) { 228 FullyQualifiedName.append(QualifiedNameComponent); 229 FullyQualifiedName.append("::"); 230 } 231 FullyQualifiedName.append(TypeName); 232 return FullyQualifiedName; 233 } 234 235 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 236 SmallVector<StringRef, 5> QualifiedNameComponents; 237 getQualifiedNameComponents(Scope, QualifiedNameComponents); 238 return getQualifiedName(QualifiedNameComponents, Name); 239 } 240 241 struct CodeViewDebug::TypeLoweringScope { 242 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 243 ~TypeLoweringScope() { 244 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 245 // inner TypeLoweringScopes don't attempt to emit deferred types. 246 if (CVD.TypeEmissionLevel == 1) 247 CVD.emitDeferredCompleteTypes(); 248 --CVD.TypeEmissionLevel; 249 } 250 CodeViewDebug &CVD; 251 }; 252 253 static std::string getFullyQualifiedName(const DIScope *Ty) { 254 const DIScope *Scope = Ty->getScope().resolve(); 255 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 256 } 257 258 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 259 // No scope means global scope and that uses the zero index. 260 if (!Scope || isa<DIFile>(Scope)) 261 return TypeIndex(); 262 263 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 264 265 // Check if we've already translated this scope. 266 auto I = TypeIndices.find({Scope, nullptr}); 267 if (I != TypeIndices.end()) 268 return I->second; 269 270 // Build the fully qualified name of the scope. 271 std::string ScopeName = getFullyQualifiedName(Scope); 272 StringIdRecord SID(TypeIndex(), ScopeName); 273 auto TI = TypeTable.writeKnownType(SID); 274 return recordTypeIndexForDINode(Scope, TI); 275 } 276 277 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 278 assert(SP); 279 280 // Check if we've already translated this subprogram. 281 auto I = TypeIndices.find({SP, nullptr}); 282 if (I != TypeIndices.end()) 283 return I->second; 284 285 // The display name includes function template arguments. Drop them to match 286 // MSVC. 287 StringRef DisplayName = SP->getName().split('<').first; 288 289 const DIScope *Scope = SP->getScope().resolve(); 290 TypeIndex TI; 291 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 292 // If the scope is a DICompositeType, then this must be a method. Member 293 // function types take some special handling, and require access to the 294 // subprogram. 295 TypeIndex ClassType = getTypeIndex(Class); 296 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 297 DisplayName); 298 TI = TypeTable.writeKnownType(MFuncId); 299 } else { 300 // Otherwise, this must be a free function. 301 TypeIndex ParentScope = getScopeIndex(Scope); 302 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 303 TI = TypeTable.writeKnownType(FuncId); 304 } 305 306 return recordTypeIndexForDINode(SP, TI); 307 } 308 309 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 310 const DICompositeType *Class) { 311 // Always use the method declaration as the key for the function type. The 312 // method declaration contains the this adjustment. 313 if (SP->getDeclaration()) 314 SP = SP->getDeclaration(); 315 assert(!SP->getDeclaration() && "should use declaration as key"); 316 317 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 318 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 319 auto I = TypeIndices.find({SP, Class}); 320 if (I != TypeIndices.end()) 321 return I->second; 322 323 // Make sure complete type info for the class is emitted *after* the member 324 // function type, as the complete class type is likely to reference this 325 // member function type. 326 TypeLoweringScope S(*this); 327 TypeIndex TI = 328 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 329 return recordTypeIndexForDINode(SP, TI, Class); 330 } 331 332 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 333 TypeIndex TI, 334 const DIType *ClassTy) { 335 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 336 (void)InsertResult; 337 assert(InsertResult.second && "DINode was already assigned a type index"); 338 return TI; 339 } 340 341 unsigned CodeViewDebug::getPointerSizeInBytes() { 342 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 343 } 344 345 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 346 const DILocation *InlinedAt) { 347 if (InlinedAt) { 348 // This variable was inlined. Associate it with the InlineSite. 349 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 350 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 351 Site.InlinedLocals.emplace_back(Var); 352 } else { 353 // This variable goes in the main ProcSym. 354 CurFn->Locals.emplace_back(Var); 355 } 356 } 357 358 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 359 const DILocation *Loc) { 360 auto B = Locs.begin(), E = Locs.end(); 361 if (std::find(B, E, Loc) == E) 362 Locs.push_back(Loc); 363 } 364 365 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 366 const MachineFunction *MF) { 367 // Skip this instruction if it has the same location as the previous one. 368 if (!DL || DL == PrevInstLoc) 369 return; 370 371 const DIScope *Scope = DL.get()->getScope(); 372 if (!Scope) 373 return; 374 375 // Skip this line if it is longer than the maximum we can record. 376 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 377 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 378 LI.isNeverStepInto()) 379 return; 380 381 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 382 if (CI.getStartColumn() != DL.getCol()) 383 return; 384 385 if (!CurFn->HaveLineInfo) 386 CurFn->HaveLineInfo = true; 387 unsigned FileId = 0; 388 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 389 FileId = CurFn->LastFileId; 390 else 391 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 392 PrevInstLoc = DL; 393 394 unsigned FuncId = CurFn->FuncId; 395 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 396 const DILocation *Loc = DL.get(); 397 398 // If this location was actually inlined from somewhere else, give it the ID 399 // of the inline call site. 400 FuncId = 401 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 402 403 // Ensure we have links in the tree of inline call sites. 404 bool FirstLoc = true; 405 while ((SiteLoc = Loc->getInlinedAt())) { 406 InlineSite &Site = 407 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 408 if (!FirstLoc) 409 addLocIfNotPresent(Site.ChildSites, Loc); 410 FirstLoc = false; 411 Loc = SiteLoc; 412 } 413 addLocIfNotPresent(CurFn->ChildSites, Loc); 414 } 415 416 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 417 /*PrologueEnd=*/false, /*IsStmt=*/false, 418 DL->getFilename(), SMLoc()); 419 } 420 421 void CodeViewDebug::emitCodeViewMagicVersion() { 422 OS.EmitValueToAlignment(4); 423 OS.AddComment("Debug section magic"); 424 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 425 } 426 427 void CodeViewDebug::endModule() { 428 if (!Asm || !MMI->hasDebugInfo()) 429 return; 430 431 assert(Asm != nullptr); 432 433 // The COFF .debug$S section consists of several subsections, each starting 434 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 435 // of the payload followed by the payload itself. The subsections are 4-byte 436 // aligned. 437 438 // Use the generic .debug$S section, and make a subsection for all the inlined 439 // subprograms. 440 switchToDebugSectionForSymbol(nullptr); 441 442 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 443 emitCompilerInformation(); 444 endCVSubsection(CompilerInfo); 445 446 emitInlineeLinesSubsection(); 447 448 // Emit per-function debug information. 449 for (auto &P : FnDebugInfo) 450 if (!P.first->isDeclarationForLinker()) 451 emitDebugInfoForFunction(P.first, P.second); 452 453 // Emit global variable debug information. 454 setCurrentSubprogram(nullptr); 455 emitDebugInfoForGlobals(); 456 457 // Emit retained types. 458 emitDebugInfoForRetainedTypes(); 459 460 // Switch back to the generic .debug$S section after potentially processing 461 // comdat symbol sections. 462 switchToDebugSectionForSymbol(nullptr); 463 464 // Emit UDT records for any types used by global variables. 465 if (!GlobalUDTs.empty()) { 466 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 467 emitDebugInfoForUDTs(GlobalUDTs); 468 endCVSubsection(SymbolsEnd); 469 } 470 471 // This subsection holds a file index to offset in string table table. 472 OS.AddComment("File index to string table offset subsection"); 473 OS.EmitCVFileChecksumsDirective(); 474 475 // This subsection holds the string table. 476 OS.AddComment("String table"); 477 OS.EmitCVStringTableDirective(); 478 479 // Emit type information last, so that any types we translate while emitting 480 // function info are included. 481 emitTypeInformation(); 482 483 clear(); 484 } 485 486 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 487 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 488 // after a fixed length portion of the record. The fixed length portion should 489 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 490 // overall record size is less than the maximum allowed. 491 unsigned MaxFixedRecordLength = 0xF00; 492 SmallString<32> NullTerminatedString( 493 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 494 NullTerminatedString.push_back('\0'); 495 OS.EmitBytes(NullTerminatedString); 496 } 497 498 void CodeViewDebug::emitTypeInformation() { 499 // Do nothing if we have no debug info or if no non-trivial types were emitted 500 // to TypeTable during codegen. 501 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 502 if (!CU_Nodes) 503 return; 504 if (TypeTable.empty()) 505 return; 506 507 // Start the .debug$T section with 0x4. 508 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 509 emitCodeViewMagicVersion(); 510 511 SmallString<8> CommentPrefix; 512 if (OS.isVerboseAsm()) { 513 CommentPrefix += '\t'; 514 CommentPrefix += Asm->MAI->getCommentString(); 515 CommentPrefix += ' '; 516 } 517 518 TypeTableCollection Table(TypeTable.records()); 519 Optional<TypeIndex> B = Table.getFirst(); 520 while (B) { 521 // This will fail if the record data is invalid. 522 CVType Record = Table.getType(*B); 523 524 if (OS.isVerboseAsm()) { 525 // Emit a block comment describing the type record for readability. 526 SmallString<512> CommentBlock; 527 raw_svector_ostream CommentOS(CommentBlock); 528 ScopedPrinter SP(CommentOS); 529 SP.setPrefix(CommentPrefix); 530 TypeDumpVisitor TDV(Table, &SP, false); 531 532 Error E = codeview::visitTypeRecord(Record, *B, TDV); 533 if (E) { 534 logAllUnhandledErrors(std::move(E), errs(), "error: "); 535 llvm_unreachable("produced malformed type record"); 536 } 537 // emitRawComment will insert its own tab and comment string before 538 // the first line, so strip off our first one. It also prints its own 539 // newline. 540 OS.emitRawComment( 541 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 542 } 543 OS.EmitBinaryData(Record.str_data()); 544 B = Table.getNext(*B); 545 } 546 } 547 548 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 549 switch (DWLang) { 550 case dwarf::DW_LANG_C: 551 case dwarf::DW_LANG_C89: 552 case dwarf::DW_LANG_C99: 553 case dwarf::DW_LANG_C11: 554 case dwarf::DW_LANG_ObjC: 555 return SourceLanguage::C; 556 case dwarf::DW_LANG_C_plus_plus: 557 case dwarf::DW_LANG_C_plus_plus_03: 558 case dwarf::DW_LANG_C_plus_plus_11: 559 case dwarf::DW_LANG_C_plus_plus_14: 560 return SourceLanguage::Cpp; 561 case dwarf::DW_LANG_Fortran77: 562 case dwarf::DW_LANG_Fortran90: 563 case dwarf::DW_LANG_Fortran03: 564 case dwarf::DW_LANG_Fortran08: 565 return SourceLanguage::Fortran; 566 case dwarf::DW_LANG_Pascal83: 567 return SourceLanguage::Pascal; 568 case dwarf::DW_LANG_Cobol74: 569 case dwarf::DW_LANG_Cobol85: 570 return SourceLanguage::Cobol; 571 case dwarf::DW_LANG_Java: 572 return SourceLanguage::Java; 573 case dwarf::DW_LANG_D: 574 return SourceLanguage::D; 575 default: 576 // There's no CodeView representation for this language, and CV doesn't 577 // have an "unknown" option for the language field, so we'll use MASM, 578 // as it's very low level. 579 return SourceLanguage::Masm; 580 } 581 } 582 583 namespace { 584 struct Version { 585 int Part[4]; 586 }; 587 } // end anonymous namespace 588 589 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 590 // the version number. 591 static Version parseVersion(StringRef Name) { 592 Version V = {{0}}; 593 int N = 0; 594 for (const char C : Name) { 595 if (isdigit(C)) { 596 V.Part[N] *= 10; 597 V.Part[N] += C - '0'; 598 } else if (C == '.') { 599 ++N; 600 if (N >= 4) 601 return V; 602 } else if (N > 0) 603 return V; 604 } 605 return V; 606 } 607 608 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 609 switch (Type) { 610 case Triple::ArchType::x86: 611 return CPUType::Pentium3; 612 case Triple::ArchType::x86_64: 613 return CPUType::X64; 614 case Triple::ArchType::thumb: 615 return CPUType::Thumb; 616 case Triple::ArchType::aarch64: 617 return CPUType::ARM64; 618 default: 619 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 620 } 621 } 622 623 void CodeViewDebug::emitCompilerInformation() { 624 MCContext &Context = MMI->getContext(); 625 MCSymbol *CompilerBegin = Context.createTempSymbol(), 626 *CompilerEnd = Context.createTempSymbol(); 627 OS.AddComment("Record length"); 628 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 629 OS.EmitLabel(CompilerBegin); 630 OS.AddComment("Record kind: S_COMPILE3"); 631 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 632 uint32_t Flags = 0; 633 634 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 635 const MDNode *Node = *CUs->operands().begin(); 636 const auto *CU = cast<DICompileUnit>(Node); 637 638 // The low byte of the flags indicates the source language. 639 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 640 // TODO: Figure out which other flags need to be set. 641 642 OS.AddComment("Flags and language"); 643 OS.EmitIntValue(Flags, 4); 644 645 OS.AddComment("CPUType"); 646 CPUType CPU = 647 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 648 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 649 650 StringRef CompilerVersion = CU->getProducer(); 651 Version FrontVer = parseVersion(CompilerVersion); 652 OS.AddComment("Frontend version"); 653 for (int N = 0; N < 4; ++N) 654 OS.EmitIntValue(FrontVer.Part[N], 2); 655 656 // Some Microsoft tools, like Binscope, expect a backend version number of at 657 // least 8.something, so we'll coerce the LLVM version into a form that 658 // guarantees it'll be big enough without really lying about the version. 659 int Major = 1000 * LLVM_VERSION_MAJOR + 660 10 * LLVM_VERSION_MINOR + 661 LLVM_VERSION_PATCH; 662 // Clamp it for builds that use unusually large version numbers. 663 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 664 Version BackVer = {{ Major, 0, 0, 0 }}; 665 OS.AddComment("Backend version"); 666 for (int N = 0; N < 4; ++N) 667 OS.EmitIntValue(BackVer.Part[N], 2); 668 669 OS.AddComment("Null-terminated compiler version string"); 670 emitNullTerminatedSymbolName(OS, CompilerVersion); 671 672 OS.EmitLabel(CompilerEnd); 673 } 674 675 void CodeViewDebug::emitInlineeLinesSubsection() { 676 if (InlinedSubprograms.empty()) 677 return; 678 679 OS.AddComment("Inlinee lines subsection"); 680 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 681 682 // We don't provide any extra file info. 683 // FIXME: Find out if debuggers use this info. 684 OS.AddComment("Inlinee lines signature"); 685 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 686 687 for (const DISubprogram *SP : InlinedSubprograms) { 688 assert(TypeIndices.count({SP, nullptr})); 689 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 690 691 OS.AddBlankLine(); 692 unsigned FileId = maybeRecordFile(SP->getFile()); 693 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 694 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 695 OS.AddBlankLine(); 696 // The filechecksum table uses 8 byte entries for now, and file ids start at 697 // 1. 698 unsigned FileOffset = (FileId - 1) * 8; 699 OS.AddComment("Type index of inlined function"); 700 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 701 OS.AddComment("Offset into filechecksum table"); 702 OS.EmitIntValue(FileOffset, 4); 703 OS.AddComment("Starting line number"); 704 OS.EmitIntValue(SP->getLine(), 4); 705 } 706 707 endCVSubsection(InlineEnd); 708 } 709 710 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 711 const DILocation *InlinedAt, 712 const InlineSite &Site) { 713 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 714 *InlineEnd = MMI->getContext().createTempSymbol(); 715 716 assert(TypeIndices.count({Site.Inlinee, nullptr})); 717 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 718 719 // SymbolRecord 720 OS.AddComment("Record length"); 721 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 722 OS.EmitLabel(InlineBegin); 723 OS.AddComment("Record kind: S_INLINESITE"); 724 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 725 726 OS.AddComment("PtrParent"); 727 OS.EmitIntValue(0, 4); 728 OS.AddComment("PtrEnd"); 729 OS.EmitIntValue(0, 4); 730 OS.AddComment("Inlinee type index"); 731 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 732 733 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 734 unsigned StartLineNum = Site.Inlinee->getLine(); 735 736 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 737 FI.Begin, FI.End); 738 739 OS.EmitLabel(InlineEnd); 740 741 emitLocalVariableList(Site.InlinedLocals); 742 743 // Recurse on child inlined call sites before closing the scope. 744 for (const DILocation *ChildSite : Site.ChildSites) { 745 auto I = FI.InlineSites.find(ChildSite); 746 assert(I != FI.InlineSites.end() && 747 "child site not in function inline site map"); 748 emitInlinedCallSite(FI, ChildSite, I->second); 749 } 750 751 // Close the scope. 752 OS.AddComment("Record length"); 753 OS.EmitIntValue(2, 2); // RecordLength 754 OS.AddComment("Record kind: S_INLINESITE_END"); 755 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 756 } 757 758 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 759 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 760 // comdat key. A section may be comdat because of -ffunction-sections or 761 // because it is comdat in the IR. 762 MCSectionCOFF *GVSec = 763 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 764 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 765 766 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 767 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 768 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 769 770 OS.SwitchSection(DebugSec); 771 772 // Emit the magic version number if this is the first time we've switched to 773 // this section. 774 if (ComdatDebugSections.insert(DebugSec).second) 775 emitCodeViewMagicVersion(); 776 } 777 778 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 779 FunctionInfo &FI) { 780 // For each function there is a separate subsection 781 // which holds the PC to file:line table. 782 const MCSymbol *Fn = Asm->getSymbol(GV); 783 assert(Fn); 784 785 // Switch to the to a comdat section, if appropriate. 786 switchToDebugSectionForSymbol(Fn); 787 788 std::string FuncName; 789 auto *SP = GV->getSubprogram(); 790 assert(SP); 791 setCurrentSubprogram(SP); 792 793 // If we have a display name, build the fully qualified name by walking the 794 // chain of scopes. 795 if (!SP->getName().empty()) 796 FuncName = 797 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 798 799 // If our DISubprogram name is empty, use the mangled name. 800 if (FuncName.empty()) 801 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 802 803 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 804 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 805 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 806 { 807 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 808 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 809 OS.AddComment("Record length"); 810 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 811 OS.EmitLabel(ProcRecordBegin); 812 813 if (GV->hasLocalLinkage()) { 814 OS.AddComment("Record kind: S_LPROC32_ID"); 815 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 816 } else { 817 OS.AddComment("Record kind: S_GPROC32_ID"); 818 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 819 } 820 821 // These fields are filled in by tools like CVPACK which run after the fact. 822 OS.AddComment("PtrParent"); 823 OS.EmitIntValue(0, 4); 824 OS.AddComment("PtrEnd"); 825 OS.EmitIntValue(0, 4); 826 OS.AddComment("PtrNext"); 827 OS.EmitIntValue(0, 4); 828 // This is the important bit that tells the debugger where the function 829 // code is located and what's its size: 830 OS.AddComment("Code size"); 831 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 832 OS.AddComment("Offset after prologue"); 833 OS.EmitIntValue(0, 4); 834 OS.AddComment("Offset before epilogue"); 835 OS.EmitIntValue(0, 4); 836 OS.AddComment("Function type index"); 837 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 838 OS.AddComment("Function section relative address"); 839 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 840 OS.AddComment("Function section index"); 841 OS.EmitCOFFSectionIndex(Fn); 842 OS.AddComment("Flags"); 843 OS.EmitIntValue(0, 1); 844 // Emit the function display name as a null-terminated string. 845 OS.AddComment("Function name"); 846 // Truncate the name so we won't overflow the record length field. 847 emitNullTerminatedSymbolName(OS, FuncName); 848 OS.EmitLabel(ProcRecordEnd); 849 850 emitLocalVariableList(FI.Locals); 851 852 // Emit inlined call site information. Only emit functions inlined directly 853 // into the parent function. We'll emit the other sites recursively as part 854 // of their parent inline site. 855 for (const DILocation *InlinedAt : FI.ChildSites) { 856 auto I = FI.InlineSites.find(InlinedAt); 857 assert(I != FI.InlineSites.end() && 858 "child site not in function inline site map"); 859 emitInlinedCallSite(FI, InlinedAt, I->second); 860 } 861 862 if (SP != nullptr) 863 emitDebugInfoForUDTs(LocalUDTs); 864 865 // We're done with this function. 866 OS.AddComment("Record length"); 867 OS.EmitIntValue(0x0002, 2); 868 OS.AddComment("Record kind: S_PROC_ID_END"); 869 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 870 } 871 endCVSubsection(SymbolsEnd); 872 873 // We have an assembler directive that takes care of the whole line table. 874 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 875 } 876 877 CodeViewDebug::LocalVarDefRange 878 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 879 LocalVarDefRange DR; 880 DR.InMemory = -1; 881 DR.DataOffset = Offset; 882 assert(DR.DataOffset == Offset && "truncation"); 883 DR.IsSubfield = 0; 884 DR.StructOffset = 0; 885 DR.CVRegister = CVRegister; 886 return DR; 887 } 888 889 CodeViewDebug::LocalVarDefRange 890 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 891 int Offset, bool IsSubfield, 892 uint16_t StructOffset) { 893 LocalVarDefRange DR; 894 DR.InMemory = InMemory; 895 DR.DataOffset = Offset; 896 DR.IsSubfield = IsSubfield; 897 DR.StructOffset = StructOffset; 898 DR.CVRegister = CVRegister; 899 return DR; 900 } 901 902 void CodeViewDebug::collectVariableInfoFromMFTable( 903 DenseSet<InlinedVariable> &Processed) { 904 const MachineFunction &MF = *Asm->MF; 905 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 906 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 907 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 908 909 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 910 if (!VI.Var) 911 continue; 912 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 913 "Expected inlined-at fields to agree"); 914 915 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 916 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 917 918 // If variable scope is not found then skip this variable. 919 if (!Scope) 920 continue; 921 922 // If the variable has an attached offset expression, extract it. 923 // FIXME: Try to handle DW_OP_deref as well. 924 int64_t ExprOffset = 0; 925 if (VI.Expr) 926 if (!VI.Expr->extractIfOffset(ExprOffset)) 927 continue; 928 929 // Get the frame register used and the offset. 930 unsigned FrameReg = 0; 931 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 932 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 933 934 // Calculate the label ranges. 935 LocalVarDefRange DefRange = 936 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 937 for (const InsnRange &Range : Scope->getRanges()) { 938 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 939 const MCSymbol *End = getLabelAfterInsn(Range.second); 940 End = End ? End : Asm->getFunctionEnd(); 941 DefRange.Ranges.emplace_back(Begin, End); 942 } 943 944 LocalVariable Var; 945 Var.DIVar = VI.Var; 946 Var.DefRanges.emplace_back(std::move(DefRange)); 947 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 948 } 949 } 950 951 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 952 DenseSet<InlinedVariable> Processed; 953 // Grab the variable info that was squirreled away in the MMI side-table. 954 collectVariableInfoFromMFTable(Processed); 955 956 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 957 958 for (const auto &I : DbgValues) { 959 InlinedVariable IV = I.first; 960 if (Processed.count(IV)) 961 continue; 962 const DILocalVariable *DIVar = IV.first; 963 const DILocation *InlinedAt = IV.second; 964 965 // Instruction ranges, specifying where IV is accessible. 966 const auto &Ranges = I.second; 967 968 LexicalScope *Scope = nullptr; 969 if (InlinedAt) 970 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 971 else 972 Scope = LScopes.findLexicalScope(DIVar->getScope()); 973 // If variable scope is not found then skip this variable. 974 if (!Scope) 975 continue; 976 977 LocalVariable Var; 978 Var.DIVar = DIVar; 979 980 // Calculate the definition ranges. 981 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 982 const InsnRange &Range = *I; 983 const MachineInstr *DVInst = Range.first; 984 assert(DVInst->isDebugValue() && "Invalid History entry"); 985 const DIExpression *DIExpr = DVInst->getDebugExpression(); 986 bool IsSubfield = false; 987 unsigned StructOffset = 0; 988 989 // Handle fragments. 990 auto Fragment = DIExpr->getFragmentInfo(); 991 if (Fragment) { 992 IsSubfield = true; 993 StructOffset = Fragment->OffsetInBits / 8; 994 } else if (DIExpr->getNumElements() > 0) { 995 continue; // Ignore unrecognized exprs. 996 } 997 998 // Bail if operand 0 is not a valid register. This means the variable is a 999 // simple constant, or is described by a complex expression. 1000 // FIXME: Find a way to represent constant variables, since they are 1001 // relatively common. 1002 unsigned Reg = 1003 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 1004 if (Reg == 0) 1005 continue; 1006 1007 // Handle the two cases we can handle: indirect in memory and in register. 1008 unsigned CVReg = TRI->getCodeViewRegNum(Reg); 1009 bool InMemory = DVInst->getOperand(1).isImm(); 1010 int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0; 1011 { 1012 LocalVarDefRange DR; 1013 DR.CVRegister = CVReg; 1014 DR.InMemory = InMemory; 1015 DR.DataOffset = Offset; 1016 DR.IsSubfield = IsSubfield; 1017 DR.StructOffset = StructOffset; 1018 1019 if (Var.DefRanges.empty() || 1020 Var.DefRanges.back().isDifferentLocation(DR)) { 1021 Var.DefRanges.emplace_back(std::move(DR)); 1022 } 1023 } 1024 1025 // Compute the label range. 1026 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1027 const MCSymbol *End = getLabelAfterInsn(Range.second); 1028 if (!End) { 1029 // This range is valid until the next overlapping bitpiece. In the 1030 // common case, ranges will not be bitpieces, so they will overlap. 1031 auto J = std::next(I); 1032 while (J != E && 1033 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1034 ++J; 1035 if (J != E) 1036 End = getLabelBeforeInsn(J->first); 1037 else 1038 End = Asm->getFunctionEnd(); 1039 } 1040 1041 // If the last range end is our begin, just extend the last range. 1042 // Otherwise make a new range. 1043 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 1044 Var.DefRanges.back().Ranges; 1045 if (!Ranges.empty() && Ranges.back().second == Begin) 1046 Ranges.back().second = End; 1047 else 1048 Ranges.emplace_back(Begin, End); 1049 1050 // FIXME: Do more range combining. 1051 } 1052 1053 recordLocalVariable(std::move(Var), InlinedAt); 1054 } 1055 } 1056 1057 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1058 const Function *GV = MF->getFunction(); 1059 assert(FnDebugInfo.count(GV) == false); 1060 CurFn = &FnDebugInfo[GV]; 1061 CurFn->FuncId = NextFuncId++; 1062 CurFn->Begin = Asm->getFunctionBegin(); 1063 1064 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1065 1066 // Find the end of the function prolog. First known non-DBG_VALUE and 1067 // non-frame setup location marks the beginning of the function body. 1068 // FIXME: is there a simpler a way to do this? Can we just search 1069 // for the first instruction of the function, not the last of the prolog? 1070 DebugLoc PrologEndLoc; 1071 bool EmptyPrologue = true; 1072 for (const auto &MBB : *MF) { 1073 for (const auto &MI : MBB) { 1074 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1075 MI.getDebugLoc()) { 1076 PrologEndLoc = MI.getDebugLoc(); 1077 break; 1078 } else if (!MI.isMetaInstruction()) { 1079 EmptyPrologue = false; 1080 } 1081 } 1082 } 1083 1084 // Record beginning of function if we have a non-empty prologue. 1085 if (PrologEndLoc && !EmptyPrologue) { 1086 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1087 maybeRecordLocation(FnStartDL, MF); 1088 } 1089 } 1090 1091 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 1092 // Don't record empty UDTs. 1093 if (Ty->getName().empty()) 1094 return; 1095 1096 SmallVector<StringRef, 5> QualifiedNameComponents; 1097 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1098 Ty->getScope().resolve(), QualifiedNameComponents); 1099 1100 std::string FullyQualifiedName = 1101 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1102 1103 if (ClosestSubprogram == nullptr) 1104 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1105 else if (ClosestSubprogram == CurrentSubprogram) 1106 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1107 1108 // TODO: What if the ClosestSubprogram is neither null or the current 1109 // subprogram? Currently, the UDT just gets dropped on the floor. 1110 // 1111 // The current behavior is not desirable. To get maximal fidelity, we would 1112 // need to perform all type translation before beginning emission of .debug$S 1113 // and then make LocalUDTs a member of FunctionInfo 1114 } 1115 1116 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1117 // Generic dispatch for lowering an unknown type. 1118 switch (Ty->getTag()) { 1119 case dwarf::DW_TAG_array_type: 1120 return lowerTypeArray(cast<DICompositeType>(Ty)); 1121 case dwarf::DW_TAG_typedef: 1122 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1123 case dwarf::DW_TAG_base_type: 1124 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1125 case dwarf::DW_TAG_pointer_type: 1126 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1127 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1128 LLVM_FALLTHROUGH; 1129 case dwarf::DW_TAG_reference_type: 1130 case dwarf::DW_TAG_rvalue_reference_type: 1131 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1132 case dwarf::DW_TAG_ptr_to_member_type: 1133 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1134 case dwarf::DW_TAG_const_type: 1135 case dwarf::DW_TAG_volatile_type: 1136 // TODO: add support for DW_TAG_atomic_type here 1137 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1138 case dwarf::DW_TAG_subroutine_type: 1139 if (ClassTy) { 1140 // The member function type of a member function pointer has no 1141 // ThisAdjustment. 1142 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1143 /*ThisAdjustment=*/0); 1144 } 1145 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1146 case dwarf::DW_TAG_enumeration_type: 1147 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1148 case dwarf::DW_TAG_class_type: 1149 case dwarf::DW_TAG_structure_type: 1150 return lowerTypeClass(cast<DICompositeType>(Ty)); 1151 case dwarf::DW_TAG_union_type: 1152 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1153 default: 1154 // Use the null type index. 1155 return TypeIndex(); 1156 } 1157 } 1158 1159 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1160 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1161 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1162 StringRef TypeName = Ty->getName(); 1163 1164 addToUDTs(Ty, UnderlyingTypeIndex); 1165 1166 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1167 TypeName == "HRESULT") 1168 return TypeIndex(SimpleTypeKind::HResult); 1169 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1170 TypeName == "wchar_t") 1171 return TypeIndex(SimpleTypeKind::WideCharacter); 1172 1173 return UnderlyingTypeIndex; 1174 } 1175 1176 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1177 DITypeRef ElementTypeRef = Ty->getBaseType(); 1178 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1179 // IndexType is size_t, which depends on the bitness of the target. 1180 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1181 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1182 : TypeIndex(SimpleTypeKind::UInt32Long); 1183 1184 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1185 1186 // Add subranges to array type. 1187 DINodeArray Elements = Ty->getElements(); 1188 for (int i = Elements.size() - 1; i >= 0; --i) { 1189 const DINode *Element = Elements[i]; 1190 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1191 1192 const DISubrange *Subrange = cast<DISubrange>(Element); 1193 assert(Subrange->getLowerBound() == 0 && 1194 "codeview doesn't support subranges with lower bounds"); 1195 int64_t Count = Subrange->getCount(); 1196 1197 // Variable Length Array (VLA) has Count equal to '-1'. 1198 // Replace with Count '1', assume it is the minimum VLA length. 1199 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1200 if (Count == -1) 1201 Count = 1; 1202 1203 // Update the element size and element type index for subsequent subranges. 1204 ElementSize *= Count; 1205 1206 // If this is the outermost array, use the size from the array. It will be 1207 // more accurate if we had a VLA or an incomplete element type size. 1208 uint64_t ArraySize = 1209 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1210 1211 StringRef Name = (i == 0) ? Ty->getName() : ""; 1212 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1213 ElementTypeIndex = TypeTable.writeKnownType(AR); 1214 } 1215 1216 return ElementTypeIndex; 1217 } 1218 1219 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1220 TypeIndex Index; 1221 dwarf::TypeKind Kind; 1222 uint32_t ByteSize; 1223 1224 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1225 ByteSize = Ty->getSizeInBits() / 8; 1226 1227 SimpleTypeKind STK = SimpleTypeKind::None; 1228 switch (Kind) { 1229 case dwarf::DW_ATE_address: 1230 // FIXME: Translate 1231 break; 1232 case dwarf::DW_ATE_boolean: 1233 switch (ByteSize) { 1234 case 1: STK = SimpleTypeKind::Boolean8; break; 1235 case 2: STK = SimpleTypeKind::Boolean16; break; 1236 case 4: STK = SimpleTypeKind::Boolean32; break; 1237 case 8: STK = SimpleTypeKind::Boolean64; break; 1238 case 16: STK = SimpleTypeKind::Boolean128; break; 1239 } 1240 break; 1241 case dwarf::DW_ATE_complex_float: 1242 switch (ByteSize) { 1243 case 2: STK = SimpleTypeKind::Complex16; break; 1244 case 4: STK = SimpleTypeKind::Complex32; break; 1245 case 8: STK = SimpleTypeKind::Complex64; break; 1246 case 10: STK = SimpleTypeKind::Complex80; break; 1247 case 16: STK = SimpleTypeKind::Complex128; break; 1248 } 1249 break; 1250 case dwarf::DW_ATE_float: 1251 switch (ByteSize) { 1252 case 2: STK = SimpleTypeKind::Float16; break; 1253 case 4: STK = SimpleTypeKind::Float32; break; 1254 case 6: STK = SimpleTypeKind::Float48; break; 1255 case 8: STK = SimpleTypeKind::Float64; break; 1256 case 10: STK = SimpleTypeKind::Float80; break; 1257 case 16: STK = SimpleTypeKind::Float128; break; 1258 } 1259 break; 1260 case dwarf::DW_ATE_signed: 1261 switch (ByteSize) { 1262 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1263 case 2: STK = SimpleTypeKind::Int16Short; break; 1264 case 4: STK = SimpleTypeKind::Int32; break; 1265 case 8: STK = SimpleTypeKind::Int64Quad; break; 1266 case 16: STK = SimpleTypeKind::Int128Oct; break; 1267 } 1268 break; 1269 case dwarf::DW_ATE_unsigned: 1270 switch (ByteSize) { 1271 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1272 case 2: STK = SimpleTypeKind::UInt16Short; break; 1273 case 4: STK = SimpleTypeKind::UInt32; break; 1274 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1275 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1276 } 1277 break; 1278 case dwarf::DW_ATE_UTF: 1279 switch (ByteSize) { 1280 case 2: STK = SimpleTypeKind::Character16; break; 1281 case 4: STK = SimpleTypeKind::Character32; break; 1282 } 1283 break; 1284 case dwarf::DW_ATE_signed_char: 1285 if (ByteSize == 1) 1286 STK = SimpleTypeKind::SignedCharacter; 1287 break; 1288 case dwarf::DW_ATE_unsigned_char: 1289 if (ByteSize == 1) 1290 STK = SimpleTypeKind::UnsignedCharacter; 1291 break; 1292 default: 1293 break; 1294 } 1295 1296 // Apply some fixups based on the source-level type name. 1297 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1298 STK = SimpleTypeKind::Int32Long; 1299 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1300 STK = SimpleTypeKind::UInt32Long; 1301 if (STK == SimpleTypeKind::UInt16Short && 1302 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1303 STK = SimpleTypeKind::WideCharacter; 1304 if ((STK == SimpleTypeKind::SignedCharacter || 1305 STK == SimpleTypeKind::UnsignedCharacter) && 1306 Ty->getName() == "char") 1307 STK = SimpleTypeKind::NarrowCharacter; 1308 1309 return TypeIndex(STK); 1310 } 1311 1312 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1313 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1314 1315 // Pointers to simple types can use SimpleTypeMode, rather than having a 1316 // dedicated pointer type record. 1317 if (PointeeTI.isSimple() && 1318 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1319 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1320 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1321 ? SimpleTypeMode::NearPointer64 1322 : SimpleTypeMode::NearPointer32; 1323 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1324 } 1325 1326 PointerKind PK = 1327 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1328 PointerMode PM = PointerMode::Pointer; 1329 switch (Ty->getTag()) { 1330 default: llvm_unreachable("not a pointer tag type"); 1331 case dwarf::DW_TAG_pointer_type: 1332 PM = PointerMode::Pointer; 1333 break; 1334 case dwarf::DW_TAG_reference_type: 1335 PM = PointerMode::LValueReference; 1336 break; 1337 case dwarf::DW_TAG_rvalue_reference_type: 1338 PM = PointerMode::RValueReference; 1339 break; 1340 } 1341 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1342 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1343 // do. 1344 PointerOptions PO = PointerOptions::None; 1345 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1346 return TypeTable.writeKnownType(PR); 1347 } 1348 1349 static PointerToMemberRepresentation 1350 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1351 // SizeInBytes being zero generally implies that the member pointer type was 1352 // incomplete, which can happen if it is part of a function prototype. In this 1353 // case, use the unknown model instead of the general model. 1354 if (IsPMF) { 1355 switch (Flags & DINode::FlagPtrToMemberRep) { 1356 case 0: 1357 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1358 : PointerToMemberRepresentation::GeneralFunction; 1359 case DINode::FlagSingleInheritance: 1360 return PointerToMemberRepresentation::SingleInheritanceFunction; 1361 case DINode::FlagMultipleInheritance: 1362 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1363 case DINode::FlagVirtualInheritance: 1364 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1365 } 1366 } else { 1367 switch (Flags & DINode::FlagPtrToMemberRep) { 1368 case 0: 1369 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1370 : PointerToMemberRepresentation::GeneralData; 1371 case DINode::FlagSingleInheritance: 1372 return PointerToMemberRepresentation::SingleInheritanceData; 1373 case DINode::FlagMultipleInheritance: 1374 return PointerToMemberRepresentation::MultipleInheritanceData; 1375 case DINode::FlagVirtualInheritance: 1376 return PointerToMemberRepresentation::VirtualInheritanceData; 1377 } 1378 } 1379 llvm_unreachable("invalid ptr to member representation"); 1380 } 1381 1382 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1383 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1384 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1385 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1386 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1387 : PointerKind::Near32; 1388 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1389 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1390 : PointerMode::PointerToDataMember; 1391 PointerOptions PO = PointerOptions::None; // FIXME 1392 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1393 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1394 MemberPointerInfo MPI( 1395 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1396 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1397 return TypeTable.writeKnownType(PR); 1398 } 1399 1400 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1401 /// have a translation, use the NearC convention. 1402 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1403 switch (DwarfCC) { 1404 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1405 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1406 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1407 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1408 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1409 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1410 } 1411 return CallingConvention::NearC; 1412 } 1413 1414 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1415 ModifierOptions Mods = ModifierOptions::None; 1416 bool IsModifier = true; 1417 const DIType *BaseTy = Ty; 1418 while (IsModifier && BaseTy) { 1419 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1420 switch (BaseTy->getTag()) { 1421 case dwarf::DW_TAG_const_type: 1422 Mods |= ModifierOptions::Const; 1423 break; 1424 case dwarf::DW_TAG_volatile_type: 1425 Mods |= ModifierOptions::Volatile; 1426 break; 1427 default: 1428 IsModifier = false; 1429 break; 1430 } 1431 if (IsModifier) 1432 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1433 } 1434 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1435 ModifierRecord MR(ModifiedTI, Mods); 1436 return TypeTable.writeKnownType(MR); 1437 } 1438 1439 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1440 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1441 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1442 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1443 1444 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1445 ArrayRef<TypeIndex> ArgTypeIndices = None; 1446 if (!ReturnAndArgTypeIndices.empty()) { 1447 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1448 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1449 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1450 } 1451 1452 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1453 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1454 1455 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1456 1457 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1458 ArgTypeIndices.size(), ArgListIndex); 1459 return TypeTable.writeKnownType(Procedure); 1460 } 1461 1462 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1463 const DIType *ClassTy, 1464 int ThisAdjustment) { 1465 // Lower the containing class type. 1466 TypeIndex ClassType = getTypeIndex(ClassTy); 1467 1468 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1469 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1470 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1471 1472 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1473 ArrayRef<TypeIndex> ArgTypeIndices = None; 1474 if (!ReturnAndArgTypeIndices.empty()) { 1475 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1476 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1477 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1478 } 1479 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1480 if (!ArgTypeIndices.empty()) { 1481 ThisTypeIndex = ArgTypeIndices.front(); 1482 ArgTypeIndices = ArgTypeIndices.drop_front(); 1483 } 1484 1485 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1486 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1487 1488 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1489 1490 // TODO: Need to use the correct values for: 1491 // FunctionOptions 1492 // ThisPointerAdjustment. 1493 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1494 FunctionOptions::None, ArgTypeIndices.size(), 1495 ArgListIndex, ThisAdjustment); 1496 TypeIndex TI = TypeTable.writeKnownType(MFR); 1497 1498 return TI; 1499 } 1500 1501 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1502 unsigned VSlotCount = 1503 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1504 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1505 1506 VFTableShapeRecord VFTSR(Slots); 1507 return TypeTable.writeKnownType(VFTSR); 1508 } 1509 1510 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1511 switch (Flags & DINode::FlagAccessibility) { 1512 case DINode::FlagPrivate: return MemberAccess::Private; 1513 case DINode::FlagPublic: return MemberAccess::Public; 1514 case DINode::FlagProtected: return MemberAccess::Protected; 1515 case 0: 1516 // If there was no explicit access control, provide the default for the tag. 1517 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1518 : MemberAccess::Public; 1519 } 1520 llvm_unreachable("access flags are exclusive"); 1521 } 1522 1523 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1524 if (SP->isArtificial()) 1525 return MethodOptions::CompilerGenerated; 1526 1527 // FIXME: Handle other MethodOptions. 1528 1529 return MethodOptions::None; 1530 } 1531 1532 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1533 bool Introduced) { 1534 switch (SP->getVirtuality()) { 1535 case dwarf::DW_VIRTUALITY_none: 1536 break; 1537 case dwarf::DW_VIRTUALITY_virtual: 1538 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1539 case dwarf::DW_VIRTUALITY_pure_virtual: 1540 return Introduced ? MethodKind::PureIntroducingVirtual 1541 : MethodKind::PureVirtual; 1542 default: 1543 llvm_unreachable("unhandled virtuality case"); 1544 } 1545 1546 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1547 1548 return MethodKind::Vanilla; 1549 } 1550 1551 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1552 switch (Ty->getTag()) { 1553 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1554 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1555 } 1556 llvm_unreachable("unexpected tag"); 1557 } 1558 1559 /// Return ClassOptions that should be present on both the forward declaration 1560 /// and the defintion of a tag type. 1561 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1562 ClassOptions CO = ClassOptions::None; 1563 1564 // MSVC always sets this flag, even for local types. Clang doesn't always 1565 // appear to give every type a linkage name, which may be problematic for us. 1566 // FIXME: Investigate the consequences of not following them here. 1567 if (!Ty->getIdentifier().empty()) 1568 CO |= ClassOptions::HasUniqueName; 1569 1570 // Put the Nested flag on a type if it appears immediately inside a tag type. 1571 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1572 // here. That flag is only set on definitions, and not forward declarations. 1573 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1574 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1575 CO |= ClassOptions::Nested; 1576 1577 // Put the Scoped flag on function-local types. 1578 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1579 Scope = Scope->getScope().resolve()) { 1580 if (isa<DISubprogram>(Scope)) { 1581 CO |= ClassOptions::Scoped; 1582 break; 1583 } 1584 } 1585 1586 return CO; 1587 } 1588 1589 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1590 ClassOptions CO = getCommonClassOptions(Ty); 1591 TypeIndex FTI; 1592 unsigned EnumeratorCount = 0; 1593 1594 if (Ty->isForwardDecl()) { 1595 CO |= ClassOptions::ForwardReference; 1596 } else { 1597 FieldListRecordBuilder FLRB(TypeTable); 1598 1599 FLRB.begin(); 1600 for (const DINode *Element : Ty->getElements()) { 1601 // We assume that the frontend provides all members in source declaration 1602 // order, which is what MSVC does. 1603 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1604 EnumeratorRecord ER(MemberAccess::Public, 1605 APSInt::getUnsigned(Enumerator->getValue()), 1606 Enumerator->getName()); 1607 FLRB.writeMemberType(ER); 1608 EnumeratorCount++; 1609 } 1610 } 1611 FTI = FLRB.end(true); 1612 } 1613 1614 std::string FullName = getFullyQualifiedName(Ty); 1615 1616 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1617 getTypeIndex(Ty->getBaseType())); 1618 return TypeTable.writeKnownType(ER); 1619 } 1620 1621 //===----------------------------------------------------------------------===// 1622 // ClassInfo 1623 //===----------------------------------------------------------------------===// 1624 1625 struct llvm::ClassInfo { 1626 struct MemberInfo { 1627 const DIDerivedType *MemberTypeNode; 1628 uint64_t BaseOffset; 1629 }; 1630 // [MemberInfo] 1631 using MemberList = std::vector<MemberInfo>; 1632 1633 using MethodsList = TinyPtrVector<const DISubprogram *>; 1634 // MethodName -> MethodsList 1635 using MethodsMap = MapVector<MDString *, MethodsList>; 1636 1637 /// Base classes. 1638 std::vector<const DIDerivedType *> Inheritance; 1639 1640 /// Direct members. 1641 MemberList Members; 1642 // Direct overloaded methods gathered by name. 1643 MethodsMap Methods; 1644 1645 TypeIndex VShapeTI; 1646 1647 std::vector<const DICompositeType *> NestedClasses; 1648 }; 1649 1650 void CodeViewDebug::clear() { 1651 assert(CurFn == nullptr); 1652 FileIdMap.clear(); 1653 FnDebugInfo.clear(); 1654 FileToFilepathMap.clear(); 1655 LocalUDTs.clear(); 1656 GlobalUDTs.clear(); 1657 TypeIndices.clear(); 1658 CompleteTypeIndices.clear(); 1659 } 1660 1661 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1662 const DIDerivedType *DDTy) { 1663 if (!DDTy->getName().empty()) { 1664 Info.Members.push_back({DDTy, 0}); 1665 return; 1666 } 1667 // An unnamed member must represent a nested struct or union. Add all the 1668 // indirect fields to the current record. 1669 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1670 uint64_t Offset = DDTy->getOffsetInBits(); 1671 const DIType *Ty = DDTy->getBaseType().resolve(); 1672 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1673 ClassInfo NestedInfo = collectClassInfo(DCTy); 1674 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1675 Info.Members.push_back( 1676 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1677 } 1678 1679 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1680 ClassInfo Info; 1681 // Add elements to structure type. 1682 DINodeArray Elements = Ty->getElements(); 1683 for (auto *Element : Elements) { 1684 // We assume that the frontend provides all members in source declaration 1685 // order, which is what MSVC does. 1686 if (!Element) 1687 continue; 1688 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1689 Info.Methods[SP->getRawName()].push_back(SP); 1690 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1691 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1692 collectMemberInfo(Info, DDTy); 1693 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1694 Info.Inheritance.push_back(DDTy); 1695 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1696 DDTy->getName() == "__vtbl_ptr_type") { 1697 Info.VShapeTI = getTypeIndex(DDTy); 1698 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1699 // Ignore friend members. It appears that MSVC emitted info about 1700 // friends in the past, but modern versions do not. 1701 } 1702 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1703 Info.NestedClasses.push_back(Composite); 1704 } 1705 // Skip other unrecognized kinds of elements. 1706 } 1707 return Info; 1708 } 1709 1710 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1711 // First, construct the forward decl. Don't look into Ty to compute the 1712 // forward decl options, since it might not be available in all TUs. 1713 TypeRecordKind Kind = getRecordKind(Ty); 1714 ClassOptions CO = 1715 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1716 std::string FullName = getFullyQualifiedName(Ty); 1717 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1718 FullName, Ty->getIdentifier()); 1719 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1720 if (!Ty->isForwardDecl()) 1721 DeferredCompleteTypes.push_back(Ty); 1722 return FwdDeclTI; 1723 } 1724 1725 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1726 // Construct the field list and complete type record. 1727 TypeRecordKind Kind = getRecordKind(Ty); 1728 ClassOptions CO = getCommonClassOptions(Ty); 1729 TypeIndex FieldTI; 1730 TypeIndex VShapeTI; 1731 unsigned FieldCount; 1732 bool ContainsNestedClass; 1733 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1734 lowerRecordFieldList(Ty); 1735 1736 if (ContainsNestedClass) 1737 CO |= ClassOptions::ContainsNestedClass; 1738 1739 std::string FullName = getFullyQualifiedName(Ty); 1740 1741 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1742 1743 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1744 SizeInBytes, FullName, Ty->getIdentifier()); 1745 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1746 1747 if (const auto *File = Ty->getFile()) { 1748 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1749 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1750 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1751 TypeTable.writeKnownType(USLR); 1752 } 1753 1754 addToUDTs(Ty, ClassTI); 1755 1756 return ClassTI; 1757 } 1758 1759 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1760 ClassOptions CO = 1761 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1762 std::string FullName = getFullyQualifiedName(Ty); 1763 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1764 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1765 if (!Ty->isForwardDecl()) 1766 DeferredCompleteTypes.push_back(Ty); 1767 return FwdDeclTI; 1768 } 1769 1770 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1771 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1772 TypeIndex FieldTI; 1773 unsigned FieldCount; 1774 bool ContainsNestedClass; 1775 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1776 lowerRecordFieldList(Ty); 1777 1778 if (ContainsNestedClass) 1779 CO |= ClassOptions::ContainsNestedClass; 1780 1781 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1782 std::string FullName = getFullyQualifiedName(Ty); 1783 1784 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1785 Ty->getIdentifier()); 1786 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1787 1788 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1789 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1790 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1791 TypeTable.writeKnownType(USLR); 1792 1793 addToUDTs(Ty, UnionTI); 1794 1795 return UnionTI; 1796 } 1797 1798 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1799 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1800 // Manually count members. MSVC appears to count everything that generates a 1801 // field list record. Each individual overload in a method overload group 1802 // contributes to this count, even though the overload group is a single field 1803 // list record. 1804 unsigned MemberCount = 0; 1805 ClassInfo Info = collectClassInfo(Ty); 1806 FieldListRecordBuilder FLBR(TypeTable); 1807 FLBR.begin(); 1808 1809 // Create base classes. 1810 for (const DIDerivedType *I : Info.Inheritance) { 1811 if (I->getFlags() & DINode::FlagVirtual) { 1812 // Virtual base. 1813 // FIXME: Emit VBPtrOffset when the frontend provides it. 1814 unsigned VBPtrOffset = 0; 1815 // FIXME: Despite the accessor name, the offset is really in bytes. 1816 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1817 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1818 ? TypeRecordKind::IndirectVirtualBaseClass 1819 : TypeRecordKind::VirtualBaseClass; 1820 VirtualBaseClassRecord VBCR( 1821 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1822 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1823 VBTableIndex); 1824 1825 FLBR.writeMemberType(VBCR); 1826 } else { 1827 assert(I->getOffsetInBits() % 8 == 0 && 1828 "bases must be on byte boundaries"); 1829 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1830 getTypeIndex(I->getBaseType()), 1831 I->getOffsetInBits() / 8); 1832 FLBR.writeMemberType(BCR); 1833 } 1834 } 1835 1836 // Create members. 1837 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1838 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1839 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1840 StringRef MemberName = Member->getName(); 1841 MemberAccess Access = 1842 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1843 1844 if (Member->isStaticMember()) { 1845 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1846 FLBR.writeMemberType(SDMR); 1847 MemberCount++; 1848 continue; 1849 } 1850 1851 // Virtual function pointer member. 1852 if ((Member->getFlags() & DINode::FlagArtificial) && 1853 Member->getName().startswith("_vptr$")) { 1854 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1855 FLBR.writeMemberType(VFPR); 1856 MemberCount++; 1857 continue; 1858 } 1859 1860 // Data member. 1861 uint64_t MemberOffsetInBits = 1862 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1863 if (Member->isBitField()) { 1864 uint64_t StartBitOffset = MemberOffsetInBits; 1865 if (const auto *CI = 1866 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1867 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1868 } 1869 StartBitOffset -= MemberOffsetInBits; 1870 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1871 StartBitOffset); 1872 MemberBaseType = TypeTable.writeKnownType(BFR); 1873 } 1874 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1875 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1876 MemberName); 1877 FLBR.writeMemberType(DMR); 1878 MemberCount++; 1879 } 1880 1881 // Create methods 1882 for (auto &MethodItr : Info.Methods) { 1883 StringRef Name = MethodItr.first->getString(); 1884 1885 std::vector<OneMethodRecord> Methods; 1886 for (const DISubprogram *SP : MethodItr.second) { 1887 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1888 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1889 1890 unsigned VFTableOffset = -1; 1891 if (Introduced) 1892 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1893 1894 Methods.push_back(OneMethodRecord( 1895 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1896 translateMethodKindFlags(SP, Introduced), 1897 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1898 MemberCount++; 1899 } 1900 assert(!Methods.empty() && "Empty methods map entry"); 1901 if (Methods.size() == 1) 1902 FLBR.writeMemberType(Methods[0]); 1903 else { 1904 MethodOverloadListRecord MOLR(Methods); 1905 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1906 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1907 FLBR.writeMemberType(OMR); 1908 } 1909 } 1910 1911 // Create nested classes. 1912 for (const DICompositeType *Nested : Info.NestedClasses) { 1913 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1914 FLBR.writeMemberType(R); 1915 MemberCount++; 1916 } 1917 1918 TypeIndex FieldTI = FLBR.end(true); 1919 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1920 !Info.NestedClasses.empty()); 1921 } 1922 1923 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1924 if (!VBPType.getIndex()) { 1925 // Make a 'const int *' type. 1926 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1927 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1928 1929 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1930 : PointerKind::Near32; 1931 PointerMode PM = PointerMode::Pointer; 1932 PointerOptions PO = PointerOptions::None; 1933 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1934 1935 VBPType = TypeTable.writeKnownType(PR); 1936 } 1937 1938 return VBPType; 1939 } 1940 1941 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1942 const DIType *Ty = TypeRef.resolve(); 1943 const DIType *ClassTy = ClassTyRef.resolve(); 1944 1945 // The null DIType is the void type. Don't try to hash it. 1946 if (!Ty) 1947 return TypeIndex::Void(); 1948 1949 // Check if we've already translated this type. Don't try to do a 1950 // get-or-create style insertion that caches the hash lookup across the 1951 // lowerType call. It will update the TypeIndices map. 1952 auto I = TypeIndices.find({Ty, ClassTy}); 1953 if (I != TypeIndices.end()) 1954 return I->second; 1955 1956 TypeLoweringScope S(*this); 1957 TypeIndex TI = lowerType(Ty, ClassTy); 1958 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1959 } 1960 1961 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1962 const DIType *Ty = TypeRef.resolve(); 1963 1964 // The null DIType is the void type. Don't try to hash it. 1965 if (!Ty) 1966 return TypeIndex::Void(); 1967 1968 // If this is a non-record type, the complete type index is the same as the 1969 // normal type index. Just call getTypeIndex. 1970 switch (Ty->getTag()) { 1971 case dwarf::DW_TAG_class_type: 1972 case dwarf::DW_TAG_structure_type: 1973 case dwarf::DW_TAG_union_type: 1974 break; 1975 default: 1976 return getTypeIndex(Ty); 1977 } 1978 1979 // Check if we've already translated the complete record type. Lowering a 1980 // complete type should never trigger lowering another complete type, so we 1981 // can reuse the hash table lookup result. 1982 const auto *CTy = cast<DICompositeType>(Ty); 1983 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1984 if (!InsertResult.second) 1985 return InsertResult.first->second; 1986 1987 TypeLoweringScope S(*this); 1988 1989 // Make sure the forward declaration is emitted first. It's unclear if this 1990 // is necessary, but MSVC does it, and we should follow suit until we can show 1991 // otherwise. 1992 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1993 1994 // Just use the forward decl if we don't have complete type info. This might 1995 // happen if the frontend is using modules and expects the complete definition 1996 // to be emitted elsewhere. 1997 if (CTy->isForwardDecl()) 1998 return FwdDeclTI; 1999 2000 TypeIndex TI; 2001 switch (CTy->getTag()) { 2002 case dwarf::DW_TAG_class_type: 2003 case dwarf::DW_TAG_structure_type: 2004 TI = lowerCompleteTypeClass(CTy); 2005 break; 2006 case dwarf::DW_TAG_union_type: 2007 TI = lowerCompleteTypeUnion(CTy); 2008 break; 2009 default: 2010 llvm_unreachable("not a record"); 2011 } 2012 2013 InsertResult.first->second = TI; 2014 return TI; 2015 } 2016 2017 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2018 /// and do this until fixpoint, as each complete record type typically 2019 /// references 2020 /// many other record types. 2021 void CodeViewDebug::emitDeferredCompleteTypes() { 2022 SmallVector<const DICompositeType *, 4> TypesToEmit; 2023 while (!DeferredCompleteTypes.empty()) { 2024 std::swap(DeferredCompleteTypes, TypesToEmit); 2025 for (const DICompositeType *RecordTy : TypesToEmit) 2026 getCompleteTypeIndex(RecordTy); 2027 TypesToEmit.clear(); 2028 } 2029 } 2030 2031 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2032 // Get the sorted list of parameters and emit them first. 2033 SmallVector<const LocalVariable *, 6> Params; 2034 for (const LocalVariable &L : Locals) 2035 if (L.DIVar->isParameter()) 2036 Params.push_back(&L); 2037 std::sort(Params.begin(), Params.end(), 2038 [](const LocalVariable *L, const LocalVariable *R) { 2039 return L->DIVar->getArg() < R->DIVar->getArg(); 2040 }); 2041 for (const LocalVariable *L : Params) 2042 emitLocalVariable(*L); 2043 2044 // Next emit all non-parameters in the order that we found them. 2045 for (const LocalVariable &L : Locals) 2046 if (!L.DIVar->isParameter()) 2047 emitLocalVariable(L); 2048 } 2049 2050 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2051 // LocalSym record, see SymbolRecord.h for more info. 2052 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2053 *LocalEnd = MMI->getContext().createTempSymbol(); 2054 OS.AddComment("Record length"); 2055 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2056 OS.EmitLabel(LocalBegin); 2057 2058 OS.AddComment("Record kind: S_LOCAL"); 2059 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2060 2061 LocalSymFlags Flags = LocalSymFlags::None; 2062 if (Var.DIVar->isParameter()) 2063 Flags |= LocalSymFlags::IsParameter; 2064 if (Var.DefRanges.empty()) 2065 Flags |= LocalSymFlags::IsOptimizedOut; 2066 2067 OS.AddComment("TypeIndex"); 2068 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 2069 OS.EmitIntValue(TI.getIndex(), 4); 2070 OS.AddComment("Flags"); 2071 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2072 // Truncate the name so we won't overflow the record length field. 2073 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2074 OS.EmitLabel(LocalEnd); 2075 2076 // Calculate the on disk prefix of the appropriate def range record. The 2077 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2078 // should be big enough to hold all forms without memory allocation. 2079 SmallString<20> BytePrefix; 2080 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2081 BytePrefix.clear(); 2082 if (DefRange.InMemory) { 2083 uint16_t RegRelFlags = 0; 2084 if (DefRange.IsSubfield) { 2085 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2086 (DefRange.StructOffset 2087 << DefRangeRegisterRelSym::OffsetInParentShift); 2088 } 2089 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2090 Sym.Hdr.Register = DefRange.CVRegister; 2091 Sym.Hdr.Flags = RegRelFlags; 2092 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2093 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2094 BytePrefix += 2095 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2096 BytePrefix += 2097 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2098 } else { 2099 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2100 if (DefRange.IsSubfield) { 2101 // Unclear what matters here. 2102 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2103 Sym.Hdr.Register = DefRange.CVRegister; 2104 Sym.Hdr.MayHaveNoName = 0; 2105 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2106 2107 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2108 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2109 sizeof(SymKind)); 2110 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2111 sizeof(Sym.Hdr)); 2112 } else { 2113 // Unclear what matters here. 2114 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2115 Sym.Hdr.Register = DefRange.CVRegister; 2116 Sym.Hdr.MayHaveNoName = 0; 2117 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2118 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2119 sizeof(SymKind)); 2120 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2121 sizeof(Sym.Hdr)); 2122 } 2123 } 2124 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2125 } 2126 } 2127 2128 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2129 const Function *GV = MF->getFunction(); 2130 assert(FnDebugInfo.count(GV)); 2131 assert(CurFn == &FnDebugInfo[GV]); 2132 2133 collectVariableInfo(GV->getSubprogram()); 2134 2135 // Don't emit anything if we don't have any line tables. 2136 if (!CurFn->HaveLineInfo) { 2137 FnDebugInfo.erase(GV); 2138 CurFn = nullptr; 2139 return; 2140 } 2141 2142 CurFn->End = Asm->getFunctionEnd(); 2143 2144 CurFn = nullptr; 2145 } 2146 2147 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2148 DebugHandlerBase::beginInstruction(MI); 2149 2150 // Ignore DBG_VALUE locations and function prologue. 2151 if (!Asm || !CurFn || MI->isDebugValue() || 2152 MI->getFlag(MachineInstr::FrameSetup)) 2153 return; 2154 2155 // If the first instruction of a new MBB has no location, find the first 2156 // instruction with a location and use that. 2157 DebugLoc DL = MI->getDebugLoc(); 2158 if (!DL && MI->getParent() != PrevInstBB) { 2159 for (const auto &NextMI : *MI->getParent()) { 2160 DL = NextMI.getDebugLoc(); 2161 if (DL) 2162 break; 2163 } 2164 } 2165 PrevInstBB = MI->getParent(); 2166 2167 // If we still don't have a debug location, don't record a location. 2168 if (!DL) 2169 return; 2170 2171 maybeRecordLocation(DL, Asm->MF); 2172 } 2173 2174 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2175 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2176 *EndLabel = MMI->getContext().createTempSymbol(); 2177 OS.EmitIntValue(unsigned(Kind), 4); 2178 OS.AddComment("Subsection size"); 2179 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2180 OS.EmitLabel(BeginLabel); 2181 return EndLabel; 2182 } 2183 2184 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2185 OS.EmitLabel(EndLabel); 2186 // Every subsection must be aligned to a 4-byte boundary. 2187 OS.EmitValueToAlignment(4); 2188 } 2189 2190 void CodeViewDebug::emitDebugInfoForUDTs( 2191 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 2192 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 2193 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2194 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2195 OS.AddComment("Record length"); 2196 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2197 OS.EmitLabel(UDTRecordBegin); 2198 2199 OS.AddComment("Record kind: S_UDT"); 2200 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2201 2202 OS.AddComment("Type"); 2203 OS.EmitIntValue(UDT.second.getIndex(), 4); 2204 2205 emitNullTerminatedSymbolName(OS, UDT.first); 2206 OS.EmitLabel(UDTRecordEnd); 2207 } 2208 } 2209 2210 void CodeViewDebug::emitDebugInfoForGlobals() { 2211 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2212 GlobalMap; 2213 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2214 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2215 GV.getDebugInfo(GVEs); 2216 for (const auto *GVE : GVEs) 2217 GlobalMap[GVE] = &GV; 2218 } 2219 2220 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2221 for (const MDNode *Node : CUs->operands()) { 2222 const auto *CU = cast<DICompileUnit>(Node); 2223 2224 // First, emit all globals that are not in a comdat in a single symbol 2225 // substream. MSVC doesn't like it if the substream is empty, so only open 2226 // it if we have at least one global to emit. 2227 switchToDebugSectionForSymbol(nullptr); 2228 MCSymbol *EndLabel = nullptr; 2229 for (const auto *GVE : CU->getGlobalVariables()) { 2230 if (const auto *GV = GlobalMap.lookup(GVE)) 2231 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2232 if (!EndLabel) { 2233 OS.AddComment("Symbol subsection for globals"); 2234 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2235 } 2236 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2237 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2238 } 2239 } 2240 if (EndLabel) 2241 endCVSubsection(EndLabel); 2242 2243 // Second, emit each global that is in a comdat into its own .debug$S 2244 // section along with its own symbol substream. 2245 for (const auto *GVE : CU->getGlobalVariables()) { 2246 if (const auto *GV = GlobalMap.lookup(GVE)) { 2247 if (GV->hasComdat()) { 2248 MCSymbol *GVSym = Asm->getSymbol(GV); 2249 OS.AddComment("Symbol subsection for " + 2250 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2251 switchToDebugSectionForSymbol(GVSym); 2252 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2253 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2254 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2255 endCVSubsection(EndLabel); 2256 } 2257 } 2258 } 2259 } 2260 } 2261 2262 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2263 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2264 for (const MDNode *Node : CUs->operands()) { 2265 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2266 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2267 getTypeIndex(RT); 2268 // FIXME: Add to global/local DTU list. 2269 } 2270 } 2271 } 2272 } 2273 2274 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2275 const GlobalVariable *GV, 2276 MCSymbol *GVSym) { 2277 // DataSym record, see SymbolRecord.h for more info. 2278 // FIXME: Thread local data, etc 2279 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2280 *DataEnd = MMI->getContext().createTempSymbol(); 2281 OS.AddComment("Record length"); 2282 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2283 OS.EmitLabel(DataBegin); 2284 if (DIGV->isLocalToUnit()) { 2285 if (GV->isThreadLocal()) { 2286 OS.AddComment("Record kind: S_LTHREAD32"); 2287 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2288 } else { 2289 OS.AddComment("Record kind: S_LDATA32"); 2290 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2291 } 2292 } else { 2293 if (GV->isThreadLocal()) { 2294 OS.AddComment("Record kind: S_GTHREAD32"); 2295 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2296 } else { 2297 OS.AddComment("Record kind: S_GDATA32"); 2298 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2299 } 2300 } 2301 OS.AddComment("Type"); 2302 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2303 OS.AddComment("DataOffset"); 2304 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2305 OS.AddComment("Segment"); 2306 OS.EmitCOFFSectionIndex(GVSym); 2307 OS.AddComment("Name"); 2308 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2309 OS.EmitLabel(DataEnd); 2310 } 2311