1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "DwarfExpression.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/COFF.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/LexicalScopes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
43 #include "llvm/DebugInfo/CodeView/CodeView.h"
44 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
45 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
46 #include "llvm/DebugInfo/CodeView/Line.h"
47 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
48 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
49 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
50 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
51 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugInfoMetadata.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalValue.h"
58 #include "llvm/IR/GlobalVariable.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/MC/MCAsmInfo.h"
62 #include "llvm/MC/MCContext.h"
63 #include "llvm/MC/MCSectionCOFF.h"
64 #include "llvm/MC/MCStreamer.h"
65 #include "llvm/MC/MCSymbol.h"
66 #include "llvm/Support/BinaryByteStream.h"
67 #include "llvm/Support/BinaryStreamReader.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Endian.h"
72 #include "llvm/Support/Error.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/FormatVariadic.h"
75 #include "llvm/Support/SMLoc.h"
76 #include "llvm/Support/ScopedPrinter.h"
77 #include "llvm/Target/TargetLoweringObjectFile.h"
78 #include "llvm/Target/TargetMachine.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cctype>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <limits>
86 #include <string>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace llvm::codeview;
92 
93 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section",
94                                            cl::ReallyHidden, cl::init(false));
95 
96 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
97     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
98   // If module doesn't have named metadata anchors or COFF debug section
99   // is not available, skip any debug info related stuff.
100   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
101       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
102     Asm = nullptr;
103     return;
104   }
105 
106   // Tell MMI that we have debug info.
107   MMI->setDebugInfoAvailability(true);
108 }
109 
110 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
111   std::string &Filepath = FileToFilepathMap[File];
112   if (!Filepath.empty())
113     return Filepath;
114 
115   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
116 
117   // If this is a Unix-style path, just use it as is. Don't try to canonicalize
118   // it textually because one of the path components could be a symlink.
119   if (!Dir.empty() && Dir[0] == '/') {
120     Filepath = Dir;
121     if (Dir.back() != '/')
122       Filepath += '/';
123     Filepath += Filename;
124     return Filepath;
125   }
126 
127   // Clang emits directory and relative filename info into the IR, but CodeView
128   // operates on full paths.  We could change Clang to emit full paths too, but
129   // that would increase the IR size and probably not needed for other users.
130   // For now, just concatenate and canonicalize the path here.
131   if (Filename.find(':') == 1)
132     Filepath = Filename;
133   else
134     Filepath = (Dir + "\\" + Filename).str();
135 
136   // Canonicalize the path.  We have to do it textually because we may no longer
137   // have access the file in the filesystem.
138   // First, replace all slashes with backslashes.
139   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
140 
141   // Remove all "\.\" with "\".
142   size_t Cursor = 0;
143   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
144     Filepath.erase(Cursor, 2);
145 
146   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
147   // path should be well-formatted, e.g. start with a drive letter, etc.
148   Cursor = 0;
149   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
150     // Something's wrong if the path starts with "\..\", abort.
151     if (Cursor == 0)
152       break;
153 
154     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
155     if (PrevSlash == std::string::npos)
156       // Something's wrong, abort.
157       break;
158 
159     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
160     // The next ".." might be following the one we've just erased.
161     Cursor = PrevSlash;
162   }
163 
164   // Remove all duplicate backslashes.
165   Cursor = 0;
166   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
167     Filepath.erase(Cursor, 1);
168 
169   return Filepath;
170 }
171 
172 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
173   StringRef FullPath = getFullFilepath(F);
174   unsigned NextId = FileIdMap.size() + 1;
175   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
176   if (Insertion.second) {
177     // We have to compute the full filepath and emit a .cv_file directive.
178     ArrayRef<uint8_t> ChecksumAsBytes;
179     FileChecksumKind CSKind = FileChecksumKind::None;
180     if (F->getChecksum()) {
181       std::string Checksum = fromHex(F->getChecksum()->Value);
182       void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
183       memcpy(CKMem, Checksum.data(), Checksum.size());
184       ChecksumAsBytes = ArrayRef<uint8_t>(
185           reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
186       switch (F->getChecksum()->Kind) {
187       case DIFile::CSK_MD5:  CSKind = FileChecksumKind::MD5; break;
188       case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break;
189       }
190     }
191     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
192                                           static_cast<unsigned>(CSKind));
193     (void)Success;
194     assert(Success && ".cv_file directive failed");
195   }
196   return Insertion.first->second;
197 }
198 
199 CodeViewDebug::InlineSite &
200 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
201                              const DISubprogram *Inlinee) {
202   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
203   InlineSite *Site = &SiteInsertion.first->second;
204   if (SiteInsertion.second) {
205     unsigned ParentFuncId = CurFn->FuncId;
206     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
207       ParentFuncId =
208           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
209               .SiteFuncId;
210 
211     Site->SiteFuncId = NextFuncId++;
212     OS.EmitCVInlineSiteIdDirective(
213         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
214         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
215     Site->Inlinee = Inlinee;
216     InlinedSubprograms.insert(Inlinee);
217     getFuncIdForSubprogram(Inlinee);
218   }
219   return *Site;
220 }
221 
222 static StringRef getPrettyScopeName(const DIScope *Scope) {
223   StringRef ScopeName = Scope->getName();
224   if (!ScopeName.empty())
225     return ScopeName;
226 
227   switch (Scope->getTag()) {
228   case dwarf::DW_TAG_enumeration_type:
229   case dwarf::DW_TAG_class_type:
230   case dwarf::DW_TAG_structure_type:
231   case dwarf::DW_TAG_union_type:
232     return "<unnamed-tag>";
233   case dwarf::DW_TAG_namespace:
234     return "`anonymous namespace'";
235   }
236 
237   return StringRef();
238 }
239 
240 static const DISubprogram *getQualifiedNameComponents(
241     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
242   const DISubprogram *ClosestSubprogram = nullptr;
243   while (Scope != nullptr) {
244     if (ClosestSubprogram == nullptr)
245       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
246     StringRef ScopeName = getPrettyScopeName(Scope);
247     if (!ScopeName.empty())
248       QualifiedNameComponents.push_back(ScopeName);
249     Scope = Scope->getScope().resolve();
250   }
251   return ClosestSubprogram;
252 }
253 
254 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
255                                     StringRef TypeName) {
256   std::string FullyQualifiedName;
257   for (StringRef QualifiedNameComponent :
258        llvm::reverse(QualifiedNameComponents)) {
259     FullyQualifiedName.append(QualifiedNameComponent);
260     FullyQualifiedName.append("::");
261   }
262   FullyQualifiedName.append(TypeName);
263   return FullyQualifiedName;
264 }
265 
266 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
267   SmallVector<StringRef, 5> QualifiedNameComponents;
268   getQualifiedNameComponents(Scope, QualifiedNameComponents);
269   return getQualifiedName(QualifiedNameComponents, Name);
270 }
271 
272 struct CodeViewDebug::TypeLoweringScope {
273   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
274   ~TypeLoweringScope() {
275     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
276     // inner TypeLoweringScopes don't attempt to emit deferred types.
277     if (CVD.TypeEmissionLevel == 1)
278       CVD.emitDeferredCompleteTypes();
279     --CVD.TypeEmissionLevel;
280   }
281   CodeViewDebug &CVD;
282 };
283 
284 static std::string getFullyQualifiedName(const DIScope *Ty) {
285   const DIScope *Scope = Ty->getScope().resolve();
286   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
287 }
288 
289 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
290   // No scope means global scope and that uses the zero index.
291   if (!Scope || isa<DIFile>(Scope))
292     return TypeIndex();
293 
294   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
295 
296   // Check if we've already translated this scope.
297   auto I = TypeIndices.find({Scope, nullptr});
298   if (I != TypeIndices.end())
299     return I->second;
300 
301   // Build the fully qualified name of the scope.
302   std::string ScopeName = getFullyQualifiedName(Scope);
303   StringIdRecord SID(TypeIndex(), ScopeName);
304   auto TI = TypeTable.writeLeafType(SID);
305   return recordTypeIndexForDINode(Scope, TI);
306 }
307 
308 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
309   assert(SP);
310 
311   // Check if we've already translated this subprogram.
312   auto I = TypeIndices.find({SP, nullptr});
313   if (I != TypeIndices.end())
314     return I->second;
315 
316   // The display name includes function template arguments. Drop them to match
317   // MSVC.
318   StringRef DisplayName = SP->getName().split('<').first;
319 
320   const DIScope *Scope = SP->getScope().resolve();
321   TypeIndex TI;
322   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
323     // If the scope is a DICompositeType, then this must be a method. Member
324     // function types take some special handling, and require access to the
325     // subprogram.
326     TypeIndex ClassType = getTypeIndex(Class);
327     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
328                                DisplayName);
329     TI = TypeTable.writeLeafType(MFuncId);
330   } else {
331     // Otherwise, this must be a free function.
332     TypeIndex ParentScope = getScopeIndex(Scope);
333     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
334     TI = TypeTable.writeLeafType(FuncId);
335   }
336 
337   return recordTypeIndexForDINode(SP, TI);
338 }
339 
340 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
341                                                const DICompositeType *Class) {
342   // Always use the method declaration as the key for the function type. The
343   // method declaration contains the this adjustment.
344   if (SP->getDeclaration())
345     SP = SP->getDeclaration();
346   assert(!SP->getDeclaration() && "should use declaration as key");
347 
348   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
349   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
350   auto I = TypeIndices.find({SP, Class});
351   if (I != TypeIndices.end())
352     return I->second;
353 
354   // Make sure complete type info for the class is emitted *after* the member
355   // function type, as the complete class type is likely to reference this
356   // member function type.
357   TypeLoweringScope S(*this);
358   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
359   TypeIndex TI = lowerTypeMemberFunction(
360       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod);
361   return recordTypeIndexForDINode(SP, TI, Class);
362 }
363 
364 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
365                                                   TypeIndex TI,
366                                                   const DIType *ClassTy) {
367   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
368   (void)InsertResult;
369   assert(InsertResult.second && "DINode was already assigned a type index");
370   return TI;
371 }
372 
373 unsigned CodeViewDebug::getPointerSizeInBytes() {
374   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
375 }
376 
377 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
378                                         const LexicalScope *LS) {
379   if (const DILocation *InlinedAt = LS->getInlinedAt()) {
380     // This variable was inlined. Associate it with the InlineSite.
381     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
382     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
383     Site.InlinedLocals.emplace_back(Var);
384   } else {
385     // This variable goes into the corresponding lexical scope.
386     ScopeVariables[LS].emplace_back(Var);
387   }
388 }
389 
390 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
391                                const DILocation *Loc) {
392   auto B = Locs.begin(), E = Locs.end();
393   if (std::find(B, E, Loc) == E)
394     Locs.push_back(Loc);
395 }
396 
397 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
398                                         const MachineFunction *MF) {
399   // Skip this instruction if it has the same location as the previous one.
400   if (!DL || DL == PrevInstLoc)
401     return;
402 
403   const DIScope *Scope = DL.get()->getScope();
404   if (!Scope)
405     return;
406 
407   // Skip this line if it is longer than the maximum we can record.
408   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
409   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
410       LI.isNeverStepInto())
411     return;
412 
413   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
414   if (CI.getStartColumn() != DL.getCol())
415     return;
416 
417   if (!CurFn->HaveLineInfo)
418     CurFn->HaveLineInfo = true;
419   unsigned FileId = 0;
420   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
421     FileId = CurFn->LastFileId;
422   else
423     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
424   PrevInstLoc = DL;
425 
426   unsigned FuncId = CurFn->FuncId;
427   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
428     const DILocation *Loc = DL.get();
429 
430     // If this location was actually inlined from somewhere else, give it the ID
431     // of the inline call site.
432     FuncId =
433         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
434 
435     // Ensure we have links in the tree of inline call sites.
436     bool FirstLoc = true;
437     while ((SiteLoc = Loc->getInlinedAt())) {
438       InlineSite &Site =
439           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
440       if (!FirstLoc)
441         addLocIfNotPresent(Site.ChildSites, Loc);
442       FirstLoc = false;
443       Loc = SiteLoc;
444     }
445     addLocIfNotPresent(CurFn->ChildSites, Loc);
446   }
447 
448   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
449                         /*PrologueEnd=*/false, /*IsStmt=*/false,
450                         DL->getFilename(), SMLoc());
451 }
452 
453 void CodeViewDebug::emitCodeViewMagicVersion() {
454   OS.EmitValueToAlignment(4);
455   OS.AddComment("Debug section magic");
456   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
457 }
458 
459 void CodeViewDebug::endModule() {
460   if (!Asm || !MMI->hasDebugInfo())
461     return;
462 
463   assert(Asm != nullptr);
464 
465   // The COFF .debug$S section consists of several subsections, each starting
466   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
467   // of the payload followed by the payload itself.  The subsections are 4-byte
468   // aligned.
469 
470   // Use the generic .debug$S section, and make a subsection for all the inlined
471   // subprograms.
472   switchToDebugSectionForSymbol(nullptr);
473 
474   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
475   emitCompilerInformation();
476   endCVSubsection(CompilerInfo);
477 
478   emitInlineeLinesSubsection();
479 
480   // Emit per-function debug information.
481   for (auto &P : FnDebugInfo)
482     if (!P.first->isDeclarationForLinker())
483       emitDebugInfoForFunction(P.first, *P.second);
484 
485   // Emit global variable debug information.
486   setCurrentSubprogram(nullptr);
487   emitDebugInfoForGlobals();
488 
489   // Emit retained types.
490   emitDebugInfoForRetainedTypes();
491 
492   // Switch back to the generic .debug$S section after potentially processing
493   // comdat symbol sections.
494   switchToDebugSectionForSymbol(nullptr);
495 
496   // Emit UDT records for any types used by global variables.
497   if (!GlobalUDTs.empty()) {
498     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
499     emitDebugInfoForUDTs(GlobalUDTs);
500     endCVSubsection(SymbolsEnd);
501   }
502 
503   // This subsection holds a file index to offset in string table table.
504   OS.AddComment("File index to string table offset subsection");
505   OS.EmitCVFileChecksumsDirective();
506 
507   // This subsection holds the string table.
508   OS.AddComment("String table");
509   OS.EmitCVStringTableDirective();
510 
511   // Emit type information and hashes last, so that any types we translate while
512   // emitting function info are included.
513   emitTypeInformation();
514 
515   if (EmitDebugGlobalHashes)
516     emitTypeGlobalHashes();
517 
518   clear();
519 }
520 
521 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
522     unsigned MaxFixedRecordLength = 0xF00) {
523   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
524   // after a fixed length portion of the record. The fixed length portion should
525   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
526   // overall record size is less than the maximum allowed.
527   SmallString<32> NullTerminatedString(
528       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
529   NullTerminatedString.push_back('\0');
530   OS.EmitBytes(NullTerminatedString);
531 }
532 
533 void CodeViewDebug::emitTypeInformation() {
534   if (TypeTable.empty())
535     return;
536 
537   // Start the .debug$T or .debug$P section with 0x4.
538   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
539   emitCodeViewMagicVersion();
540 
541   SmallString<8> CommentPrefix;
542   if (OS.isVerboseAsm()) {
543     CommentPrefix += '\t';
544     CommentPrefix += Asm->MAI->getCommentString();
545     CommentPrefix += ' ';
546   }
547 
548   TypeTableCollection Table(TypeTable.records());
549   Optional<TypeIndex> B = Table.getFirst();
550   while (B) {
551     // This will fail if the record data is invalid.
552     CVType Record = Table.getType(*B);
553 
554     if (OS.isVerboseAsm()) {
555       // Emit a block comment describing the type record for readability.
556       SmallString<512> CommentBlock;
557       raw_svector_ostream CommentOS(CommentBlock);
558       ScopedPrinter SP(CommentOS);
559       SP.setPrefix(CommentPrefix);
560       TypeDumpVisitor TDV(Table, &SP, false);
561 
562       Error E = codeview::visitTypeRecord(Record, *B, TDV);
563       if (E) {
564         logAllUnhandledErrors(std::move(E), errs(), "error: ");
565         llvm_unreachable("produced malformed type record");
566       }
567       // emitRawComment will insert its own tab and comment string before
568       // the first line, so strip off our first one. It also prints its own
569       // newline.
570       OS.emitRawComment(
571           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
572     }
573     OS.EmitBinaryData(Record.str_data());
574     B = Table.getNext(*B);
575   }
576 }
577 
578 void CodeViewDebug::emitTypeGlobalHashes() {
579   if (TypeTable.empty())
580     return;
581 
582   // Start the .debug$H section with the version and hash algorithm, currently
583   // hardcoded to version 0, SHA1.
584   OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
585 
586   OS.EmitValueToAlignment(4);
587   OS.AddComment("Magic");
588   OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4);
589   OS.AddComment("Section Version");
590   OS.EmitIntValue(0, 2);
591   OS.AddComment("Hash Algorithm");
592   OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1), 2);
593 
594   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
595   for (const auto &GHR : TypeTable.hashes()) {
596     if (OS.isVerboseAsm()) {
597       // Emit an EOL-comment describing which TypeIndex this hash corresponds
598       // to, as well as the stringified SHA1 hash.
599       SmallString<32> Comment;
600       raw_svector_ostream CommentOS(Comment);
601       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
602       OS.AddComment(Comment);
603       ++TI;
604     }
605     assert(GHR.Hash.size() % 20 == 0);
606     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
607                 GHR.Hash.size());
608     OS.EmitBinaryData(S);
609   }
610 }
611 
612 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
613   switch (DWLang) {
614   case dwarf::DW_LANG_C:
615   case dwarf::DW_LANG_C89:
616   case dwarf::DW_LANG_C99:
617   case dwarf::DW_LANG_C11:
618   case dwarf::DW_LANG_ObjC:
619     return SourceLanguage::C;
620   case dwarf::DW_LANG_C_plus_plus:
621   case dwarf::DW_LANG_C_plus_plus_03:
622   case dwarf::DW_LANG_C_plus_plus_11:
623   case dwarf::DW_LANG_C_plus_plus_14:
624     return SourceLanguage::Cpp;
625   case dwarf::DW_LANG_Fortran77:
626   case dwarf::DW_LANG_Fortran90:
627   case dwarf::DW_LANG_Fortran03:
628   case dwarf::DW_LANG_Fortran08:
629     return SourceLanguage::Fortran;
630   case dwarf::DW_LANG_Pascal83:
631     return SourceLanguage::Pascal;
632   case dwarf::DW_LANG_Cobol74:
633   case dwarf::DW_LANG_Cobol85:
634     return SourceLanguage::Cobol;
635   case dwarf::DW_LANG_Java:
636     return SourceLanguage::Java;
637   case dwarf::DW_LANG_D:
638     return SourceLanguage::D;
639   default:
640     // There's no CodeView representation for this language, and CV doesn't
641     // have an "unknown" option for the language field, so we'll use MASM,
642     // as it's very low level.
643     return SourceLanguage::Masm;
644   }
645 }
646 
647 namespace {
648 struct Version {
649   int Part[4];
650 };
651 } // end anonymous namespace
652 
653 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
654 // the version number.
655 static Version parseVersion(StringRef Name) {
656   Version V = {{0}};
657   int N = 0;
658   for (const char C : Name) {
659     if (isdigit(C)) {
660       V.Part[N] *= 10;
661       V.Part[N] += C - '0';
662     } else if (C == '.') {
663       ++N;
664       if (N >= 4)
665         return V;
666     } else if (N > 0)
667       return V;
668   }
669   return V;
670 }
671 
672 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
673   switch (Type) {
674   case Triple::ArchType::x86:
675     return CPUType::Pentium3;
676   case Triple::ArchType::x86_64:
677     return CPUType::X64;
678   case Triple::ArchType::thumb:
679     return CPUType::Thumb;
680   case Triple::ArchType::aarch64:
681     return CPUType::ARM64;
682   default:
683     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
684   }
685 }
686 
687 void CodeViewDebug::emitCompilerInformation() {
688   MCContext &Context = MMI->getContext();
689   MCSymbol *CompilerBegin = Context.createTempSymbol(),
690            *CompilerEnd = Context.createTempSymbol();
691   OS.AddComment("Record length");
692   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
693   OS.EmitLabel(CompilerBegin);
694   OS.AddComment("Record kind: S_COMPILE3");
695   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
696   uint32_t Flags = 0;
697 
698   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
699   const MDNode *Node = *CUs->operands().begin();
700   const auto *CU = cast<DICompileUnit>(Node);
701 
702   // The low byte of the flags indicates the source language.
703   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
704   // TODO:  Figure out which other flags need to be set.
705 
706   OS.AddComment("Flags and language");
707   OS.EmitIntValue(Flags, 4);
708 
709   OS.AddComment("CPUType");
710   CPUType CPU =
711       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
712   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
713 
714   StringRef CompilerVersion = CU->getProducer();
715   Version FrontVer = parseVersion(CompilerVersion);
716   OS.AddComment("Frontend version");
717   for (int N = 0; N < 4; ++N)
718     OS.EmitIntValue(FrontVer.Part[N], 2);
719 
720   // Some Microsoft tools, like Binscope, expect a backend version number of at
721   // least 8.something, so we'll coerce the LLVM version into a form that
722   // guarantees it'll be big enough without really lying about the version.
723   int Major = 1000 * LLVM_VERSION_MAJOR +
724               10 * LLVM_VERSION_MINOR +
725               LLVM_VERSION_PATCH;
726   // Clamp it for builds that use unusually large version numbers.
727   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
728   Version BackVer = {{ Major, 0, 0, 0 }};
729   OS.AddComment("Backend version");
730   for (int N = 0; N < 4; ++N)
731     OS.EmitIntValue(BackVer.Part[N], 2);
732 
733   OS.AddComment("Null-terminated compiler version string");
734   emitNullTerminatedSymbolName(OS, CompilerVersion);
735 
736   OS.EmitLabel(CompilerEnd);
737 }
738 
739 void CodeViewDebug::emitInlineeLinesSubsection() {
740   if (InlinedSubprograms.empty())
741     return;
742 
743   OS.AddComment("Inlinee lines subsection");
744   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
745 
746   // We emit the checksum info for files.  This is used by debuggers to
747   // determine if a pdb matches the source before loading it.  Visual Studio,
748   // for instance, will display a warning that the breakpoints are not valid if
749   // the pdb does not match the source.
750   OS.AddComment("Inlinee lines signature");
751   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
752 
753   for (const DISubprogram *SP : InlinedSubprograms) {
754     assert(TypeIndices.count({SP, nullptr}));
755     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
756 
757     OS.AddBlankLine();
758     unsigned FileId = maybeRecordFile(SP->getFile());
759     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
760                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
761     OS.AddBlankLine();
762     OS.AddComment("Type index of inlined function");
763     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
764     OS.AddComment("Offset into filechecksum table");
765     OS.EmitCVFileChecksumOffsetDirective(FileId);
766     OS.AddComment("Starting line number");
767     OS.EmitIntValue(SP->getLine(), 4);
768   }
769 
770   endCVSubsection(InlineEnd);
771 }
772 
773 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
774                                         const DILocation *InlinedAt,
775                                         const InlineSite &Site) {
776   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
777            *InlineEnd = MMI->getContext().createTempSymbol();
778 
779   assert(TypeIndices.count({Site.Inlinee, nullptr}));
780   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
781 
782   // SymbolRecord
783   OS.AddComment("Record length");
784   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
785   OS.EmitLabel(InlineBegin);
786   OS.AddComment("Record kind: S_INLINESITE");
787   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
788 
789   OS.AddComment("PtrParent");
790   OS.EmitIntValue(0, 4);
791   OS.AddComment("PtrEnd");
792   OS.EmitIntValue(0, 4);
793   OS.AddComment("Inlinee type index");
794   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
795 
796   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
797   unsigned StartLineNum = Site.Inlinee->getLine();
798 
799   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
800                                     FI.Begin, FI.End);
801 
802   OS.EmitLabel(InlineEnd);
803 
804   emitLocalVariableList(Site.InlinedLocals);
805 
806   // Recurse on child inlined call sites before closing the scope.
807   for (const DILocation *ChildSite : Site.ChildSites) {
808     auto I = FI.InlineSites.find(ChildSite);
809     assert(I != FI.InlineSites.end() &&
810            "child site not in function inline site map");
811     emitInlinedCallSite(FI, ChildSite, I->second);
812   }
813 
814   // Close the scope.
815   OS.AddComment("Record length");
816   OS.EmitIntValue(2, 2);                                  // RecordLength
817   OS.AddComment("Record kind: S_INLINESITE_END");
818   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
819 }
820 
821 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
822   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
823   // comdat key. A section may be comdat because of -ffunction-sections or
824   // because it is comdat in the IR.
825   MCSectionCOFF *GVSec =
826       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
827   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
828 
829   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
830       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
831   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
832 
833   OS.SwitchSection(DebugSec);
834 
835   // Emit the magic version number if this is the first time we've switched to
836   // this section.
837   if (ComdatDebugSections.insert(DebugSec).second)
838     emitCodeViewMagicVersion();
839 }
840 
841 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
842                                              FunctionInfo &FI) {
843   // For each function there is a separate subsection which holds the PC to
844   // file:line table.
845   const MCSymbol *Fn = Asm->getSymbol(GV);
846   assert(Fn);
847 
848   // Switch to the to a comdat section, if appropriate.
849   switchToDebugSectionForSymbol(Fn);
850 
851   std::string FuncName;
852   auto *SP = GV->getSubprogram();
853   assert(SP);
854   setCurrentSubprogram(SP);
855 
856   // If we have a display name, build the fully qualified name by walking the
857   // chain of scopes.
858   if (!SP->getName().empty())
859     FuncName =
860         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
861 
862   // If our DISubprogram name is empty, use the mangled name.
863   if (FuncName.empty())
864     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
865 
866   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
867   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
868     OS.EmitCVFPOData(Fn);
869 
870   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
871   OS.AddComment("Symbol subsection for " + Twine(FuncName));
872   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
873   {
874     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
875              *ProcRecordEnd = MMI->getContext().createTempSymbol();
876     OS.AddComment("Record length");
877     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
878     OS.EmitLabel(ProcRecordBegin);
879 
880     if (GV->hasLocalLinkage()) {
881       OS.AddComment("Record kind: S_LPROC32_ID");
882       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
883     } else {
884       OS.AddComment("Record kind: S_GPROC32_ID");
885       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
886     }
887 
888     // These fields are filled in by tools like CVPACK which run after the fact.
889     OS.AddComment("PtrParent");
890     OS.EmitIntValue(0, 4);
891     OS.AddComment("PtrEnd");
892     OS.EmitIntValue(0, 4);
893     OS.AddComment("PtrNext");
894     OS.EmitIntValue(0, 4);
895     // This is the important bit that tells the debugger where the function
896     // code is located and what's its size:
897     OS.AddComment("Code size");
898     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
899     OS.AddComment("Offset after prologue");
900     OS.EmitIntValue(0, 4);
901     OS.AddComment("Offset before epilogue");
902     OS.EmitIntValue(0, 4);
903     OS.AddComment("Function type index");
904     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
905     OS.AddComment("Function section relative address");
906     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
907     OS.AddComment("Function section index");
908     OS.EmitCOFFSectionIndex(Fn);
909     OS.AddComment("Flags");
910     OS.EmitIntValue(0, 1);
911     // Emit the function display name as a null-terminated string.
912     OS.AddComment("Function name");
913     // Truncate the name so we won't overflow the record length field.
914     emitNullTerminatedSymbolName(OS, FuncName);
915     OS.EmitLabel(ProcRecordEnd);
916 
917     emitLocalVariableList(FI.Locals);
918     emitLexicalBlockList(FI.ChildBlocks, FI);
919 
920     // Emit inlined call site information. Only emit functions inlined directly
921     // into the parent function. We'll emit the other sites recursively as part
922     // of their parent inline site.
923     for (const DILocation *InlinedAt : FI.ChildSites) {
924       auto I = FI.InlineSites.find(InlinedAt);
925       assert(I != FI.InlineSites.end() &&
926              "child site not in function inline site map");
927       emitInlinedCallSite(FI, InlinedAt, I->second);
928     }
929 
930     for (auto Annot : FI.Annotations) {
931       MCSymbol *Label = Annot.first;
932       MDTuple *Strs = cast<MDTuple>(Annot.second);
933       MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(),
934                *AnnotEnd = MMI->getContext().createTempSymbol();
935       OS.AddComment("Record length");
936       OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2);
937       OS.EmitLabel(AnnotBegin);
938       OS.AddComment("Record kind: S_ANNOTATION");
939       OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2);
940       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
941       // FIXME: Make sure we don't overflow the max record size.
942       OS.EmitCOFFSectionIndex(Label);
943       OS.EmitIntValue(Strs->getNumOperands(), 2);
944       for (Metadata *MD : Strs->operands()) {
945         // MDStrings are null terminated, so we can do EmitBytes and get the
946         // nice .asciz directive.
947         StringRef Str = cast<MDString>(MD)->getString();
948         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
949         OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
950       }
951       OS.EmitLabel(AnnotEnd);
952     }
953 
954     if (SP != nullptr)
955       emitDebugInfoForUDTs(LocalUDTs);
956 
957     // We're done with this function.
958     OS.AddComment("Record length");
959     OS.EmitIntValue(0x0002, 2);
960     OS.AddComment("Record kind: S_PROC_ID_END");
961     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
962   }
963   endCVSubsection(SymbolsEnd);
964 
965   // We have an assembler directive that takes care of the whole line table.
966   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
967 }
968 
969 CodeViewDebug::LocalVarDefRange
970 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
971   LocalVarDefRange DR;
972   DR.InMemory = -1;
973   DR.DataOffset = Offset;
974   assert(DR.DataOffset == Offset && "truncation");
975   DR.IsSubfield = 0;
976   DR.StructOffset = 0;
977   DR.CVRegister = CVRegister;
978   return DR;
979 }
980 
981 CodeViewDebug::LocalVarDefRange
982 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
983                                      int Offset, bool IsSubfield,
984                                      uint16_t StructOffset) {
985   LocalVarDefRange DR;
986   DR.InMemory = InMemory;
987   DR.DataOffset = Offset;
988   DR.IsSubfield = IsSubfield;
989   DR.StructOffset = StructOffset;
990   DR.CVRegister = CVRegister;
991   return DR;
992 }
993 
994 void CodeViewDebug::collectVariableInfoFromMFTable(
995     DenseSet<InlinedVariable> &Processed) {
996   const MachineFunction &MF = *Asm->MF;
997   const TargetSubtargetInfo &TSI = MF.getSubtarget();
998   const TargetFrameLowering *TFI = TSI.getFrameLowering();
999   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1000 
1001   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1002     if (!VI.Var)
1003       continue;
1004     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1005            "Expected inlined-at fields to agree");
1006 
1007     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
1008     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1009 
1010     // If variable scope is not found then skip this variable.
1011     if (!Scope)
1012       continue;
1013 
1014     // If the variable has an attached offset expression, extract it.
1015     // FIXME: Try to handle DW_OP_deref as well.
1016     int64_t ExprOffset = 0;
1017     if (VI.Expr)
1018       if (!VI.Expr->extractIfOffset(ExprOffset))
1019         continue;
1020 
1021     // Get the frame register used and the offset.
1022     unsigned FrameReg = 0;
1023     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1024     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1025 
1026     // Calculate the label ranges.
1027     LocalVarDefRange DefRange =
1028         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
1029     for (const InsnRange &Range : Scope->getRanges()) {
1030       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1031       const MCSymbol *End = getLabelAfterInsn(Range.second);
1032       End = End ? End : Asm->getFunctionEnd();
1033       DefRange.Ranges.emplace_back(Begin, End);
1034     }
1035 
1036     LocalVariable Var;
1037     Var.DIVar = VI.Var;
1038     Var.DefRanges.emplace_back(std::move(DefRange));
1039     recordLocalVariable(std::move(Var), Scope);
1040   }
1041 }
1042 
1043 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1044   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1045 }
1046 
1047 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1048   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1049 }
1050 
1051 void CodeViewDebug::calculateRanges(
1052     LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) {
1053   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1054 
1055   // Calculate the definition ranges.
1056   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1057     const InsnRange &Range = *I;
1058     const MachineInstr *DVInst = Range.first;
1059     assert(DVInst->isDebugValue() && "Invalid History entry");
1060     // FIXME: Find a way to represent constant variables, since they are
1061     // relatively common.
1062     Optional<DbgVariableLocation> Location =
1063         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1064     if (!Location)
1065       continue;
1066 
1067     // CodeView can only express variables in register and variables in memory
1068     // at a constant offset from a register. However, for variables passed
1069     // indirectly by pointer, it is common for that pointer to be spilled to a
1070     // stack location. For the special case of one offseted load followed by a
1071     // zero offset load (a pointer spilled to the stack), we change the type of
1072     // the local variable from a value type to a reference type. This tricks the
1073     // debugger into doing the load for us.
1074     if (Var.UseReferenceType) {
1075       // We're using a reference type. Drop the last zero offset load.
1076       if (canUseReferenceType(*Location))
1077         Location->LoadChain.pop_back();
1078       else
1079         continue;
1080     } else if (needsReferenceType(*Location)) {
1081       // This location can't be expressed without switching to a reference type.
1082       // Start over using that.
1083       Var.UseReferenceType = true;
1084       Var.DefRanges.clear();
1085       calculateRanges(Var, Ranges);
1086       return;
1087     }
1088 
1089     // We can only handle a register or an offseted load of a register.
1090     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1091       continue;
1092     {
1093       LocalVarDefRange DR;
1094       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1095       DR.InMemory = !Location->LoadChain.empty();
1096       DR.DataOffset =
1097           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1098       if (Location->FragmentInfo) {
1099         DR.IsSubfield = true;
1100         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1101       } else {
1102         DR.IsSubfield = false;
1103         DR.StructOffset = 0;
1104       }
1105 
1106       if (Var.DefRanges.empty() ||
1107           Var.DefRanges.back().isDifferentLocation(DR)) {
1108         Var.DefRanges.emplace_back(std::move(DR));
1109       }
1110     }
1111 
1112     // Compute the label range.
1113     const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1114     const MCSymbol *End = getLabelAfterInsn(Range.second);
1115     if (!End) {
1116       // This range is valid until the next overlapping bitpiece. In the
1117       // common case, ranges will not be bitpieces, so they will overlap.
1118       auto J = std::next(I);
1119       const DIExpression *DIExpr = DVInst->getDebugExpression();
1120       while (J != E &&
1121              !DIExpr->fragmentsOverlap(J->first->getDebugExpression()))
1122         ++J;
1123       if (J != E)
1124         End = getLabelBeforeInsn(J->first);
1125       else
1126         End = Asm->getFunctionEnd();
1127     }
1128 
1129     // If the last range end is our begin, just extend the last range.
1130     // Otherwise make a new range.
1131     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1132         Var.DefRanges.back().Ranges;
1133     if (!R.empty() && R.back().second == Begin)
1134       R.back().second = End;
1135     else
1136       R.emplace_back(Begin, End);
1137 
1138     // FIXME: Do more range combining.
1139   }
1140 }
1141 
1142 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1143   DenseSet<InlinedVariable> Processed;
1144   // Grab the variable info that was squirreled away in the MMI side-table.
1145   collectVariableInfoFromMFTable(Processed);
1146 
1147   for (const auto &I : DbgValues) {
1148     InlinedVariable IV = I.first;
1149     if (Processed.count(IV))
1150       continue;
1151     const DILocalVariable *DIVar = IV.first;
1152     const DILocation *InlinedAt = IV.second;
1153 
1154     // Instruction ranges, specifying where IV is accessible.
1155     const auto &Ranges = I.second;
1156 
1157     LexicalScope *Scope = nullptr;
1158     if (InlinedAt)
1159       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1160     else
1161       Scope = LScopes.findLexicalScope(DIVar->getScope());
1162     // If variable scope is not found then skip this variable.
1163     if (!Scope)
1164       continue;
1165 
1166     LocalVariable Var;
1167     Var.DIVar = DIVar;
1168 
1169     calculateRanges(Var, Ranges);
1170     recordLocalVariable(std::move(Var), Scope);
1171   }
1172 }
1173 
1174 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1175   const Function &GV = MF->getFunction();
1176   auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()});
1177   assert(Insertion.second && "function already has info");
1178   CurFn = Insertion.first->second.get();
1179   CurFn->FuncId = NextFuncId++;
1180   CurFn->Begin = Asm->getFunctionBegin();
1181 
1182   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1183 
1184   // Find the end of the function prolog.  First known non-DBG_VALUE and
1185   // non-frame setup location marks the beginning of the function body.
1186   // FIXME: is there a simpler a way to do this? Can we just search
1187   // for the first instruction of the function, not the last of the prolog?
1188   DebugLoc PrologEndLoc;
1189   bool EmptyPrologue = true;
1190   for (const auto &MBB : *MF) {
1191     for (const auto &MI : MBB) {
1192       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1193           MI.getDebugLoc()) {
1194         PrologEndLoc = MI.getDebugLoc();
1195         break;
1196       } else if (!MI.isMetaInstruction()) {
1197         EmptyPrologue = false;
1198       }
1199     }
1200   }
1201 
1202   // Record beginning of function if we have a non-empty prologue.
1203   if (PrologEndLoc && !EmptyPrologue) {
1204     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1205     maybeRecordLocation(FnStartDL, MF);
1206   }
1207 }
1208 
1209 static bool shouldEmitUdt(const DIType *T) {
1210   if (!T)
1211     return false;
1212 
1213   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1214   if (T->getTag() == dwarf::DW_TAG_typedef) {
1215     if (DIScope *Scope = T->getScope().resolve()) {
1216       switch (Scope->getTag()) {
1217       case dwarf::DW_TAG_structure_type:
1218       case dwarf::DW_TAG_class_type:
1219       case dwarf::DW_TAG_union_type:
1220         return false;
1221       }
1222     }
1223   }
1224 
1225   while (true) {
1226     if (!T || T->isForwardDecl())
1227       return false;
1228 
1229     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1230     if (!DT)
1231       return true;
1232     T = DT->getBaseType().resolve();
1233   }
1234   return true;
1235 }
1236 
1237 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1238   // Don't record empty UDTs.
1239   if (Ty->getName().empty())
1240     return;
1241   if (!shouldEmitUdt(Ty))
1242     return;
1243 
1244   SmallVector<StringRef, 5> QualifiedNameComponents;
1245   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1246       Ty->getScope().resolve(), QualifiedNameComponents);
1247 
1248   std::string FullyQualifiedName =
1249       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1250 
1251   if (ClosestSubprogram == nullptr) {
1252     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1253   } else if (ClosestSubprogram == CurrentSubprogram) {
1254     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1255   }
1256 
1257   // TODO: What if the ClosestSubprogram is neither null or the current
1258   // subprogram?  Currently, the UDT just gets dropped on the floor.
1259   //
1260   // The current behavior is not desirable.  To get maximal fidelity, we would
1261   // need to perform all type translation before beginning emission of .debug$S
1262   // and then make LocalUDTs a member of FunctionInfo
1263 }
1264 
1265 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1266   // Generic dispatch for lowering an unknown type.
1267   switch (Ty->getTag()) {
1268   case dwarf::DW_TAG_array_type:
1269     return lowerTypeArray(cast<DICompositeType>(Ty));
1270   case dwarf::DW_TAG_typedef:
1271     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1272   case dwarf::DW_TAG_base_type:
1273     return lowerTypeBasic(cast<DIBasicType>(Ty));
1274   case dwarf::DW_TAG_pointer_type:
1275     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1276       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1277     LLVM_FALLTHROUGH;
1278   case dwarf::DW_TAG_reference_type:
1279   case dwarf::DW_TAG_rvalue_reference_type:
1280     return lowerTypePointer(cast<DIDerivedType>(Ty));
1281   case dwarf::DW_TAG_ptr_to_member_type:
1282     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1283   case dwarf::DW_TAG_restrict_type:
1284   case dwarf::DW_TAG_const_type:
1285   case dwarf::DW_TAG_volatile_type:
1286   // TODO: add support for DW_TAG_atomic_type here
1287     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1288   case dwarf::DW_TAG_subroutine_type:
1289     if (ClassTy) {
1290       // The member function type of a member function pointer has no
1291       // ThisAdjustment.
1292       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1293                                      /*ThisAdjustment=*/0,
1294                                      /*IsStaticMethod=*/false);
1295     }
1296     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1297   case dwarf::DW_TAG_enumeration_type:
1298     return lowerTypeEnum(cast<DICompositeType>(Ty));
1299   case dwarf::DW_TAG_class_type:
1300   case dwarf::DW_TAG_structure_type:
1301     return lowerTypeClass(cast<DICompositeType>(Ty));
1302   case dwarf::DW_TAG_union_type:
1303     return lowerTypeUnion(cast<DICompositeType>(Ty));
1304   case dwarf::DW_TAG_unspecified_type:
1305     return TypeIndex::None();
1306   default:
1307     // Use the null type index.
1308     return TypeIndex();
1309   }
1310 }
1311 
1312 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1313   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1314   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1315   StringRef TypeName = Ty->getName();
1316 
1317   addToUDTs(Ty);
1318 
1319   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1320       TypeName == "HRESULT")
1321     return TypeIndex(SimpleTypeKind::HResult);
1322   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1323       TypeName == "wchar_t")
1324     return TypeIndex(SimpleTypeKind::WideCharacter);
1325 
1326   return UnderlyingTypeIndex;
1327 }
1328 
1329 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1330   DITypeRef ElementTypeRef = Ty->getBaseType();
1331   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1332   // IndexType is size_t, which depends on the bitness of the target.
1333   TypeIndex IndexType = getPointerSizeInBytes() == 8
1334                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1335                             : TypeIndex(SimpleTypeKind::UInt32Long);
1336 
1337   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1338 
1339   // Add subranges to array type.
1340   DINodeArray Elements = Ty->getElements();
1341   for (int i = Elements.size() - 1; i >= 0; --i) {
1342     const DINode *Element = Elements[i];
1343     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1344 
1345     const DISubrange *Subrange = cast<DISubrange>(Element);
1346     assert(Subrange->getLowerBound() == 0 &&
1347            "codeview doesn't support subranges with lower bounds");
1348     int64_t Count = -1;
1349     if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1350       Count = CI->getSExtValue();
1351 
1352     // Forward declarations of arrays without a size and VLAs use a count of -1.
1353     // Emit a count of zero in these cases to match what MSVC does for arrays
1354     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1355     // should do for them even if we could distinguish them.
1356     if (Count == -1)
1357       Count = 0;
1358 
1359     // Update the element size and element type index for subsequent subranges.
1360     ElementSize *= Count;
1361 
1362     // If this is the outermost array, use the size from the array. It will be
1363     // more accurate if we had a VLA or an incomplete element type size.
1364     uint64_t ArraySize =
1365         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1366 
1367     StringRef Name = (i == 0) ? Ty->getName() : "";
1368     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1369     ElementTypeIndex = TypeTable.writeLeafType(AR);
1370   }
1371 
1372   return ElementTypeIndex;
1373 }
1374 
1375 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1376   TypeIndex Index;
1377   dwarf::TypeKind Kind;
1378   uint32_t ByteSize;
1379 
1380   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1381   ByteSize = Ty->getSizeInBits() / 8;
1382 
1383   SimpleTypeKind STK = SimpleTypeKind::None;
1384   switch (Kind) {
1385   case dwarf::DW_ATE_address:
1386     // FIXME: Translate
1387     break;
1388   case dwarf::DW_ATE_boolean:
1389     switch (ByteSize) {
1390     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1391     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1392     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1393     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1394     case 16: STK = SimpleTypeKind::Boolean128; break;
1395     }
1396     break;
1397   case dwarf::DW_ATE_complex_float:
1398     switch (ByteSize) {
1399     case 2:  STK = SimpleTypeKind::Complex16;  break;
1400     case 4:  STK = SimpleTypeKind::Complex32;  break;
1401     case 8:  STK = SimpleTypeKind::Complex64;  break;
1402     case 10: STK = SimpleTypeKind::Complex80;  break;
1403     case 16: STK = SimpleTypeKind::Complex128; break;
1404     }
1405     break;
1406   case dwarf::DW_ATE_float:
1407     switch (ByteSize) {
1408     case 2:  STK = SimpleTypeKind::Float16;  break;
1409     case 4:  STK = SimpleTypeKind::Float32;  break;
1410     case 6:  STK = SimpleTypeKind::Float48;  break;
1411     case 8:  STK = SimpleTypeKind::Float64;  break;
1412     case 10: STK = SimpleTypeKind::Float80;  break;
1413     case 16: STK = SimpleTypeKind::Float128; break;
1414     }
1415     break;
1416   case dwarf::DW_ATE_signed:
1417     switch (ByteSize) {
1418     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1419     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1420     case 4:  STK = SimpleTypeKind::Int32;           break;
1421     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1422     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1423     }
1424     break;
1425   case dwarf::DW_ATE_unsigned:
1426     switch (ByteSize) {
1427     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1428     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1429     case 4:  STK = SimpleTypeKind::UInt32;            break;
1430     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1431     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1432     }
1433     break;
1434   case dwarf::DW_ATE_UTF:
1435     switch (ByteSize) {
1436     case 2: STK = SimpleTypeKind::Character16; break;
1437     case 4: STK = SimpleTypeKind::Character32; break;
1438     }
1439     break;
1440   case dwarf::DW_ATE_signed_char:
1441     if (ByteSize == 1)
1442       STK = SimpleTypeKind::SignedCharacter;
1443     break;
1444   case dwarf::DW_ATE_unsigned_char:
1445     if (ByteSize == 1)
1446       STK = SimpleTypeKind::UnsignedCharacter;
1447     break;
1448   default:
1449     break;
1450   }
1451 
1452   // Apply some fixups based on the source-level type name.
1453   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1454     STK = SimpleTypeKind::Int32Long;
1455   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1456     STK = SimpleTypeKind::UInt32Long;
1457   if (STK == SimpleTypeKind::UInt16Short &&
1458       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1459     STK = SimpleTypeKind::WideCharacter;
1460   if ((STK == SimpleTypeKind::SignedCharacter ||
1461        STK == SimpleTypeKind::UnsignedCharacter) &&
1462       Ty->getName() == "char")
1463     STK = SimpleTypeKind::NarrowCharacter;
1464 
1465   return TypeIndex(STK);
1466 }
1467 
1468 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1469                                           PointerOptions PO) {
1470   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1471 
1472   // Pointers to simple types without any options can use SimpleTypeMode, rather
1473   // than having a dedicated pointer type record.
1474   if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1475       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1476       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1477     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1478                               ? SimpleTypeMode::NearPointer64
1479                               : SimpleTypeMode::NearPointer32;
1480     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1481   }
1482 
1483   PointerKind PK =
1484       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1485   PointerMode PM = PointerMode::Pointer;
1486   switch (Ty->getTag()) {
1487   default: llvm_unreachable("not a pointer tag type");
1488   case dwarf::DW_TAG_pointer_type:
1489     PM = PointerMode::Pointer;
1490     break;
1491   case dwarf::DW_TAG_reference_type:
1492     PM = PointerMode::LValueReference;
1493     break;
1494   case dwarf::DW_TAG_rvalue_reference_type:
1495     PM = PointerMode::RValueReference;
1496     break;
1497   }
1498 
1499   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1500   return TypeTable.writeLeafType(PR);
1501 }
1502 
1503 static PointerToMemberRepresentation
1504 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1505   // SizeInBytes being zero generally implies that the member pointer type was
1506   // incomplete, which can happen if it is part of a function prototype. In this
1507   // case, use the unknown model instead of the general model.
1508   if (IsPMF) {
1509     switch (Flags & DINode::FlagPtrToMemberRep) {
1510     case 0:
1511       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1512                               : PointerToMemberRepresentation::GeneralFunction;
1513     case DINode::FlagSingleInheritance:
1514       return PointerToMemberRepresentation::SingleInheritanceFunction;
1515     case DINode::FlagMultipleInheritance:
1516       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1517     case DINode::FlagVirtualInheritance:
1518       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1519     }
1520   } else {
1521     switch (Flags & DINode::FlagPtrToMemberRep) {
1522     case 0:
1523       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1524                               : PointerToMemberRepresentation::GeneralData;
1525     case DINode::FlagSingleInheritance:
1526       return PointerToMemberRepresentation::SingleInheritanceData;
1527     case DINode::FlagMultipleInheritance:
1528       return PointerToMemberRepresentation::MultipleInheritanceData;
1529     case DINode::FlagVirtualInheritance:
1530       return PointerToMemberRepresentation::VirtualInheritanceData;
1531     }
1532   }
1533   llvm_unreachable("invalid ptr to member representation");
1534 }
1535 
1536 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1537                                                 PointerOptions PO) {
1538   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1539   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1540   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1541   PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1542                                                 : PointerKind::Near32;
1543   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1544   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1545                          : PointerMode::PointerToDataMember;
1546 
1547   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1548   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1549   MemberPointerInfo MPI(
1550       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1551   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1552   return TypeTable.writeLeafType(PR);
1553 }
1554 
1555 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1556 /// have a translation, use the NearC convention.
1557 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1558   switch (DwarfCC) {
1559   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1560   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1561   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1562   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1563   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1564   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1565   }
1566   return CallingConvention::NearC;
1567 }
1568 
1569 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1570   ModifierOptions Mods = ModifierOptions::None;
1571   PointerOptions PO = PointerOptions::None;
1572   bool IsModifier = true;
1573   const DIType *BaseTy = Ty;
1574   while (IsModifier && BaseTy) {
1575     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1576     switch (BaseTy->getTag()) {
1577     case dwarf::DW_TAG_const_type:
1578       Mods |= ModifierOptions::Const;
1579       PO |= PointerOptions::Const;
1580       break;
1581     case dwarf::DW_TAG_volatile_type:
1582       Mods |= ModifierOptions::Volatile;
1583       PO |= PointerOptions::Volatile;
1584       break;
1585     case dwarf::DW_TAG_restrict_type:
1586       // Only pointer types be marked with __restrict. There is no known flag
1587       // for __restrict in LF_MODIFIER records.
1588       PO |= PointerOptions::Restrict;
1589       break;
1590     default:
1591       IsModifier = false;
1592       break;
1593     }
1594     if (IsModifier)
1595       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1596   }
1597 
1598   // Check if the inner type will use an LF_POINTER record. If so, the
1599   // qualifiers will go in the LF_POINTER record. This comes up for types like
1600   // 'int *const' and 'int *__restrict', not the more common cases like 'const
1601   // char *'.
1602   if (BaseTy) {
1603     switch (BaseTy->getTag()) {
1604     case dwarf::DW_TAG_pointer_type:
1605     case dwarf::DW_TAG_reference_type:
1606     case dwarf::DW_TAG_rvalue_reference_type:
1607       return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1608     case dwarf::DW_TAG_ptr_to_member_type:
1609       return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1610     default:
1611       break;
1612     }
1613   }
1614 
1615   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1616 
1617   // Return the base type index if there aren't any modifiers. For example, the
1618   // metadata could contain restrict wrappers around non-pointer types.
1619   if (Mods == ModifierOptions::None)
1620     return ModifiedTI;
1621 
1622   ModifierRecord MR(ModifiedTI, Mods);
1623   return TypeTable.writeLeafType(MR);
1624 }
1625 
1626 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1627   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1628   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1629     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1630 
1631   // MSVC uses type none for variadic argument.
1632   if (ReturnAndArgTypeIndices.size() > 1 &&
1633       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1634     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1635   }
1636   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1637   ArrayRef<TypeIndex> ArgTypeIndices = None;
1638   if (!ReturnAndArgTypeIndices.empty()) {
1639     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1640     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1641     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1642   }
1643 
1644   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1645   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1646 
1647   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1648 
1649   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1650                             ArgTypeIndices.size(), ArgListIndex);
1651   return TypeTable.writeLeafType(Procedure);
1652 }
1653 
1654 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1655                                                  const DIType *ClassTy,
1656                                                  int ThisAdjustment,
1657                                                  bool IsStaticMethod) {
1658   // Lower the containing class type.
1659   TypeIndex ClassType = getTypeIndex(ClassTy);
1660 
1661   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1662   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1663     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1664 
1665   // MSVC uses type none for variadic argument.
1666   if (ReturnAndArgTypeIndices.size() > 1 &&
1667       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1668     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1669   }
1670   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1671   ArrayRef<TypeIndex> ArgTypeIndices = None;
1672   if (!ReturnAndArgTypeIndices.empty()) {
1673     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1674     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1675     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1676   }
1677   TypeIndex ThisTypeIndex;
1678   if (!IsStaticMethod && !ArgTypeIndices.empty()) {
1679     ThisTypeIndex = ArgTypeIndices.front();
1680     ArgTypeIndices = ArgTypeIndices.drop_front();
1681   }
1682 
1683   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1684   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1685 
1686   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1687 
1688   // TODO: Need to use the correct values for FunctionOptions.
1689   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1690                            FunctionOptions::None, ArgTypeIndices.size(),
1691                            ArgListIndex, ThisAdjustment);
1692   return TypeTable.writeLeafType(MFR);
1693 }
1694 
1695 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1696   unsigned VSlotCount =
1697       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1698   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1699 
1700   VFTableShapeRecord VFTSR(Slots);
1701   return TypeTable.writeLeafType(VFTSR);
1702 }
1703 
1704 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1705   switch (Flags & DINode::FlagAccessibility) {
1706   case DINode::FlagPrivate:   return MemberAccess::Private;
1707   case DINode::FlagPublic:    return MemberAccess::Public;
1708   case DINode::FlagProtected: return MemberAccess::Protected;
1709   case 0:
1710     // If there was no explicit access control, provide the default for the tag.
1711     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1712                                                  : MemberAccess::Public;
1713   }
1714   llvm_unreachable("access flags are exclusive");
1715 }
1716 
1717 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1718   if (SP->isArtificial())
1719     return MethodOptions::CompilerGenerated;
1720 
1721   // FIXME: Handle other MethodOptions.
1722 
1723   return MethodOptions::None;
1724 }
1725 
1726 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1727                                            bool Introduced) {
1728   if (SP->getFlags() & DINode::FlagStaticMember)
1729     return MethodKind::Static;
1730 
1731   switch (SP->getVirtuality()) {
1732   case dwarf::DW_VIRTUALITY_none:
1733     break;
1734   case dwarf::DW_VIRTUALITY_virtual:
1735     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1736   case dwarf::DW_VIRTUALITY_pure_virtual:
1737     return Introduced ? MethodKind::PureIntroducingVirtual
1738                       : MethodKind::PureVirtual;
1739   default:
1740     llvm_unreachable("unhandled virtuality case");
1741   }
1742 
1743   return MethodKind::Vanilla;
1744 }
1745 
1746 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1747   switch (Ty->getTag()) {
1748   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1749   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1750   }
1751   llvm_unreachable("unexpected tag");
1752 }
1753 
1754 /// Return ClassOptions that should be present on both the forward declaration
1755 /// and the defintion of a tag type.
1756 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1757   ClassOptions CO = ClassOptions::None;
1758 
1759   // MSVC always sets this flag, even for local types. Clang doesn't always
1760   // appear to give every type a linkage name, which may be problematic for us.
1761   // FIXME: Investigate the consequences of not following them here.
1762   if (!Ty->getIdentifier().empty())
1763     CO |= ClassOptions::HasUniqueName;
1764 
1765   // Put the Nested flag on a type if it appears immediately inside a tag type.
1766   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1767   // here. That flag is only set on definitions, and not forward declarations.
1768   const DIScope *ImmediateScope = Ty->getScope().resolve();
1769   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1770     CO |= ClassOptions::Nested;
1771 
1772   // Put the Scoped flag on function-local types.
1773   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1774        Scope = Scope->getScope().resolve()) {
1775     if (isa<DISubprogram>(Scope)) {
1776       CO |= ClassOptions::Scoped;
1777       break;
1778     }
1779   }
1780 
1781   return CO;
1782 }
1783 
1784 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
1785   switch (Ty->getTag()) {
1786   case dwarf::DW_TAG_class_type:
1787   case dwarf::DW_TAG_structure_type:
1788   case dwarf::DW_TAG_union_type:
1789   case dwarf::DW_TAG_enumeration_type:
1790     break;
1791   default:
1792     return;
1793   }
1794 
1795   if (const auto *File = Ty->getFile()) {
1796     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1797     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
1798 
1799     UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
1800     TypeTable.writeLeafType(USLR);
1801   }
1802 }
1803 
1804 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1805   ClassOptions CO = getCommonClassOptions(Ty);
1806   TypeIndex FTI;
1807   unsigned EnumeratorCount = 0;
1808 
1809   if (Ty->isForwardDecl()) {
1810     CO |= ClassOptions::ForwardReference;
1811   } else {
1812     ContinuationRecordBuilder ContinuationBuilder;
1813     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
1814     for (const DINode *Element : Ty->getElements()) {
1815       // We assume that the frontend provides all members in source declaration
1816       // order, which is what MSVC does.
1817       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1818         EnumeratorRecord ER(MemberAccess::Public,
1819                             APSInt::getUnsigned(Enumerator->getValue()),
1820                             Enumerator->getName());
1821         ContinuationBuilder.writeMemberType(ER);
1822         EnumeratorCount++;
1823       }
1824     }
1825     FTI = TypeTable.insertRecord(ContinuationBuilder);
1826   }
1827 
1828   std::string FullName = getFullyQualifiedName(Ty);
1829 
1830   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1831                 getTypeIndex(Ty->getBaseType()));
1832   TypeIndex EnumTI = TypeTable.writeLeafType(ER);
1833 
1834   addUDTSrcLine(Ty, EnumTI);
1835 
1836   return EnumTI;
1837 }
1838 
1839 //===----------------------------------------------------------------------===//
1840 // ClassInfo
1841 //===----------------------------------------------------------------------===//
1842 
1843 struct llvm::ClassInfo {
1844   struct MemberInfo {
1845     const DIDerivedType *MemberTypeNode;
1846     uint64_t BaseOffset;
1847   };
1848   // [MemberInfo]
1849   using MemberList = std::vector<MemberInfo>;
1850 
1851   using MethodsList = TinyPtrVector<const DISubprogram *>;
1852   // MethodName -> MethodsList
1853   using MethodsMap = MapVector<MDString *, MethodsList>;
1854 
1855   /// Base classes.
1856   std::vector<const DIDerivedType *> Inheritance;
1857 
1858   /// Direct members.
1859   MemberList Members;
1860   // Direct overloaded methods gathered by name.
1861   MethodsMap Methods;
1862 
1863   TypeIndex VShapeTI;
1864 
1865   std::vector<const DIType *> NestedTypes;
1866 };
1867 
1868 void CodeViewDebug::clear() {
1869   assert(CurFn == nullptr);
1870   FileIdMap.clear();
1871   FnDebugInfo.clear();
1872   FileToFilepathMap.clear();
1873   LocalUDTs.clear();
1874   GlobalUDTs.clear();
1875   TypeIndices.clear();
1876   CompleteTypeIndices.clear();
1877 }
1878 
1879 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1880                                       const DIDerivedType *DDTy) {
1881   if (!DDTy->getName().empty()) {
1882     Info.Members.push_back({DDTy, 0});
1883     return;
1884   }
1885 
1886   // An unnamed member may represent a nested struct or union. Attempt to
1887   // interpret the unnamed member as a DICompositeType possibly wrapped in
1888   // qualifier types. Add all the indirect fields to the current record if that
1889   // succeeds, and drop the member if that fails.
1890   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1891   uint64_t Offset = DDTy->getOffsetInBits();
1892   const DIType *Ty = DDTy->getBaseType().resolve();
1893   bool FullyResolved = false;
1894   while (!FullyResolved) {
1895     switch (Ty->getTag()) {
1896     case dwarf::DW_TAG_const_type:
1897     case dwarf::DW_TAG_volatile_type:
1898       // FIXME: we should apply the qualifier types to the indirect fields
1899       // rather than dropping them.
1900       Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve();
1901       break;
1902     default:
1903       FullyResolved = true;
1904       break;
1905     }
1906   }
1907 
1908   const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
1909   if (!DCTy)
1910     return;
1911 
1912   ClassInfo NestedInfo = collectClassInfo(DCTy);
1913   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1914     Info.Members.push_back(
1915         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1916 }
1917 
1918 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1919   ClassInfo Info;
1920   // Add elements to structure type.
1921   DINodeArray Elements = Ty->getElements();
1922   for (auto *Element : Elements) {
1923     // We assume that the frontend provides all members in source declaration
1924     // order, which is what MSVC does.
1925     if (!Element)
1926       continue;
1927     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1928       Info.Methods[SP->getRawName()].push_back(SP);
1929     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1930       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1931         collectMemberInfo(Info, DDTy);
1932       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1933         Info.Inheritance.push_back(DDTy);
1934       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1935                  DDTy->getName() == "__vtbl_ptr_type") {
1936         Info.VShapeTI = getTypeIndex(DDTy);
1937       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
1938         Info.NestedTypes.push_back(DDTy);
1939       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1940         // Ignore friend members. It appears that MSVC emitted info about
1941         // friends in the past, but modern versions do not.
1942       }
1943     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1944       Info.NestedTypes.push_back(Composite);
1945     }
1946     // Skip other unrecognized kinds of elements.
1947   }
1948   return Info;
1949 }
1950 
1951 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1952   // First, construct the forward decl.  Don't look into Ty to compute the
1953   // forward decl options, since it might not be available in all TUs.
1954   TypeRecordKind Kind = getRecordKind(Ty);
1955   ClassOptions CO =
1956       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1957   std::string FullName = getFullyQualifiedName(Ty);
1958   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1959                  FullName, Ty->getIdentifier());
1960   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
1961   if (!Ty->isForwardDecl())
1962     DeferredCompleteTypes.push_back(Ty);
1963   return FwdDeclTI;
1964 }
1965 
1966 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1967   // Construct the field list and complete type record.
1968   TypeRecordKind Kind = getRecordKind(Ty);
1969   ClassOptions CO = getCommonClassOptions(Ty);
1970   TypeIndex FieldTI;
1971   TypeIndex VShapeTI;
1972   unsigned FieldCount;
1973   bool ContainsNestedClass;
1974   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1975       lowerRecordFieldList(Ty);
1976 
1977   if (ContainsNestedClass)
1978     CO |= ClassOptions::ContainsNestedClass;
1979 
1980   std::string FullName = getFullyQualifiedName(Ty);
1981 
1982   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1983 
1984   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1985                  SizeInBytes, FullName, Ty->getIdentifier());
1986   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
1987 
1988   addUDTSrcLine(Ty, ClassTI);
1989 
1990   addToUDTs(Ty);
1991 
1992   return ClassTI;
1993 }
1994 
1995 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1996   ClassOptions CO =
1997       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1998   std::string FullName = getFullyQualifiedName(Ty);
1999   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2000   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2001   if (!Ty->isForwardDecl())
2002     DeferredCompleteTypes.push_back(Ty);
2003   return FwdDeclTI;
2004 }
2005 
2006 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2007   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2008   TypeIndex FieldTI;
2009   unsigned FieldCount;
2010   bool ContainsNestedClass;
2011   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2012       lowerRecordFieldList(Ty);
2013 
2014   if (ContainsNestedClass)
2015     CO |= ClassOptions::ContainsNestedClass;
2016 
2017   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2018   std::string FullName = getFullyQualifiedName(Ty);
2019 
2020   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2021                  Ty->getIdentifier());
2022   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2023 
2024   addUDTSrcLine(Ty, UnionTI);
2025 
2026   addToUDTs(Ty);
2027 
2028   return UnionTI;
2029 }
2030 
2031 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2032 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2033   // Manually count members. MSVC appears to count everything that generates a
2034   // field list record. Each individual overload in a method overload group
2035   // contributes to this count, even though the overload group is a single field
2036   // list record.
2037   unsigned MemberCount = 0;
2038   ClassInfo Info = collectClassInfo(Ty);
2039   ContinuationRecordBuilder ContinuationBuilder;
2040   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2041 
2042   // Create base classes.
2043   for (const DIDerivedType *I : Info.Inheritance) {
2044     if (I->getFlags() & DINode::FlagVirtual) {
2045       // Virtual base.
2046       // FIXME: Emit VBPtrOffset when the frontend provides it.
2047       unsigned VBPtrOffset = 0;
2048       // FIXME: Despite the accessor name, the offset is really in bytes.
2049       unsigned VBTableIndex = I->getOffsetInBits() / 4;
2050       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2051                             ? TypeRecordKind::IndirectVirtualBaseClass
2052                             : TypeRecordKind::VirtualBaseClass;
2053       VirtualBaseClassRecord VBCR(
2054           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2055           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2056           VBTableIndex);
2057 
2058       ContinuationBuilder.writeMemberType(VBCR);
2059       MemberCount++;
2060     } else {
2061       assert(I->getOffsetInBits() % 8 == 0 &&
2062              "bases must be on byte boundaries");
2063       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2064                           getTypeIndex(I->getBaseType()),
2065                           I->getOffsetInBits() / 8);
2066       ContinuationBuilder.writeMemberType(BCR);
2067       MemberCount++;
2068     }
2069   }
2070 
2071   // Create members.
2072   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2073     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2074     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2075     StringRef MemberName = Member->getName();
2076     MemberAccess Access =
2077         translateAccessFlags(Ty->getTag(), Member->getFlags());
2078 
2079     if (Member->isStaticMember()) {
2080       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2081       ContinuationBuilder.writeMemberType(SDMR);
2082       MemberCount++;
2083       continue;
2084     }
2085 
2086     // Virtual function pointer member.
2087     if ((Member->getFlags() & DINode::FlagArtificial) &&
2088         Member->getName().startswith("_vptr$")) {
2089       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2090       ContinuationBuilder.writeMemberType(VFPR);
2091       MemberCount++;
2092       continue;
2093     }
2094 
2095     // Data member.
2096     uint64_t MemberOffsetInBits =
2097         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2098     if (Member->isBitField()) {
2099       uint64_t StartBitOffset = MemberOffsetInBits;
2100       if (const auto *CI =
2101               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2102         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2103       }
2104       StartBitOffset -= MemberOffsetInBits;
2105       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2106                          StartBitOffset);
2107       MemberBaseType = TypeTable.writeLeafType(BFR);
2108     }
2109     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2110     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2111                          MemberName);
2112     ContinuationBuilder.writeMemberType(DMR);
2113     MemberCount++;
2114   }
2115 
2116   // Create methods
2117   for (auto &MethodItr : Info.Methods) {
2118     StringRef Name = MethodItr.first->getString();
2119 
2120     std::vector<OneMethodRecord> Methods;
2121     for (const DISubprogram *SP : MethodItr.second) {
2122       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2123       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2124 
2125       unsigned VFTableOffset = -1;
2126       if (Introduced)
2127         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2128 
2129       Methods.push_back(OneMethodRecord(
2130           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2131           translateMethodKindFlags(SP, Introduced),
2132           translateMethodOptionFlags(SP), VFTableOffset, Name));
2133       MemberCount++;
2134     }
2135     assert(!Methods.empty() && "Empty methods map entry");
2136     if (Methods.size() == 1)
2137       ContinuationBuilder.writeMemberType(Methods[0]);
2138     else {
2139       // FIXME: Make this use its own ContinuationBuilder so that
2140       // MethodOverloadList can be split correctly.
2141       MethodOverloadListRecord MOLR(Methods);
2142       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2143 
2144       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2145       ContinuationBuilder.writeMemberType(OMR);
2146     }
2147   }
2148 
2149   // Create nested classes.
2150   for (const DIType *Nested : Info.NestedTypes) {
2151     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
2152     ContinuationBuilder.writeMemberType(R);
2153     MemberCount++;
2154   }
2155 
2156   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2157   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2158                          !Info.NestedTypes.empty());
2159 }
2160 
2161 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2162   if (!VBPType.getIndex()) {
2163     // Make a 'const int *' type.
2164     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2165     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2166 
2167     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2168                                                   : PointerKind::Near32;
2169     PointerMode PM = PointerMode::Pointer;
2170     PointerOptions PO = PointerOptions::None;
2171     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2172     VBPType = TypeTable.writeLeafType(PR);
2173   }
2174 
2175   return VBPType;
2176 }
2177 
2178 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
2179   const DIType *Ty = TypeRef.resolve();
2180   const DIType *ClassTy = ClassTyRef.resolve();
2181 
2182   // The null DIType is the void type. Don't try to hash it.
2183   if (!Ty)
2184     return TypeIndex::Void();
2185 
2186   // Check if we've already translated this type. Don't try to do a
2187   // get-or-create style insertion that caches the hash lookup across the
2188   // lowerType call. It will update the TypeIndices map.
2189   auto I = TypeIndices.find({Ty, ClassTy});
2190   if (I != TypeIndices.end())
2191     return I->second;
2192 
2193   TypeLoweringScope S(*this);
2194   TypeIndex TI = lowerType(Ty, ClassTy);
2195   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2196 }
2197 
2198 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
2199   DIType *Ty = TypeRef.resolve();
2200   PointerRecord PR(getTypeIndex(Ty),
2201                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2202                                                 : PointerKind::Near32,
2203                    PointerMode::LValueReference, PointerOptions::None,
2204                    Ty->getSizeInBits() / 8);
2205   return TypeTable.writeLeafType(PR);
2206 }
2207 
2208 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2209   const DIType *Ty = TypeRef.resolve();
2210 
2211   // The null DIType is the void type. Don't try to hash it.
2212   if (!Ty)
2213     return TypeIndex::Void();
2214 
2215   // If this is a non-record type, the complete type index is the same as the
2216   // normal type index. Just call getTypeIndex.
2217   switch (Ty->getTag()) {
2218   case dwarf::DW_TAG_class_type:
2219   case dwarf::DW_TAG_structure_type:
2220   case dwarf::DW_TAG_union_type:
2221     break;
2222   default:
2223     return getTypeIndex(Ty);
2224   }
2225 
2226   // Check if we've already translated the complete record type.  Lowering a
2227   // complete type should never trigger lowering another complete type, so we
2228   // can reuse the hash table lookup result.
2229   const auto *CTy = cast<DICompositeType>(Ty);
2230   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2231   if (!InsertResult.second)
2232     return InsertResult.first->second;
2233 
2234   TypeLoweringScope S(*this);
2235 
2236   // Make sure the forward declaration is emitted first. It's unclear if this
2237   // is necessary, but MSVC does it, and we should follow suit until we can show
2238   // otherwise.
2239   TypeIndex FwdDeclTI = getTypeIndex(CTy);
2240 
2241   // Just use the forward decl if we don't have complete type info. This might
2242   // happen if the frontend is using modules and expects the complete definition
2243   // to be emitted elsewhere.
2244   if (CTy->isForwardDecl())
2245     return FwdDeclTI;
2246 
2247   TypeIndex TI;
2248   switch (CTy->getTag()) {
2249   case dwarf::DW_TAG_class_type:
2250   case dwarf::DW_TAG_structure_type:
2251     TI = lowerCompleteTypeClass(CTy);
2252     break;
2253   case dwarf::DW_TAG_union_type:
2254     TI = lowerCompleteTypeUnion(CTy);
2255     break;
2256   default:
2257     llvm_unreachable("not a record");
2258   }
2259 
2260   InsertResult.first->second = TI;
2261   return TI;
2262 }
2263 
2264 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2265 /// and do this until fixpoint, as each complete record type typically
2266 /// references
2267 /// many other record types.
2268 void CodeViewDebug::emitDeferredCompleteTypes() {
2269   SmallVector<const DICompositeType *, 4> TypesToEmit;
2270   while (!DeferredCompleteTypes.empty()) {
2271     std::swap(DeferredCompleteTypes, TypesToEmit);
2272     for (const DICompositeType *RecordTy : TypesToEmit)
2273       getCompleteTypeIndex(RecordTy);
2274     TypesToEmit.clear();
2275   }
2276 }
2277 
2278 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2279   // Get the sorted list of parameters and emit them first.
2280   SmallVector<const LocalVariable *, 6> Params;
2281   for (const LocalVariable &L : Locals)
2282     if (L.DIVar->isParameter())
2283       Params.push_back(&L);
2284   llvm::sort(Params.begin(), Params.end(),
2285              [](const LocalVariable *L, const LocalVariable *R) {
2286                return L->DIVar->getArg() < R->DIVar->getArg();
2287              });
2288   for (const LocalVariable *L : Params)
2289     emitLocalVariable(*L);
2290 
2291   // Next emit all non-parameters in the order that we found them.
2292   for (const LocalVariable &L : Locals)
2293     if (!L.DIVar->isParameter())
2294       emitLocalVariable(L);
2295 }
2296 
2297 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2298   // LocalSym record, see SymbolRecord.h for more info.
2299   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2300            *LocalEnd = MMI->getContext().createTempSymbol();
2301   OS.AddComment("Record length");
2302   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2303   OS.EmitLabel(LocalBegin);
2304 
2305   OS.AddComment("Record kind: S_LOCAL");
2306   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2307 
2308   LocalSymFlags Flags = LocalSymFlags::None;
2309   if (Var.DIVar->isParameter())
2310     Flags |= LocalSymFlags::IsParameter;
2311   if (Var.DefRanges.empty())
2312     Flags |= LocalSymFlags::IsOptimizedOut;
2313 
2314   OS.AddComment("TypeIndex");
2315   TypeIndex TI = Var.UseReferenceType
2316                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2317                      : getCompleteTypeIndex(Var.DIVar->getType());
2318   OS.EmitIntValue(TI.getIndex(), 4);
2319   OS.AddComment("Flags");
2320   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2321   // Truncate the name so we won't overflow the record length field.
2322   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2323   OS.EmitLabel(LocalEnd);
2324 
2325   // Calculate the on disk prefix of the appropriate def range record. The
2326   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2327   // should be big enough to hold all forms without memory allocation.
2328   SmallString<20> BytePrefix;
2329   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2330     BytePrefix.clear();
2331     if (DefRange.InMemory) {
2332       uint16_t RegRelFlags = 0;
2333       if (DefRange.IsSubfield) {
2334         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2335                       (DefRange.StructOffset
2336                        << DefRangeRegisterRelSym::OffsetInParentShift);
2337       }
2338       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2339       Sym.Hdr.Register = DefRange.CVRegister;
2340       Sym.Hdr.Flags = RegRelFlags;
2341       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2342       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2343       BytePrefix +=
2344           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2345       BytePrefix +=
2346           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2347     } else {
2348       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2349       if (DefRange.IsSubfield) {
2350         // Unclear what matters here.
2351         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2352         Sym.Hdr.Register = DefRange.CVRegister;
2353         Sym.Hdr.MayHaveNoName = 0;
2354         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2355 
2356         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2357         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2358                                 sizeof(SymKind));
2359         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2360                                 sizeof(Sym.Hdr));
2361       } else {
2362         // Unclear what matters here.
2363         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2364         Sym.Hdr.Register = DefRange.CVRegister;
2365         Sym.Hdr.MayHaveNoName = 0;
2366         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2367         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2368                                 sizeof(SymKind));
2369         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2370                                 sizeof(Sym.Hdr));
2371       }
2372     }
2373     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2374   }
2375 }
2376 
2377 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2378                                          const FunctionInfo& FI) {
2379   for (LexicalBlock *Block : Blocks)
2380     emitLexicalBlock(*Block, FI);
2381 }
2382 
2383 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2384 /// lexical block scope.
2385 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2386                                      const FunctionInfo& FI) {
2387   MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(),
2388            *RecordEnd   = MMI->getContext().createTempSymbol();
2389 
2390   // Lexical block symbol record.
2391   OS.AddComment("Record length");
2392   OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2);   // Record Length
2393   OS.EmitLabel(RecordBegin);
2394   OS.AddComment("Record kind: S_BLOCK32");
2395   OS.EmitIntValue(SymbolKind::S_BLOCK32, 2);              // Record Kind
2396   OS.AddComment("PtrParent");
2397   OS.EmitIntValue(0, 4);                                  // PtrParent
2398   OS.AddComment("PtrEnd");
2399   OS.EmitIntValue(0, 4);                                  // PtrEnd
2400   OS.AddComment("Code size");
2401   OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
2402   OS.AddComment("Function section relative address");
2403   OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset
2404   OS.AddComment("Function section index");
2405   OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol
2406   OS.AddComment("Lexical block name");
2407   emitNullTerminatedSymbolName(OS, Block.Name);           // Name
2408   OS.EmitLabel(RecordEnd);
2409 
2410   // Emit variables local to this lexical block.
2411   emitLocalVariableList(Block.Locals);
2412 
2413   // Emit lexical blocks contained within this block.
2414   emitLexicalBlockList(Block.Children, FI);
2415 
2416   // Close the lexical block scope.
2417   OS.AddComment("Record length");
2418   OS.EmitIntValue(2, 2);                                  // Record Length
2419   OS.AddComment("Record kind: S_END");
2420   OS.EmitIntValue(SymbolKind::S_END, 2);                  // Record Kind
2421 }
2422 
2423 /// Convenience routine for collecting lexical block information for a list
2424 /// of lexical scopes.
2425 void CodeViewDebug::collectLexicalBlockInfo(
2426         SmallVectorImpl<LexicalScope *> &Scopes,
2427         SmallVectorImpl<LexicalBlock *> &Blocks,
2428         SmallVectorImpl<LocalVariable> &Locals) {
2429   for (LexicalScope *Scope : Scopes)
2430     collectLexicalBlockInfo(*Scope, Blocks, Locals);
2431 }
2432 
2433 /// Populate the lexical blocks and local variable lists of the parent with
2434 /// information about the specified lexical scope.
2435 void CodeViewDebug::collectLexicalBlockInfo(
2436     LexicalScope &Scope,
2437     SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2438     SmallVectorImpl<LocalVariable> &ParentLocals) {
2439   if (Scope.isAbstractScope())
2440     return;
2441 
2442   auto LocalsIter = ScopeVariables.find(&Scope);
2443   if (LocalsIter == ScopeVariables.end()) {
2444     // This scope does not contain variables and can be eliminated.
2445     collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2446     return;
2447   }
2448   SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second;
2449 
2450   const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2451   if (!DILB) {
2452     // This scope is not a lexical block and can be eliminated, but keep any
2453     // local variables it contains.
2454     ParentLocals.append(Locals.begin(), Locals.end());
2455     collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2456     return;
2457   }
2458 
2459   const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2460   if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) {
2461     // This lexical block scope has too many address ranges to represent in the
2462     // current CodeView format or does not have a valid address range.
2463     // Eliminate this lexical scope and promote any locals it contains to the
2464     // parent scope.
2465     //
2466     // For lexical scopes with multiple address ranges you may be tempted to
2467     // construct a single range covering every instruction where the block is
2468     // live and everything in between.  Unfortunately, Visual Studio only
2469     // displays variables from the first matching lexical block scope.  If the
2470     // first lexical block contains exception handling code or cold code which
2471     // is moved to the bottom of the routine creating a single range covering
2472     // nearly the entire routine, then it will hide all other lexical blocks
2473     // and the variables they contain.
2474     //
2475     ParentLocals.append(Locals.begin(), Locals.end());
2476     collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2477     return;
2478   }
2479 
2480   // Create a new CodeView lexical block for this lexical scope.  If we've
2481   // seen this DILexicalBlock before then the scope tree is malformed and
2482   // we can handle this gracefully by not processing it a second time.
2483   auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2484   if (!BlockInsertion.second)
2485     return;
2486 
2487   // Create a lexical block containing the local variables and collect the
2488   // the lexical block information for the children.
2489   const InsnRange &Range = Ranges.front();
2490   assert(Range.first && Range.second);
2491   LexicalBlock &Block = BlockInsertion.first->second;
2492   Block.Begin = getLabelBeforeInsn(Range.first);
2493   Block.End = getLabelAfterInsn(Range.second);
2494   assert(Block.Begin && "missing label for scope begin");
2495   assert(Block.End && "missing label for scope end");
2496   Block.Name = DILB->getName();
2497   Block.Locals = std::move(Locals);
2498   ParentBlocks.push_back(&Block);
2499   collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals);
2500 }
2501 
2502 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2503   const Function &GV = MF->getFunction();
2504   assert(FnDebugInfo.count(&GV));
2505   assert(CurFn == FnDebugInfo[&GV].get());
2506 
2507   collectVariableInfo(GV.getSubprogram());
2508 
2509   // Build the lexical block structure to emit for this routine.
2510   if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2511     collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals);
2512 
2513   // Clear the scope and variable information from the map which will not be
2514   // valid after we have finished processing this routine.  This also prepares
2515   // the map for the subsequent routine.
2516   ScopeVariables.clear();
2517 
2518   // Don't emit anything if we don't have any line tables.
2519   if (!CurFn->HaveLineInfo) {
2520     FnDebugInfo.erase(&GV);
2521     CurFn = nullptr;
2522     return;
2523   }
2524 
2525   CurFn->Annotations = MF->getCodeViewAnnotations();
2526 
2527   CurFn->End = Asm->getFunctionEnd();
2528 
2529   CurFn = nullptr;
2530 }
2531 
2532 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2533   DebugHandlerBase::beginInstruction(MI);
2534 
2535   // Ignore DBG_VALUE locations and function prologue.
2536   if (!Asm || !CurFn || MI->isDebugValue() ||
2537       MI->getFlag(MachineInstr::FrameSetup))
2538     return;
2539 
2540   // If the first instruction of a new MBB has no location, find the first
2541   // instruction with a location and use that.
2542   DebugLoc DL = MI->getDebugLoc();
2543   if (!DL && MI->getParent() != PrevInstBB) {
2544     for (const auto &NextMI : *MI->getParent()) {
2545       if (NextMI.isDebugValue())
2546         continue;
2547       DL = NextMI.getDebugLoc();
2548       if (DL)
2549         break;
2550     }
2551   }
2552   PrevInstBB = MI->getParent();
2553 
2554   // If we still don't have a debug location, don't record a location.
2555   if (!DL)
2556     return;
2557 
2558   maybeRecordLocation(DL, Asm->MF);
2559 }
2560 
2561 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2562   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2563            *EndLabel = MMI->getContext().createTempSymbol();
2564   OS.EmitIntValue(unsigned(Kind), 4);
2565   OS.AddComment("Subsection size");
2566   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2567   OS.EmitLabel(BeginLabel);
2568   return EndLabel;
2569 }
2570 
2571 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2572   OS.EmitLabel(EndLabel);
2573   // Every subsection must be aligned to a 4-byte boundary.
2574   OS.EmitValueToAlignment(4);
2575 }
2576 
2577 void CodeViewDebug::emitDebugInfoForUDTs(
2578     ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2579   for (const auto &UDT : UDTs) {
2580     const DIType *T = UDT.second;
2581     assert(shouldEmitUdt(T));
2582 
2583     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2584              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2585     OS.AddComment("Record length");
2586     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2587     OS.EmitLabel(UDTRecordBegin);
2588 
2589     OS.AddComment("Record kind: S_UDT");
2590     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2591 
2592     OS.AddComment("Type");
2593     OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2594 
2595     emitNullTerminatedSymbolName(OS, UDT.first);
2596     OS.EmitLabel(UDTRecordEnd);
2597   }
2598 }
2599 
2600 void CodeViewDebug::emitDebugInfoForGlobals() {
2601   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2602       GlobalMap;
2603   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2604     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2605     GV.getDebugInfo(GVEs);
2606     for (const auto *GVE : GVEs)
2607       GlobalMap[GVE] = &GV;
2608   }
2609 
2610   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2611   for (const MDNode *Node : CUs->operands()) {
2612     const auto *CU = cast<DICompileUnit>(Node);
2613 
2614     // First, emit all globals that are not in a comdat in a single symbol
2615     // substream. MSVC doesn't like it if the substream is empty, so only open
2616     // it if we have at least one global to emit.
2617     switchToDebugSectionForSymbol(nullptr);
2618     MCSymbol *EndLabel = nullptr;
2619     for (const auto *GVE : CU->getGlobalVariables()) {
2620       if (const auto *GV = GlobalMap.lookup(GVE))
2621         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2622           if (!EndLabel) {
2623             OS.AddComment("Symbol subsection for globals");
2624             EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2625           }
2626           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2627           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2628         }
2629     }
2630     if (EndLabel)
2631       endCVSubsection(EndLabel);
2632 
2633     // Second, emit each global that is in a comdat into its own .debug$S
2634     // section along with its own symbol substream.
2635     for (const auto *GVE : CU->getGlobalVariables()) {
2636       if (const auto *GV = GlobalMap.lookup(GVE)) {
2637         if (GV->hasComdat()) {
2638           MCSymbol *GVSym = Asm->getSymbol(GV);
2639           OS.AddComment("Symbol subsection for " +
2640                         Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2641           switchToDebugSectionForSymbol(GVSym);
2642           EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2643           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2644           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2645           endCVSubsection(EndLabel);
2646         }
2647       }
2648     }
2649   }
2650 }
2651 
2652 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2653   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2654   for (const MDNode *Node : CUs->operands()) {
2655     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2656       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2657         getTypeIndex(RT);
2658         // FIXME: Add to global/local DTU list.
2659       }
2660     }
2661   }
2662 }
2663 
2664 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2665                                            const GlobalVariable *GV,
2666                                            MCSymbol *GVSym) {
2667   // DataSym record, see SymbolRecord.h for more info.
2668   // FIXME: Thread local data, etc
2669   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2670            *DataEnd = MMI->getContext().createTempSymbol();
2671   const unsigned FixedLengthOfThisRecord = 12;
2672   OS.AddComment("Record length");
2673   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2674   OS.EmitLabel(DataBegin);
2675   if (DIGV->isLocalToUnit()) {
2676     if (GV->isThreadLocal()) {
2677       OS.AddComment("Record kind: S_LTHREAD32");
2678       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2679     } else {
2680       OS.AddComment("Record kind: S_LDATA32");
2681       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2682     }
2683   } else {
2684     if (GV->isThreadLocal()) {
2685       OS.AddComment("Record kind: S_GTHREAD32");
2686       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2687     } else {
2688       OS.AddComment("Record kind: S_GDATA32");
2689       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2690     }
2691   }
2692   OS.AddComment("Type");
2693   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2694   OS.AddComment("DataOffset");
2695   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2696   OS.AddComment("Segment");
2697   OS.EmitCOFFSectionIndex(GVSym);
2698   OS.AddComment("Name");
2699   emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord);
2700   OS.EmitLabel(DataEnd);
2701 }
2702