1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/BinaryFormat/COFF.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/CodeGen/AsmPrinter.h"
32 #include "llvm/CodeGen/LexicalScopes.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
43 #include "llvm/DebugInfo/CodeView/CodeView.h"
44 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
45 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
46 #include "llvm/DebugInfo/CodeView/EnumTables.h"
47 #include "llvm/DebugInfo/CodeView/Line.h"
48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
50 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
51 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugInfoMetadata.h"
56 #include "llvm/IR/DebugLoc.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GlobalValue.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/MC/MCAsmInfo.h"
63 #include "llvm/MC/MCContext.h"
64 #include "llvm/MC/MCSectionCOFF.h"
65 #include "llvm/MC/MCStreamer.h"
66 #include "llvm/MC/MCSymbol.h"
67 #include "llvm/Support/BinaryByteStream.h"
68 #include "llvm/Support/BinaryStreamReader.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Endian.h"
73 #include "llvm/Support/Error.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/Path.h"
77 #include "llvm/Support/SMLoc.h"
78 #include "llvm/Support/ScopedPrinter.h"
79 #include "llvm/Target/TargetLoweringObjectFile.h"
80 #include "llvm/Target/TargetMachine.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cctype>
84 #include <cstddef>
85 #include <cstdint>
86 #include <iterator>
87 #include <limits>
88 #include <string>
89 #include <utility>
90 #include <vector>
91 
92 using namespace llvm;
93 using namespace llvm::codeview;
94 
95 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
96   switch (Type) {
97   case Triple::ArchType::x86:
98     return CPUType::Pentium3;
99   case Triple::ArchType::x86_64:
100     return CPUType::X64;
101   case Triple::ArchType::thumb:
102     return CPUType::Thumb;
103   case Triple::ArchType::aarch64:
104     return CPUType::ARM64;
105   default:
106     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
107   }
108 }
109 
110 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
111     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
112   // If module doesn't have named metadata anchors or COFF debug section
113   // is not available, skip any debug info related stuff.
114   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
115       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
116     Asm = nullptr;
117     MMI->setDebugInfoAvailability(false);
118     return;
119   }
120   // Tell MMI that we have debug info.
121   MMI->setDebugInfoAvailability(true);
122 
123   TheCPU =
124       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
125 
126   collectGlobalVariableInfo();
127 
128   // Check if we should emit type record hashes.
129   ConstantInt *GH = mdconst::extract_or_null<ConstantInt>(
130       MMI->getModule()->getModuleFlag("CodeViewGHash"));
131   EmitDebugGlobalHashes = GH && !GH->isZero();
132 }
133 
134 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
135   std::string &Filepath = FileToFilepathMap[File];
136   if (!Filepath.empty())
137     return Filepath;
138 
139   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
140 
141   // If this is a Unix-style path, just use it as is. Don't try to canonicalize
142   // it textually because one of the path components could be a symlink.
143   if (Dir.startswith("/") || Filename.startswith("/")) {
144     if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
145       return Filename;
146     Filepath = Dir;
147     if (Dir.back() != '/')
148       Filepath += '/';
149     Filepath += Filename;
150     return Filepath;
151   }
152 
153   // Clang emits directory and relative filename info into the IR, but CodeView
154   // operates on full paths.  We could change Clang to emit full paths too, but
155   // that would increase the IR size and probably not needed for other users.
156   // For now, just concatenate and canonicalize the path here.
157   if (Filename.find(':') == 1)
158     Filepath = Filename;
159   else
160     Filepath = (Dir + "\\" + Filename).str();
161 
162   // Canonicalize the path.  We have to do it textually because we may no longer
163   // have access the file in the filesystem.
164   // First, replace all slashes with backslashes.
165   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
166 
167   // Remove all "\.\" with "\".
168   size_t Cursor = 0;
169   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
170     Filepath.erase(Cursor, 2);
171 
172   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
173   // path should be well-formatted, e.g. start with a drive letter, etc.
174   Cursor = 0;
175   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
176     // Something's wrong if the path starts with "\..\", abort.
177     if (Cursor == 0)
178       break;
179 
180     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
181     if (PrevSlash == std::string::npos)
182       // Something's wrong, abort.
183       break;
184 
185     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
186     // The next ".." might be following the one we've just erased.
187     Cursor = PrevSlash;
188   }
189 
190   // Remove all duplicate backslashes.
191   Cursor = 0;
192   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
193     Filepath.erase(Cursor, 1);
194 
195   return Filepath;
196 }
197 
198 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
199   StringRef FullPath = getFullFilepath(F);
200   unsigned NextId = FileIdMap.size() + 1;
201   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
202   if (Insertion.second) {
203     // We have to compute the full filepath and emit a .cv_file directive.
204     ArrayRef<uint8_t> ChecksumAsBytes;
205     FileChecksumKind CSKind = FileChecksumKind::None;
206     if (F->getChecksum()) {
207       std::string Checksum = fromHex(F->getChecksum()->Value);
208       void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
209       memcpy(CKMem, Checksum.data(), Checksum.size());
210       ChecksumAsBytes = ArrayRef<uint8_t>(
211           reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
212       switch (F->getChecksum()->Kind) {
213       case DIFile::CSK_MD5:  CSKind = FileChecksumKind::MD5; break;
214       case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break;
215       }
216     }
217     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
218                                           static_cast<unsigned>(CSKind));
219     (void)Success;
220     assert(Success && ".cv_file directive failed");
221   }
222   return Insertion.first->second;
223 }
224 
225 CodeViewDebug::InlineSite &
226 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
227                              const DISubprogram *Inlinee) {
228   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
229   InlineSite *Site = &SiteInsertion.first->second;
230   if (SiteInsertion.second) {
231     unsigned ParentFuncId = CurFn->FuncId;
232     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
233       ParentFuncId =
234           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
235               .SiteFuncId;
236 
237     Site->SiteFuncId = NextFuncId++;
238     OS.EmitCVInlineSiteIdDirective(
239         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
240         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
241     Site->Inlinee = Inlinee;
242     InlinedSubprograms.insert(Inlinee);
243     getFuncIdForSubprogram(Inlinee);
244   }
245   return *Site;
246 }
247 
248 static StringRef getPrettyScopeName(const DIScope *Scope) {
249   StringRef ScopeName = Scope->getName();
250   if (!ScopeName.empty())
251     return ScopeName;
252 
253   switch (Scope->getTag()) {
254   case dwarf::DW_TAG_enumeration_type:
255   case dwarf::DW_TAG_class_type:
256   case dwarf::DW_TAG_structure_type:
257   case dwarf::DW_TAG_union_type:
258     return "<unnamed-tag>";
259   case dwarf::DW_TAG_namespace:
260     return "`anonymous namespace'";
261   }
262 
263   return StringRef();
264 }
265 
266 static const DISubprogram *getQualifiedNameComponents(
267     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
268   const DISubprogram *ClosestSubprogram = nullptr;
269   while (Scope != nullptr) {
270     if (ClosestSubprogram == nullptr)
271       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
272     StringRef ScopeName = getPrettyScopeName(Scope);
273     if (!ScopeName.empty())
274       QualifiedNameComponents.push_back(ScopeName);
275     Scope = Scope->getScope().resolve();
276   }
277   return ClosestSubprogram;
278 }
279 
280 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
281                                     StringRef TypeName) {
282   std::string FullyQualifiedName;
283   for (StringRef QualifiedNameComponent :
284        llvm::reverse(QualifiedNameComponents)) {
285     FullyQualifiedName.append(QualifiedNameComponent);
286     FullyQualifiedName.append("::");
287   }
288   FullyQualifiedName.append(TypeName);
289   return FullyQualifiedName;
290 }
291 
292 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
293   SmallVector<StringRef, 5> QualifiedNameComponents;
294   getQualifiedNameComponents(Scope, QualifiedNameComponents);
295   return getQualifiedName(QualifiedNameComponents, Name);
296 }
297 
298 struct CodeViewDebug::TypeLoweringScope {
299   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
300   ~TypeLoweringScope() {
301     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
302     // inner TypeLoweringScopes don't attempt to emit deferred types.
303     if (CVD.TypeEmissionLevel == 1)
304       CVD.emitDeferredCompleteTypes();
305     --CVD.TypeEmissionLevel;
306   }
307   CodeViewDebug &CVD;
308 };
309 
310 static std::string getFullyQualifiedName(const DIScope *Ty) {
311   const DIScope *Scope = Ty->getScope().resolve();
312   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
313 }
314 
315 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
316   // No scope means global scope and that uses the zero index.
317   if (!Scope || isa<DIFile>(Scope))
318     return TypeIndex();
319 
320   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
321 
322   // Check if we've already translated this scope.
323   auto I = TypeIndices.find({Scope, nullptr});
324   if (I != TypeIndices.end())
325     return I->second;
326 
327   // Build the fully qualified name of the scope.
328   std::string ScopeName = getFullyQualifiedName(Scope);
329   StringIdRecord SID(TypeIndex(), ScopeName);
330   auto TI = TypeTable.writeLeafType(SID);
331   return recordTypeIndexForDINode(Scope, TI);
332 }
333 
334 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
335   assert(SP);
336 
337   // Check if we've already translated this subprogram.
338   auto I = TypeIndices.find({SP, nullptr});
339   if (I != TypeIndices.end())
340     return I->second;
341 
342   // The display name includes function template arguments. Drop them to match
343   // MSVC.
344   StringRef DisplayName = SP->getName().split('<').first;
345 
346   const DIScope *Scope = SP->getScope().resolve();
347   TypeIndex TI;
348   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
349     // If the scope is a DICompositeType, then this must be a method. Member
350     // function types take some special handling, and require access to the
351     // subprogram.
352     TypeIndex ClassType = getTypeIndex(Class);
353     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
354                                DisplayName);
355     TI = TypeTable.writeLeafType(MFuncId);
356   } else {
357     // Otherwise, this must be a free function.
358     TypeIndex ParentScope = getScopeIndex(Scope);
359     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
360     TI = TypeTable.writeLeafType(FuncId);
361   }
362 
363   return recordTypeIndexForDINode(SP, TI);
364 }
365 
366 static bool isNonTrivial(const DICompositeType *DCTy) {
367   return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
368 }
369 
370 static FunctionOptions
371 getFunctionOptions(const DISubroutineType *Ty,
372                    const DICompositeType *ClassTy = nullptr,
373                    StringRef SPName = StringRef("")) {
374   FunctionOptions FO = FunctionOptions::None;
375   const DIType *ReturnTy = nullptr;
376   if (auto TypeArray = Ty->getTypeArray()) {
377     if (TypeArray.size())
378       ReturnTy = TypeArray[0].resolve();
379   }
380 
381   if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) {
382     if (isNonTrivial(ReturnDCTy))
383       FO |= FunctionOptions::CxxReturnUdt;
384   }
385 
386   // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
387   if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
388     FO |= FunctionOptions::Constructor;
389 
390   // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
391 
392   }
393   return FO;
394 }
395 
396 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
397                                                const DICompositeType *Class) {
398   // Always use the method declaration as the key for the function type. The
399   // method declaration contains the this adjustment.
400   if (SP->getDeclaration())
401     SP = SP->getDeclaration();
402   assert(!SP->getDeclaration() && "should use declaration as key");
403 
404   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
405   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
406   auto I = TypeIndices.find({SP, Class});
407   if (I != TypeIndices.end())
408     return I->second;
409 
410   // Make sure complete type info for the class is emitted *after* the member
411   // function type, as the complete class type is likely to reference this
412   // member function type.
413   TypeLoweringScope S(*this);
414   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
415 
416   FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
417   TypeIndex TI = lowerTypeMemberFunction(
418       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
419   return recordTypeIndexForDINode(SP, TI, Class);
420 }
421 
422 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
423                                                   TypeIndex TI,
424                                                   const DIType *ClassTy) {
425   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
426   (void)InsertResult;
427   assert(InsertResult.second && "DINode was already assigned a type index");
428   return TI;
429 }
430 
431 unsigned CodeViewDebug::getPointerSizeInBytes() {
432   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
433 }
434 
435 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
436                                         const LexicalScope *LS) {
437   if (const DILocation *InlinedAt = LS->getInlinedAt()) {
438     // This variable was inlined. Associate it with the InlineSite.
439     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
440     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
441     Site.InlinedLocals.emplace_back(Var);
442   } else {
443     // This variable goes into the corresponding lexical scope.
444     ScopeVariables[LS].emplace_back(Var);
445   }
446 }
447 
448 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
449                                const DILocation *Loc) {
450   auto B = Locs.begin(), E = Locs.end();
451   if (std::find(B, E, Loc) == E)
452     Locs.push_back(Loc);
453 }
454 
455 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
456                                         const MachineFunction *MF) {
457   // Skip this instruction if it has the same location as the previous one.
458   if (!DL || DL == PrevInstLoc)
459     return;
460 
461   const DIScope *Scope = DL.get()->getScope();
462   if (!Scope)
463     return;
464 
465   // Skip this line if it is longer than the maximum we can record.
466   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
467   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
468       LI.isNeverStepInto())
469     return;
470 
471   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
472   if (CI.getStartColumn() != DL.getCol())
473     return;
474 
475   if (!CurFn->HaveLineInfo)
476     CurFn->HaveLineInfo = true;
477   unsigned FileId = 0;
478   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
479     FileId = CurFn->LastFileId;
480   else
481     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
482   PrevInstLoc = DL;
483 
484   unsigned FuncId = CurFn->FuncId;
485   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
486     const DILocation *Loc = DL.get();
487 
488     // If this location was actually inlined from somewhere else, give it the ID
489     // of the inline call site.
490     FuncId =
491         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
492 
493     // Ensure we have links in the tree of inline call sites.
494     bool FirstLoc = true;
495     while ((SiteLoc = Loc->getInlinedAt())) {
496       InlineSite &Site =
497           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
498       if (!FirstLoc)
499         addLocIfNotPresent(Site.ChildSites, Loc);
500       FirstLoc = false;
501       Loc = SiteLoc;
502     }
503     addLocIfNotPresent(CurFn->ChildSites, Loc);
504   }
505 
506   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
507                         /*PrologueEnd=*/false, /*IsStmt=*/false,
508                         DL->getFilename(), SMLoc());
509 }
510 
511 void CodeViewDebug::emitCodeViewMagicVersion() {
512   OS.EmitValueToAlignment(4);
513   OS.AddComment("Debug section magic");
514   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
515 }
516 
517 void CodeViewDebug::endModule() {
518   if (!Asm || !MMI->hasDebugInfo())
519     return;
520 
521   assert(Asm != nullptr);
522 
523   // The COFF .debug$S section consists of several subsections, each starting
524   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
525   // of the payload followed by the payload itself.  The subsections are 4-byte
526   // aligned.
527 
528   // Use the generic .debug$S section, and make a subsection for all the inlined
529   // subprograms.
530   switchToDebugSectionForSymbol(nullptr);
531 
532   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
533   emitCompilerInformation();
534   endCVSubsection(CompilerInfo);
535 
536   emitInlineeLinesSubsection();
537 
538   // Emit per-function debug information.
539   for (auto &P : FnDebugInfo)
540     if (!P.first->isDeclarationForLinker())
541       emitDebugInfoForFunction(P.first, *P.second);
542 
543   // Emit global variable debug information.
544   setCurrentSubprogram(nullptr);
545   emitDebugInfoForGlobals();
546 
547   // Emit retained types.
548   emitDebugInfoForRetainedTypes();
549 
550   // Switch back to the generic .debug$S section after potentially processing
551   // comdat symbol sections.
552   switchToDebugSectionForSymbol(nullptr);
553 
554   // Emit UDT records for any types used by global variables.
555   if (!GlobalUDTs.empty()) {
556     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
557     emitDebugInfoForUDTs(GlobalUDTs);
558     endCVSubsection(SymbolsEnd);
559   }
560 
561   // This subsection holds a file index to offset in string table table.
562   OS.AddComment("File index to string table offset subsection");
563   OS.EmitCVFileChecksumsDirective();
564 
565   // This subsection holds the string table.
566   OS.AddComment("String table");
567   OS.EmitCVStringTableDirective();
568 
569   // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
570   // subsection in the generic .debug$S section at the end. There is no
571   // particular reason for this ordering other than to match MSVC.
572   emitBuildInfo();
573 
574   // Emit type information and hashes last, so that any types we translate while
575   // emitting function info are included.
576   emitTypeInformation();
577 
578   if (EmitDebugGlobalHashes)
579     emitTypeGlobalHashes();
580 
581   clear();
582 }
583 
584 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
585     unsigned MaxFixedRecordLength = 0xF00) {
586   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
587   // after a fixed length portion of the record. The fixed length portion should
588   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
589   // overall record size is less than the maximum allowed.
590   SmallString<32> NullTerminatedString(
591       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
592   NullTerminatedString.push_back('\0');
593   OS.EmitBytes(NullTerminatedString);
594 }
595 
596 void CodeViewDebug::emitTypeInformation() {
597   if (TypeTable.empty())
598     return;
599 
600   // Start the .debug$T or .debug$P section with 0x4.
601   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
602   emitCodeViewMagicVersion();
603 
604   SmallString<8> CommentPrefix;
605   if (OS.isVerboseAsm()) {
606     CommentPrefix += '\t';
607     CommentPrefix += Asm->MAI->getCommentString();
608     CommentPrefix += ' ';
609   }
610 
611   TypeTableCollection Table(TypeTable.records());
612   Optional<TypeIndex> B = Table.getFirst();
613   while (B) {
614     // This will fail if the record data is invalid.
615     CVType Record = Table.getType(*B);
616 
617     if (OS.isVerboseAsm()) {
618       // Emit a block comment describing the type record for readability.
619       SmallString<512> CommentBlock;
620       raw_svector_ostream CommentOS(CommentBlock);
621       ScopedPrinter SP(CommentOS);
622       SP.setPrefix(CommentPrefix);
623       TypeDumpVisitor TDV(Table, &SP, false);
624 
625       Error E = codeview::visitTypeRecord(Record, *B, TDV);
626       if (E) {
627         logAllUnhandledErrors(std::move(E), errs(), "error: ");
628         llvm_unreachable("produced malformed type record");
629       }
630       // emitRawComment will insert its own tab and comment string before
631       // the first line, so strip off our first one. It also prints its own
632       // newline.
633       OS.emitRawComment(
634           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
635     }
636     OS.EmitBinaryData(Record.str_data());
637     B = Table.getNext(*B);
638   }
639 }
640 
641 void CodeViewDebug::emitTypeGlobalHashes() {
642   if (TypeTable.empty())
643     return;
644 
645   // Start the .debug$H section with the version and hash algorithm, currently
646   // hardcoded to version 0, SHA1.
647   OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
648 
649   OS.EmitValueToAlignment(4);
650   OS.AddComment("Magic");
651   OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4);
652   OS.AddComment("Section Version");
653   OS.EmitIntValue(0, 2);
654   OS.AddComment("Hash Algorithm");
655   OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2);
656 
657   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
658   for (const auto &GHR : TypeTable.hashes()) {
659     if (OS.isVerboseAsm()) {
660       // Emit an EOL-comment describing which TypeIndex this hash corresponds
661       // to, as well as the stringified SHA1 hash.
662       SmallString<32> Comment;
663       raw_svector_ostream CommentOS(Comment);
664       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
665       OS.AddComment(Comment);
666       ++TI;
667     }
668     assert(GHR.Hash.size() == 8);
669     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
670                 GHR.Hash.size());
671     OS.EmitBinaryData(S);
672   }
673 }
674 
675 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
676   switch (DWLang) {
677   case dwarf::DW_LANG_C:
678   case dwarf::DW_LANG_C89:
679   case dwarf::DW_LANG_C99:
680   case dwarf::DW_LANG_C11:
681   case dwarf::DW_LANG_ObjC:
682     return SourceLanguage::C;
683   case dwarf::DW_LANG_C_plus_plus:
684   case dwarf::DW_LANG_C_plus_plus_03:
685   case dwarf::DW_LANG_C_plus_plus_11:
686   case dwarf::DW_LANG_C_plus_plus_14:
687     return SourceLanguage::Cpp;
688   case dwarf::DW_LANG_Fortran77:
689   case dwarf::DW_LANG_Fortran90:
690   case dwarf::DW_LANG_Fortran03:
691   case dwarf::DW_LANG_Fortran08:
692     return SourceLanguage::Fortran;
693   case dwarf::DW_LANG_Pascal83:
694     return SourceLanguage::Pascal;
695   case dwarf::DW_LANG_Cobol74:
696   case dwarf::DW_LANG_Cobol85:
697     return SourceLanguage::Cobol;
698   case dwarf::DW_LANG_Java:
699     return SourceLanguage::Java;
700   case dwarf::DW_LANG_D:
701     return SourceLanguage::D;
702   case dwarf::DW_LANG_Swift:
703     return SourceLanguage::Swift;
704   default:
705     // There's no CodeView representation for this language, and CV doesn't
706     // have an "unknown" option for the language field, so we'll use MASM,
707     // as it's very low level.
708     return SourceLanguage::Masm;
709   }
710 }
711 
712 namespace {
713 struct Version {
714   int Part[4];
715 };
716 } // end anonymous namespace
717 
718 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
719 // the version number.
720 static Version parseVersion(StringRef Name) {
721   Version V = {{0}};
722   int N = 0;
723   for (const char C : Name) {
724     if (isdigit(C)) {
725       V.Part[N] *= 10;
726       V.Part[N] += C - '0';
727     } else if (C == '.') {
728       ++N;
729       if (N >= 4)
730         return V;
731     } else if (N > 0)
732       return V;
733   }
734   return V;
735 }
736 
737 void CodeViewDebug::emitCompilerInformation() {
738   MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
739   uint32_t Flags = 0;
740 
741   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
742   const MDNode *Node = *CUs->operands().begin();
743   const auto *CU = cast<DICompileUnit>(Node);
744 
745   // The low byte of the flags indicates the source language.
746   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
747   // TODO:  Figure out which other flags need to be set.
748 
749   OS.AddComment("Flags and language");
750   OS.EmitIntValue(Flags, 4);
751 
752   OS.AddComment("CPUType");
753   OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2);
754 
755   StringRef CompilerVersion = CU->getProducer();
756   Version FrontVer = parseVersion(CompilerVersion);
757   OS.AddComment("Frontend version");
758   for (int N = 0; N < 4; ++N)
759     OS.EmitIntValue(FrontVer.Part[N], 2);
760 
761   // Some Microsoft tools, like Binscope, expect a backend version number of at
762   // least 8.something, so we'll coerce the LLVM version into a form that
763   // guarantees it'll be big enough without really lying about the version.
764   int Major = 1000 * LLVM_VERSION_MAJOR +
765               10 * LLVM_VERSION_MINOR +
766               LLVM_VERSION_PATCH;
767   // Clamp it for builds that use unusually large version numbers.
768   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
769   Version BackVer = {{ Major, 0, 0, 0 }};
770   OS.AddComment("Backend version");
771   for (int N = 0; N < 4; ++N)
772     OS.EmitIntValue(BackVer.Part[N], 2);
773 
774   OS.AddComment("Null-terminated compiler version string");
775   emitNullTerminatedSymbolName(OS, CompilerVersion);
776 
777   endSymbolRecord(CompilerEnd);
778 }
779 
780 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
781                                     StringRef S) {
782   StringIdRecord SIR(TypeIndex(0x0), S);
783   return TypeTable.writeLeafType(SIR);
784 }
785 
786 void CodeViewDebug::emitBuildInfo() {
787   // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
788   // build info. The known prefix is:
789   // - Absolute path of current directory
790   // - Compiler path
791   // - Main source file path, relative to CWD or absolute
792   // - Type server PDB file
793   // - Canonical compiler command line
794   // If frontend and backend compilation are separated (think llc or LTO), it's
795   // not clear if the compiler path should refer to the executable for the
796   // frontend or the backend. Leave it blank for now.
797   TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
798   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
799   const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
800   const auto *CU = cast<DICompileUnit>(Node);
801   const DIFile *MainSourceFile = CU->getFile();
802   BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
803       getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
804   BuildInfoArgs[BuildInfoRecord::SourceFile] =
805       getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
806   // FIXME: Path to compiler and command line. PDB is intentionally blank unless
807   // we implement /Zi type servers.
808   BuildInfoRecord BIR(BuildInfoArgs);
809   TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
810 
811   // Make a new .debug$S subsection for the S_BUILDINFO record, which points
812   // from the module symbols into the type stream.
813   MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
814   MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
815   OS.AddComment("LF_BUILDINFO index");
816   OS.EmitIntValue(BuildInfoIndex.getIndex(), 4);
817   endSymbolRecord(BIEnd);
818   endCVSubsection(BISubsecEnd);
819 }
820 
821 void CodeViewDebug::emitInlineeLinesSubsection() {
822   if (InlinedSubprograms.empty())
823     return;
824 
825   OS.AddComment("Inlinee lines subsection");
826   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
827 
828   // We emit the checksum info for files.  This is used by debuggers to
829   // determine if a pdb matches the source before loading it.  Visual Studio,
830   // for instance, will display a warning that the breakpoints are not valid if
831   // the pdb does not match the source.
832   OS.AddComment("Inlinee lines signature");
833   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
834 
835   for (const DISubprogram *SP : InlinedSubprograms) {
836     assert(TypeIndices.count({SP, nullptr}));
837     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
838 
839     OS.AddBlankLine();
840     unsigned FileId = maybeRecordFile(SP->getFile());
841     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
842                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
843     OS.AddBlankLine();
844     OS.AddComment("Type index of inlined function");
845     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
846     OS.AddComment("Offset into filechecksum table");
847     OS.EmitCVFileChecksumOffsetDirective(FileId);
848     OS.AddComment("Starting line number");
849     OS.EmitIntValue(SP->getLine(), 4);
850   }
851 
852   endCVSubsection(InlineEnd);
853 }
854 
855 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
856                                         const DILocation *InlinedAt,
857                                         const InlineSite &Site) {
858   assert(TypeIndices.count({Site.Inlinee, nullptr}));
859   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
860 
861   // SymbolRecord
862   MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
863 
864   OS.AddComment("PtrParent");
865   OS.EmitIntValue(0, 4);
866   OS.AddComment("PtrEnd");
867   OS.EmitIntValue(0, 4);
868   OS.AddComment("Inlinee type index");
869   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
870 
871   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
872   unsigned StartLineNum = Site.Inlinee->getLine();
873 
874   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
875                                     FI.Begin, FI.End);
876 
877   endSymbolRecord(InlineEnd);
878 
879   emitLocalVariableList(FI, Site.InlinedLocals);
880 
881   // Recurse on child inlined call sites before closing the scope.
882   for (const DILocation *ChildSite : Site.ChildSites) {
883     auto I = FI.InlineSites.find(ChildSite);
884     assert(I != FI.InlineSites.end() &&
885            "child site not in function inline site map");
886     emitInlinedCallSite(FI, ChildSite, I->second);
887   }
888 
889   // Close the scope.
890   emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
891 }
892 
893 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
894   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
895   // comdat key. A section may be comdat because of -ffunction-sections or
896   // because it is comdat in the IR.
897   MCSectionCOFF *GVSec =
898       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
899   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
900 
901   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
902       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
903   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
904 
905   OS.SwitchSection(DebugSec);
906 
907   // Emit the magic version number if this is the first time we've switched to
908   // this section.
909   if (ComdatDebugSections.insert(DebugSec).second)
910     emitCodeViewMagicVersion();
911 }
912 
913 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
914 // The only supported thunk ordinal is currently the standard type.
915 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
916                                           FunctionInfo &FI,
917                                           const MCSymbol *Fn) {
918   std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
919   const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
920 
921   OS.AddComment("Symbol subsection for " + Twine(FuncName));
922   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
923 
924   // Emit S_THUNK32
925   MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
926   OS.AddComment("PtrParent");
927   OS.EmitIntValue(0, 4);
928   OS.AddComment("PtrEnd");
929   OS.EmitIntValue(0, 4);
930   OS.AddComment("PtrNext");
931   OS.EmitIntValue(0, 4);
932   OS.AddComment("Thunk section relative address");
933   OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
934   OS.AddComment("Thunk section index");
935   OS.EmitCOFFSectionIndex(Fn);
936   OS.AddComment("Code size");
937   OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
938   OS.AddComment("Ordinal");
939   OS.EmitIntValue(unsigned(ordinal), 1);
940   OS.AddComment("Function name");
941   emitNullTerminatedSymbolName(OS, FuncName);
942   // Additional fields specific to the thunk ordinal would go here.
943   endSymbolRecord(ThunkRecordEnd);
944 
945   // Local variables/inlined routines are purposely omitted here.  The point of
946   // marking this as a thunk is so Visual Studio will NOT stop in this routine.
947 
948   // Emit S_PROC_ID_END
949   emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
950 
951   endCVSubsection(SymbolsEnd);
952 }
953 
954 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
955                                              FunctionInfo &FI) {
956   // For each function there is a separate subsection which holds the PC to
957   // file:line table.
958   const MCSymbol *Fn = Asm->getSymbol(GV);
959   assert(Fn);
960 
961   // Switch to the to a comdat section, if appropriate.
962   switchToDebugSectionForSymbol(Fn);
963 
964   std::string FuncName;
965   auto *SP = GV->getSubprogram();
966   assert(SP);
967   setCurrentSubprogram(SP);
968 
969   if (SP->isThunk()) {
970     emitDebugInfoForThunk(GV, FI, Fn);
971     return;
972   }
973 
974   // If we have a display name, build the fully qualified name by walking the
975   // chain of scopes.
976   if (!SP->getName().empty())
977     FuncName =
978         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
979 
980   // If our DISubprogram name is empty, use the mangled name.
981   if (FuncName.empty())
982     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
983 
984   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
985   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
986     OS.EmitCVFPOData(Fn);
987 
988   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
989   OS.AddComment("Symbol subsection for " + Twine(FuncName));
990   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
991   {
992     SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
993                                                 : SymbolKind::S_GPROC32_ID;
994     MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
995 
996     // These fields are filled in by tools like CVPACK which run after the fact.
997     OS.AddComment("PtrParent");
998     OS.EmitIntValue(0, 4);
999     OS.AddComment("PtrEnd");
1000     OS.EmitIntValue(0, 4);
1001     OS.AddComment("PtrNext");
1002     OS.EmitIntValue(0, 4);
1003     // This is the important bit that tells the debugger where the function
1004     // code is located and what's its size:
1005     OS.AddComment("Code size");
1006     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1007     OS.AddComment("Offset after prologue");
1008     OS.EmitIntValue(0, 4);
1009     OS.AddComment("Offset before epilogue");
1010     OS.EmitIntValue(0, 4);
1011     OS.AddComment("Function type index");
1012     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
1013     OS.AddComment("Function section relative address");
1014     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1015     OS.AddComment("Function section index");
1016     OS.EmitCOFFSectionIndex(Fn);
1017     OS.AddComment("Flags");
1018     OS.EmitIntValue(0, 1);
1019     // Emit the function display name as a null-terminated string.
1020     OS.AddComment("Function name");
1021     // Truncate the name so we won't overflow the record length field.
1022     emitNullTerminatedSymbolName(OS, FuncName);
1023     endSymbolRecord(ProcRecordEnd);
1024 
1025     MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1026     // Subtract out the CSR size since MSVC excludes that and we include it.
1027     OS.AddComment("FrameSize");
1028     OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4);
1029     OS.AddComment("Padding");
1030     OS.EmitIntValue(0, 4);
1031     OS.AddComment("Offset of padding");
1032     OS.EmitIntValue(0, 4);
1033     OS.AddComment("Bytes of callee saved registers");
1034     OS.EmitIntValue(FI.CSRSize, 4);
1035     OS.AddComment("Exception handler offset");
1036     OS.EmitIntValue(0, 4);
1037     OS.AddComment("Exception handler section");
1038     OS.EmitIntValue(0, 2);
1039     OS.AddComment("Flags (defines frame register)");
1040     OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4);
1041     endSymbolRecord(FrameProcEnd);
1042 
1043     emitLocalVariableList(FI, FI.Locals);
1044     emitGlobalVariableList(FI.Globals);
1045     emitLexicalBlockList(FI.ChildBlocks, FI);
1046 
1047     // Emit inlined call site information. Only emit functions inlined directly
1048     // into the parent function. We'll emit the other sites recursively as part
1049     // of their parent inline site.
1050     for (const DILocation *InlinedAt : FI.ChildSites) {
1051       auto I = FI.InlineSites.find(InlinedAt);
1052       assert(I != FI.InlineSites.end() &&
1053              "child site not in function inline site map");
1054       emitInlinedCallSite(FI, InlinedAt, I->second);
1055     }
1056 
1057     for (auto Annot : FI.Annotations) {
1058       MCSymbol *Label = Annot.first;
1059       MDTuple *Strs = cast<MDTuple>(Annot.second);
1060       MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1061       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
1062       // FIXME: Make sure we don't overflow the max record size.
1063       OS.EmitCOFFSectionIndex(Label);
1064       OS.EmitIntValue(Strs->getNumOperands(), 2);
1065       for (Metadata *MD : Strs->operands()) {
1066         // MDStrings are null terminated, so we can do EmitBytes and get the
1067         // nice .asciz directive.
1068         StringRef Str = cast<MDString>(MD)->getString();
1069         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1070         OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
1071       }
1072       endSymbolRecord(AnnotEnd);
1073     }
1074 
1075     if (SP != nullptr)
1076       emitDebugInfoForUDTs(LocalUDTs);
1077 
1078     // We're done with this function.
1079     emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1080   }
1081   endCVSubsection(SymbolsEnd);
1082 
1083   // We have an assembler directive that takes care of the whole line table.
1084   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1085 }
1086 
1087 CodeViewDebug::LocalVarDefRange
1088 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1089   LocalVarDefRange DR;
1090   DR.InMemory = -1;
1091   DR.DataOffset = Offset;
1092   assert(DR.DataOffset == Offset && "truncation");
1093   DR.IsSubfield = 0;
1094   DR.StructOffset = 0;
1095   DR.CVRegister = CVRegister;
1096   return DR;
1097 }
1098 
1099 void CodeViewDebug::collectVariableInfoFromMFTable(
1100     DenseSet<InlinedEntity> &Processed) {
1101   const MachineFunction &MF = *Asm->MF;
1102   const TargetSubtargetInfo &TSI = MF.getSubtarget();
1103   const TargetFrameLowering *TFI = TSI.getFrameLowering();
1104   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1105 
1106   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1107     if (!VI.Var)
1108       continue;
1109     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1110            "Expected inlined-at fields to agree");
1111 
1112     Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1113     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1114 
1115     // If variable scope is not found then skip this variable.
1116     if (!Scope)
1117       continue;
1118 
1119     // If the variable has an attached offset expression, extract it.
1120     // FIXME: Try to handle DW_OP_deref as well.
1121     int64_t ExprOffset = 0;
1122     if (VI.Expr)
1123       if (!VI.Expr->extractIfOffset(ExprOffset))
1124         continue;
1125 
1126     // Get the frame register used and the offset.
1127     unsigned FrameReg = 0;
1128     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1129     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1130 
1131     // Calculate the label ranges.
1132     LocalVarDefRange DefRange =
1133         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
1134     for (const InsnRange &Range : Scope->getRanges()) {
1135       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1136       const MCSymbol *End = getLabelAfterInsn(Range.second);
1137       End = End ? End : Asm->getFunctionEnd();
1138       DefRange.Ranges.emplace_back(Begin, End);
1139     }
1140 
1141     LocalVariable Var;
1142     Var.DIVar = VI.Var;
1143     Var.DefRanges.emplace_back(std::move(DefRange));
1144     recordLocalVariable(std::move(Var), Scope);
1145   }
1146 }
1147 
1148 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1149   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1150 }
1151 
1152 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1153   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1154 }
1155 
1156 void CodeViewDebug::calculateRanges(
1157     LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
1158   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1159 
1160   // Calculate the definition ranges.
1161   for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
1162     const auto &Entry = *I;
1163     if (!Entry.isDbgValue())
1164       continue;
1165     const MachineInstr *DVInst = Entry.getInstr();
1166     assert(DVInst->isDebugValue() && "Invalid History entry");
1167     // FIXME: Find a way to represent constant variables, since they are
1168     // relatively common.
1169     Optional<DbgVariableLocation> Location =
1170         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1171     if (!Location)
1172       continue;
1173 
1174     // CodeView can only express variables in register and variables in memory
1175     // at a constant offset from a register. However, for variables passed
1176     // indirectly by pointer, it is common for that pointer to be spilled to a
1177     // stack location. For the special case of one offseted load followed by a
1178     // zero offset load (a pointer spilled to the stack), we change the type of
1179     // the local variable from a value type to a reference type. This tricks the
1180     // debugger into doing the load for us.
1181     if (Var.UseReferenceType) {
1182       // We're using a reference type. Drop the last zero offset load.
1183       if (canUseReferenceType(*Location))
1184         Location->LoadChain.pop_back();
1185       else
1186         continue;
1187     } else if (needsReferenceType(*Location)) {
1188       // This location can't be expressed without switching to a reference type.
1189       // Start over using that.
1190       Var.UseReferenceType = true;
1191       Var.DefRanges.clear();
1192       calculateRanges(Var, Entries);
1193       return;
1194     }
1195 
1196     // We can only handle a register or an offseted load of a register.
1197     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1198       continue;
1199     {
1200       LocalVarDefRange DR;
1201       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1202       DR.InMemory = !Location->LoadChain.empty();
1203       DR.DataOffset =
1204           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1205       if (Location->FragmentInfo) {
1206         DR.IsSubfield = true;
1207         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1208       } else {
1209         DR.IsSubfield = false;
1210         DR.StructOffset = 0;
1211       }
1212 
1213       if (Var.DefRanges.empty() ||
1214           Var.DefRanges.back().isDifferentLocation(DR)) {
1215         Var.DefRanges.emplace_back(std::move(DR));
1216       }
1217     }
1218 
1219     // Compute the label range.
1220     const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
1221     const MCSymbol *End;
1222     if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
1223       auto &EndingEntry = Entries[Entry.getEndIndex()];
1224       End = EndingEntry.isDbgValue()
1225                 ? getLabelBeforeInsn(EndingEntry.getInstr())
1226                 : getLabelAfterInsn(EndingEntry.getInstr());
1227     } else
1228       End = Asm->getFunctionEnd();
1229 
1230     // If the last range end is our begin, just extend the last range.
1231     // Otherwise make a new range.
1232     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1233         Var.DefRanges.back().Ranges;
1234     if (!R.empty() && R.back().second == Begin)
1235       R.back().second = End;
1236     else
1237       R.emplace_back(Begin, End);
1238 
1239     // FIXME: Do more range combining.
1240   }
1241 }
1242 
1243 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1244   DenseSet<InlinedEntity> Processed;
1245   // Grab the variable info that was squirreled away in the MMI side-table.
1246   collectVariableInfoFromMFTable(Processed);
1247 
1248   for (const auto &I : DbgValues) {
1249     InlinedEntity IV = I.first;
1250     if (Processed.count(IV))
1251       continue;
1252     const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1253     const DILocation *InlinedAt = IV.second;
1254 
1255     // Instruction ranges, specifying where IV is accessible.
1256     const auto &Entries = I.second;
1257 
1258     LexicalScope *Scope = nullptr;
1259     if (InlinedAt)
1260       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1261     else
1262       Scope = LScopes.findLexicalScope(DIVar->getScope());
1263     // If variable scope is not found then skip this variable.
1264     if (!Scope)
1265       continue;
1266 
1267     LocalVariable Var;
1268     Var.DIVar = DIVar;
1269 
1270     calculateRanges(Var, Entries);
1271     recordLocalVariable(std::move(Var), Scope);
1272   }
1273 }
1274 
1275 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1276   const TargetSubtargetInfo &TSI = MF->getSubtarget();
1277   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1278   const MachineFrameInfo &MFI = MF->getFrameInfo();
1279   const Function &GV = MF->getFunction();
1280   auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()});
1281   assert(Insertion.second && "function already has info");
1282   CurFn = Insertion.first->second.get();
1283   CurFn->FuncId = NextFuncId++;
1284   CurFn->Begin = Asm->getFunctionBegin();
1285 
1286   // The S_FRAMEPROC record reports the stack size, and how many bytes of
1287   // callee-saved registers were used. For targets that don't use a PUSH
1288   // instruction (AArch64), this will be zero.
1289   CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1290   CurFn->FrameSize = MFI.getStackSize();
1291   CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1292   CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF);
1293 
1294   // For this function S_FRAMEPROC record, figure out which codeview register
1295   // will be the frame pointer.
1296   CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1297   CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1298   if (CurFn->FrameSize > 0) {
1299     if (!TSI.getFrameLowering()->hasFP(*MF)) {
1300       CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1301       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1302     } else {
1303       // If there is an FP, parameters are always relative to it.
1304       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1305       if (CurFn->HasStackRealignment) {
1306         // If the stack needs realignment, locals are relative to SP or VFRAME.
1307         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1308       } else {
1309         // Otherwise, locals are relative to EBP, and we probably have VLAs or
1310         // other stack adjustments.
1311         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1312       }
1313     }
1314   }
1315 
1316   // Compute other frame procedure options.
1317   FrameProcedureOptions FPO = FrameProcedureOptions::None;
1318   if (MFI.hasVarSizedObjects())
1319     FPO |= FrameProcedureOptions::HasAlloca;
1320   if (MF->exposesReturnsTwice())
1321     FPO |= FrameProcedureOptions::HasSetJmp;
1322   // FIXME: Set HasLongJmp if we ever track that info.
1323   if (MF->hasInlineAsm())
1324     FPO |= FrameProcedureOptions::HasInlineAssembly;
1325   if (GV.hasPersonalityFn()) {
1326     if (isAsynchronousEHPersonality(
1327             classifyEHPersonality(GV.getPersonalityFn())))
1328       FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1329     else
1330       FPO |= FrameProcedureOptions::HasExceptionHandling;
1331   }
1332   if (GV.hasFnAttribute(Attribute::InlineHint))
1333     FPO |= FrameProcedureOptions::MarkedInline;
1334   if (GV.hasFnAttribute(Attribute::Naked))
1335     FPO |= FrameProcedureOptions::Naked;
1336   if (MFI.hasStackProtectorIndex())
1337     FPO |= FrameProcedureOptions::SecurityChecks;
1338   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1339   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1340   if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
1341       !GV.hasOptSize() && !GV.hasOptNone())
1342     FPO |= FrameProcedureOptions::OptimizedForSpeed;
1343   // FIXME: Set GuardCfg when it is implemented.
1344   CurFn->FrameProcOpts = FPO;
1345 
1346   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1347 
1348   // Find the end of the function prolog.  First known non-DBG_VALUE and
1349   // non-frame setup location marks the beginning of the function body.
1350   // FIXME: is there a simpler a way to do this? Can we just search
1351   // for the first instruction of the function, not the last of the prolog?
1352   DebugLoc PrologEndLoc;
1353   bool EmptyPrologue = true;
1354   for (const auto &MBB : *MF) {
1355     for (const auto &MI : MBB) {
1356       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1357           MI.getDebugLoc()) {
1358         PrologEndLoc = MI.getDebugLoc();
1359         break;
1360       } else if (!MI.isMetaInstruction()) {
1361         EmptyPrologue = false;
1362       }
1363     }
1364   }
1365 
1366   // Record beginning of function if we have a non-empty prologue.
1367   if (PrologEndLoc && !EmptyPrologue) {
1368     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1369     maybeRecordLocation(FnStartDL, MF);
1370   }
1371 }
1372 
1373 static bool shouldEmitUdt(const DIType *T) {
1374   if (!T)
1375     return false;
1376 
1377   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1378   if (T->getTag() == dwarf::DW_TAG_typedef) {
1379     if (DIScope *Scope = T->getScope().resolve()) {
1380       switch (Scope->getTag()) {
1381       case dwarf::DW_TAG_structure_type:
1382       case dwarf::DW_TAG_class_type:
1383       case dwarf::DW_TAG_union_type:
1384         return false;
1385       }
1386     }
1387   }
1388 
1389   while (true) {
1390     if (!T || T->isForwardDecl())
1391       return false;
1392 
1393     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1394     if (!DT)
1395       return true;
1396     T = DT->getBaseType().resolve();
1397   }
1398   return true;
1399 }
1400 
1401 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1402   // Don't record empty UDTs.
1403   if (Ty->getName().empty())
1404     return;
1405   if (!shouldEmitUdt(Ty))
1406     return;
1407 
1408   SmallVector<StringRef, 5> QualifiedNameComponents;
1409   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1410       Ty->getScope().resolve(), QualifiedNameComponents);
1411 
1412   std::string FullyQualifiedName =
1413       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1414 
1415   if (ClosestSubprogram == nullptr) {
1416     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1417   } else if (ClosestSubprogram == CurrentSubprogram) {
1418     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1419   }
1420 
1421   // TODO: What if the ClosestSubprogram is neither null or the current
1422   // subprogram?  Currently, the UDT just gets dropped on the floor.
1423   //
1424   // The current behavior is not desirable.  To get maximal fidelity, we would
1425   // need to perform all type translation before beginning emission of .debug$S
1426   // and then make LocalUDTs a member of FunctionInfo
1427 }
1428 
1429 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1430   // Generic dispatch for lowering an unknown type.
1431   switch (Ty->getTag()) {
1432   case dwarf::DW_TAG_array_type:
1433     return lowerTypeArray(cast<DICompositeType>(Ty));
1434   case dwarf::DW_TAG_typedef:
1435     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1436   case dwarf::DW_TAG_base_type:
1437     return lowerTypeBasic(cast<DIBasicType>(Ty));
1438   case dwarf::DW_TAG_pointer_type:
1439     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1440       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1441     LLVM_FALLTHROUGH;
1442   case dwarf::DW_TAG_reference_type:
1443   case dwarf::DW_TAG_rvalue_reference_type:
1444     return lowerTypePointer(cast<DIDerivedType>(Ty));
1445   case dwarf::DW_TAG_ptr_to_member_type:
1446     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1447   case dwarf::DW_TAG_restrict_type:
1448   case dwarf::DW_TAG_const_type:
1449   case dwarf::DW_TAG_volatile_type:
1450   // TODO: add support for DW_TAG_atomic_type here
1451     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1452   case dwarf::DW_TAG_subroutine_type:
1453     if (ClassTy) {
1454       // The member function type of a member function pointer has no
1455       // ThisAdjustment.
1456       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1457                                      /*ThisAdjustment=*/0,
1458                                      /*IsStaticMethod=*/false);
1459     }
1460     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1461   case dwarf::DW_TAG_enumeration_type:
1462     return lowerTypeEnum(cast<DICompositeType>(Ty));
1463   case dwarf::DW_TAG_class_type:
1464   case dwarf::DW_TAG_structure_type:
1465     return lowerTypeClass(cast<DICompositeType>(Ty));
1466   case dwarf::DW_TAG_union_type:
1467     return lowerTypeUnion(cast<DICompositeType>(Ty));
1468   case dwarf::DW_TAG_unspecified_type:
1469     if (Ty->getName() == "decltype(nullptr)")
1470       return TypeIndex::NullptrT();
1471     return TypeIndex::None();
1472   default:
1473     // Use the null type index.
1474     return TypeIndex();
1475   }
1476 }
1477 
1478 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1479   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1480   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1481   StringRef TypeName = Ty->getName();
1482 
1483   addToUDTs(Ty);
1484 
1485   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1486       TypeName == "HRESULT")
1487     return TypeIndex(SimpleTypeKind::HResult);
1488   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1489       TypeName == "wchar_t")
1490     return TypeIndex(SimpleTypeKind::WideCharacter);
1491 
1492   return UnderlyingTypeIndex;
1493 }
1494 
1495 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1496   DITypeRef ElementTypeRef = Ty->getBaseType();
1497   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1498   // IndexType is size_t, which depends on the bitness of the target.
1499   TypeIndex IndexType = getPointerSizeInBytes() == 8
1500                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1501                             : TypeIndex(SimpleTypeKind::UInt32Long);
1502 
1503   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1504 
1505   // Add subranges to array type.
1506   DINodeArray Elements = Ty->getElements();
1507   for (int i = Elements.size() - 1; i >= 0; --i) {
1508     const DINode *Element = Elements[i];
1509     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1510 
1511     const DISubrange *Subrange = cast<DISubrange>(Element);
1512     assert(Subrange->getLowerBound() == 0 &&
1513            "codeview doesn't support subranges with lower bounds");
1514     int64_t Count = -1;
1515     if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1516       Count = CI->getSExtValue();
1517 
1518     // Forward declarations of arrays without a size and VLAs use a count of -1.
1519     // Emit a count of zero in these cases to match what MSVC does for arrays
1520     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1521     // should do for them even if we could distinguish them.
1522     if (Count == -1)
1523       Count = 0;
1524 
1525     // Update the element size and element type index for subsequent subranges.
1526     ElementSize *= Count;
1527 
1528     // If this is the outermost array, use the size from the array. It will be
1529     // more accurate if we had a VLA or an incomplete element type size.
1530     uint64_t ArraySize =
1531         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1532 
1533     StringRef Name = (i == 0) ? Ty->getName() : "";
1534     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1535     ElementTypeIndex = TypeTable.writeLeafType(AR);
1536   }
1537 
1538   return ElementTypeIndex;
1539 }
1540 
1541 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1542   TypeIndex Index;
1543   dwarf::TypeKind Kind;
1544   uint32_t ByteSize;
1545 
1546   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1547   ByteSize = Ty->getSizeInBits() / 8;
1548 
1549   SimpleTypeKind STK = SimpleTypeKind::None;
1550   switch (Kind) {
1551   case dwarf::DW_ATE_address:
1552     // FIXME: Translate
1553     break;
1554   case dwarf::DW_ATE_boolean:
1555     switch (ByteSize) {
1556     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1557     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1558     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1559     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1560     case 16: STK = SimpleTypeKind::Boolean128; break;
1561     }
1562     break;
1563   case dwarf::DW_ATE_complex_float:
1564     switch (ByteSize) {
1565     case 2:  STK = SimpleTypeKind::Complex16;  break;
1566     case 4:  STK = SimpleTypeKind::Complex32;  break;
1567     case 8:  STK = SimpleTypeKind::Complex64;  break;
1568     case 10: STK = SimpleTypeKind::Complex80;  break;
1569     case 16: STK = SimpleTypeKind::Complex128; break;
1570     }
1571     break;
1572   case dwarf::DW_ATE_float:
1573     switch (ByteSize) {
1574     case 2:  STK = SimpleTypeKind::Float16;  break;
1575     case 4:  STK = SimpleTypeKind::Float32;  break;
1576     case 6:  STK = SimpleTypeKind::Float48;  break;
1577     case 8:  STK = SimpleTypeKind::Float64;  break;
1578     case 10: STK = SimpleTypeKind::Float80;  break;
1579     case 16: STK = SimpleTypeKind::Float128; break;
1580     }
1581     break;
1582   case dwarf::DW_ATE_signed:
1583     switch (ByteSize) {
1584     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1585     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1586     case 4:  STK = SimpleTypeKind::Int32;           break;
1587     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1588     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1589     }
1590     break;
1591   case dwarf::DW_ATE_unsigned:
1592     switch (ByteSize) {
1593     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1594     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1595     case 4:  STK = SimpleTypeKind::UInt32;            break;
1596     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1597     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1598     }
1599     break;
1600   case dwarf::DW_ATE_UTF:
1601     switch (ByteSize) {
1602     case 2: STK = SimpleTypeKind::Character16; break;
1603     case 4: STK = SimpleTypeKind::Character32; break;
1604     }
1605     break;
1606   case dwarf::DW_ATE_signed_char:
1607     if (ByteSize == 1)
1608       STK = SimpleTypeKind::SignedCharacter;
1609     break;
1610   case dwarf::DW_ATE_unsigned_char:
1611     if (ByteSize == 1)
1612       STK = SimpleTypeKind::UnsignedCharacter;
1613     break;
1614   default:
1615     break;
1616   }
1617 
1618   // Apply some fixups based on the source-level type name.
1619   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1620     STK = SimpleTypeKind::Int32Long;
1621   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1622     STK = SimpleTypeKind::UInt32Long;
1623   if (STK == SimpleTypeKind::UInt16Short &&
1624       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1625     STK = SimpleTypeKind::WideCharacter;
1626   if ((STK == SimpleTypeKind::SignedCharacter ||
1627        STK == SimpleTypeKind::UnsignedCharacter) &&
1628       Ty->getName() == "char")
1629     STK = SimpleTypeKind::NarrowCharacter;
1630 
1631   return TypeIndex(STK);
1632 }
1633 
1634 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1635                                           PointerOptions PO) {
1636   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1637 
1638   // Pointers to simple types without any options can use SimpleTypeMode, rather
1639   // than having a dedicated pointer type record.
1640   if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1641       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1642       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1643     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1644                               ? SimpleTypeMode::NearPointer64
1645                               : SimpleTypeMode::NearPointer32;
1646     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1647   }
1648 
1649   PointerKind PK =
1650       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1651   PointerMode PM = PointerMode::Pointer;
1652   switch (Ty->getTag()) {
1653   default: llvm_unreachable("not a pointer tag type");
1654   case dwarf::DW_TAG_pointer_type:
1655     PM = PointerMode::Pointer;
1656     break;
1657   case dwarf::DW_TAG_reference_type:
1658     PM = PointerMode::LValueReference;
1659     break;
1660   case dwarf::DW_TAG_rvalue_reference_type:
1661     PM = PointerMode::RValueReference;
1662     break;
1663   }
1664 
1665   if (Ty->isObjectPointer())
1666     PO |= PointerOptions::Const;
1667 
1668   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1669   return TypeTable.writeLeafType(PR);
1670 }
1671 
1672 static PointerToMemberRepresentation
1673 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1674   // SizeInBytes being zero generally implies that the member pointer type was
1675   // incomplete, which can happen if it is part of a function prototype. In this
1676   // case, use the unknown model instead of the general model.
1677   if (IsPMF) {
1678     switch (Flags & DINode::FlagPtrToMemberRep) {
1679     case 0:
1680       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1681                               : PointerToMemberRepresentation::GeneralFunction;
1682     case DINode::FlagSingleInheritance:
1683       return PointerToMemberRepresentation::SingleInheritanceFunction;
1684     case DINode::FlagMultipleInheritance:
1685       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1686     case DINode::FlagVirtualInheritance:
1687       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1688     }
1689   } else {
1690     switch (Flags & DINode::FlagPtrToMemberRep) {
1691     case 0:
1692       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1693                               : PointerToMemberRepresentation::GeneralData;
1694     case DINode::FlagSingleInheritance:
1695       return PointerToMemberRepresentation::SingleInheritanceData;
1696     case DINode::FlagMultipleInheritance:
1697       return PointerToMemberRepresentation::MultipleInheritanceData;
1698     case DINode::FlagVirtualInheritance:
1699       return PointerToMemberRepresentation::VirtualInheritanceData;
1700     }
1701   }
1702   llvm_unreachable("invalid ptr to member representation");
1703 }
1704 
1705 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1706                                                 PointerOptions PO) {
1707   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1708   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1709   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1710   PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1711                                                 : PointerKind::Near32;
1712   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1713   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1714                          : PointerMode::PointerToDataMember;
1715 
1716   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1717   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1718   MemberPointerInfo MPI(
1719       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1720   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1721   return TypeTable.writeLeafType(PR);
1722 }
1723 
1724 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1725 /// have a translation, use the NearC convention.
1726 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1727   switch (DwarfCC) {
1728   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1729   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1730   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1731   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1732   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1733   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1734   }
1735   return CallingConvention::NearC;
1736 }
1737 
1738 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1739   ModifierOptions Mods = ModifierOptions::None;
1740   PointerOptions PO = PointerOptions::None;
1741   bool IsModifier = true;
1742   const DIType *BaseTy = Ty;
1743   while (IsModifier && BaseTy) {
1744     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1745     switch (BaseTy->getTag()) {
1746     case dwarf::DW_TAG_const_type:
1747       Mods |= ModifierOptions::Const;
1748       PO |= PointerOptions::Const;
1749       break;
1750     case dwarf::DW_TAG_volatile_type:
1751       Mods |= ModifierOptions::Volatile;
1752       PO |= PointerOptions::Volatile;
1753       break;
1754     case dwarf::DW_TAG_restrict_type:
1755       // Only pointer types be marked with __restrict. There is no known flag
1756       // for __restrict in LF_MODIFIER records.
1757       PO |= PointerOptions::Restrict;
1758       break;
1759     default:
1760       IsModifier = false;
1761       break;
1762     }
1763     if (IsModifier)
1764       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1765   }
1766 
1767   // Check if the inner type will use an LF_POINTER record. If so, the
1768   // qualifiers will go in the LF_POINTER record. This comes up for types like
1769   // 'int *const' and 'int *__restrict', not the more common cases like 'const
1770   // char *'.
1771   if (BaseTy) {
1772     switch (BaseTy->getTag()) {
1773     case dwarf::DW_TAG_pointer_type:
1774     case dwarf::DW_TAG_reference_type:
1775     case dwarf::DW_TAG_rvalue_reference_type:
1776       return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1777     case dwarf::DW_TAG_ptr_to_member_type:
1778       return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1779     default:
1780       break;
1781     }
1782   }
1783 
1784   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1785 
1786   // Return the base type index if there aren't any modifiers. For example, the
1787   // metadata could contain restrict wrappers around non-pointer types.
1788   if (Mods == ModifierOptions::None)
1789     return ModifiedTI;
1790 
1791   ModifierRecord MR(ModifiedTI, Mods);
1792   return TypeTable.writeLeafType(MR);
1793 }
1794 
1795 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1796   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1797   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1798     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1799 
1800   // MSVC uses type none for variadic argument.
1801   if (ReturnAndArgTypeIndices.size() > 1 &&
1802       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1803     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1804   }
1805   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1806   ArrayRef<TypeIndex> ArgTypeIndices = None;
1807   if (!ReturnAndArgTypeIndices.empty()) {
1808     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1809     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1810     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1811   }
1812 
1813   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1814   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1815 
1816   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1817 
1818   FunctionOptions FO = getFunctionOptions(Ty);
1819   ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
1820                             ArgListIndex);
1821   return TypeTable.writeLeafType(Procedure);
1822 }
1823 
1824 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1825                                                  const DIType *ClassTy,
1826                                                  int ThisAdjustment,
1827                                                  bool IsStaticMethod,
1828                                                  FunctionOptions FO) {
1829   // Lower the containing class type.
1830   TypeIndex ClassType = getTypeIndex(ClassTy);
1831 
1832   DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
1833 
1834   unsigned Index = 0;
1835   SmallVector<TypeIndex, 8> ArgTypeIndices;
1836   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1837   if (ReturnAndArgs.size() > Index) {
1838     ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
1839   }
1840 
1841   // If the first argument is a pointer type and this isn't a static method,
1842   // treat it as the special 'this' parameter, which is encoded separately from
1843   // the arguments.
1844   TypeIndex ThisTypeIndex;
1845   if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
1846     if (const DIDerivedType *PtrTy =
1847             dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index].resolve())) {
1848       if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
1849         ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
1850         Index++;
1851       }
1852     }
1853   }
1854 
1855   while (Index < ReturnAndArgs.size())
1856     ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
1857 
1858   // MSVC uses type none for variadic argument.
1859   if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
1860     ArgTypeIndices.back() = TypeIndex::None();
1861 
1862   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1863   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1864 
1865   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1866 
1867   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
1868                            ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
1869   return TypeTable.writeLeafType(MFR);
1870 }
1871 
1872 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1873   unsigned VSlotCount =
1874       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1875   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1876 
1877   VFTableShapeRecord VFTSR(Slots);
1878   return TypeTable.writeLeafType(VFTSR);
1879 }
1880 
1881 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1882   switch (Flags & DINode::FlagAccessibility) {
1883   case DINode::FlagPrivate:   return MemberAccess::Private;
1884   case DINode::FlagPublic:    return MemberAccess::Public;
1885   case DINode::FlagProtected: return MemberAccess::Protected;
1886   case 0:
1887     // If there was no explicit access control, provide the default for the tag.
1888     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1889                                                  : MemberAccess::Public;
1890   }
1891   llvm_unreachable("access flags are exclusive");
1892 }
1893 
1894 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1895   if (SP->isArtificial())
1896     return MethodOptions::CompilerGenerated;
1897 
1898   // FIXME: Handle other MethodOptions.
1899 
1900   return MethodOptions::None;
1901 }
1902 
1903 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1904                                            bool Introduced) {
1905   if (SP->getFlags() & DINode::FlagStaticMember)
1906     return MethodKind::Static;
1907 
1908   switch (SP->getVirtuality()) {
1909   case dwarf::DW_VIRTUALITY_none:
1910     break;
1911   case dwarf::DW_VIRTUALITY_virtual:
1912     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1913   case dwarf::DW_VIRTUALITY_pure_virtual:
1914     return Introduced ? MethodKind::PureIntroducingVirtual
1915                       : MethodKind::PureVirtual;
1916   default:
1917     llvm_unreachable("unhandled virtuality case");
1918   }
1919 
1920   return MethodKind::Vanilla;
1921 }
1922 
1923 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1924   switch (Ty->getTag()) {
1925   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1926   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1927   }
1928   llvm_unreachable("unexpected tag");
1929 }
1930 
1931 /// Return ClassOptions that should be present on both the forward declaration
1932 /// and the defintion of a tag type.
1933 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1934   ClassOptions CO = ClassOptions::None;
1935 
1936   // MSVC always sets this flag, even for local types. Clang doesn't always
1937   // appear to give every type a linkage name, which may be problematic for us.
1938   // FIXME: Investigate the consequences of not following them here.
1939   if (!Ty->getIdentifier().empty())
1940     CO |= ClassOptions::HasUniqueName;
1941 
1942   // Put the Nested flag on a type if it appears immediately inside a tag type.
1943   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1944   // here. That flag is only set on definitions, and not forward declarations.
1945   const DIScope *ImmediateScope = Ty->getScope().resolve();
1946   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1947     CO |= ClassOptions::Nested;
1948 
1949   // Put the Scoped flag on function-local types. MSVC puts this flag for enum
1950   // type only when it has an immediate function scope. Clang never puts enums
1951   // inside DILexicalBlock scopes. Enum types, as generated by clang, are
1952   // always in function, class, or file scopes.
1953   if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
1954     if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
1955       CO |= ClassOptions::Scoped;
1956   } else {
1957     for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1958          Scope = Scope->getScope().resolve()) {
1959       if (isa<DISubprogram>(Scope)) {
1960         CO |= ClassOptions::Scoped;
1961         break;
1962       }
1963     }
1964   }
1965 
1966   return CO;
1967 }
1968 
1969 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
1970   switch (Ty->getTag()) {
1971   case dwarf::DW_TAG_class_type:
1972   case dwarf::DW_TAG_structure_type:
1973   case dwarf::DW_TAG_union_type:
1974   case dwarf::DW_TAG_enumeration_type:
1975     break;
1976   default:
1977     return;
1978   }
1979 
1980   if (const auto *File = Ty->getFile()) {
1981     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1982     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
1983 
1984     UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
1985     TypeTable.writeLeafType(USLR);
1986   }
1987 }
1988 
1989 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1990   ClassOptions CO = getCommonClassOptions(Ty);
1991   TypeIndex FTI;
1992   unsigned EnumeratorCount = 0;
1993 
1994   if (Ty->isForwardDecl()) {
1995     CO |= ClassOptions::ForwardReference;
1996   } else {
1997     ContinuationRecordBuilder ContinuationBuilder;
1998     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
1999     for (const DINode *Element : Ty->getElements()) {
2000       // We assume that the frontend provides all members in source declaration
2001       // order, which is what MSVC does.
2002       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2003         EnumeratorRecord ER(MemberAccess::Public,
2004                             APSInt::getUnsigned(Enumerator->getValue()),
2005                             Enumerator->getName());
2006         ContinuationBuilder.writeMemberType(ER);
2007         EnumeratorCount++;
2008       }
2009     }
2010     FTI = TypeTable.insertRecord(ContinuationBuilder);
2011   }
2012 
2013   std::string FullName = getFullyQualifiedName(Ty);
2014 
2015   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2016                 getTypeIndex(Ty->getBaseType()));
2017   TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2018 
2019   addUDTSrcLine(Ty, EnumTI);
2020 
2021   return EnumTI;
2022 }
2023 
2024 //===----------------------------------------------------------------------===//
2025 // ClassInfo
2026 //===----------------------------------------------------------------------===//
2027 
2028 struct llvm::ClassInfo {
2029   struct MemberInfo {
2030     const DIDerivedType *MemberTypeNode;
2031     uint64_t BaseOffset;
2032   };
2033   // [MemberInfo]
2034   using MemberList = std::vector<MemberInfo>;
2035 
2036   using MethodsList = TinyPtrVector<const DISubprogram *>;
2037   // MethodName -> MethodsList
2038   using MethodsMap = MapVector<MDString *, MethodsList>;
2039 
2040   /// Base classes.
2041   std::vector<const DIDerivedType *> Inheritance;
2042 
2043   /// Direct members.
2044   MemberList Members;
2045   // Direct overloaded methods gathered by name.
2046   MethodsMap Methods;
2047 
2048   TypeIndex VShapeTI;
2049 
2050   std::vector<const DIType *> NestedTypes;
2051 };
2052 
2053 void CodeViewDebug::clear() {
2054   assert(CurFn == nullptr);
2055   FileIdMap.clear();
2056   FnDebugInfo.clear();
2057   FileToFilepathMap.clear();
2058   LocalUDTs.clear();
2059   GlobalUDTs.clear();
2060   TypeIndices.clear();
2061   CompleteTypeIndices.clear();
2062   ScopeGlobals.clear();
2063 }
2064 
2065 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2066                                       const DIDerivedType *DDTy) {
2067   if (!DDTy->getName().empty()) {
2068     Info.Members.push_back({DDTy, 0});
2069     return;
2070   }
2071 
2072   // An unnamed member may represent a nested struct or union. Attempt to
2073   // interpret the unnamed member as a DICompositeType possibly wrapped in
2074   // qualifier types. Add all the indirect fields to the current record if that
2075   // succeeds, and drop the member if that fails.
2076   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2077   uint64_t Offset = DDTy->getOffsetInBits();
2078   const DIType *Ty = DDTy->getBaseType().resolve();
2079   bool FullyResolved = false;
2080   while (!FullyResolved) {
2081     switch (Ty->getTag()) {
2082     case dwarf::DW_TAG_const_type:
2083     case dwarf::DW_TAG_volatile_type:
2084       // FIXME: we should apply the qualifier types to the indirect fields
2085       // rather than dropping them.
2086       Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve();
2087       break;
2088     default:
2089       FullyResolved = true;
2090       break;
2091     }
2092   }
2093 
2094   const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2095   if (!DCTy)
2096     return;
2097 
2098   ClassInfo NestedInfo = collectClassInfo(DCTy);
2099   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2100     Info.Members.push_back(
2101         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2102 }
2103 
2104 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2105   ClassInfo Info;
2106   // Add elements to structure type.
2107   DINodeArray Elements = Ty->getElements();
2108   for (auto *Element : Elements) {
2109     // We assume that the frontend provides all members in source declaration
2110     // order, which is what MSVC does.
2111     if (!Element)
2112       continue;
2113     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2114       Info.Methods[SP->getRawName()].push_back(SP);
2115     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2116       if (DDTy->getTag() == dwarf::DW_TAG_member) {
2117         collectMemberInfo(Info, DDTy);
2118       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2119         Info.Inheritance.push_back(DDTy);
2120       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2121                  DDTy->getName() == "__vtbl_ptr_type") {
2122         Info.VShapeTI = getTypeIndex(DDTy);
2123       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2124         Info.NestedTypes.push_back(DDTy);
2125       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2126         // Ignore friend members. It appears that MSVC emitted info about
2127         // friends in the past, but modern versions do not.
2128       }
2129     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2130       Info.NestedTypes.push_back(Composite);
2131     }
2132     // Skip other unrecognized kinds of elements.
2133   }
2134   return Info;
2135 }
2136 
2137 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2138   // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2139   // if a complete type should be emitted instead of a forward reference.
2140   return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2141       !Ty->isForwardDecl();
2142 }
2143 
2144 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2145   // Emit the complete type for unnamed structs.  C++ classes with methods
2146   // which have a circular reference back to the class type are expected to
2147   // be named by the front-end and should not be "unnamed".  C unnamed
2148   // structs should not have circular references.
2149   if (shouldAlwaysEmitCompleteClassType(Ty)) {
2150     // If this unnamed complete type is already in the process of being defined
2151     // then the description of the type is malformed and cannot be emitted
2152     // into CodeView correctly so report a fatal error.
2153     auto I = CompleteTypeIndices.find(Ty);
2154     if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2155       report_fatal_error("cannot debug circular reference to unnamed type");
2156     return getCompleteTypeIndex(Ty);
2157   }
2158 
2159   // First, construct the forward decl.  Don't look into Ty to compute the
2160   // forward decl options, since it might not be available in all TUs.
2161   TypeRecordKind Kind = getRecordKind(Ty);
2162   ClassOptions CO =
2163       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2164   std::string FullName = getFullyQualifiedName(Ty);
2165   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2166                  FullName, Ty->getIdentifier());
2167   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2168   if (!Ty->isForwardDecl())
2169     DeferredCompleteTypes.push_back(Ty);
2170   return FwdDeclTI;
2171 }
2172 
2173 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2174   // Construct the field list and complete type record.
2175   TypeRecordKind Kind = getRecordKind(Ty);
2176   ClassOptions CO = getCommonClassOptions(Ty);
2177   TypeIndex FieldTI;
2178   TypeIndex VShapeTI;
2179   unsigned FieldCount;
2180   bool ContainsNestedClass;
2181   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2182       lowerRecordFieldList(Ty);
2183 
2184   if (ContainsNestedClass)
2185     CO |= ClassOptions::ContainsNestedClass;
2186 
2187   // MSVC appears to set this flag by searching any destructor or method with
2188   // FunctionOptions::Constructor among the emitted members. Clang AST has all
2189   // the members, however special member functions are not yet emitted into
2190   // debug information. For now checking a class's non-triviality seems enough.
2191   // FIXME: not true for a nested unnamed struct.
2192   if (isNonTrivial(Ty))
2193     CO |= ClassOptions::HasConstructorOrDestructor;
2194 
2195   std::string FullName = getFullyQualifiedName(Ty);
2196 
2197   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2198 
2199   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2200                  SizeInBytes, FullName, Ty->getIdentifier());
2201   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2202 
2203   addUDTSrcLine(Ty, ClassTI);
2204 
2205   addToUDTs(Ty);
2206 
2207   return ClassTI;
2208 }
2209 
2210 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2211   // Emit the complete type for unnamed unions.
2212   if (shouldAlwaysEmitCompleteClassType(Ty))
2213     return getCompleteTypeIndex(Ty);
2214 
2215   ClassOptions CO =
2216       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2217   std::string FullName = getFullyQualifiedName(Ty);
2218   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2219   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2220   if (!Ty->isForwardDecl())
2221     DeferredCompleteTypes.push_back(Ty);
2222   return FwdDeclTI;
2223 }
2224 
2225 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2226   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2227   TypeIndex FieldTI;
2228   unsigned FieldCount;
2229   bool ContainsNestedClass;
2230   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2231       lowerRecordFieldList(Ty);
2232 
2233   if (ContainsNestedClass)
2234     CO |= ClassOptions::ContainsNestedClass;
2235 
2236   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2237   std::string FullName = getFullyQualifiedName(Ty);
2238 
2239   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2240                  Ty->getIdentifier());
2241   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2242 
2243   addUDTSrcLine(Ty, UnionTI);
2244 
2245   addToUDTs(Ty);
2246 
2247   return UnionTI;
2248 }
2249 
2250 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2251 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2252   // Manually count members. MSVC appears to count everything that generates a
2253   // field list record. Each individual overload in a method overload group
2254   // contributes to this count, even though the overload group is a single field
2255   // list record.
2256   unsigned MemberCount = 0;
2257   ClassInfo Info = collectClassInfo(Ty);
2258   ContinuationRecordBuilder ContinuationBuilder;
2259   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2260 
2261   // Create base classes.
2262   for (const DIDerivedType *I : Info.Inheritance) {
2263     if (I->getFlags() & DINode::FlagVirtual) {
2264       // Virtual base.
2265       unsigned VBPtrOffset = I->getVBPtrOffset();
2266       // FIXME: Despite the accessor name, the offset is really in bytes.
2267       unsigned VBTableIndex = I->getOffsetInBits() / 4;
2268       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2269                             ? TypeRecordKind::IndirectVirtualBaseClass
2270                             : TypeRecordKind::VirtualBaseClass;
2271       VirtualBaseClassRecord VBCR(
2272           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2273           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2274           VBTableIndex);
2275 
2276       ContinuationBuilder.writeMemberType(VBCR);
2277       MemberCount++;
2278     } else {
2279       assert(I->getOffsetInBits() % 8 == 0 &&
2280              "bases must be on byte boundaries");
2281       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2282                           getTypeIndex(I->getBaseType()),
2283                           I->getOffsetInBits() / 8);
2284       ContinuationBuilder.writeMemberType(BCR);
2285       MemberCount++;
2286     }
2287   }
2288 
2289   // Create members.
2290   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2291     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2292     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2293     StringRef MemberName = Member->getName();
2294     MemberAccess Access =
2295         translateAccessFlags(Ty->getTag(), Member->getFlags());
2296 
2297     if (Member->isStaticMember()) {
2298       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2299       ContinuationBuilder.writeMemberType(SDMR);
2300       MemberCount++;
2301       continue;
2302     }
2303 
2304     // Virtual function pointer member.
2305     if ((Member->getFlags() & DINode::FlagArtificial) &&
2306         Member->getName().startswith("_vptr$")) {
2307       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2308       ContinuationBuilder.writeMemberType(VFPR);
2309       MemberCount++;
2310       continue;
2311     }
2312 
2313     // Data member.
2314     uint64_t MemberOffsetInBits =
2315         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2316     if (Member->isBitField()) {
2317       uint64_t StartBitOffset = MemberOffsetInBits;
2318       if (const auto *CI =
2319               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2320         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2321       }
2322       StartBitOffset -= MemberOffsetInBits;
2323       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2324                          StartBitOffset);
2325       MemberBaseType = TypeTable.writeLeafType(BFR);
2326     }
2327     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2328     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2329                          MemberName);
2330     ContinuationBuilder.writeMemberType(DMR);
2331     MemberCount++;
2332   }
2333 
2334   // Create methods
2335   for (auto &MethodItr : Info.Methods) {
2336     StringRef Name = MethodItr.first->getString();
2337 
2338     std::vector<OneMethodRecord> Methods;
2339     for (const DISubprogram *SP : MethodItr.second) {
2340       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2341       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2342 
2343       unsigned VFTableOffset = -1;
2344       if (Introduced)
2345         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2346 
2347       Methods.push_back(OneMethodRecord(
2348           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2349           translateMethodKindFlags(SP, Introduced),
2350           translateMethodOptionFlags(SP), VFTableOffset, Name));
2351       MemberCount++;
2352     }
2353     assert(!Methods.empty() && "Empty methods map entry");
2354     if (Methods.size() == 1)
2355       ContinuationBuilder.writeMemberType(Methods[0]);
2356     else {
2357       // FIXME: Make this use its own ContinuationBuilder so that
2358       // MethodOverloadList can be split correctly.
2359       MethodOverloadListRecord MOLR(Methods);
2360       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2361 
2362       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2363       ContinuationBuilder.writeMemberType(OMR);
2364     }
2365   }
2366 
2367   // Create nested classes.
2368   for (const DIType *Nested : Info.NestedTypes) {
2369     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
2370     ContinuationBuilder.writeMemberType(R);
2371     MemberCount++;
2372   }
2373 
2374   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2375   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2376                          !Info.NestedTypes.empty());
2377 }
2378 
2379 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2380   if (!VBPType.getIndex()) {
2381     // Make a 'const int *' type.
2382     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2383     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2384 
2385     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2386                                                   : PointerKind::Near32;
2387     PointerMode PM = PointerMode::Pointer;
2388     PointerOptions PO = PointerOptions::None;
2389     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2390     VBPType = TypeTable.writeLeafType(PR);
2391   }
2392 
2393   return VBPType;
2394 }
2395 
2396 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
2397   const DIType *Ty = TypeRef.resolve();
2398   const DIType *ClassTy = ClassTyRef.resolve();
2399 
2400   // The null DIType is the void type. Don't try to hash it.
2401   if (!Ty)
2402     return TypeIndex::Void();
2403 
2404   // Check if we've already translated this type. Don't try to do a
2405   // get-or-create style insertion that caches the hash lookup across the
2406   // lowerType call. It will update the TypeIndices map.
2407   auto I = TypeIndices.find({Ty, ClassTy});
2408   if (I != TypeIndices.end())
2409     return I->second;
2410 
2411   TypeLoweringScope S(*this);
2412   TypeIndex TI = lowerType(Ty, ClassTy);
2413   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2414 }
2415 
2416 codeview::TypeIndex
2417 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2418                                       const DISubroutineType *SubroutineTy) {
2419   assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2420          "this type must be a pointer type");
2421 
2422   PointerOptions Options = PointerOptions::None;
2423   if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2424     Options = PointerOptions::LValueRefThisPointer;
2425   else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2426     Options = PointerOptions::RValueRefThisPointer;
2427 
2428   // Check if we've already translated this type.  If there is no ref qualifier
2429   // on the function then we look up this pointer type with no associated class
2430   // so that the TypeIndex for the this pointer can be shared with the type
2431   // index for other pointers to this class type.  If there is a ref qualifier
2432   // then we lookup the pointer using the subroutine as the parent type.
2433   auto I = TypeIndices.find({PtrTy, SubroutineTy});
2434   if (I != TypeIndices.end())
2435     return I->second;
2436 
2437   TypeLoweringScope S(*this);
2438   TypeIndex TI = lowerTypePointer(PtrTy, Options);
2439   return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2440 }
2441 
2442 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
2443   DIType *Ty = TypeRef.resolve();
2444   PointerRecord PR(getTypeIndex(Ty),
2445                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2446                                                 : PointerKind::Near32,
2447                    PointerMode::LValueReference, PointerOptions::None,
2448                    Ty->getSizeInBits() / 8);
2449   return TypeTable.writeLeafType(PR);
2450 }
2451 
2452 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2453   const DIType *Ty = TypeRef.resolve();
2454 
2455   // The null DIType is the void type. Don't try to hash it.
2456   if (!Ty)
2457     return TypeIndex::Void();
2458 
2459   // Look through typedefs when getting the complete type index. Call
2460   // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2461   // emitted only once.
2462   if (Ty->getTag() == dwarf::DW_TAG_typedef)
2463     (void)getTypeIndex(Ty);
2464   while (Ty->getTag() == dwarf::DW_TAG_typedef)
2465     Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve();
2466 
2467   // If this is a non-record type, the complete type index is the same as the
2468   // normal type index. Just call getTypeIndex.
2469   switch (Ty->getTag()) {
2470   case dwarf::DW_TAG_class_type:
2471   case dwarf::DW_TAG_structure_type:
2472   case dwarf::DW_TAG_union_type:
2473     break;
2474   default:
2475     return getTypeIndex(Ty);
2476   }
2477 
2478   // Check if we've already translated the complete record type.
2479   const auto *CTy = cast<DICompositeType>(Ty);
2480   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2481   if (!InsertResult.second)
2482     return InsertResult.first->second;
2483 
2484   TypeLoweringScope S(*this);
2485 
2486   // Make sure the forward declaration is emitted first. It's unclear if this
2487   // is necessary, but MSVC does it, and we should follow suit until we can show
2488   // otherwise.
2489   // We only emit a forward declaration for named types.
2490   if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2491     TypeIndex FwdDeclTI = getTypeIndex(CTy);
2492 
2493     // Just use the forward decl if we don't have complete type info. This
2494     // might happen if the frontend is using modules and expects the complete
2495     // definition to be emitted elsewhere.
2496     if (CTy->isForwardDecl())
2497       return FwdDeclTI;
2498   }
2499 
2500   TypeIndex TI;
2501   switch (CTy->getTag()) {
2502   case dwarf::DW_TAG_class_type:
2503   case dwarf::DW_TAG_structure_type:
2504     TI = lowerCompleteTypeClass(CTy);
2505     break;
2506   case dwarf::DW_TAG_union_type:
2507     TI = lowerCompleteTypeUnion(CTy);
2508     break;
2509   default:
2510     llvm_unreachable("not a record");
2511   }
2512 
2513   // Update the type index associated with this CompositeType.  This cannot
2514   // use the 'InsertResult' iterator above because it is potentially
2515   // invalidated by map insertions which can occur while lowering the class
2516   // type above.
2517   CompleteTypeIndices[CTy] = TI;
2518   return TI;
2519 }
2520 
2521 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2522 /// and do this until fixpoint, as each complete record type typically
2523 /// references
2524 /// many other record types.
2525 void CodeViewDebug::emitDeferredCompleteTypes() {
2526   SmallVector<const DICompositeType *, 4> TypesToEmit;
2527   while (!DeferredCompleteTypes.empty()) {
2528     std::swap(DeferredCompleteTypes, TypesToEmit);
2529     for (const DICompositeType *RecordTy : TypesToEmit)
2530       getCompleteTypeIndex(RecordTy);
2531     TypesToEmit.clear();
2532   }
2533 }
2534 
2535 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2536                                           ArrayRef<LocalVariable> Locals) {
2537   // Get the sorted list of parameters and emit them first.
2538   SmallVector<const LocalVariable *, 6> Params;
2539   for (const LocalVariable &L : Locals)
2540     if (L.DIVar->isParameter())
2541       Params.push_back(&L);
2542   llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2543     return L->DIVar->getArg() < R->DIVar->getArg();
2544   });
2545   for (const LocalVariable *L : Params)
2546     emitLocalVariable(FI, *L);
2547 
2548   // Next emit all non-parameters in the order that we found them.
2549   for (const LocalVariable &L : Locals)
2550     if (!L.DIVar->isParameter())
2551       emitLocalVariable(FI, L);
2552 }
2553 
2554 /// Only call this on endian-specific types like ulittle16_t and little32_t, or
2555 /// structs composed of them.
2556 template <typename T>
2557 static void copyBytesForDefRange(SmallString<20> &BytePrefix,
2558                                  SymbolKind SymKind, const T &DefRangeHeader) {
2559   BytePrefix.resize(2 + sizeof(T));
2560   ulittle16_t SymKindLE = ulittle16_t(SymKind);
2561   memcpy(&BytePrefix[0], &SymKindLE, 2);
2562   memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T));
2563 }
2564 
2565 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2566                                       const LocalVariable &Var) {
2567   // LocalSym record, see SymbolRecord.h for more info.
2568   MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2569 
2570   LocalSymFlags Flags = LocalSymFlags::None;
2571   if (Var.DIVar->isParameter())
2572     Flags |= LocalSymFlags::IsParameter;
2573   if (Var.DefRanges.empty())
2574     Flags |= LocalSymFlags::IsOptimizedOut;
2575 
2576   OS.AddComment("TypeIndex");
2577   TypeIndex TI = Var.UseReferenceType
2578                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2579                      : getCompleteTypeIndex(Var.DIVar->getType());
2580   OS.EmitIntValue(TI.getIndex(), 4);
2581   OS.AddComment("Flags");
2582   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2583   // Truncate the name so we won't overflow the record length field.
2584   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2585   endSymbolRecord(LocalEnd);
2586 
2587   // Calculate the on disk prefix of the appropriate def range record. The
2588   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2589   // should be big enough to hold all forms without memory allocation.
2590   SmallString<20> BytePrefix;
2591   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2592     BytePrefix.clear();
2593     if (DefRange.InMemory) {
2594       int Offset = DefRange.DataOffset;
2595       unsigned Reg = DefRange.CVRegister;
2596 
2597       // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2598       // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2599       // instead. In frames without stack realignment, $T0 will be the CFA.
2600       if (RegisterId(Reg) == RegisterId::ESP) {
2601         Reg = unsigned(RegisterId::VFRAME);
2602         Offset += FI.OffsetAdjustment;
2603       }
2604 
2605       // If we can use the chosen frame pointer for the frame and this isn't a
2606       // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2607       // Otherwise, use S_DEFRANGE_REGISTER_REL.
2608       EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2609       if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2610           (bool(Flags & LocalSymFlags::IsParameter)
2611                ? (EncFP == FI.EncodedParamFramePtrReg)
2612                : (EncFP == FI.EncodedLocalFramePtrReg))) {
2613         little32_t FPOffset = little32_t(Offset);
2614         copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset);
2615       } else {
2616         uint16_t RegRelFlags = 0;
2617         if (DefRange.IsSubfield) {
2618           RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2619                         (DefRange.StructOffset
2620                          << DefRangeRegisterRelSym::OffsetInParentShift);
2621         }
2622         DefRangeRegisterRelSym::Header DRHdr;
2623         DRHdr.Register = Reg;
2624         DRHdr.Flags = RegRelFlags;
2625         DRHdr.BasePointerOffset = Offset;
2626         copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr);
2627       }
2628     } else {
2629       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2630       if (DefRange.IsSubfield) {
2631         DefRangeSubfieldRegisterSym::Header DRHdr;
2632         DRHdr.Register = DefRange.CVRegister;
2633         DRHdr.MayHaveNoName = 0;
2634         DRHdr.OffsetInParent = DefRange.StructOffset;
2635         copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr);
2636       } else {
2637         DefRangeRegisterSym::Header DRHdr;
2638         DRHdr.Register = DefRange.CVRegister;
2639         DRHdr.MayHaveNoName = 0;
2640         copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr);
2641       }
2642     }
2643     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2644   }
2645 }
2646 
2647 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2648                                          const FunctionInfo& FI) {
2649   for (LexicalBlock *Block : Blocks)
2650     emitLexicalBlock(*Block, FI);
2651 }
2652 
2653 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2654 /// lexical block scope.
2655 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2656                                      const FunctionInfo& FI) {
2657   MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2658   OS.AddComment("PtrParent");
2659   OS.EmitIntValue(0, 4);                                  // PtrParent
2660   OS.AddComment("PtrEnd");
2661   OS.EmitIntValue(0, 4);                                  // PtrEnd
2662   OS.AddComment("Code size");
2663   OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
2664   OS.AddComment("Function section relative address");
2665   OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset
2666   OS.AddComment("Function section index");
2667   OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol
2668   OS.AddComment("Lexical block name");
2669   emitNullTerminatedSymbolName(OS, Block.Name);           // Name
2670   endSymbolRecord(RecordEnd);
2671 
2672   // Emit variables local to this lexical block.
2673   emitLocalVariableList(FI, Block.Locals);
2674   emitGlobalVariableList(Block.Globals);
2675 
2676   // Emit lexical blocks contained within this block.
2677   emitLexicalBlockList(Block.Children, FI);
2678 
2679   // Close the lexical block scope.
2680   emitEndSymbolRecord(SymbolKind::S_END);
2681 }
2682 
2683 /// Convenience routine for collecting lexical block information for a list
2684 /// of lexical scopes.
2685 void CodeViewDebug::collectLexicalBlockInfo(
2686         SmallVectorImpl<LexicalScope *> &Scopes,
2687         SmallVectorImpl<LexicalBlock *> &Blocks,
2688         SmallVectorImpl<LocalVariable> &Locals,
2689         SmallVectorImpl<CVGlobalVariable> &Globals) {
2690   for (LexicalScope *Scope : Scopes)
2691     collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2692 }
2693 
2694 /// Populate the lexical blocks and local variable lists of the parent with
2695 /// information about the specified lexical scope.
2696 void CodeViewDebug::collectLexicalBlockInfo(
2697     LexicalScope &Scope,
2698     SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2699     SmallVectorImpl<LocalVariable> &ParentLocals,
2700     SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2701   if (Scope.isAbstractScope())
2702     return;
2703 
2704   // Gather information about the lexical scope including local variables,
2705   // global variables, and address ranges.
2706   bool IgnoreScope = false;
2707   auto LI = ScopeVariables.find(&Scope);
2708   SmallVectorImpl<LocalVariable> *Locals =
2709       LI != ScopeVariables.end() ? &LI->second : nullptr;
2710   auto GI = ScopeGlobals.find(Scope.getScopeNode());
2711   SmallVectorImpl<CVGlobalVariable> *Globals =
2712       GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2713   const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2714   const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2715 
2716   // Ignore lexical scopes which do not contain variables.
2717   if (!Locals && !Globals)
2718     IgnoreScope = true;
2719 
2720   // Ignore lexical scopes which are not lexical blocks.
2721   if (!DILB)
2722     IgnoreScope = true;
2723 
2724   // Ignore scopes which have too many address ranges to represent in the
2725   // current CodeView format or do not have a valid address range.
2726   //
2727   // For lexical scopes with multiple address ranges you may be tempted to
2728   // construct a single range covering every instruction where the block is
2729   // live and everything in between.  Unfortunately, Visual Studio only
2730   // displays variables from the first matching lexical block scope.  If the
2731   // first lexical block contains exception handling code or cold code which
2732   // is moved to the bottom of the routine creating a single range covering
2733   // nearly the entire routine, then it will hide all other lexical blocks
2734   // and the variables they contain.
2735   if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2736     IgnoreScope = true;
2737 
2738   if (IgnoreScope) {
2739     // This scope can be safely ignored and eliminating it will reduce the
2740     // size of the debug information. Be sure to collect any variable and scope
2741     // information from the this scope or any of its children and collapse them
2742     // into the parent scope.
2743     if (Locals)
2744       ParentLocals.append(Locals->begin(), Locals->end());
2745     if (Globals)
2746       ParentGlobals.append(Globals->begin(), Globals->end());
2747     collectLexicalBlockInfo(Scope.getChildren(),
2748                             ParentBlocks,
2749                             ParentLocals,
2750                             ParentGlobals);
2751     return;
2752   }
2753 
2754   // Create a new CodeView lexical block for this lexical scope.  If we've
2755   // seen this DILexicalBlock before then the scope tree is malformed and
2756   // we can handle this gracefully by not processing it a second time.
2757   auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2758   if (!BlockInsertion.second)
2759     return;
2760 
2761   // Create a lexical block containing the variables and collect the the
2762   // lexical block information for the children.
2763   const InsnRange &Range = Ranges.front();
2764   assert(Range.first && Range.second);
2765   LexicalBlock &Block = BlockInsertion.first->second;
2766   Block.Begin = getLabelBeforeInsn(Range.first);
2767   Block.End = getLabelAfterInsn(Range.second);
2768   assert(Block.Begin && "missing label for scope begin");
2769   assert(Block.End && "missing label for scope end");
2770   Block.Name = DILB->getName();
2771   if (Locals)
2772     Block.Locals = std::move(*Locals);
2773   if (Globals)
2774     Block.Globals = std::move(*Globals);
2775   ParentBlocks.push_back(&Block);
2776   collectLexicalBlockInfo(Scope.getChildren(),
2777                           Block.Children,
2778                           Block.Locals,
2779                           Block.Globals);
2780 }
2781 
2782 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2783   const Function &GV = MF->getFunction();
2784   assert(FnDebugInfo.count(&GV));
2785   assert(CurFn == FnDebugInfo[&GV].get());
2786 
2787   collectVariableInfo(GV.getSubprogram());
2788 
2789   // Build the lexical block structure to emit for this routine.
2790   if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2791     collectLexicalBlockInfo(*CFS,
2792                             CurFn->ChildBlocks,
2793                             CurFn->Locals,
2794                             CurFn->Globals);
2795 
2796   // Clear the scope and variable information from the map which will not be
2797   // valid after we have finished processing this routine.  This also prepares
2798   // the map for the subsequent routine.
2799   ScopeVariables.clear();
2800 
2801   // Don't emit anything if we don't have any line tables.
2802   // Thunks are compiler-generated and probably won't have source correlation.
2803   if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2804     FnDebugInfo.erase(&GV);
2805     CurFn = nullptr;
2806     return;
2807   }
2808 
2809   CurFn->Annotations = MF->getCodeViewAnnotations();
2810 
2811   CurFn->End = Asm->getFunctionEnd();
2812 
2813   CurFn = nullptr;
2814 }
2815 
2816 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2817   DebugHandlerBase::beginInstruction(MI);
2818 
2819   // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2820   if (!Asm || !CurFn || MI->isDebugInstr() ||
2821       MI->getFlag(MachineInstr::FrameSetup))
2822     return;
2823 
2824   // If the first instruction of a new MBB has no location, find the first
2825   // instruction with a location and use that.
2826   DebugLoc DL = MI->getDebugLoc();
2827   if (!DL && MI->getParent() != PrevInstBB) {
2828     for (const auto &NextMI : *MI->getParent()) {
2829       if (NextMI.isDebugInstr())
2830         continue;
2831       DL = NextMI.getDebugLoc();
2832       if (DL)
2833         break;
2834     }
2835   }
2836   PrevInstBB = MI->getParent();
2837 
2838   // If we still don't have a debug location, don't record a location.
2839   if (!DL)
2840     return;
2841 
2842   maybeRecordLocation(DL, Asm->MF);
2843 }
2844 
2845 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2846   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2847            *EndLabel = MMI->getContext().createTempSymbol();
2848   OS.EmitIntValue(unsigned(Kind), 4);
2849   OS.AddComment("Subsection size");
2850   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2851   OS.EmitLabel(BeginLabel);
2852   return EndLabel;
2853 }
2854 
2855 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2856   OS.EmitLabel(EndLabel);
2857   // Every subsection must be aligned to a 4-byte boundary.
2858   OS.EmitValueToAlignment(4);
2859 }
2860 
2861 static StringRef getSymbolName(SymbolKind SymKind) {
2862   for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
2863     if (EE.Value == SymKind)
2864       return EE.Name;
2865   return "";
2866 }
2867 
2868 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
2869   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2870            *EndLabel = MMI->getContext().createTempSymbol();
2871   OS.AddComment("Record length");
2872   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
2873   OS.EmitLabel(BeginLabel);
2874   if (OS.isVerboseAsm())
2875     OS.AddComment("Record kind: " + getSymbolName(SymKind));
2876   OS.EmitIntValue(unsigned(SymKind), 2);
2877   return EndLabel;
2878 }
2879 
2880 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
2881   // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
2882   // an extra copy of every symbol record in LLD. This increases object file
2883   // size by less than 1% in the clang build, and is compatible with the Visual
2884   // C++ linker.
2885   OS.EmitValueToAlignment(4);
2886   OS.EmitLabel(SymEnd);
2887 }
2888 
2889 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
2890   OS.AddComment("Record length");
2891   OS.EmitIntValue(2, 2);
2892   if (OS.isVerboseAsm())
2893     OS.AddComment("Record kind: " + getSymbolName(EndKind));
2894   OS.EmitIntValue(unsigned(EndKind), 2); // Record Kind
2895 }
2896 
2897 void CodeViewDebug::emitDebugInfoForUDTs(
2898     ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2899   for (const auto &UDT : UDTs) {
2900     const DIType *T = UDT.second;
2901     assert(shouldEmitUdt(T));
2902 
2903     MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
2904     OS.AddComment("Type");
2905     OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2906     emitNullTerminatedSymbolName(OS, UDT.first);
2907     endSymbolRecord(UDTRecordEnd);
2908   }
2909 }
2910 
2911 void CodeViewDebug::collectGlobalVariableInfo() {
2912   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2913       GlobalMap;
2914   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2915     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2916     GV.getDebugInfo(GVEs);
2917     for (const auto *GVE : GVEs)
2918       GlobalMap[GVE] = &GV;
2919   }
2920 
2921   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2922   for (const MDNode *Node : CUs->operands()) {
2923     const auto *CU = cast<DICompileUnit>(Node);
2924     for (const auto *GVE : CU->getGlobalVariables()) {
2925       const auto *GV = GlobalMap.lookup(GVE);
2926       if (!GV || GV->isDeclarationForLinker())
2927         continue;
2928       const DIGlobalVariable *DIGV = GVE->getVariable();
2929       DIScope *Scope = DIGV->getScope();
2930       SmallVector<CVGlobalVariable, 1> *VariableList;
2931       if (Scope && isa<DILocalScope>(Scope)) {
2932         // Locate a global variable list for this scope, creating one if
2933         // necessary.
2934         auto Insertion = ScopeGlobals.insert(
2935             {Scope, std::unique_ptr<GlobalVariableList>()});
2936         if (Insertion.second)
2937           Insertion.first->second = llvm::make_unique<GlobalVariableList>();
2938         VariableList = Insertion.first->second.get();
2939       } else if (GV->hasComdat())
2940         // Emit this global variable into a COMDAT section.
2941         VariableList = &ComdatVariables;
2942       else
2943         // Emit this globla variable in a single global symbol section.
2944         VariableList = &GlobalVariables;
2945       CVGlobalVariable CVGV = {DIGV, GV};
2946       VariableList->emplace_back(std::move(CVGV));
2947     }
2948   }
2949 }
2950 
2951 void CodeViewDebug::emitDebugInfoForGlobals() {
2952   // First, emit all globals that are not in a comdat in a single symbol
2953   // substream. MSVC doesn't like it if the substream is empty, so only open
2954   // it if we have at least one global to emit.
2955   switchToDebugSectionForSymbol(nullptr);
2956   if (!GlobalVariables.empty()) {
2957     OS.AddComment("Symbol subsection for globals");
2958     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2959     emitGlobalVariableList(GlobalVariables);
2960     endCVSubsection(EndLabel);
2961   }
2962 
2963   // Second, emit each global that is in a comdat into its own .debug$S
2964   // section along with its own symbol substream.
2965   for (const CVGlobalVariable &CVGV : ComdatVariables) {
2966     MCSymbol *GVSym = Asm->getSymbol(CVGV.GV);
2967     OS.AddComment("Symbol subsection for " +
2968             Twine(GlobalValue::dropLLVMManglingEscape(CVGV.GV->getName())));
2969     switchToDebugSectionForSymbol(GVSym);
2970     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2971     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2972     emitDebugInfoForGlobal(CVGV.DIGV, CVGV.GV, GVSym);
2973     endCVSubsection(EndLabel);
2974   }
2975 }
2976 
2977 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2978   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2979   for (const MDNode *Node : CUs->operands()) {
2980     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2981       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2982         getTypeIndex(RT);
2983         // FIXME: Add to global/local DTU list.
2984       }
2985     }
2986   }
2987 }
2988 
2989 // Emit each global variable in the specified array.
2990 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
2991   for (const CVGlobalVariable &CVGV : Globals) {
2992     MCSymbol *GVSym = Asm->getSymbol(CVGV.GV);
2993     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2994     emitDebugInfoForGlobal(CVGV.DIGV, CVGV.GV, GVSym);
2995   }
2996 }
2997 
2998 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2999                                            const GlobalVariable *GV,
3000                                            MCSymbol *GVSym) {
3001   // DataSym record, see SymbolRecord.h for more info. Thread local data
3002   // happens to have the same format as global data.
3003   SymbolKind DataSym = GV->isThreadLocal()
3004                            ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3005                                                     : SymbolKind::S_GTHREAD32)
3006                            : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3007                                                     : SymbolKind::S_GDATA32);
3008   MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3009   OS.AddComment("Type");
3010   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
3011   OS.AddComment("DataOffset");
3012   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
3013   OS.AddComment("Segment");
3014   OS.EmitCOFFSectionIndex(GVSym);
3015   OS.AddComment("Name");
3016   const unsigned LengthOfDataRecord = 12;
3017   emitNullTerminatedSymbolName(OS, DIGV->getName(), LengthOfDataRecord);
3018   endSymbolRecord(DataEnd);
3019 }
3020