1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 40 #include "llvm/DebugInfo/CodeView/CodeView.h" 41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 46 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/MC/MCAsmInfo.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSectionCOFF.h" 60 #include "llvm/MC/MCStreamer.h" 61 #include "llvm/MC/MCSymbol.h" 62 #include "llvm/Support/BinaryByteStream.h" 63 #include "llvm/Support/BinaryStreamReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Target/TargetFrameLowering.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cctype> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <limits> 83 #include <string> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace llvm::codeview; 89 90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 91 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 92 // If module doesn't have named metadata anchors or COFF debug section 93 // is not available, skip any debug info related stuff. 94 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 95 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 96 Asm = nullptr; 97 return; 98 } 99 100 // Tell MMI that we have debug info. 101 MMI->setDebugInfoAvailability(true); 102 } 103 104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 105 std::string &Filepath = FileToFilepathMap[File]; 106 if (!Filepath.empty()) 107 return Filepath; 108 109 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 110 111 // Clang emits directory and relative filename info into the IR, but CodeView 112 // operates on full paths. We could change Clang to emit full paths too, but 113 // that would increase the IR size and probably not needed for other users. 114 // For now, just concatenate and canonicalize the path here. 115 if (Filename.find(':') == 1) 116 Filepath = Filename; 117 else 118 Filepath = (Dir + "\\" + Filename).str(); 119 120 // Canonicalize the path. We have to do it textually because we may no longer 121 // have access the file in the filesystem. 122 // First, replace all slashes with backslashes. 123 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 124 125 // Remove all "\.\" with "\". 126 size_t Cursor = 0; 127 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 128 Filepath.erase(Cursor, 2); 129 130 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 131 // path should be well-formatted, e.g. start with a drive letter, etc. 132 Cursor = 0; 133 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 134 // Something's wrong if the path starts with "\..\", abort. 135 if (Cursor == 0) 136 break; 137 138 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 139 if (PrevSlash == std::string::npos) 140 // Something's wrong, abort. 141 break; 142 143 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 144 // The next ".." might be following the one we've just erased. 145 Cursor = PrevSlash; 146 } 147 148 // Remove all duplicate backslashes. 149 Cursor = 0; 150 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 151 Filepath.erase(Cursor, 1); 152 153 return Filepath; 154 } 155 156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 157 unsigned NextId = FileIdMap.size() + 1; 158 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 159 if (Insertion.second) { 160 // We have to compute the full filepath and emit a .cv_file directive. 161 StringRef FullPath = getFullFilepath(F); 162 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 163 (void)Success; 164 assert(Success && ".cv_file directive failed"); 165 } 166 return Insertion.first->second; 167 } 168 169 CodeViewDebug::InlineSite & 170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 171 const DISubprogram *Inlinee) { 172 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 173 InlineSite *Site = &SiteInsertion.first->second; 174 if (SiteInsertion.second) { 175 unsigned ParentFuncId = CurFn->FuncId; 176 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 177 ParentFuncId = 178 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 179 .SiteFuncId; 180 181 Site->SiteFuncId = NextFuncId++; 182 OS.EmitCVInlineSiteIdDirective( 183 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 184 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 185 Site->Inlinee = Inlinee; 186 InlinedSubprograms.insert(Inlinee); 187 getFuncIdForSubprogram(Inlinee); 188 } 189 return *Site; 190 } 191 192 static StringRef getPrettyScopeName(const DIScope *Scope) { 193 StringRef ScopeName = Scope->getName(); 194 if (!ScopeName.empty()) 195 return ScopeName; 196 197 switch (Scope->getTag()) { 198 case dwarf::DW_TAG_enumeration_type: 199 case dwarf::DW_TAG_class_type: 200 case dwarf::DW_TAG_structure_type: 201 case dwarf::DW_TAG_union_type: 202 return "<unnamed-tag>"; 203 case dwarf::DW_TAG_namespace: 204 return "`anonymous namespace'"; 205 } 206 207 return StringRef(); 208 } 209 210 static const DISubprogram *getQualifiedNameComponents( 211 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 212 const DISubprogram *ClosestSubprogram = nullptr; 213 while (Scope != nullptr) { 214 if (ClosestSubprogram == nullptr) 215 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 216 StringRef ScopeName = getPrettyScopeName(Scope); 217 if (!ScopeName.empty()) 218 QualifiedNameComponents.push_back(ScopeName); 219 Scope = Scope->getScope().resolve(); 220 } 221 return ClosestSubprogram; 222 } 223 224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 225 StringRef TypeName) { 226 std::string FullyQualifiedName; 227 for (StringRef QualifiedNameComponent : 228 llvm::reverse(QualifiedNameComponents)) { 229 FullyQualifiedName.append(QualifiedNameComponent); 230 FullyQualifiedName.append("::"); 231 } 232 FullyQualifiedName.append(TypeName); 233 return FullyQualifiedName; 234 } 235 236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 237 SmallVector<StringRef, 5> QualifiedNameComponents; 238 getQualifiedNameComponents(Scope, QualifiedNameComponents); 239 return getQualifiedName(QualifiedNameComponents, Name); 240 } 241 242 struct CodeViewDebug::TypeLoweringScope { 243 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 244 ~TypeLoweringScope() { 245 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 246 // inner TypeLoweringScopes don't attempt to emit deferred types. 247 if (CVD.TypeEmissionLevel == 1) 248 CVD.emitDeferredCompleteTypes(); 249 --CVD.TypeEmissionLevel; 250 } 251 CodeViewDebug &CVD; 252 }; 253 254 static std::string getFullyQualifiedName(const DIScope *Ty) { 255 const DIScope *Scope = Ty->getScope().resolve(); 256 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 257 } 258 259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 260 // No scope means global scope and that uses the zero index. 261 if (!Scope || isa<DIFile>(Scope)) 262 return TypeIndex(); 263 264 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 265 266 // Check if we've already translated this scope. 267 auto I = TypeIndices.find({Scope, nullptr}); 268 if (I != TypeIndices.end()) 269 return I->second; 270 271 // Build the fully qualified name of the scope. 272 std::string ScopeName = getFullyQualifiedName(Scope); 273 StringIdRecord SID(TypeIndex(), ScopeName); 274 auto TI = TypeTable.writeKnownType(SID); 275 return recordTypeIndexForDINode(Scope, TI); 276 } 277 278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 279 assert(SP); 280 281 // Check if we've already translated this subprogram. 282 auto I = TypeIndices.find({SP, nullptr}); 283 if (I != TypeIndices.end()) 284 return I->second; 285 286 // The display name includes function template arguments. Drop them to match 287 // MSVC. 288 StringRef DisplayName = SP->getName().split('<').first; 289 290 const DIScope *Scope = SP->getScope().resolve(); 291 TypeIndex TI; 292 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 293 // If the scope is a DICompositeType, then this must be a method. Member 294 // function types take some special handling, and require access to the 295 // subprogram. 296 TypeIndex ClassType = getTypeIndex(Class); 297 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 298 DisplayName); 299 TI = TypeTable.writeKnownType(MFuncId); 300 } else { 301 // Otherwise, this must be a free function. 302 TypeIndex ParentScope = getScopeIndex(Scope); 303 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 304 TI = TypeTable.writeKnownType(FuncId); 305 } 306 307 return recordTypeIndexForDINode(SP, TI); 308 } 309 310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 311 const DICompositeType *Class) { 312 // Always use the method declaration as the key for the function type. The 313 // method declaration contains the this adjustment. 314 if (SP->getDeclaration()) 315 SP = SP->getDeclaration(); 316 assert(!SP->getDeclaration() && "should use declaration as key"); 317 318 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 319 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 320 auto I = TypeIndices.find({SP, Class}); 321 if (I != TypeIndices.end()) 322 return I->second; 323 324 // Make sure complete type info for the class is emitted *after* the member 325 // function type, as the complete class type is likely to reference this 326 // member function type. 327 TypeLoweringScope S(*this); 328 TypeIndex TI = 329 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 330 return recordTypeIndexForDINode(SP, TI, Class); 331 } 332 333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 334 TypeIndex TI, 335 const DIType *ClassTy) { 336 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 337 (void)InsertResult; 338 assert(InsertResult.second && "DINode was already assigned a type index"); 339 return TI; 340 } 341 342 unsigned CodeViewDebug::getPointerSizeInBytes() { 343 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 344 } 345 346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 347 const DILocation *InlinedAt) { 348 if (InlinedAt) { 349 // This variable was inlined. Associate it with the InlineSite. 350 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 351 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 352 Site.InlinedLocals.emplace_back(Var); 353 } else { 354 // This variable goes in the main ProcSym. 355 CurFn->Locals.emplace_back(Var); 356 } 357 } 358 359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 360 const DILocation *Loc) { 361 auto B = Locs.begin(), E = Locs.end(); 362 if (std::find(B, E, Loc) == E) 363 Locs.push_back(Loc); 364 } 365 366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 367 const MachineFunction *MF) { 368 // Skip this instruction if it has the same location as the previous one. 369 if (!DL || DL == PrevInstLoc) 370 return; 371 372 const DIScope *Scope = DL.get()->getScope(); 373 if (!Scope) 374 return; 375 376 // Skip this line if it is longer than the maximum we can record. 377 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 378 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 379 LI.isNeverStepInto()) 380 return; 381 382 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 383 if (CI.getStartColumn() != DL.getCol()) 384 return; 385 386 if (!CurFn->HaveLineInfo) 387 CurFn->HaveLineInfo = true; 388 unsigned FileId = 0; 389 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 390 FileId = CurFn->LastFileId; 391 else 392 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 393 PrevInstLoc = DL; 394 395 unsigned FuncId = CurFn->FuncId; 396 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 397 const DILocation *Loc = DL.get(); 398 399 // If this location was actually inlined from somewhere else, give it the ID 400 // of the inline call site. 401 FuncId = 402 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 403 404 // Ensure we have links in the tree of inline call sites. 405 bool FirstLoc = true; 406 while ((SiteLoc = Loc->getInlinedAt())) { 407 InlineSite &Site = 408 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 409 if (!FirstLoc) 410 addLocIfNotPresent(Site.ChildSites, Loc); 411 FirstLoc = false; 412 Loc = SiteLoc; 413 } 414 addLocIfNotPresent(CurFn->ChildSites, Loc); 415 } 416 417 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 418 /*PrologueEnd=*/false, /*IsStmt=*/false, 419 DL->getFilename(), SMLoc()); 420 } 421 422 void CodeViewDebug::emitCodeViewMagicVersion() { 423 OS.EmitValueToAlignment(4); 424 OS.AddComment("Debug section magic"); 425 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 426 } 427 428 void CodeViewDebug::endModule() { 429 if (!Asm || !MMI->hasDebugInfo()) 430 return; 431 432 assert(Asm != nullptr); 433 434 // The COFF .debug$S section consists of several subsections, each starting 435 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 436 // of the payload followed by the payload itself. The subsections are 4-byte 437 // aligned. 438 439 // Use the generic .debug$S section, and make a subsection for all the inlined 440 // subprograms. 441 switchToDebugSectionForSymbol(nullptr); 442 443 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 444 emitCompilerInformation(); 445 endCVSubsection(CompilerInfo); 446 447 emitInlineeLinesSubsection(); 448 449 // Emit per-function debug information. 450 for (auto &P : FnDebugInfo) 451 if (!P.first->isDeclarationForLinker()) 452 emitDebugInfoForFunction(P.first, P.second); 453 454 // Emit global variable debug information. 455 setCurrentSubprogram(nullptr); 456 emitDebugInfoForGlobals(); 457 458 // Emit retained types. 459 emitDebugInfoForRetainedTypes(); 460 461 // Switch back to the generic .debug$S section after potentially processing 462 // comdat symbol sections. 463 switchToDebugSectionForSymbol(nullptr); 464 465 // Emit UDT records for any types used by global variables. 466 if (!GlobalUDTs.empty()) { 467 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 468 emitDebugInfoForUDTs(GlobalUDTs); 469 endCVSubsection(SymbolsEnd); 470 } 471 472 // This subsection holds a file index to offset in string table table. 473 OS.AddComment("File index to string table offset subsection"); 474 OS.EmitCVFileChecksumsDirective(); 475 476 // This subsection holds the string table. 477 OS.AddComment("String table"); 478 OS.EmitCVStringTableDirective(); 479 480 // Emit type information last, so that any types we translate while emitting 481 // function info are included. 482 emitTypeInformation(); 483 484 clear(); 485 } 486 487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 488 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 489 // after a fixed length portion of the record. The fixed length portion should 490 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 491 // overall record size is less than the maximum allowed. 492 unsigned MaxFixedRecordLength = 0xF00; 493 SmallString<32> NullTerminatedString( 494 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 495 NullTerminatedString.push_back('\0'); 496 OS.EmitBytes(NullTerminatedString); 497 } 498 499 void CodeViewDebug::emitTypeInformation() { 500 // Do nothing if we have no debug info or if no non-trivial types were emitted 501 // to TypeTable during codegen. 502 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 503 if (!CU_Nodes) 504 return; 505 if (TypeTable.empty()) 506 return; 507 508 // Start the .debug$T section with 0x4. 509 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 510 emitCodeViewMagicVersion(); 511 512 SmallString<8> CommentPrefix; 513 if (OS.isVerboseAsm()) { 514 CommentPrefix += '\t'; 515 CommentPrefix += Asm->MAI->getCommentString(); 516 CommentPrefix += ' '; 517 } 518 519 TypeTableCollection Table(TypeTable.records()); 520 Optional<TypeIndex> B = Table.getFirst(); 521 while (B) { 522 // This will fail if the record data is invalid. 523 CVType Record = Table.getType(*B); 524 525 if (OS.isVerboseAsm()) { 526 // Emit a block comment describing the type record for readability. 527 SmallString<512> CommentBlock; 528 raw_svector_ostream CommentOS(CommentBlock); 529 ScopedPrinter SP(CommentOS); 530 SP.setPrefix(CommentPrefix); 531 TypeDumpVisitor TDV(Table, &SP, false); 532 533 Error E = codeview::visitTypeRecord(Record, *B, TDV); 534 if (E) { 535 logAllUnhandledErrors(std::move(E), errs(), "error: "); 536 llvm_unreachable("produced malformed type record"); 537 } 538 // emitRawComment will insert its own tab and comment string before 539 // the first line, so strip off our first one. It also prints its own 540 // newline. 541 OS.emitRawComment( 542 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 543 } 544 OS.EmitBinaryData(Record.str_data()); 545 B = Table.getNext(*B); 546 } 547 } 548 549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 550 switch (DWLang) { 551 case dwarf::DW_LANG_C: 552 case dwarf::DW_LANG_C89: 553 case dwarf::DW_LANG_C99: 554 case dwarf::DW_LANG_C11: 555 case dwarf::DW_LANG_ObjC: 556 return SourceLanguage::C; 557 case dwarf::DW_LANG_C_plus_plus: 558 case dwarf::DW_LANG_C_plus_plus_03: 559 case dwarf::DW_LANG_C_plus_plus_11: 560 case dwarf::DW_LANG_C_plus_plus_14: 561 return SourceLanguage::Cpp; 562 case dwarf::DW_LANG_Fortran77: 563 case dwarf::DW_LANG_Fortran90: 564 case dwarf::DW_LANG_Fortran03: 565 case dwarf::DW_LANG_Fortran08: 566 return SourceLanguage::Fortran; 567 case dwarf::DW_LANG_Pascal83: 568 return SourceLanguage::Pascal; 569 case dwarf::DW_LANG_Cobol74: 570 case dwarf::DW_LANG_Cobol85: 571 return SourceLanguage::Cobol; 572 case dwarf::DW_LANG_Java: 573 return SourceLanguage::Java; 574 case dwarf::DW_LANG_D: 575 return SourceLanguage::D; 576 default: 577 // There's no CodeView representation for this language, and CV doesn't 578 // have an "unknown" option for the language field, so we'll use MASM, 579 // as it's very low level. 580 return SourceLanguage::Masm; 581 } 582 } 583 584 namespace { 585 struct Version { 586 int Part[4]; 587 }; 588 } // end anonymous namespace 589 590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 591 // the version number. 592 static Version parseVersion(StringRef Name) { 593 Version V = {{0}}; 594 int N = 0; 595 for (const char C : Name) { 596 if (isdigit(C)) { 597 V.Part[N] *= 10; 598 V.Part[N] += C - '0'; 599 } else if (C == '.') { 600 ++N; 601 if (N >= 4) 602 return V; 603 } else if (N > 0) 604 return V; 605 } 606 return V; 607 } 608 609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 610 switch (Type) { 611 case Triple::ArchType::x86: 612 return CPUType::Pentium3; 613 case Triple::ArchType::x86_64: 614 return CPUType::X64; 615 case Triple::ArchType::thumb: 616 return CPUType::Thumb; 617 case Triple::ArchType::aarch64: 618 return CPUType::ARM64; 619 default: 620 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 621 } 622 } 623 624 void CodeViewDebug::emitCompilerInformation() { 625 MCContext &Context = MMI->getContext(); 626 MCSymbol *CompilerBegin = Context.createTempSymbol(), 627 *CompilerEnd = Context.createTempSymbol(); 628 OS.AddComment("Record length"); 629 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 630 OS.EmitLabel(CompilerBegin); 631 OS.AddComment("Record kind: S_COMPILE3"); 632 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 633 uint32_t Flags = 0; 634 635 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 636 const MDNode *Node = *CUs->operands().begin(); 637 const auto *CU = cast<DICompileUnit>(Node); 638 639 // The low byte of the flags indicates the source language. 640 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 641 // TODO: Figure out which other flags need to be set. 642 643 OS.AddComment("Flags and language"); 644 OS.EmitIntValue(Flags, 4); 645 646 OS.AddComment("CPUType"); 647 CPUType CPU = 648 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 649 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 650 651 StringRef CompilerVersion = CU->getProducer(); 652 Version FrontVer = parseVersion(CompilerVersion); 653 OS.AddComment("Frontend version"); 654 for (int N = 0; N < 4; ++N) 655 OS.EmitIntValue(FrontVer.Part[N], 2); 656 657 // Some Microsoft tools, like Binscope, expect a backend version number of at 658 // least 8.something, so we'll coerce the LLVM version into a form that 659 // guarantees it'll be big enough without really lying about the version. 660 int Major = 1000 * LLVM_VERSION_MAJOR + 661 10 * LLVM_VERSION_MINOR + 662 LLVM_VERSION_PATCH; 663 // Clamp it for builds that use unusually large version numbers. 664 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 665 Version BackVer = {{ Major, 0, 0, 0 }}; 666 OS.AddComment("Backend version"); 667 for (int N = 0; N < 4; ++N) 668 OS.EmitIntValue(BackVer.Part[N], 2); 669 670 OS.AddComment("Null-terminated compiler version string"); 671 emitNullTerminatedSymbolName(OS, CompilerVersion); 672 673 OS.EmitLabel(CompilerEnd); 674 } 675 676 void CodeViewDebug::emitInlineeLinesSubsection() { 677 if (InlinedSubprograms.empty()) 678 return; 679 680 OS.AddComment("Inlinee lines subsection"); 681 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 682 683 // We don't provide any extra file info. 684 // FIXME: Find out if debuggers use this info. 685 OS.AddComment("Inlinee lines signature"); 686 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 687 688 for (const DISubprogram *SP : InlinedSubprograms) { 689 assert(TypeIndices.count({SP, nullptr})); 690 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 691 692 OS.AddBlankLine(); 693 unsigned FileId = maybeRecordFile(SP->getFile()); 694 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 695 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 696 OS.AddBlankLine(); 697 // The filechecksum table uses 8 byte entries for now, and file ids start at 698 // 1. 699 unsigned FileOffset = (FileId - 1) * 8; 700 OS.AddComment("Type index of inlined function"); 701 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 702 OS.AddComment("Offset into filechecksum table"); 703 OS.EmitIntValue(FileOffset, 4); 704 OS.AddComment("Starting line number"); 705 OS.EmitIntValue(SP->getLine(), 4); 706 } 707 708 endCVSubsection(InlineEnd); 709 } 710 711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 712 const DILocation *InlinedAt, 713 const InlineSite &Site) { 714 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 715 *InlineEnd = MMI->getContext().createTempSymbol(); 716 717 assert(TypeIndices.count({Site.Inlinee, nullptr})); 718 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 719 720 // SymbolRecord 721 OS.AddComment("Record length"); 722 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 723 OS.EmitLabel(InlineBegin); 724 OS.AddComment("Record kind: S_INLINESITE"); 725 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 726 727 OS.AddComment("PtrParent"); 728 OS.EmitIntValue(0, 4); 729 OS.AddComment("PtrEnd"); 730 OS.EmitIntValue(0, 4); 731 OS.AddComment("Inlinee type index"); 732 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 733 734 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 735 unsigned StartLineNum = Site.Inlinee->getLine(); 736 737 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 738 FI.Begin, FI.End); 739 740 OS.EmitLabel(InlineEnd); 741 742 emitLocalVariableList(Site.InlinedLocals); 743 744 // Recurse on child inlined call sites before closing the scope. 745 for (const DILocation *ChildSite : Site.ChildSites) { 746 auto I = FI.InlineSites.find(ChildSite); 747 assert(I != FI.InlineSites.end() && 748 "child site not in function inline site map"); 749 emitInlinedCallSite(FI, ChildSite, I->second); 750 } 751 752 // Close the scope. 753 OS.AddComment("Record length"); 754 OS.EmitIntValue(2, 2); // RecordLength 755 OS.AddComment("Record kind: S_INLINESITE_END"); 756 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 757 } 758 759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 760 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 761 // comdat key. A section may be comdat because of -ffunction-sections or 762 // because it is comdat in the IR. 763 MCSectionCOFF *GVSec = 764 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 765 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 766 767 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 768 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 769 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 770 771 OS.SwitchSection(DebugSec); 772 773 // Emit the magic version number if this is the first time we've switched to 774 // this section. 775 if (ComdatDebugSections.insert(DebugSec).second) 776 emitCodeViewMagicVersion(); 777 } 778 779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 780 FunctionInfo &FI) { 781 // For each function there is a separate subsection 782 // which holds the PC to file:line table. 783 const MCSymbol *Fn = Asm->getSymbol(GV); 784 assert(Fn); 785 786 // Switch to the to a comdat section, if appropriate. 787 switchToDebugSectionForSymbol(Fn); 788 789 std::string FuncName; 790 auto *SP = GV->getSubprogram(); 791 assert(SP); 792 setCurrentSubprogram(SP); 793 794 // If we have a display name, build the fully qualified name by walking the 795 // chain of scopes. 796 if (!SP->getName().empty()) 797 FuncName = 798 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 799 800 // If our DISubprogram name is empty, use the mangled name. 801 if (FuncName.empty()) 802 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 803 804 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 805 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 806 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 807 { 808 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 809 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 810 OS.AddComment("Record length"); 811 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 812 OS.EmitLabel(ProcRecordBegin); 813 814 if (GV->hasLocalLinkage()) { 815 OS.AddComment("Record kind: S_LPROC32_ID"); 816 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 817 } else { 818 OS.AddComment("Record kind: S_GPROC32_ID"); 819 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 820 } 821 822 // These fields are filled in by tools like CVPACK which run after the fact. 823 OS.AddComment("PtrParent"); 824 OS.EmitIntValue(0, 4); 825 OS.AddComment("PtrEnd"); 826 OS.EmitIntValue(0, 4); 827 OS.AddComment("PtrNext"); 828 OS.EmitIntValue(0, 4); 829 // This is the important bit that tells the debugger where the function 830 // code is located and what's its size: 831 OS.AddComment("Code size"); 832 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 833 OS.AddComment("Offset after prologue"); 834 OS.EmitIntValue(0, 4); 835 OS.AddComment("Offset before epilogue"); 836 OS.EmitIntValue(0, 4); 837 OS.AddComment("Function type index"); 838 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 839 OS.AddComment("Function section relative address"); 840 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 841 OS.AddComment("Function section index"); 842 OS.EmitCOFFSectionIndex(Fn); 843 OS.AddComment("Flags"); 844 OS.EmitIntValue(0, 1); 845 // Emit the function display name as a null-terminated string. 846 OS.AddComment("Function name"); 847 // Truncate the name so we won't overflow the record length field. 848 emitNullTerminatedSymbolName(OS, FuncName); 849 OS.EmitLabel(ProcRecordEnd); 850 851 emitLocalVariableList(FI.Locals); 852 853 // Emit inlined call site information. Only emit functions inlined directly 854 // into the parent function. We'll emit the other sites recursively as part 855 // of their parent inline site. 856 for (const DILocation *InlinedAt : FI.ChildSites) { 857 auto I = FI.InlineSites.find(InlinedAt); 858 assert(I != FI.InlineSites.end() && 859 "child site not in function inline site map"); 860 emitInlinedCallSite(FI, InlinedAt, I->second); 861 } 862 863 if (SP != nullptr) 864 emitDebugInfoForUDTs(LocalUDTs); 865 866 // We're done with this function. 867 OS.AddComment("Record length"); 868 OS.EmitIntValue(0x0002, 2); 869 OS.AddComment("Record kind: S_PROC_ID_END"); 870 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 871 } 872 endCVSubsection(SymbolsEnd); 873 874 // We have an assembler directive that takes care of the whole line table. 875 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 876 } 877 878 CodeViewDebug::LocalVarDefRange 879 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 880 LocalVarDefRange DR; 881 DR.InMemory = -1; 882 DR.DataOffset = Offset; 883 assert(DR.DataOffset == Offset && "truncation"); 884 DR.IsSubfield = 0; 885 DR.StructOffset = 0; 886 DR.CVRegister = CVRegister; 887 return DR; 888 } 889 890 CodeViewDebug::LocalVarDefRange 891 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 892 int Offset, bool IsSubfield, 893 uint16_t StructOffset) { 894 LocalVarDefRange DR; 895 DR.InMemory = InMemory; 896 DR.DataOffset = Offset; 897 DR.IsSubfield = IsSubfield; 898 DR.StructOffset = StructOffset; 899 DR.CVRegister = CVRegister; 900 return DR; 901 } 902 903 void CodeViewDebug::collectVariableInfoFromMFTable( 904 DenseSet<InlinedVariable> &Processed) { 905 const MachineFunction &MF = *Asm->MF; 906 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 907 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 908 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 909 910 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 911 if (!VI.Var) 912 continue; 913 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 914 "Expected inlined-at fields to agree"); 915 916 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 917 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 918 919 // If variable scope is not found then skip this variable. 920 if (!Scope) 921 continue; 922 923 // If the variable has an attached offset expression, extract it. 924 // FIXME: Try to handle DW_OP_deref as well. 925 int64_t ExprOffset = 0; 926 if (VI.Expr) 927 if (!VI.Expr->extractIfOffset(ExprOffset)) 928 continue; 929 930 // Get the frame register used and the offset. 931 unsigned FrameReg = 0; 932 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 933 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 934 935 // Calculate the label ranges. 936 LocalVarDefRange DefRange = 937 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 938 for (const InsnRange &Range : Scope->getRanges()) { 939 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 940 const MCSymbol *End = getLabelAfterInsn(Range.second); 941 End = End ? End : Asm->getFunctionEnd(); 942 DefRange.Ranges.emplace_back(Begin, End); 943 } 944 945 LocalVariable Var; 946 Var.DIVar = VI.Var; 947 Var.DefRanges.emplace_back(std::move(DefRange)); 948 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 949 } 950 } 951 952 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 953 DenseSet<InlinedVariable> Processed; 954 // Grab the variable info that was squirreled away in the MMI side-table. 955 collectVariableInfoFromMFTable(Processed); 956 957 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 958 959 for (const auto &I : DbgValues) { 960 InlinedVariable IV = I.first; 961 if (Processed.count(IV)) 962 continue; 963 const DILocalVariable *DIVar = IV.first; 964 const DILocation *InlinedAt = IV.second; 965 966 // Instruction ranges, specifying where IV is accessible. 967 const auto &Ranges = I.second; 968 969 LexicalScope *Scope = nullptr; 970 if (InlinedAt) 971 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 972 else 973 Scope = LScopes.findLexicalScope(DIVar->getScope()); 974 // If variable scope is not found then skip this variable. 975 if (!Scope) 976 continue; 977 978 LocalVariable Var; 979 Var.DIVar = DIVar; 980 981 // Calculate the definition ranges. 982 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 983 const InsnRange &Range = *I; 984 const MachineInstr *DVInst = Range.first; 985 assert(DVInst->isDebugValue() && "Invalid History entry"); 986 const DIExpression *DIExpr = DVInst->getDebugExpression(); 987 bool InMemory = DVInst->getOperand(1).isImm(); 988 bool IsSubfield = false; 989 unsigned StructOffset = 0; 990 // Recognize a +Offset expression. 991 int Offset = 0; 992 DIExpressionCursor Ops(DIExpr); 993 auto Op = Ops.peek(); 994 if (Op && Op->getOp() == dwarf::DW_OP_plus_uconst) { 995 Offset = Op->getArg(0); 996 Ops.take(); 997 } 998 999 // Handle fragments. 1000 auto Fragment = Ops.getFragmentInfo(); 1001 if (Fragment) { 1002 IsSubfield = true; 1003 StructOffset = Fragment->OffsetInBits / 8; 1004 } 1005 // Ignore unrecognized exprs. 1006 if (Ops.peek() && Ops.peek()->getOp() != dwarf::DW_OP_LLVM_fragment) 1007 continue; 1008 if (!InMemory && Offset) 1009 continue; 1010 1011 // Bail if operand 0 is not a valid register. This means the variable is a 1012 // simple constant, or is described by a complex expression. 1013 // FIXME: Find a way to represent constant variables, since they are 1014 // relatively common. 1015 unsigned Reg = 1016 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 1017 if (Reg == 0) 1018 continue; 1019 1020 // Handle the two cases we can handle: indirect in memory and in register. 1021 unsigned CVReg = TRI->getCodeViewRegNum(Reg); 1022 { 1023 LocalVarDefRange DR; 1024 DR.CVRegister = CVReg; 1025 DR.InMemory = InMemory; 1026 DR.DataOffset = Offset; 1027 DR.IsSubfield = IsSubfield; 1028 DR.StructOffset = StructOffset; 1029 1030 if (Var.DefRanges.empty() || 1031 Var.DefRanges.back().isDifferentLocation(DR)) { 1032 Var.DefRanges.emplace_back(std::move(DR)); 1033 } 1034 } 1035 1036 // Compute the label range. 1037 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1038 const MCSymbol *End = getLabelAfterInsn(Range.second); 1039 if (!End) { 1040 // This range is valid until the next overlapping bitpiece. In the 1041 // common case, ranges will not be bitpieces, so they will overlap. 1042 auto J = std::next(I); 1043 while (J != E && 1044 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1045 ++J; 1046 if (J != E) 1047 End = getLabelBeforeInsn(J->first); 1048 else 1049 End = Asm->getFunctionEnd(); 1050 } 1051 1052 // If the last range end is our begin, just extend the last range. 1053 // Otherwise make a new range. 1054 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 1055 Var.DefRanges.back().Ranges; 1056 if (!Ranges.empty() && Ranges.back().second == Begin) 1057 Ranges.back().second = End; 1058 else 1059 Ranges.emplace_back(Begin, End); 1060 1061 // FIXME: Do more range combining. 1062 } 1063 1064 recordLocalVariable(std::move(Var), InlinedAt); 1065 } 1066 } 1067 1068 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1069 const Function *GV = MF->getFunction(); 1070 assert(FnDebugInfo.count(GV) == false); 1071 CurFn = &FnDebugInfo[GV]; 1072 CurFn->FuncId = NextFuncId++; 1073 CurFn->Begin = Asm->getFunctionBegin(); 1074 1075 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1076 1077 // Find the end of the function prolog. First known non-DBG_VALUE and 1078 // non-frame setup location marks the beginning of the function body. 1079 // FIXME: is there a simpler a way to do this? Can we just search 1080 // for the first instruction of the function, not the last of the prolog? 1081 DebugLoc PrologEndLoc; 1082 bool EmptyPrologue = true; 1083 for (const auto &MBB : *MF) { 1084 for (const auto &MI : MBB) { 1085 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1086 MI.getDebugLoc()) { 1087 PrologEndLoc = MI.getDebugLoc(); 1088 break; 1089 } else if (!MI.isMetaInstruction()) { 1090 EmptyPrologue = false; 1091 } 1092 } 1093 } 1094 1095 // Record beginning of function if we have a non-empty prologue. 1096 if (PrologEndLoc && !EmptyPrologue) { 1097 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1098 maybeRecordLocation(FnStartDL, MF); 1099 } 1100 } 1101 1102 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 1103 // Don't record empty UDTs. 1104 if (Ty->getName().empty()) 1105 return; 1106 1107 SmallVector<StringRef, 5> QualifiedNameComponents; 1108 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1109 Ty->getScope().resolve(), QualifiedNameComponents); 1110 1111 std::string FullyQualifiedName = 1112 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1113 1114 if (ClosestSubprogram == nullptr) 1115 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1116 else if (ClosestSubprogram == CurrentSubprogram) 1117 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1118 1119 // TODO: What if the ClosestSubprogram is neither null or the current 1120 // subprogram? Currently, the UDT just gets dropped on the floor. 1121 // 1122 // The current behavior is not desirable. To get maximal fidelity, we would 1123 // need to perform all type translation before beginning emission of .debug$S 1124 // and then make LocalUDTs a member of FunctionInfo 1125 } 1126 1127 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1128 // Generic dispatch for lowering an unknown type. 1129 switch (Ty->getTag()) { 1130 case dwarf::DW_TAG_array_type: 1131 return lowerTypeArray(cast<DICompositeType>(Ty)); 1132 case dwarf::DW_TAG_typedef: 1133 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1134 case dwarf::DW_TAG_base_type: 1135 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1136 case dwarf::DW_TAG_pointer_type: 1137 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1138 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1139 LLVM_FALLTHROUGH; 1140 case dwarf::DW_TAG_reference_type: 1141 case dwarf::DW_TAG_rvalue_reference_type: 1142 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1143 case dwarf::DW_TAG_ptr_to_member_type: 1144 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1145 case dwarf::DW_TAG_const_type: 1146 case dwarf::DW_TAG_volatile_type: 1147 // TODO: add support for DW_TAG_atomic_type here 1148 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1149 case dwarf::DW_TAG_subroutine_type: 1150 if (ClassTy) { 1151 // The member function type of a member function pointer has no 1152 // ThisAdjustment. 1153 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1154 /*ThisAdjustment=*/0); 1155 } 1156 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1157 case dwarf::DW_TAG_enumeration_type: 1158 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1159 case dwarf::DW_TAG_class_type: 1160 case dwarf::DW_TAG_structure_type: 1161 return lowerTypeClass(cast<DICompositeType>(Ty)); 1162 case dwarf::DW_TAG_union_type: 1163 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1164 default: 1165 // Use the null type index. 1166 return TypeIndex(); 1167 } 1168 } 1169 1170 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1171 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1172 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1173 StringRef TypeName = Ty->getName(); 1174 1175 addToUDTs(Ty, UnderlyingTypeIndex); 1176 1177 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1178 TypeName == "HRESULT") 1179 return TypeIndex(SimpleTypeKind::HResult); 1180 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1181 TypeName == "wchar_t") 1182 return TypeIndex(SimpleTypeKind::WideCharacter); 1183 1184 return UnderlyingTypeIndex; 1185 } 1186 1187 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1188 DITypeRef ElementTypeRef = Ty->getBaseType(); 1189 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1190 // IndexType is size_t, which depends on the bitness of the target. 1191 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1192 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1193 : TypeIndex(SimpleTypeKind::UInt32Long); 1194 1195 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1196 1197 // Add subranges to array type. 1198 DINodeArray Elements = Ty->getElements(); 1199 for (int i = Elements.size() - 1; i >= 0; --i) { 1200 const DINode *Element = Elements[i]; 1201 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1202 1203 const DISubrange *Subrange = cast<DISubrange>(Element); 1204 assert(Subrange->getLowerBound() == 0 && 1205 "codeview doesn't support subranges with lower bounds"); 1206 int64_t Count = Subrange->getCount(); 1207 1208 // Variable Length Array (VLA) has Count equal to '-1'. 1209 // Replace with Count '1', assume it is the minimum VLA length. 1210 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1211 if (Count == -1) 1212 Count = 1; 1213 1214 // Update the element size and element type index for subsequent subranges. 1215 ElementSize *= Count; 1216 1217 // If this is the outermost array, use the size from the array. It will be 1218 // more accurate if we had a VLA or an incomplete element type size. 1219 uint64_t ArraySize = 1220 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1221 1222 StringRef Name = (i == 0) ? Ty->getName() : ""; 1223 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1224 ElementTypeIndex = TypeTable.writeKnownType(AR); 1225 } 1226 1227 return ElementTypeIndex; 1228 } 1229 1230 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1231 TypeIndex Index; 1232 dwarf::TypeKind Kind; 1233 uint32_t ByteSize; 1234 1235 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1236 ByteSize = Ty->getSizeInBits() / 8; 1237 1238 SimpleTypeKind STK = SimpleTypeKind::None; 1239 switch (Kind) { 1240 case dwarf::DW_ATE_address: 1241 // FIXME: Translate 1242 break; 1243 case dwarf::DW_ATE_boolean: 1244 switch (ByteSize) { 1245 case 1: STK = SimpleTypeKind::Boolean8; break; 1246 case 2: STK = SimpleTypeKind::Boolean16; break; 1247 case 4: STK = SimpleTypeKind::Boolean32; break; 1248 case 8: STK = SimpleTypeKind::Boolean64; break; 1249 case 16: STK = SimpleTypeKind::Boolean128; break; 1250 } 1251 break; 1252 case dwarf::DW_ATE_complex_float: 1253 switch (ByteSize) { 1254 case 2: STK = SimpleTypeKind::Complex16; break; 1255 case 4: STK = SimpleTypeKind::Complex32; break; 1256 case 8: STK = SimpleTypeKind::Complex64; break; 1257 case 10: STK = SimpleTypeKind::Complex80; break; 1258 case 16: STK = SimpleTypeKind::Complex128; break; 1259 } 1260 break; 1261 case dwarf::DW_ATE_float: 1262 switch (ByteSize) { 1263 case 2: STK = SimpleTypeKind::Float16; break; 1264 case 4: STK = SimpleTypeKind::Float32; break; 1265 case 6: STK = SimpleTypeKind::Float48; break; 1266 case 8: STK = SimpleTypeKind::Float64; break; 1267 case 10: STK = SimpleTypeKind::Float80; break; 1268 case 16: STK = SimpleTypeKind::Float128; break; 1269 } 1270 break; 1271 case dwarf::DW_ATE_signed: 1272 switch (ByteSize) { 1273 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1274 case 2: STK = SimpleTypeKind::Int16Short; break; 1275 case 4: STK = SimpleTypeKind::Int32; break; 1276 case 8: STK = SimpleTypeKind::Int64Quad; break; 1277 case 16: STK = SimpleTypeKind::Int128Oct; break; 1278 } 1279 break; 1280 case dwarf::DW_ATE_unsigned: 1281 switch (ByteSize) { 1282 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1283 case 2: STK = SimpleTypeKind::UInt16Short; break; 1284 case 4: STK = SimpleTypeKind::UInt32; break; 1285 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1286 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1287 } 1288 break; 1289 case dwarf::DW_ATE_UTF: 1290 switch (ByteSize) { 1291 case 2: STK = SimpleTypeKind::Character16; break; 1292 case 4: STK = SimpleTypeKind::Character32; break; 1293 } 1294 break; 1295 case dwarf::DW_ATE_signed_char: 1296 if (ByteSize == 1) 1297 STK = SimpleTypeKind::SignedCharacter; 1298 break; 1299 case dwarf::DW_ATE_unsigned_char: 1300 if (ByteSize == 1) 1301 STK = SimpleTypeKind::UnsignedCharacter; 1302 break; 1303 default: 1304 break; 1305 } 1306 1307 // Apply some fixups based on the source-level type name. 1308 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1309 STK = SimpleTypeKind::Int32Long; 1310 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1311 STK = SimpleTypeKind::UInt32Long; 1312 if (STK == SimpleTypeKind::UInt16Short && 1313 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1314 STK = SimpleTypeKind::WideCharacter; 1315 if ((STK == SimpleTypeKind::SignedCharacter || 1316 STK == SimpleTypeKind::UnsignedCharacter) && 1317 Ty->getName() == "char") 1318 STK = SimpleTypeKind::NarrowCharacter; 1319 1320 return TypeIndex(STK); 1321 } 1322 1323 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1324 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1325 1326 // Pointers to simple types can use SimpleTypeMode, rather than having a 1327 // dedicated pointer type record. 1328 if (PointeeTI.isSimple() && 1329 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1330 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1331 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1332 ? SimpleTypeMode::NearPointer64 1333 : SimpleTypeMode::NearPointer32; 1334 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1335 } 1336 1337 PointerKind PK = 1338 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1339 PointerMode PM = PointerMode::Pointer; 1340 switch (Ty->getTag()) { 1341 default: llvm_unreachable("not a pointer tag type"); 1342 case dwarf::DW_TAG_pointer_type: 1343 PM = PointerMode::Pointer; 1344 break; 1345 case dwarf::DW_TAG_reference_type: 1346 PM = PointerMode::LValueReference; 1347 break; 1348 case dwarf::DW_TAG_rvalue_reference_type: 1349 PM = PointerMode::RValueReference; 1350 break; 1351 } 1352 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1353 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1354 // do. 1355 PointerOptions PO = PointerOptions::None; 1356 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1357 return TypeTable.writeKnownType(PR); 1358 } 1359 1360 static PointerToMemberRepresentation 1361 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1362 // SizeInBytes being zero generally implies that the member pointer type was 1363 // incomplete, which can happen if it is part of a function prototype. In this 1364 // case, use the unknown model instead of the general model. 1365 if (IsPMF) { 1366 switch (Flags & DINode::FlagPtrToMemberRep) { 1367 case 0: 1368 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1369 : PointerToMemberRepresentation::GeneralFunction; 1370 case DINode::FlagSingleInheritance: 1371 return PointerToMemberRepresentation::SingleInheritanceFunction; 1372 case DINode::FlagMultipleInheritance: 1373 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1374 case DINode::FlagVirtualInheritance: 1375 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1376 } 1377 } else { 1378 switch (Flags & DINode::FlagPtrToMemberRep) { 1379 case 0: 1380 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1381 : PointerToMemberRepresentation::GeneralData; 1382 case DINode::FlagSingleInheritance: 1383 return PointerToMemberRepresentation::SingleInheritanceData; 1384 case DINode::FlagMultipleInheritance: 1385 return PointerToMemberRepresentation::MultipleInheritanceData; 1386 case DINode::FlagVirtualInheritance: 1387 return PointerToMemberRepresentation::VirtualInheritanceData; 1388 } 1389 } 1390 llvm_unreachable("invalid ptr to member representation"); 1391 } 1392 1393 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1394 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1395 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1396 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1397 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1398 : PointerKind::Near32; 1399 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1400 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1401 : PointerMode::PointerToDataMember; 1402 PointerOptions PO = PointerOptions::None; // FIXME 1403 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1404 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1405 MemberPointerInfo MPI( 1406 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1407 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1408 return TypeTable.writeKnownType(PR); 1409 } 1410 1411 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1412 /// have a translation, use the NearC convention. 1413 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1414 switch (DwarfCC) { 1415 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1416 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1417 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1418 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1419 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1420 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1421 } 1422 return CallingConvention::NearC; 1423 } 1424 1425 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1426 ModifierOptions Mods = ModifierOptions::None; 1427 bool IsModifier = true; 1428 const DIType *BaseTy = Ty; 1429 while (IsModifier && BaseTy) { 1430 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1431 switch (BaseTy->getTag()) { 1432 case dwarf::DW_TAG_const_type: 1433 Mods |= ModifierOptions::Const; 1434 break; 1435 case dwarf::DW_TAG_volatile_type: 1436 Mods |= ModifierOptions::Volatile; 1437 break; 1438 default: 1439 IsModifier = false; 1440 break; 1441 } 1442 if (IsModifier) 1443 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1444 } 1445 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1446 ModifierRecord MR(ModifiedTI, Mods); 1447 return TypeTable.writeKnownType(MR); 1448 } 1449 1450 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1451 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1452 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1453 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1454 1455 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1456 ArrayRef<TypeIndex> ArgTypeIndices = None; 1457 if (!ReturnAndArgTypeIndices.empty()) { 1458 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1459 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1460 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1461 } 1462 1463 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1464 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1465 1466 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1467 1468 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1469 ArgTypeIndices.size(), ArgListIndex); 1470 return TypeTable.writeKnownType(Procedure); 1471 } 1472 1473 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1474 const DIType *ClassTy, 1475 int ThisAdjustment) { 1476 // Lower the containing class type. 1477 TypeIndex ClassType = getTypeIndex(ClassTy); 1478 1479 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1480 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1481 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1482 1483 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1484 ArrayRef<TypeIndex> ArgTypeIndices = None; 1485 if (!ReturnAndArgTypeIndices.empty()) { 1486 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1487 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1488 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1489 } 1490 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1491 if (!ArgTypeIndices.empty()) { 1492 ThisTypeIndex = ArgTypeIndices.front(); 1493 ArgTypeIndices = ArgTypeIndices.drop_front(); 1494 } 1495 1496 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1497 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1498 1499 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1500 1501 // TODO: Need to use the correct values for: 1502 // FunctionOptions 1503 // ThisPointerAdjustment. 1504 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1505 FunctionOptions::None, ArgTypeIndices.size(), 1506 ArgListIndex, ThisAdjustment); 1507 TypeIndex TI = TypeTable.writeKnownType(MFR); 1508 1509 return TI; 1510 } 1511 1512 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1513 unsigned VSlotCount = 1514 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1515 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1516 1517 VFTableShapeRecord VFTSR(Slots); 1518 return TypeTable.writeKnownType(VFTSR); 1519 } 1520 1521 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1522 switch (Flags & DINode::FlagAccessibility) { 1523 case DINode::FlagPrivate: return MemberAccess::Private; 1524 case DINode::FlagPublic: return MemberAccess::Public; 1525 case DINode::FlagProtected: return MemberAccess::Protected; 1526 case 0: 1527 // If there was no explicit access control, provide the default for the tag. 1528 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1529 : MemberAccess::Public; 1530 } 1531 llvm_unreachable("access flags are exclusive"); 1532 } 1533 1534 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1535 if (SP->isArtificial()) 1536 return MethodOptions::CompilerGenerated; 1537 1538 // FIXME: Handle other MethodOptions. 1539 1540 return MethodOptions::None; 1541 } 1542 1543 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1544 bool Introduced) { 1545 switch (SP->getVirtuality()) { 1546 case dwarf::DW_VIRTUALITY_none: 1547 break; 1548 case dwarf::DW_VIRTUALITY_virtual: 1549 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1550 case dwarf::DW_VIRTUALITY_pure_virtual: 1551 return Introduced ? MethodKind::PureIntroducingVirtual 1552 : MethodKind::PureVirtual; 1553 default: 1554 llvm_unreachable("unhandled virtuality case"); 1555 } 1556 1557 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1558 1559 return MethodKind::Vanilla; 1560 } 1561 1562 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1563 switch (Ty->getTag()) { 1564 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1565 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1566 } 1567 llvm_unreachable("unexpected tag"); 1568 } 1569 1570 /// Return ClassOptions that should be present on both the forward declaration 1571 /// and the defintion of a tag type. 1572 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1573 ClassOptions CO = ClassOptions::None; 1574 1575 // MSVC always sets this flag, even for local types. Clang doesn't always 1576 // appear to give every type a linkage name, which may be problematic for us. 1577 // FIXME: Investigate the consequences of not following them here. 1578 if (!Ty->getIdentifier().empty()) 1579 CO |= ClassOptions::HasUniqueName; 1580 1581 // Put the Nested flag on a type if it appears immediately inside a tag type. 1582 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1583 // here. That flag is only set on definitions, and not forward declarations. 1584 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1585 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1586 CO |= ClassOptions::Nested; 1587 1588 // Put the Scoped flag on function-local types. 1589 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1590 Scope = Scope->getScope().resolve()) { 1591 if (isa<DISubprogram>(Scope)) { 1592 CO |= ClassOptions::Scoped; 1593 break; 1594 } 1595 } 1596 1597 return CO; 1598 } 1599 1600 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1601 ClassOptions CO = getCommonClassOptions(Ty); 1602 TypeIndex FTI; 1603 unsigned EnumeratorCount = 0; 1604 1605 if (Ty->isForwardDecl()) { 1606 CO |= ClassOptions::ForwardReference; 1607 } else { 1608 FieldListRecordBuilder FLRB(TypeTable); 1609 1610 FLRB.begin(); 1611 for (const DINode *Element : Ty->getElements()) { 1612 // We assume that the frontend provides all members in source declaration 1613 // order, which is what MSVC does. 1614 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1615 EnumeratorRecord ER(MemberAccess::Public, 1616 APSInt::getUnsigned(Enumerator->getValue()), 1617 Enumerator->getName()); 1618 FLRB.writeMemberType(ER); 1619 EnumeratorCount++; 1620 } 1621 } 1622 FTI = FLRB.end(true); 1623 } 1624 1625 std::string FullName = getFullyQualifiedName(Ty); 1626 1627 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1628 getTypeIndex(Ty->getBaseType())); 1629 return TypeTable.writeKnownType(ER); 1630 } 1631 1632 //===----------------------------------------------------------------------===// 1633 // ClassInfo 1634 //===----------------------------------------------------------------------===// 1635 1636 struct llvm::ClassInfo { 1637 struct MemberInfo { 1638 const DIDerivedType *MemberTypeNode; 1639 uint64_t BaseOffset; 1640 }; 1641 // [MemberInfo] 1642 using MemberList = std::vector<MemberInfo>; 1643 1644 using MethodsList = TinyPtrVector<const DISubprogram *>; 1645 // MethodName -> MethodsList 1646 using MethodsMap = MapVector<MDString *, MethodsList>; 1647 1648 /// Base classes. 1649 std::vector<const DIDerivedType *> Inheritance; 1650 1651 /// Direct members. 1652 MemberList Members; 1653 // Direct overloaded methods gathered by name. 1654 MethodsMap Methods; 1655 1656 TypeIndex VShapeTI; 1657 1658 std::vector<const DIType *> NestedTypes; 1659 }; 1660 1661 void CodeViewDebug::clear() { 1662 assert(CurFn == nullptr); 1663 FileIdMap.clear(); 1664 FnDebugInfo.clear(); 1665 FileToFilepathMap.clear(); 1666 LocalUDTs.clear(); 1667 GlobalUDTs.clear(); 1668 TypeIndices.clear(); 1669 CompleteTypeIndices.clear(); 1670 } 1671 1672 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1673 const DIDerivedType *DDTy) { 1674 if (!DDTy->getName().empty()) { 1675 Info.Members.push_back({DDTy, 0}); 1676 return; 1677 } 1678 // An unnamed member must represent a nested struct or union. Add all the 1679 // indirect fields to the current record. 1680 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1681 uint64_t Offset = DDTy->getOffsetInBits(); 1682 const DIType *Ty = DDTy->getBaseType().resolve(); 1683 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1684 ClassInfo NestedInfo = collectClassInfo(DCTy); 1685 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1686 Info.Members.push_back( 1687 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1688 } 1689 1690 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1691 ClassInfo Info; 1692 // Add elements to structure type. 1693 DINodeArray Elements = Ty->getElements(); 1694 for (auto *Element : Elements) { 1695 // We assume that the frontend provides all members in source declaration 1696 // order, which is what MSVC does. 1697 if (!Element) 1698 continue; 1699 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1700 Info.Methods[SP->getRawName()].push_back(SP); 1701 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1702 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1703 collectMemberInfo(Info, DDTy); 1704 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1705 Info.Inheritance.push_back(DDTy); 1706 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1707 DDTy->getName() == "__vtbl_ptr_type") { 1708 Info.VShapeTI = getTypeIndex(DDTy); 1709 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1710 Info.NestedTypes.push_back(DDTy); 1711 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1712 // Ignore friend members. It appears that MSVC emitted info about 1713 // friends in the past, but modern versions do not. 1714 } 1715 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1716 Info.NestedTypes.push_back(Composite); 1717 } 1718 // Skip other unrecognized kinds of elements. 1719 } 1720 return Info; 1721 } 1722 1723 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1724 // First, construct the forward decl. Don't look into Ty to compute the 1725 // forward decl options, since it might not be available in all TUs. 1726 TypeRecordKind Kind = getRecordKind(Ty); 1727 ClassOptions CO = 1728 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1729 std::string FullName = getFullyQualifiedName(Ty); 1730 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1731 FullName, Ty->getIdentifier()); 1732 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1733 if (!Ty->isForwardDecl()) 1734 DeferredCompleteTypes.push_back(Ty); 1735 return FwdDeclTI; 1736 } 1737 1738 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1739 // Construct the field list and complete type record. 1740 TypeRecordKind Kind = getRecordKind(Ty); 1741 ClassOptions CO = getCommonClassOptions(Ty); 1742 TypeIndex FieldTI; 1743 TypeIndex VShapeTI; 1744 unsigned FieldCount; 1745 bool ContainsNestedClass; 1746 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1747 lowerRecordFieldList(Ty); 1748 1749 if (ContainsNestedClass) 1750 CO |= ClassOptions::ContainsNestedClass; 1751 1752 std::string FullName = getFullyQualifiedName(Ty); 1753 1754 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1755 1756 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1757 SizeInBytes, FullName, Ty->getIdentifier()); 1758 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1759 1760 if (const auto *File = Ty->getFile()) { 1761 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1762 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1763 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1764 TypeTable.writeKnownType(USLR); 1765 } 1766 1767 addToUDTs(Ty, ClassTI); 1768 1769 return ClassTI; 1770 } 1771 1772 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1773 ClassOptions CO = 1774 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1775 std::string FullName = getFullyQualifiedName(Ty); 1776 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1777 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1778 if (!Ty->isForwardDecl()) 1779 DeferredCompleteTypes.push_back(Ty); 1780 return FwdDeclTI; 1781 } 1782 1783 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1784 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1785 TypeIndex FieldTI; 1786 unsigned FieldCount; 1787 bool ContainsNestedClass; 1788 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1789 lowerRecordFieldList(Ty); 1790 1791 if (ContainsNestedClass) 1792 CO |= ClassOptions::ContainsNestedClass; 1793 1794 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1795 std::string FullName = getFullyQualifiedName(Ty); 1796 1797 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1798 Ty->getIdentifier()); 1799 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1800 1801 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1802 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1803 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1804 TypeTable.writeKnownType(USLR); 1805 1806 addToUDTs(Ty, UnionTI); 1807 1808 return UnionTI; 1809 } 1810 1811 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1812 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1813 // Manually count members. MSVC appears to count everything that generates a 1814 // field list record. Each individual overload in a method overload group 1815 // contributes to this count, even though the overload group is a single field 1816 // list record. 1817 unsigned MemberCount = 0; 1818 ClassInfo Info = collectClassInfo(Ty); 1819 FieldListRecordBuilder FLBR(TypeTable); 1820 FLBR.begin(); 1821 1822 // Create base classes. 1823 for (const DIDerivedType *I : Info.Inheritance) { 1824 if (I->getFlags() & DINode::FlagVirtual) { 1825 // Virtual base. 1826 // FIXME: Emit VBPtrOffset when the frontend provides it. 1827 unsigned VBPtrOffset = 0; 1828 // FIXME: Despite the accessor name, the offset is really in bytes. 1829 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1830 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1831 ? TypeRecordKind::IndirectVirtualBaseClass 1832 : TypeRecordKind::VirtualBaseClass; 1833 VirtualBaseClassRecord VBCR( 1834 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1835 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1836 VBTableIndex); 1837 1838 FLBR.writeMemberType(VBCR); 1839 } else { 1840 assert(I->getOffsetInBits() % 8 == 0 && 1841 "bases must be on byte boundaries"); 1842 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1843 getTypeIndex(I->getBaseType()), 1844 I->getOffsetInBits() / 8); 1845 FLBR.writeMemberType(BCR); 1846 } 1847 } 1848 1849 // Create members. 1850 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1851 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1852 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1853 StringRef MemberName = Member->getName(); 1854 MemberAccess Access = 1855 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1856 1857 if (Member->isStaticMember()) { 1858 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1859 FLBR.writeMemberType(SDMR); 1860 MemberCount++; 1861 continue; 1862 } 1863 1864 // Virtual function pointer member. 1865 if ((Member->getFlags() & DINode::FlagArtificial) && 1866 Member->getName().startswith("_vptr$")) { 1867 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1868 FLBR.writeMemberType(VFPR); 1869 MemberCount++; 1870 continue; 1871 } 1872 1873 // Data member. 1874 uint64_t MemberOffsetInBits = 1875 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1876 if (Member->isBitField()) { 1877 uint64_t StartBitOffset = MemberOffsetInBits; 1878 if (const auto *CI = 1879 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1880 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1881 } 1882 StartBitOffset -= MemberOffsetInBits; 1883 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1884 StartBitOffset); 1885 MemberBaseType = TypeTable.writeKnownType(BFR); 1886 } 1887 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1888 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1889 MemberName); 1890 FLBR.writeMemberType(DMR); 1891 MemberCount++; 1892 } 1893 1894 // Create methods 1895 for (auto &MethodItr : Info.Methods) { 1896 StringRef Name = MethodItr.first->getString(); 1897 1898 std::vector<OneMethodRecord> Methods; 1899 for (const DISubprogram *SP : MethodItr.second) { 1900 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1901 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1902 1903 unsigned VFTableOffset = -1; 1904 if (Introduced) 1905 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1906 1907 Methods.push_back(OneMethodRecord( 1908 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1909 translateMethodKindFlags(SP, Introduced), 1910 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1911 MemberCount++; 1912 } 1913 assert(!Methods.empty() && "Empty methods map entry"); 1914 if (Methods.size() == 1) 1915 FLBR.writeMemberType(Methods[0]); 1916 else { 1917 MethodOverloadListRecord MOLR(Methods); 1918 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1919 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1920 FLBR.writeMemberType(OMR); 1921 } 1922 } 1923 1924 // Create nested classes. 1925 for (const DIType *Nested : Info.NestedTypes) { 1926 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1927 FLBR.writeMemberType(R); 1928 MemberCount++; 1929 } 1930 1931 TypeIndex FieldTI = FLBR.end(true); 1932 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1933 !Info.NestedTypes.empty()); 1934 } 1935 1936 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1937 if (!VBPType.getIndex()) { 1938 // Make a 'const int *' type. 1939 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1940 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1941 1942 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1943 : PointerKind::Near32; 1944 PointerMode PM = PointerMode::Pointer; 1945 PointerOptions PO = PointerOptions::None; 1946 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1947 1948 VBPType = TypeTable.writeKnownType(PR); 1949 } 1950 1951 return VBPType; 1952 } 1953 1954 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1955 const DIType *Ty = TypeRef.resolve(); 1956 const DIType *ClassTy = ClassTyRef.resolve(); 1957 1958 // The null DIType is the void type. Don't try to hash it. 1959 if (!Ty) 1960 return TypeIndex::Void(); 1961 1962 // Check if we've already translated this type. Don't try to do a 1963 // get-or-create style insertion that caches the hash lookup across the 1964 // lowerType call. It will update the TypeIndices map. 1965 auto I = TypeIndices.find({Ty, ClassTy}); 1966 if (I != TypeIndices.end()) 1967 return I->second; 1968 1969 TypeLoweringScope S(*this); 1970 TypeIndex TI = lowerType(Ty, ClassTy); 1971 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1972 } 1973 1974 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1975 const DIType *Ty = TypeRef.resolve(); 1976 1977 // The null DIType is the void type. Don't try to hash it. 1978 if (!Ty) 1979 return TypeIndex::Void(); 1980 1981 // If this is a non-record type, the complete type index is the same as the 1982 // normal type index. Just call getTypeIndex. 1983 switch (Ty->getTag()) { 1984 case dwarf::DW_TAG_class_type: 1985 case dwarf::DW_TAG_structure_type: 1986 case dwarf::DW_TAG_union_type: 1987 break; 1988 default: 1989 return getTypeIndex(Ty); 1990 } 1991 1992 // Check if we've already translated the complete record type. Lowering a 1993 // complete type should never trigger lowering another complete type, so we 1994 // can reuse the hash table lookup result. 1995 const auto *CTy = cast<DICompositeType>(Ty); 1996 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1997 if (!InsertResult.second) 1998 return InsertResult.first->second; 1999 2000 TypeLoweringScope S(*this); 2001 2002 // Make sure the forward declaration is emitted first. It's unclear if this 2003 // is necessary, but MSVC does it, and we should follow suit until we can show 2004 // otherwise. 2005 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2006 2007 // Just use the forward decl if we don't have complete type info. This might 2008 // happen if the frontend is using modules and expects the complete definition 2009 // to be emitted elsewhere. 2010 if (CTy->isForwardDecl()) 2011 return FwdDeclTI; 2012 2013 TypeIndex TI; 2014 switch (CTy->getTag()) { 2015 case dwarf::DW_TAG_class_type: 2016 case dwarf::DW_TAG_structure_type: 2017 TI = lowerCompleteTypeClass(CTy); 2018 break; 2019 case dwarf::DW_TAG_union_type: 2020 TI = lowerCompleteTypeUnion(CTy); 2021 break; 2022 default: 2023 llvm_unreachable("not a record"); 2024 } 2025 2026 InsertResult.first->second = TI; 2027 return TI; 2028 } 2029 2030 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2031 /// and do this until fixpoint, as each complete record type typically 2032 /// references 2033 /// many other record types. 2034 void CodeViewDebug::emitDeferredCompleteTypes() { 2035 SmallVector<const DICompositeType *, 4> TypesToEmit; 2036 while (!DeferredCompleteTypes.empty()) { 2037 std::swap(DeferredCompleteTypes, TypesToEmit); 2038 for (const DICompositeType *RecordTy : TypesToEmit) 2039 getCompleteTypeIndex(RecordTy); 2040 TypesToEmit.clear(); 2041 } 2042 } 2043 2044 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2045 // Get the sorted list of parameters and emit them first. 2046 SmallVector<const LocalVariable *, 6> Params; 2047 for (const LocalVariable &L : Locals) 2048 if (L.DIVar->isParameter()) 2049 Params.push_back(&L); 2050 std::sort(Params.begin(), Params.end(), 2051 [](const LocalVariable *L, const LocalVariable *R) { 2052 return L->DIVar->getArg() < R->DIVar->getArg(); 2053 }); 2054 for (const LocalVariable *L : Params) 2055 emitLocalVariable(*L); 2056 2057 // Next emit all non-parameters in the order that we found them. 2058 for (const LocalVariable &L : Locals) 2059 if (!L.DIVar->isParameter()) 2060 emitLocalVariable(L); 2061 } 2062 2063 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2064 // LocalSym record, see SymbolRecord.h for more info. 2065 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2066 *LocalEnd = MMI->getContext().createTempSymbol(); 2067 OS.AddComment("Record length"); 2068 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2069 OS.EmitLabel(LocalBegin); 2070 2071 OS.AddComment("Record kind: S_LOCAL"); 2072 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2073 2074 LocalSymFlags Flags = LocalSymFlags::None; 2075 if (Var.DIVar->isParameter()) 2076 Flags |= LocalSymFlags::IsParameter; 2077 if (Var.DefRanges.empty()) 2078 Flags |= LocalSymFlags::IsOptimizedOut; 2079 2080 OS.AddComment("TypeIndex"); 2081 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 2082 OS.EmitIntValue(TI.getIndex(), 4); 2083 OS.AddComment("Flags"); 2084 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2085 // Truncate the name so we won't overflow the record length field. 2086 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2087 OS.EmitLabel(LocalEnd); 2088 2089 // Calculate the on disk prefix of the appropriate def range record. The 2090 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2091 // should be big enough to hold all forms without memory allocation. 2092 SmallString<20> BytePrefix; 2093 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2094 BytePrefix.clear(); 2095 if (DefRange.InMemory) { 2096 uint16_t RegRelFlags = 0; 2097 if (DefRange.IsSubfield) { 2098 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2099 (DefRange.StructOffset 2100 << DefRangeRegisterRelSym::OffsetInParentShift); 2101 } 2102 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2103 Sym.Hdr.Register = DefRange.CVRegister; 2104 Sym.Hdr.Flags = RegRelFlags; 2105 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2106 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2107 BytePrefix += 2108 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2109 BytePrefix += 2110 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2111 } else { 2112 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2113 if (DefRange.IsSubfield) { 2114 // Unclear what matters here. 2115 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2116 Sym.Hdr.Register = DefRange.CVRegister; 2117 Sym.Hdr.MayHaveNoName = 0; 2118 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2119 2120 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2121 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2122 sizeof(SymKind)); 2123 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2124 sizeof(Sym.Hdr)); 2125 } else { 2126 // Unclear what matters here. 2127 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2128 Sym.Hdr.Register = DefRange.CVRegister; 2129 Sym.Hdr.MayHaveNoName = 0; 2130 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2131 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2132 sizeof(SymKind)); 2133 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2134 sizeof(Sym.Hdr)); 2135 } 2136 } 2137 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2138 } 2139 } 2140 2141 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2142 const Function *GV = MF->getFunction(); 2143 assert(FnDebugInfo.count(GV)); 2144 assert(CurFn == &FnDebugInfo[GV]); 2145 2146 collectVariableInfo(GV->getSubprogram()); 2147 2148 // Don't emit anything if we don't have any line tables. 2149 if (!CurFn->HaveLineInfo) { 2150 FnDebugInfo.erase(GV); 2151 CurFn = nullptr; 2152 return; 2153 } 2154 2155 CurFn->End = Asm->getFunctionEnd(); 2156 2157 CurFn = nullptr; 2158 } 2159 2160 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2161 DebugHandlerBase::beginInstruction(MI); 2162 2163 // Ignore DBG_VALUE locations and function prologue. 2164 if (!Asm || !CurFn || MI->isDebugValue() || 2165 MI->getFlag(MachineInstr::FrameSetup)) 2166 return; 2167 2168 // If the first instruction of a new MBB has no location, find the first 2169 // instruction with a location and use that. 2170 DebugLoc DL = MI->getDebugLoc(); 2171 if (!DL && MI->getParent() != PrevInstBB) { 2172 for (const auto &NextMI : *MI->getParent()) { 2173 if (NextMI.isDebugValue()) 2174 continue; 2175 DL = NextMI.getDebugLoc(); 2176 if (DL) 2177 break; 2178 } 2179 } 2180 PrevInstBB = MI->getParent(); 2181 2182 // If we still don't have a debug location, don't record a location. 2183 if (!DL) 2184 return; 2185 2186 maybeRecordLocation(DL, Asm->MF); 2187 } 2188 2189 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2190 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2191 *EndLabel = MMI->getContext().createTempSymbol(); 2192 OS.EmitIntValue(unsigned(Kind), 4); 2193 OS.AddComment("Subsection size"); 2194 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2195 OS.EmitLabel(BeginLabel); 2196 return EndLabel; 2197 } 2198 2199 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2200 OS.EmitLabel(EndLabel); 2201 // Every subsection must be aligned to a 4-byte boundary. 2202 OS.EmitValueToAlignment(4); 2203 } 2204 2205 void CodeViewDebug::emitDebugInfoForUDTs( 2206 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 2207 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 2208 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2209 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2210 OS.AddComment("Record length"); 2211 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2212 OS.EmitLabel(UDTRecordBegin); 2213 2214 OS.AddComment("Record kind: S_UDT"); 2215 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2216 2217 OS.AddComment("Type"); 2218 OS.EmitIntValue(UDT.second.getIndex(), 4); 2219 2220 emitNullTerminatedSymbolName(OS, UDT.first); 2221 OS.EmitLabel(UDTRecordEnd); 2222 } 2223 } 2224 2225 void CodeViewDebug::emitDebugInfoForGlobals() { 2226 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2227 GlobalMap; 2228 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2229 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2230 GV.getDebugInfo(GVEs); 2231 for (const auto *GVE : GVEs) 2232 GlobalMap[GVE] = &GV; 2233 } 2234 2235 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2236 for (const MDNode *Node : CUs->operands()) { 2237 const auto *CU = cast<DICompileUnit>(Node); 2238 2239 // First, emit all globals that are not in a comdat in a single symbol 2240 // substream. MSVC doesn't like it if the substream is empty, so only open 2241 // it if we have at least one global to emit. 2242 switchToDebugSectionForSymbol(nullptr); 2243 MCSymbol *EndLabel = nullptr; 2244 for (const auto *GVE : CU->getGlobalVariables()) { 2245 if (const auto *GV = GlobalMap.lookup(GVE)) 2246 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2247 if (!EndLabel) { 2248 OS.AddComment("Symbol subsection for globals"); 2249 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2250 } 2251 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2252 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2253 } 2254 } 2255 if (EndLabel) 2256 endCVSubsection(EndLabel); 2257 2258 // Second, emit each global that is in a comdat into its own .debug$S 2259 // section along with its own symbol substream. 2260 for (const auto *GVE : CU->getGlobalVariables()) { 2261 if (const auto *GV = GlobalMap.lookup(GVE)) { 2262 if (GV->hasComdat()) { 2263 MCSymbol *GVSym = Asm->getSymbol(GV); 2264 OS.AddComment("Symbol subsection for " + 2265 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2266 switchToDebugSectionForSymbol(GVSym); 2267 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2268 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2269 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2270 endCVSubsection(EndLabel); 2271 } 2272 } 2273 } 2274 } 2275 } 2276 2277 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2278 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2279 for (const MDNode *Node : CUs->operands()) { 2280 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2281 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2282 getTypeIndex(RT); 2283 // FIXME: Add to global/local DTU list. 2284 } 2285 } 2286 } 2287 } 2288 2289 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2290 const GlobalVariable *GV, 2291 MCSymbol *GVSym) { 2292 // DataSym record, see SymbolRecord.h for more info. 2293 // FIXME: Thread local data, etc 2294 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2295 *DataEnd = MMI->getContext().createTempSymbol(); 2296 OS.AddComment("Record length"); 2297 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2298 OS.EmitLabel(DataBegin); 2299 if (DIGV->isLocalToUnit()) { 2300 if (GV->isThreadLocal()) { 2301 OS.AddComment("Record kind: S_LTHREAD32"); 2302 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2303 } else { 2304 OS.AddComment("Record kind: S_LDATA32"); 2305 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2306 } 2307 } else { 2308 if (GV->isThreadLocal()) { 2309 OS.AddComment("Record kind: S_GTHREAD32"); 2310 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2311 } else { 2312 OS.AddComment("Record kind: S_GDATA32"); 2313 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2314 } 2315 } 2316 OS.AddComment("Type"); 2317 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2318 OS.AddComment("DataOffset"); 2319 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2320 OS.AddComment("Segment"); 2321 OS.EmitCOFFSectionIndex(GVSym); 2322 OS.AddComment("Name"); 2323 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2324 OS.EmitLabel(DataEnd); 2325 } 2326