1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "DwarfExpression.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/COFF.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/LexicalScopes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
40 #include "llvm/DebugInfo/CodeView/CodeView.h"
41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
42 #include "llvm/DebugInfo/CodeView/Line.h"
43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
45 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
46 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/MC/MCAsmInfo.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCSectionCOFF.h"
60 #include "llvm/MC/MCStreamer.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/BinaryByteStream.h"
63 #include "llvm/Support/BinaryStreamReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Target/TargetFrameLowering.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetRegisterInfo.h"
75 #include "llvm/Target/TargetSubtargetInfo.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cctype>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <limits>
83 #include <string>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 using namespace llvm::codeview;
89 
90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
91     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
92   // If module doesn't have named metadata anchors or COFF debug section
93   // is not available, skip any debug info related stuff.
94   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
95       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
96     Asm = nullptr;
97     return;
98   }
99 
100   // Tell MMI that we have debug info.
101   MMI->setDebugInfoAvailability(true);
102 }
103 
104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
105   std::string &Filepath = FileToFilepathMap[File];
106   if (!Filepath.empty())
107     return Filepath;
108 
109   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
110 
111   // Clang emits directory and relative filename info into the IR, but CodeView
112   // operates on full paths.  We could change Clang to emit full paths too, but
113   // that would increase the IR size and probably not needed for other users.
114   // For now, just concatenate and canonicalize the path here.
115   if (Filename.find(':') == 1)
116     Filepath = Filename;
117   else
118     Filepath = (Dir + "\\" + Filename).str();
119 
120   // Canonicalize the path.  We have to do it textually because we may no longer
121   // have access the file in the filesystem.
122   // First, replace all slashes with backslashes.
123   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
124 
125   // Remove all "\.\" with "\".
126   size_t Cursor = 0;
127   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
128     Filepath.erase(Cursor, 2);
129 
130   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
131   // path should be well-formatted, e.g. start with a drive letter, etc.
132   Cursor = 0;
133   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
134     // Something's wrong if the path starts with "\..\", abort.
135     if (Cursor == 0)
136       break;
137 
138     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
139     if (PrevSlash == std::string::npos)
140       // Something's wrong, abort.
141       break;
142 
143     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
144     // The next ".." might be following the one we've just erased.
145     Cursor = PrevSlash;
146   }
147 
148   // Remove all duplicate backslashes.
149   Cursor = 0;
150   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
151     Filepath.erase(Cursor, 1);
152 
153   return Filepath;
154 }
155 
156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
157   unsigned NextId = FileIdMap.size() + 1;
158   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
159   if (Insertion.second) {
160     // We have to compute the full filepath and emit a .cv_file directive.
161     StringRef FullPath = getFullFilepath(F);
162     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
163     (void)Success;
164     assert(Success && ".cv_file directive failed");
165   }
166   return Insertion.first->second;
167 }
168 
169 CodeViewDebug::InlineSite &
170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
171                              const DISubprogram *Inlinee) {
172   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
173   InlineSite *Site = &SiteInsertion.first->second;
174   if (SiteInsertion.second) {
175     unsigned ParentFuncId = CurFn->FuncId;
176     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
177       ParentFuncId =
178           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
179               .SiteFuncId;
180 
181     Site->SiteFuncId = NextFuncId++;
182     OS.EmitCVInlineSiteIdDirective(
183         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
184         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
185     Site->Inlinee = Inlinee;
186     InlinedSubprograms.insert(Inlinee);
187     getFuncIdForSubprogram(Inlinee);
188   }
189   return *Site;
190 }
191 
192 static StringRef getPrettyScopeName(const DIScope *Scope) {
193   StringRef ScopeName = Scope->getName();
194   if (!ScopeName.empty())
195     return ScopeName;
196 
197   switch (Scope->getTag()) {
198   case dwarf::DW_TAG_enumeration_type:
199   case dwarf::DW_TAG_class_type:
200   case dwarf::DW_TAG_structure_type:
201   case dwarf::DW_TAG_union_type:
202     return "<unnamed-tag>";
203   case dwarf::DW_TAG_namespace:
204     return "`anonymous namespace'";
205   }
206 
207   return StringRef();
208 }
209 
210 static const DISubprogram *getQualifiedNameComponents(
211     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
212   const DISubprogram *ClosestSubprogram = nullptr;
213   while (Scope != nullptr) {
214     if (ClosestSubprogram == nullptr)
215       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
216     StringRef ScopeName = getPrettyScopeName(Scope);
217     if (!ScopeName.empty())
218       QualifiedNameComponents.push_back(ScopeName);
219     Scope = Scope->getScope().resolve();
220   }
221   return ClosestSubprogram;
222 }
223 
224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
225                                     StringRef TypeName) {
226   std::string FullyQualifiedName;
227   for (StringRef QualifiedNameComponent :
228        llvm::reverse(QualifiedNameComponents)) {
229     FullyQualifiedName.append(QualifiedNameComponent);
230     FullyQualifiedName.append("::");
231   }
232   FullyQualifiedName.append(TypeName);
233   return FullyQualifiedName;
234 }
235 
236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
237   SmallVector<StringRef, 5> QualifiedNameComponents;
238   getQualifiedNameComponents(Scope, QualifiedNameComponents);
239   return getQualifiedName(QualifiedNameComponents, Name);
240 }
241 
242 struct CodeViewDebug::TypeLoweringScope {
243   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
244   ~TypeLoweringScope() {
245     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
246     // inner TypeLoweringScopes don't attempt to emit deferred types.
247     if (CVD.TypeEmissionLevel == 1)
248       CVD.emitDeferredCompleteTypes();
249     --CVD.TypeEmissionLevel;
250   }
251   CodeViewDebug &CVD;
252 };
253 
254 static std::string getFullyQualifiedName(const DIScope *Ty) {
255   const DIScope *Scope = Ty->getScope().resolve();
256   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
257 }
258 
259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
260   // No scope means global scope and that uses the zero index.
261   if (!Scope || isa<DIFile>(Scope))
262     return TypeIndex();
263 
264   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
265 
266   // Check if we've already translated this scope.
267   auto I = TypeIndices.find({Scope, nullptr});
268   if (I != TypeIndices.end())
269     return I->second;
270 
271   // Build the fully qualified name of the scope.
272   std::string ScopeName = getFullyQualifiedName(Scope);
273   StringIdRecord SID(TypeIndex(), ScopeName);
274   auto TI = TypeTable.writeKnownType(SID);
275   return recordTypeIndexForDINode(Scope, TI);
276 }
277 
278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
279   assert(SP);
280 
281   // Check if we've already translated this subprogram.
282   auto I = TypeIndices.find({SP, nullptr});
283   if (I != TypeIndices.end())
284     return I->second;
285 
286   // The display name includes function template arguments. Drop them to match
287   // MSVC.
288   StringRef DisplayName = SP->getName().split('<').first;
289 
290   const DIScope *Scope = SP->getScope().resolve();
291   TypeIndex TI;
292   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
293     // If the scope is a DICompositeType, then this must be a method. Member
294     // function types take some special handling, and require access to the
295     // subprogram.
296     TypeIndex ClassType = getTypeIndex(Class);
297     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
298                                DisplayName);
299     TI = TypeTable.writeKnownType(MFuncId);
300   } else {
301     // Otherwise, this must be a free function.
302     TypeIndex ParentScope = getScopeIndex(Scope);
303     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
304     TI = TypeTable.writeKnownType(FuncId);
305   }
306 
307   return recordTypeIndexForDINode(SP, TI);
308 }
309 
310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
311                                                const DICompositeType *Class) {
312   // Always use the method declaration as the key for the function type. The
313   // method declaration contains the this adjustment.
314   if (SP->getDeclaration())
315     SP = SP->getDeclaration();
316   assert(!SP->getDeclaration() && "should use declaration as key");
317 
318   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
319   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
320   auto I = TypeIndices.find({SP, Class});
321   if (I != TypeIndices.end())
322     return I->second;
323 
324   // Make sure complete type info for the class is emitted *after* the member
325   // function type, as the complete class type is likely to reference this
326   // member function type.
327   TypeLoweringScope S(*this);
328   TypeIndex TI =
329       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
330   return recordTypeIndexForDINode(SP, TI, Class);
331 }
332 
333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
334                                                   TypeIndex TI,
335                                                   const DIType *ClassTy) {
336   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
337   (void)InsertResult;
338   assert(InsertResult.second && "DINode was already assigned a type index");
339   return TI;
340 }
341 
342 unsigned CodeViewDebug::getPointerSizeInBytes() {
343   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
344 }
345 
346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
347                                         const DILocation *InlinedAt) {
348   if (InlinedAt) {
349     // This variable was inlined. Associate it with the InlineSite.
350     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
351     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
352     Site.InlinedLocals.emplace_back(Var);
353   } else {
354     // This variable goes in the main ProcSym.
355     CurFn->Locals.emplace_back(Var);
356   }
357 }
358 
359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
360                                const DILocation *Loc) {
361   auto B = Locs.begin(), E = Locs.end();
362   if (std::find(B, E, Loc) == E)
363     Locs.push_back(Loc);
364 }
365 
366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
367                                         const MachineFunction *MF) {
368   // Skip this instruction if it has the same location as the previous one.
369   if (!DL || DL == PrevInstLoc)
370     return;
371 
372   const DIScope *Scope = DL.get()->getScope();
373   if (!Scope)
374     return;
375 
376   // Skip this line if it is longer than the maximum we can record.
377   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
378   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
379       LI.isNeverStepInto())
380     return;
381 
382   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
383   if (CI.getStartColumn() != DL.getCol())
384     return;
385 
386   if (!CurFn->HaveLineInfo)
387     CurFn->HaveLineInfo = true;
388   unsigned FileId = 0;
389   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
390     FileId = CurFn->LastFileId;
391   else
392     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
393   PrevInstLoc = DL;
394 
395   unsigned FuncId = CurFn->FuncId;
396   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
397     const DILocation *Loc = DL.get();
398 
399     // If this location was actually inlined from somewhere else, give it the ID
400     // of the inline call site.
401     FuncId =
402         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
403 
404     // Ensure we have links in the tree of inline call sites.
405     bool FirstLoc = true;
406     while ((SiteLoc = Loc->getInlinedAt())) {
407       InlineSite &Site =
408           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
409       if (!FirstLoc)
410         addLocIfNotPresent(Site.ChildSites, Loc);
411       FirstLoc = false;
412       Loc = SiteLoc;
413     }
414     addLocIfNotPresent(CurFn->ChildSites, Loc);
415   }
416 
417   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
418                         /*PrologueEnd=*/false, /*IsStmt=*/false,
419                         DL->getFilename(), SMLoc());
420 }
421 
422 void CodeViewDebug::emitCodeViewMagicVersion() {
423   OS.EmitValueToAlignment(4);
424   OS.AddComment("Debug section magic");
425   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
426 }
427 
428 void CodeViewDebug::endModule() {
429   if (!Asm || !MMI->hasDebugInfo())
430     return;
431 
432   assert(Asm != nullptr);
433 
434   // The COFF .debug$S section consists of several subsections, each starting
435   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
436   // of the payload followed by the payload itself.  The subsections are 4-byte
437   // aligned.
438 
439   // Use the generic .debug$S section, and make a subsection for all the inlined
440   // subprograms.
441   switchToDebugSectionForSymbol(nullptr);
442 
443   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
444   emitCompilerInformation();
445   endCVSubsection(CompilerInfo);
446 
447   emitInlineeLinesSubsection();
448 
449   // Emit per-function debug information.
450   for (auto &P : FnDebugInfo)
451     if (!P.first->isDeclarationForLinker())
452       emitDebugInfoForFunction(P.first, P.second);
453 
454   // Emit global variable debug information.
455   setCurrentSubprogram(nullptr);
456   emitDebugInfoForGlobals();
457 
458   // Emit retained types.
459   emitDebugInfoForRetainedTypes();
460 
461   // Switch back to the generic .debug$S section after potentially processing
462   // comdat symbol sections.
463   switchToDebugSectionForSymbol(nullptr);
464 
465   // Emit UDT records for any types used by global variables.
466   if (!GlobalUDTs.empty()) {
467     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
468     emitDebugInfoForUDTs(GlobalUDTs);
469     endCVSubsection(SymbolsEnd);
470   }
471 
472   // This subsection holds a file index to offset in string table table.
473   OS.AddComment("File index to string table offset subsection");
474   OS.EmitCVFileChecksumsDirective();
475 
476   // This subsection holds the string table.
477   OS.AddComment("String table");
478   OS.EmitCVStringTableDirective();
479 
480   // Emit type information last, so that any types we translate while emitting
481   // function info are included.
482   emitTypeInformation();
483 
484   clear();
485 }
486 
487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
488   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
489   // after a fixed length portion of the record. The fixed length portion should
490   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
491   // overall record size is less than the maximum allowed.
492   unsigned MaxFixedRecordLength = 0xF00;
493   SmallString<32> NullTerminatedString(
494       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
495   NullTerminatedString.push_back('\0');
496   OS.EmitBytes(NullTerminatedString);
497 }
498 
499 void CodeViewDebug::emitTypeInformation() {
500   // Do nothing if we have no debug info or if no non-trivial types were emitted
501   // to TypeTable during codegen.
502   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
503   if (!CU_Nodes)
504     return;
505   if (TypeTable.empty())
506     return;
507 
508   // Start the .debug$T section with 0x4.
509   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
510   emitCodeViewMagicVersion();
511 
512   SmallString<8> CommentPrefix;
513   if (OS.isVerboseAsm()) {
514     CommentPrefix += '\t';
515     CommentPrefix += Asm->MAI->getCommentString();
516     CommentPrefix += ' ';
517   }
518 
519   TypeTableCollection Table(TypeTable.records());
520   Optional<TypeIndex> B = Table.getFirst();
521   while (B) {
522     // This will fail if the record data is invalid.
523     CVType Record = Table.getType(*B);
524 
525     if (OS.isVerboseAsm()) {
526       // Emit a block comment describing the type record for readability.
527       SmallString<512> CommentBlock;
528       raw_svector_ostream CommentOS(CommentBlock);
529       ScopedPrinter SP(CommentOS);
530       SP.setPrefix(CommentPrefix);
531       TypeDumpVisitor TDV(Table, &SP, false);
532 
533       Error E = codeview::visitTypeRecord(Record, *B, TDV);
534       if (E) {
535         logAllUnhandledErrors(std::move(E), errs(), "error: ");
536         llvm_unreachable("produced malformed type record");
537       }
538       // emitRawComment will insert its own tab and comment string before
539       // the first line, so strip off our first one. It also prints its own
540       // newline.
541       OS.emitRawComment(
542           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
543     }
544     OS.EmitBinaryData(Record.str_data());
545     B = Table.getNext(*B);
546   }
547 }
548 
549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
550   switch (DWLang) {
551   case dwarf::DW_LANG_C:
552   case dwarf::DW_LANG_C89:
553   case dwarf::DW_LANG_C99:
554   case dwarf::DW_LANG_C11:
555   case dwarf::DW_LANG_ObjC:
556     return SourceLanguage::C;
557   case dwarf::DW_LANG_C_plus_plus:
558   case dwarf::DW_LANG_C_plus_plus_03:
559   case dwarf::DW_LANG_C_plus_plus_11:
560   case dwarf::DW_LANG_C_plus_plus_14:
561     return SourceLanguage::Cpp;
562   case dwarf::DW_LANG_Fortran77:
563   case dwarf::DW_LANG_Fortran90:
564   case dwarf::DW_LANG_Fortran03:
565   case dwarf::DW_LANG_Fortran08:
566     return SourceLanguage::Fortran;
567   case dwarf::DW_LANG_Pascal83:
568     return SourceLanguage::Pascal;
569   case dwarf::DW_LANG_Cobol74:
570   case dwarf::DW_LANG_Cobol85:
571     return SourceLanguage::Cobol;
572   case dwarf::DW_LANG_Java:
573     return SourceLanguage::Java;
574   case dwarf::DW_LANG_D:
575     return SourceLanguage::D;
576   default:
577     // There's no CodeView representation for this language, and CV doesn't
578     // have an "unknown" option for the language field, so we'll use MASM,
579     // as it's very low level.
580     return SourceLanguage::Masm;
581   }
582 }
583 
584 namespace {
585 struct Version {
586   int Part[4];
587 };
588 } // end anonymous namespace
589 
590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
591 // the version number.
592 static Version parseVersion(StringRef Name) {
593   Version V = {{0}};
594   int N = 0;
595   for (const char C : Name) {
596     if (isdigit(C)) {
597       V.Part[N] *= 10;
598       V.Part[N] += C - '0';
599     } else if (C == '.') {
600       ++N;
601       if (N >= 4)
602         return V;
603     } else if (N > 0)
604       return V;
605   }
606   return V;
607 }
608 
609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
610   switch (Type) {
611   case Triple::ArchType::x86:
612     return CPUType::Pentium3;
613   case Triple::ArchType::x86_64:
614     return CPUType::X64;
615   case Triple::ArchType::thumb:
616     return CPUType::Thumb;
617   case Triple::ArchType::aarch64:
618     return CPUType::ARM64;
619   default:
620     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
621   }
622 }
623 
624 void CodeViewDebug::emitCompilerInformation() {
625   MCContext &Context = MMI->getContext();
626   MCSymbol *CompilerBegin = Context.createTempSymbol(),
627            *CompilerEnd = Context.createTempSymbol();
628   OS.AddComment("Record length");
629   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
630   OS.EmitLabel(CompilerBegin);
631   OS.AddComment("Record kind: S_COMPILE3");
632   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
633   uint32_t Flags = 0;
634 
635   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
636   const MDNode *Node = *CUs->operands().begin();
637   const auto *CU = cast<DICompileUnit>(Node);
638 
639   // The low byte of the flags indicates the source language.
640   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
641   // TODO:  Figure out which other flags need to be set.
642 
643   OS.AddComment("Flags and language");
644   OS.EmitIntValue(Flags, 4);
645 
646   OS.AddComment("CPUType");
647   CPUType CPU =
648       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
649   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
650 
651   StringRef CompilerVersion = CU->getProducer();
652   Version FrontVer = parseVersion(CompilerVersion);
653   OS.AddComment("Frontend version");
654   for (int N = 0; N < 4; ++N)
655     OS.EmitIntValue(FrontVer.Part[N], 2);
656 
657   // Some Microsoft tools, like Binscope, expect a backend version number of at
658   // least 8.something, so we'll coerce the LLVM version into a form that
659   // guarantees it'll be big enough without really lying about the version.
660   int Major = 1000 * LLVM_VERSION_MAJOR +
661               10 * LLVM_VERSION_MINOR +
662               LLVM_VERSION_PATCH;
663   // Clamp it for builds that use unusually large version numbers.
664   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
665   Version BackVer = {{ Major, 0, 0, 0 }};
666   OS.AddComment("Backend version");
667   for (int N = 0; N < 4; ++N)
668     OS.EmitIntValue(BackVer.Part[N], 2);
669 
670   OS.AddComment("Null-terminated compiler version string");
671   emitNullTerminatedSymbolName(OS, CompilerVersion);
672 
673   OS.EmitLabel(CompilerEnd);
674 }
675 
676 void CodeViewDebug::emitInlineeLinesSubsection() {
677   if (InlinedSubprograms.empty())
678     return;
679 
680   OS.AddComment("Inlinee lines subsection");
681   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
682 
683   // We don't provide any extra file info.
684   // FIXME: Find out if debuggers use this info.
685   OS.AddComment("Inlinee lines signature");
686   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
687 
688   for (const DISubprogram *SP : InlinedSubprograms) {
689     assert(TypeIndices.count({SP, nullptr}));
690     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
691 
692     OS.AddBlankLine();
693     unsigned FileId = maybeRecordFile(SP->getFile());
694     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
695                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
696     OS.AddBlankLine();
697     // The filechecksum table uses 8 byte entries for now, and file ids start at
698     // 1.
699     unsigned FileOffset = (FileId - 1) * 8;
700     OS.AddComment("Type index of inlined function");
701     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
702     OS.AddComment("Offset into filechecksum table");
703     OS.EmitIntValue(FileOffset, 4);
704     OS.AddComment("Starting line number");
705     OS.EmitIntValue(SP->getLine(), 4);
706   }
707 
708   endCVSubsection(InlineEnd);
709 }
710 
711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
712                                         const DILocation *InlinedAt,
713                                         const InlineSite &Site) {
714   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
715            *InlineEnd = MMI->getContext().createTempSymbol();
716 
717   assert(TypeIndices.count({Site.Inlinee, nullptr}));
718   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
719 
720   // SymbolRecord
721   OS.AddComment("Record length");
722   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
723   OS.EmitLabel(InlineBegin);
724   OS.AddComment("Record kind: S_INLINESITE");
725   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
726 
727   OS.AddComment("PtrParent");
728   OS.EmitIntValue(0, 4);
729   OS.AddComment("PtrEnd");
730   OS.EmitIntValue(0, 4);
731   OS.AddComment("Inlinee type index");
732   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
733 
734   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
735   unsigned StartLineNum = Site.Inlinee->getLine();
736 
737   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
738                                     FI.Begin, FI.End);
739 
740   OS.EmitLabel(InlineEnd);
741 
742   emitLocalVariableList(Site.InlinedLocals);
743 
744   // Recurse on child inlined call sites before closing the scope.
745   for (const DILocation *ChildSite : Site.ChildSites) {
746     auto I = FI.InlineSites.find(ChildSite);
747     assert(I != FI.InlineSites.end() &&
748            "child site not in function inline site map");
749     emitInlinedCallSite(FI, ChildSite, I->second);
750   }
751 
752   // Close the scope.
753   OS.AddComment("Record length");
754   OS.EmitIntValue(2, 2);                                  // RecordLength
755   OS.AddComment("Record kind: S_INLINESITE_END");
756   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
757 }
758 
759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
760   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
761   // comdat key. A section may be comdat because of -ffunction-sections or
762   // because it is comdat in the IR.
763   MCSectionCOFF *GVSec =
764       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
765   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
766 
767   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
768       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
769   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
770 
771   OS.SwitchSection(DebugSec);
772 
773   // Emit the magic version number if this is the first time we've switched to
774   // this section.
775   if (ComdatDebugSections.insert(DebugSec).second)
776     emitCodeViewMagicVersion();
777 }
778 
779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
780                                              FunctionInfo &FI) {
781   // For each function there is a separate subsection
782   // which holds the PC to file:line table.
783   const MCSymbol *Fn = Asm->getSymbol(GV);
784   assert(Fn);
785 
786   // Switch to the to a comdat section, if appropriate.
787   switchToDebugSectionForSymbol(Fn);
788 
789   std::string FuncName;
790   auto *SP = GV->getSubprogram();
791   assert(SP);
792   setCurrentSubprogram(SP);
793 
794   // If we have a display name, build the fully qualified name by walking the
795   // chain of scopes.
796   if (!SP->getName().empty())
797     FuncName =
798         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
799 
800   // If our DISubprogram name is empty, use the mangled name.
801   if (FuncName.empty())
802     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
803 
804   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
805   OS.AddComment("Symbol subsection for " + Twine(FuncName));
806   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
807   {
808     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
809              *ProcRecordEnd = MMI->getContext().createTempSymbol();
810     OS.AddComment("Record length");
811     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
812     OS.EmitLabel(ProcRecordBegin);
813 
814     if (GV->hasLocalLinkage()) {
815       OS.AddComment("Record kind: S_LPROC32_ID");
816       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
817     } else {
818       OS.AddComment("Record kind: S_GPROC32_ID");
819       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
820     }
821 
822     // These fields are filled in by tools like CVPACK which run after the fact.
823     OS.AddComment("PtrParent");
824     OS.EmitIntValue(0, 4);
825     OS.AddComment("PtrEnd");
826     OS.EmitIntValue(0, 4);
827     OS.AddComment("PtrNext");
828     OS.EmitIntValue(0, 4);
829     // This is the important bit that tells the debugger where the function
830     // code is located and what's its size:
831     OS.AddComment("Code size");
832     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
833     OS.AddComment("Offset after prologue");
834     OS.EmitIntValue(0, 4);
835     OS.AddComment("Offset before epilogue");
836     OS.EmitIntValue(0, 4);
837     OS.AddComment("Function type index");
838     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
839     OS.AddComment("Function section relative address");
840     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
841     OS.AddComment("Function section index");
842     OS.EmitCOFFSectionIndex(Fn);
843     OS.AddComment("Flags");
844     OS.EmitIntValue(0, 1);
845     // Emit the function display name as a null-terminated string.
846     OS.AddComment("Function name");
847     // Truncate the name so we won't overflow the record length field.
848     emitNullTerminatedSymbolName(OS, FuncName);
849     OS.EmitLabel(ProcRecordEnd);
850 
851     emitLocalVariableList(FI.Locals);
852 
853     // Emit inlined call site information. Only emit functions inlined directly
854     // into the parent function. We'll emit the other sites recursively as part
855     // of their parent inline site.
856     for (const DILocation *InlinedAt : FI.ChildSites) {
857       auto I = FI.InlineSites.find(InlinedAt);
858       assert(I != FI.InlineSites.end() &&
859              "child site not in function inline site map");
860       emitInlinedCallSite(FI, InlinedAt, I->second);
861     }
862 
863     if (SP != nullptr)
864       emitDebugInfoForUDTs(LocalUDTs);
865 
866     // We're done with this function.
867     OS.AddComment("Record length");
868     OS.EmitIntValue(0x0002, 2);
869     OS.AddComment("Record kind: S_PROC_ID_END");
870     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
871   }
872   endCVSubsection(SymbolsEnd);
873 
874   // We have an assembler directive that takes care of the whole line table.
875   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
876 }
877 
878 CodeViewDebug::LocalVarDefRange
879 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
880   LocalVarDefRange DR;
881   DR.InMemory = -1;
882   DR.DataOffset = Offset;
883   assert(DR.DataOffset == Offset && "truncation");
884   DR.IsSubfield = 0;
885   DR.StructOffset = 0;
886   DR.CVRegister = CVRegister;
887   return DR;
888 }
889 
890 CodeViewDebug::LocalVarDefRange
891 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
892                                      int Offset, bool IsSubfield,
893                                      uint16_t StructOffset) {
894   LocalVarDefRange DR;
895   DR.InMemory = InMemory;
896   DR.DataOffset = Offset;
897   DR.IsSubfield = IsSubfield;
898   DR.StructOffset = StructOffset;
899   DR.CVRegister = CVRegister;
900   return DR;
901 }
902 
903 void CodeViewDebug::collectVariableInfoFromMFTable(
904     DenseSet<InlinedVariable> &Processed) {
905   const MachineFunction &MF = *Asm->MF;
906   const TargetSubtargetInfo &TSI = MF.getSubtarget();
907   const TargetFrameLowering *TFI = TSI.getFrameLowering();
908   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
909 
910   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
911     if (!VI.Var)
912       continue;
913     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
914            "Expected inlined-at fields to agree");
915 
916     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
917     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
918 
919     // If variable scope is not found then skip this variable.
920     if (!Scope)
921       continue;
922 
923     // If the variable has an attached offset expression, extract it.
924     // FIXME: Try to handle DW_OP_deref as well.
925     int64_t ExprOffset = 0;
926     if (VI.Expr)
927       if (!VI.Expr->extractIfOffset(ExprOffset))
928         continue;
929 
930     // Get the frame register used and the offset.
931     unsigned FrameReg = 0;
932     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
933     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
934 
935     // Calculate the label ranges.
936     LocalVarDefRange DefRange =
937         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
938     for (const InsnRange &Range : Scope->getRanges()) {
939       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
940       const MCSymbol *End = getLabelAfterInsn(Range.second);
941       End = End ? End : Asm->getFunctionEnd();
942       DefRange.Ranges.emplace_back(Begin, End);
943     }
944 
945     LocalVariable Var;
946     Var.DIVar = VI.Var;
947     Var.DefRanges.emplace_back(std::move(DefRange));
948     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
949   }
950 }
951 
952 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
953   DenseSet<InlinedVariable> Processed;
954   // Grab the variable info that was squirreled away in the MMI side-table.
955   collectVariableInfoFromMFTable(Processed);
956 
957   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
958 
959   for (const auto &I : DbgValues) {
960     InlinedVariable IV = I.first;
961     if (Processed.count(IV))
962       continue;
963     const DILocalVariable *DIVar = IV.first;
964     const DILocation *InlinedAt = IV.second;
965 
966     // Instruction ranges, specifying where IV is accessible.
967     const auto &Ranges = I.second;
968 
969     LexicalScope *Scope = nullptr;
970     if (InlinedAt)
971       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
972     else
973       Scope = LScopes.findLexicalScope(DIVar->getScope());
974     // If variable scope is not found then skip this variable.
975     if (!Scope)
976       continue;
977 
978     LocalVariable Var;
979     Var.DIVar = DIVar;
980 
981     // Calculate the definition ranges.
982     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
983       const InsnRange &Range = *I;
984       const MachineInstr *DVInst = Range.first;
985       assert(DVInst->isDebugValue() && "Invalid History entry");
986       const DIExpression *DIExpr = DVInst->getDebugExpression();
987       bool InMemory = DVInst->getOperand(1).isImm();
988       bool IsSubfield = false;
989       unsigned StructOffset = 0;
990       // Recognize a +Offset expression.
991       int Offset = 0;
992       DIExpressionCursor Ops(DIExpr);
993       auto Op = Ops.peek();
994       if (Op && Op->getOp() == dwarf::DW_OP_plus_uconst) {
995         Offset = Op->getArg(0);
996         Ops.take();
997       }
998 
999       // Handle fragments.
1000       auto Fragment = Ops.getFragmentInfo();
1001       if (Fragment) {
1002         IsSubfield = true;
1003         StructOffset = Fragment->OffsetInBits / 8;
1004       }
1005       // Ignore unrecognized exprs.
1006       if (Ops.peek() && Ops.peek()->getOp() != dwarf::DW_OP_LLVM_fragment)
1007         continue;
1008       if (!InMemory && Offset)
1009         continue;
1010 
1011       // Bail if operand 0 is not a valid register. This means the variable is a
1012       // simple constant, or is described by a complex expression.
1013       // FIXME: Find a way to represent constant variables, since they are
1014       // relatively common.
1015       unsigned Reg =
1016           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
1017       if (Reg == 0)
1018         continue;
1019 
1020       // Handle the two cases we can handle: indirect in memory and in register.
1021       unsigned CVReg = TRI->getCodeViewRegNum(Reg);
1022       {
1023         LocalVarDefRange DR;
1024         DR.CVRegister = CVReg;
1025         DR.InMemory = InMemory;
1026         DR.DataOffset = Offset;
1027         DR.IsSubfield = IsSubfield;
1028         DR.StructOffset = StructOffset;
1029 
1030         if (Var.DefRanges.empty() ||
1031             Var.DefRanges.back().isDifferentLocation(DR)) {
1032           Var.DefRanges.emplace_back(std::move(DR));
1033         }
1034       }
1035 
1036       // Compute the label range.
1037       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1038       const MCSymbol *End = getLabelAfterInsn(Range.second);
1039       if (!End) {
1040         // This range is valid until the next overlapping bitpiece. In the
1041         // common case, ranges will not be bitpieces, so they will overlap.
1042         auto J = std::next(I);
1043         while (J != E &&
1044                !fragmentsOverlap(DIExpr, J->first->getDebugExpression()))
1045           ++J;
1046         if (J != E)
1047           End = getLabelBeforeInsn(J->first);
1048         else
1049           End = Asm->getFunctionEnd();
1050       }
1051 
1052       // If the last range end is our begin, just extend the last range.
1053       // Otherwise make a new range.
1054       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
1055           Var.DefRanges.back().Ranges;
1056       if (!Ranges.empty() && Ranges.back().second == Begin)
1057         Ranges.back().second = End;
1058       else
1059         Ranges.emplace_back(Begin, End);
1060 
1061       // FIXME: Do more range combining.
1062     }
1063 
1064     recordLocalVariable(std::move(Var), InlinedAt);
1065   }
1066 }
1067 
1068 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1069   const Function *GV = MF->getFunction();
1070   assert(FnDebugInfo.count(GV) == false);
1071   CurFn = &FnDebugInfo[GV];
1072   CurFn->FuncId = NextFuncId++;
1073   CurFn->Begin = Asm->getFunctionBegin();
1074 
1075   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1076 
1077   // Find the end of the function prolog.  First known non-DBG_VALUE and
1078   // non-frame setup location marks the beginning of the function body.
1079   // FIXME: is there a simpler a way to do this? Can we just search
1080   // for the first instruction of the function, not the last of the prolog?
1081   DebugLoc PrologEndLoc;
1082   bool EmptyPrologue = true;
1083   for (const auto &MBB : *MF) {
1084     for (const auto &MI : MBB) {
1085       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1086           MI.getDebugLoc()) {
1087         PrologEndLoc = MI.getDebugLoc();
1088         break;
1089       } else if (!MI.isMetaInstruction()) {
1090         EmptyPrologue = false;
1091       }
1092     }
1093   }
1094 
1095   // Record beginning of function if we have a non-empty prologue.
1096   if (PrologEndLoc && !EmptyPrologue) {
1097     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1098     maybeRecordLocation(FnStartDL, MF);
1099   }
1100 }
1101 
1102 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
1103   // Don't record empty UDTs.
1104   if (Ty->getName().empty())
1105     return;
1106 
1107   SmallVector<StringRef, 5> QualifiedNameComponents;
1108   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1109       Ty->getScope().resolve(), QualifiedNameComponents);
1110 
1111   std::string FullyQualifiedName =
1112       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1113 
1114   if (ClosestSubprogram == nullptr)
1115     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1116   else if (ClosestSubprogram == CurrentSubprogram)
1117     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1118 
1119   // TODO: What if the ClosestSubprogram is neither null or the current
1120   // subprogram?  Currently, the UDT just gets dropped on the floor.
1121   //
1122   // The current behavior is not desirable.  To get maximal fidelity, we would
1123   // need to perform all type translation before beginning emission of .debug$S
1124   // and then make LocalUDTs a member of FunctionInfo
1125 }
1126 
1127 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1128   // Generic dispatch for lowering an unknown type.
1129   switch (Ty->getTag()) {
1130   case dwarf::DW_TAG_array_type:
1131     return lowerTypeArray(cast<DICompositeType>(Ty));
1132   case dwarf::DW_TAG_typedef:
1133     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1134   case dwarf::DW_TAG_base_type:
1135     return lowerTypeBasic(cast<DIBasicType>(Ty));
1136   case dwarf::DW_TAG_pointer_type:
1137     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1138       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1139     LLVM_FALLTHROUGH;
1140   case dwarf::DW_TAG_reference_type:
1141   case dwarf::DW_TAG_rvalue_reference_type:
1142     return lowerTypePointer(cast<DIDerivedType>(Ty));
1143   case dwarf::DW_TAG_ptr_to_member_type:
1144     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1145   case dwarf::DW_TAG_const_type:
1146   case dwarf::DW_TAG_volatile_type:
1147   // TODO: add support for DW_TAG_atomic_type here
1148     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1149   case dwarf::DW_TAG_subroutine_type:
1150     if (ClassTy) {
1151       // The member function type of a member function pointer has no
1152       // ThisAdjustment.
1153       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1154                                      /*ThisAdjustment=*/0);
1155     }
1156     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1157   case dwarf::DW_TAG_enumeration_type:
1158     return lowerTypeEnum(cast<DICompositeType>(Ty));
1159   case dwarf::DW_TAG_class_type:
1160   case dwarf::DW_TAG_structure_type:
1161     return lowerTypeClass(cast<DICompositeType>(Ty));
1162   case dwarf::DW_TAG_union_type:
1163     return lowerTypeUnion(cast<DICompositeType>(Ty));
1164   default:
1165     // Use the null type index.
1166     return TypeIndex();
1167   }
1168 }
1169 
1170 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1171   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1172   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1173   StringRef TypeName = Ty->getName();
1174 
1175   addToUDTs(Ty, UnderlyingTypeIndex);
1176 
1177   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1178       TypeName == "HRESULT")
1179     return TypeIndex(SimpleTypeKind::HResult);
1180   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1181       TypeName == "wchar_t")
1182     return TypeIndex(SimpleTypeKind::WideCharacter);
1183 
1184   return UnderlyingTypeIndex;
1185 }
1186 
1187 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1188   DITypeRef ElementTypeRef = Ty->getBaseType();
1189   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1190   // IndexType is size_t, which depends on the bitness of the target.
1191   TypeIndex IndexType = Asm->TM.getPointerSize() == 8
1192                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1193                             : TypeIndex(SimpleTypeKind::UInt32Long);
1194 
1195   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1196 
1197   // Add subranges to array type.
1198   DINodeArray Elements = Ty->getElements();
1199   for (int i = Elements.size() - 1; i >= 0; --i) {
1200     const DINode *Element = Elements[i];
1201     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1202 
1203     const DISubrange *Subrange = cast<DISubrange>(Element);
1204     assert(Subrange->getLowerBound() == 0 &&
1205            "codeview doesn't support subranges with lower bounds");
1206     int64_t Count = Subrange->getCount();
1207 
1208     // Variable Length Array (VLA) has Count equal to '-1'.
1209     // Replace with Count '1', assume it is the minimum VLA length.
1210     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1211     if (Count == -1)
1212       Count = 1;
1213 
1214     // Update the element size and element type index for subsequent subranges.
1215     ElementSize *= Count;
1216 
1217     // If this is the outermost array, use the size from the array. It will be
1218     // more accurate if we had a VLA or an incomplete element type size.
1219     uint64_t ArraySize =
1220         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1221 
1222     StringRef Name = (i == 0) ? Ty->getName() : "";
1223     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1224     ElementTypeIndex = TypeTable.writeKnownType(AR);
1225   }
1226 
1227   return ElementTypeIndex;
1228 }
1229 
1230 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1231   TypeIndex Index;
1232   dwarf::TypeKind Kind;
1233   uint32_t ByteSize;
1234 
1235   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1236   ByteSize = Ty->getSizeInBits() / 8;
1237 
1238   SimpleTypeKind STK = SimpleTypeKind::None;
1239   switch (Kind) {
1240   case dwarf::DW_ATE_address:
1241     // FIXME: Translate
1242     break;
1243   case dwarf::DW_ATE_boolean:
1244     switch (ByteSize) {
1245     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1246     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1247     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1248     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1249     case 16: STK = SimpleTypeKind::Boolean128; break;
1250     }
1251     break;
1252   case dwarf::DW_ATE_complex_float:
1253     switch (ByteSize) {
1254     case 2:  STK = SimpleTypeKind::Complex16;  break;
1255     case 4:  STK = SimpleTypeKind::Complex32;  break;
1256     case 8:  STK = SimpleTypeKind::Complex64;  break;
1257     case 10: STK = SimpleTypeKind::Complex80;  break;
1258     case 16: STK = SimpleTypeKind::Complex128; break;
1259     }
1260     break;
1261   case dwarf::DW_ATE_float:
1262     switch (ByteSize) {
1263     case 2:  STK = SimpleTypeKind::Float16;  break;
1264     case 4:  STK = SimpleTypeKind::Float32;  break;
1265     case 6:  STK = SimpleTypeKind::Float48;  break;
1266     case 8:  STK = SimpleTypeKind::Float64;  break;
1267     case 10: STK = SimpleTypeKind::Float80;  break;
1268     case 16: STK = SimpleTypeKind::Float128; break;
1269     }
1270     break;
1271   case dwarf::DW_ATE_signed:
1272     switch (ByteSize) {
1273     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1274     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1275     case 4:  STK = SimpleTypeKind::Int32;           break;
1276     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1277     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1278     }
1279     break;
1280   case dwarf::DW_ATE_unsigned:
1281     switch (ByteSize) {
1282     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1283     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1284     case 4:  STK = SimpleTypeKind::UInt32;            break;
1285     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1286     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1287     }
1288     break;
1289   case dwarf::DW_ATE_UTF:
1290     switch (ByteSize) {
1291     case 2: STK = SimpleTypeKind::Character16; break;
1292     case 4: STK = SimpleTypeKind::Character32; break;
1293     }
1294     break;
1295   case dwarf::DW_ATE_signed_char:
1296     if (ByteSize == 1)
1297       STK = SimpleTypeKind::SignedCharacter;
1298     break;
1299   case dwarf::DW_ATE_unsigned_char:
1300     if (ByteSize == 1)
1301       STK = SimpleTypeKind::UnsignedCharacter;
1302     break;
1303   default:
1304     break;
1305   }
1306 
1307   // Apply some fixups based on the source-level type name.
1308   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1309     STK = SimpleTypeKind::Int32Long;
1310   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1311     STK = SimpleTypeKind::UInt32Long;
1312   if (STK == SimpleTypeKind::UInt16Short &&
1313       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1314     STK = SimpleTypeKind::WideCharacter;
1315   if ((STK == SimpleTypeKind::SignedCharacter ||
1316        STK == SimpleTypeKind::UnsignedCharacter) &&
1317       Ty->getName() == "char")
1318     STK = SimpleTypeKind::NarrowCharacter;
1319 
1320   return TypeIndex(STK);
1321 }
1322 
1323 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1324   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1325 
1326   // Pointers to simple types can use SimpleTypeMode, rather than having a
1327   // dedicated pointer type record.
1328   if (PointeeTI.isSimple() &&
1329       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1330       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1331     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1332                               ? SimpleTypeMode::NearPointer64
1333                               : SimpleTypeMode::NearPointer32;
1334     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1335   }
1336 
1337   PointerKind PK =
1338       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1339   PointerMode PM = PointerMode::Pointer;
1340   switch (Ty->getTag()) {
1341   default: llvm_unreachable("not a pointer tag type");
1342   case dwarf::DW_TAG_pointer_type:
1343     PM = PointerMode::Pointer;
1344     break;
1345   case dwarf::DW_TAG_reference_type:
1346     PM = PointerMode::LValueReference;
1347     break;
1348   case dwarf::DW_TAG_rvalue_reference_type:
1349     PM = PointerMode::RValueReference;
1350     break;
1351   }
1352   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1353   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1354   // do.
1355   PointerOptions PO = PointerOptions::None;
1356   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1357   return TypeTable.writeKnownType(PR);
1358 }
1359 
1360 static PointerToMemberRepresentation
1361 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1362   // SizeInBytes being zero generally implies that the member pointer type was
1363   // incomplete, which can happen if it is part of a function prototype. In this
1364   // case, use the unknown model instead of the general model.
1365   if (IsPMF) {
1366     switch (Flags & DINode::FlagPtrToMemberRep) {
1367     case 0:
1368       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1369                               : PointerToMemberRepresentation::GeneralFunction;
1370     case DINode::FlagSingleInheritance:
1371       return PointerToMemberRepresentation::SingleInheritanceFunction;
1372     case DINode::FlagMultipleInheritance:
1373       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1374     case DINode::FlagVirtualInheritance:
1375       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1376     }
1377   } else {
1378     switch (Flags & DINode::FlagPtrToMemberRep) {
1379     case 0:
1380       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1381                               : PointerToMemberRepresentation::GeneralData;
1382     case DINode::FlagSingleInheritance:
1383       return PointerToMemberRepresentation::SingleInheritanceData;
1384     case DINode::FlagMultipleInheritance:
1385       return PointerToMemberRepresentation::MultipleInheritanceData;
1386     case DINode::FlagVirtualInheritance:
1387       return PointerToMemberRepresentation::VirtualInheritanceData;
1388     }
1389   }
1390   llvm_unreachable("invalid ptr to member representation");
1391 }
1392 
1393 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1394   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1395   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1396   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1397   PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64
1398                                                  : PointerKind::Near32;
1399   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1400   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1401                          : PointerMode::PointerToDataMember;
1402   PointerOptions PO = PointerOptions::None; // FIXME
1403   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1404   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1405   MemberPointerInfo MPI(
1406       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1407   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1408   return TypeTable.writeKnownType(PR);
1409 }
1410 
1411 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1412 /// have a translation, use the NearC convention.
1413 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1414   switch (DwarfCC) {
1415   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1416   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1417   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1418   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1419   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1420   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1421   }
1422   return CallingConvention::NearC;
1423 }
1424 
1425 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1426   ModifierOptions Mods = ModifierOptions::None;
1427   bool IsModifier = true;
1428   const DIType *BaseTy = Ty;
1429   while (IsModifier && BaseTy) {
1430     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1431     switch (BaseTy->getTag()) {
1432     case dwarf::DW_TAG_const_type:
1433       Mods |= ModifierOptions::Const;
1434       break;
1435     case dwarf::DW_TAG_volatile_type:
1436       Mods |= ModifierOptions::Volatile;
1437       break;
1438     default:
1439       IsModifier = false;
1440       break;
1441     }
1442     if (IsModifier)
1443       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1444   }
1445   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1446   ModifierRecord MR(ModifiedTI, Mods);
1447   return TypeTable.writeKnownType(MR);
1448 }
1449 
1450 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1451   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1452   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1453     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1454 
1455   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1456   ArrayRef<TypeIndex> ArgTypeIndices = None;
1457   if (!ReturnAndArgTypeIndices.empty()) {
1458     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1459     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1460     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1461   }
1462 
1463   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1464   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1465 
1466   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1467 
1468   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1469                             ArgTypeIndices.size(), ArgListIndex);
1470   return TypeTable.writeKnownType(Procedure);
1471 }
1472 
1473 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1474                                                  const DIType *ClassTy,
1475                                                  int ThisAdjustment) {
1476   // Lower the containing class type.
1477   TypeIndex ClassType = getTypeIndex(ClassTy);
1478 
1479   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1480   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1481     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1482 
1483   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1484   ArrayRef<TypeIndex> ArgTypeIndices = None;
1485   if (!ReturnAndArgTypeIndices.empty()) {
1486     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1487     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1488     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1489   }
1490   TypeIndex ThisTypeIndex = TypeIndex::Void();
1491   if (!ArgTypeIndices.empty()) {
1492     ThisTypeIndex = ArgTypeIndices.front();
1493     ArgTypeIndices = ArgTypeIndices.drop_front();
1494   }
1495 
1496   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1497   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1498 
1499   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1500 
1501   // TODO: Need to use the correct values for:
1502   //       FunctionOptions
1503   //       ThisPointerAdjustment.
1504   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1505                            FunctionOptions::None, ArgTypeIndices.size(),
1506                            ArgListIndex, ThisAdjustment);
1507   TypeIndex TI = TypeTable.writeKnownType(MFR);
1508 
1509   return TI;
1510 }
1511 
1512 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1513   unsigned VSlotCount =
1514       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1515   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1516 
1517   VFTableShapeRecord VFTSR(Slots);
1518   return TypeTable.writeKnownType(VFTSR);
1519 }
1520 
1521 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1522   switch (Flags & DINode::FlagAccessibility) {
1523   case DINode::FlagPrivate:   return MemberAccess::Private;
1524   case DINode::FlagPublic:    return MemberAccess::Public;
1525   case DINode::FlagProtected: return MemberAccess::Protected;
1526   case 0:
1527     // If there was no explicit access control, provide the default for the tag.
1528     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1529                                                  : MemberAccess::Public;
1530   }
1531   llvm_unreachable("access flags are exclusive");
1532 }
1533 
1534 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1535   if (SP->isArtificial())
1536     return MethodOptions::CompilerGenerated;
1537 
1538   // FIXME: Handle other MethodOptions.
1539 
1540   return MethodOptions::None;
1541 }
1542 
1543 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1544                                            bool Introduced) {
1545   switch (SP->getVirtuality()) {
1546   case dwarf::DW_VIRTUALITY_none:
1547     break;
1548   case dwarf::DW_VIRTUALITY_virtual:
1549     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1550   case dwarf::DW_VIRTUALITY_pure_virtual:
1551     return Introduced ? MethodKind::PureIntroducingVirtual
1552                       : MethodKind::PureVirtual;
1553   default:
1554     llvm_unreachable("unhandled virtuality case");
1555   }
1556 
1557   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1558 
1559   return MethodKind::Vanilla;
1560 }
1561 
1562 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1563   switch (Ty->getTag()) {
1564   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1565   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1566   }
1567   llvm_unreachable("unexpected tag");
1568 }
1569 
1570 /// Return ClassOptions that should be present on both the forward declaration
1571 /// and the defintion of a tag type.
1572 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1573   ClassOptions CO = ClassOptions::None;
1574 
1575   // MSVC always sets this flag, even for local types. Clang doesn't always
1576   // appear to give every type a linkage name, which may be problematic for us.
1577   // FIXME: Investigate the consequences of not following them here.
1578   if (!Ty->getIdentifier().empty())
1579     CO |= ClassOptions::HasUniqueName;
1580 
1581   // Put the Nested flag on a type if it appears immediately inside a tag type.
1582   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1583   // here. That flag is only set on definitions, and not forward declarations.
1584   const DIScope *ImmediateScope = Ty->getScope().resolve();
1585   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1586     CO |= ClassOptions::Nested;
1587 
1588   // Put the Scoped flag on function-local types.
1589   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1590        Scope = Scope->getScope().resolve()) {
1591     if (isa<DISubprogram>(Scope)) {
1592       CO |= ClassOptions::Scoped;
1593       break;
1594     }
1595   }
1596 
1597   return CO;
1598 }
1599 
1600 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1601   ClassOptions CO = getCommonClassOptions(Ty);
1602   TypeIndex FTI;
1603   unsigned EnumeratorCount = 0;
1604 
1605   if (Ty->isForwardDecl()) {
1606     CO |= ClassOptions::ForwardReference;
1607   } else {
1608     FieldListRecordBuilder FLRB(TypeTable);
1609 
1610     FLRB.begin();
1611     for (const DINode *Element : Ty->getElements()) {
1612       // We assume that the frontend provides all members in source declaration
1613       // order, which is what MSVC does.
1614       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1615         EnumeratorRecord ER(MemberAccess::Public,
1616                             APSInt::getUnsigned(Enumerator->getValue()),
1617                             Enumerator->getName());
1618         FLRB.writeMemberType(ER);
1619         EnumeratorCount++;
1620       }
1621     }
1622     FTI = FLRB.end(true);
1623   }
1624 
1625   std::string FullName = getFullyQualifiedName(Ty);
1626 
1627   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1628                 getTypeIndex(Ty->getBaseType()));
1629   return TypeTable.writeKnownType(ER);
1630 }
1631 
1632 //===----------------------------------------------------------------------===//
1633 // ClassInfo
1634 //===----------------------------------------------------------------------===//
1635 
1636 struct llvm::ClassInfo {
1637   struct MemberInfo {
1638     const DIDerivedType *MemberTypeNode;
1639     uint64_t BaseOffset;
1640   };
1641   // [MemberInfo]
1642   using MemberList = std::vector<MemberInfo>;
1643 
1644   using MethodsList = TinyPtrVector<const DISubprogram *>;
1645   // MethodName -> MethodsList
1646   using MethodsMap = MapVector<MDString *, MethodsList>;
1647 
1648   /// Base classes.
1649   std::vector<const DIDerivedType *> Inheritance;
1650 
1651   /// Direct members.
1652   MemberList Members;
1653   // Direct overloaded methods gathered by name.
1654   MethodsMap Methods;
1655 
1656   TypeIndex VShapeTI;
1657 
1658   std::vector<const DIType *> NestedTypes;
1659 };
1660 
1661 void CodeViewDebug::clear() {
1662   assert(CurFn == nullptr);
1663   FileIdMap.clear();
1664   FnDebugInfo.clear();
1665   FileToFilepathMap.clear();
1666   LocalUDTs.clear();
1667   GlobalUDTs.clear();
1668   TypeIndices.clear();
1669   CompleteTypeIndices.clear();
1670 }
1671 
1672 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1673                                       const DIDerivedType *DDTy) {
1674   if (!DDTy->getName().empty()) {
1675     Info.Members.push_back({DDTy, 0});
1676     return;
1677   }
1678   // An unnamed member must represent a nested struct or union. Add all the
1679   // indirect fields to the current record.
1680   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1681   uint64_t Offset = DDTy->getOffsetInBits();
1682   const DIType *Ty = DDTy->getBaseType().resolve();
1683   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1684   ClassInfo NestedInfo = collectClassInfo(DCTy);
1685   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1686     Info.Members.push_back(
1687         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1688 }
1689 
1690 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1691   ClassInfo Info;
1692   // Add elements to structure type.
1693   DINodeArray Elements = Ty->getElements();
1694   for (auto *Element : Elements) {
1695     // We assume that the frontend provides all members in source declaration
1696     // order, which is what MSVC does.
1697     if (!Element)
1698       continue;
1699     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1700       Info.Methods[SP->getRawName()].push_back(SP);
1701     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1702       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1703         collectMemberInfo(Info, DDTy);
1704       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1705         Info.Inheritance.push_back(DDTy);
1706       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1707                  DDTy->getName() == "__vtbl_ptr_type") {
1708         Info.VShapeTI = getTypeIndex(DDTy);
1709       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
1710         Info.NestedTypes.push_back(DDTy);
1711       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1712         // Ignore friend members. It appears that MSVC emitted info about
1713         // friends in the past, but modern versions do not.
1714       }
1715     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1716       Info.NestedTypes.push_back(Composite);
1717     }
1718     // Skip other unrecognized kinds of elements.
1719   }
1720   return Info;
1721 }
1722 
1723 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1724   // First, construct the forward decl.  Don't look into Ty to compute the
1725   // forward decl options, since it might not be available in all TUs.
1726   TypeRecordKind Kind = getRecordKind(Ty);
1727   ClassOptions CO =
1728       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1729   std::string FullName = getFullyQualifiedName(Ty);
1730   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1731                  FullName, Ty->getIdentifier());
1732   TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR);
1733   if (!Ty->isForwardDecl())
1734     DeferredCompleteTypes.push_back(Ty);
1735   return FwdDeclTI;
1736 }
1737 
1738 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1739   // Construct the field list and complete type record.
1740   TypeRecordKind Kind = getRecordKind(Ty);
1741   ClassOptions CO = getCommonClassOptions(Ty);
1742   TypeIndex FieldTI;
1743   TypeIndex VShapeTI;
1744   unsigned FieldCount;
1745   bool ContainsNestedClass;
1746   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1747       lowerRecordFieldList(Ty);
1748 
1749   if (ContainsNestedClass)
1750     CO |= ClassOptions::ContainsNestedClass;
1751 
1752   std::string FullName = getFullyQualifiedName(Ty);
1753 
1754   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1755 
1756   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1757                  SizeInBytes, FullName, Ty->getIdentifier());
1758   TypeIndex ClassTI = TypeTable.writeKnownType(CR);
1759 
1760   if (const auto *File = Ty->getFile()) {
1761     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1762     TypeIndex SIDI = TypeTable.writeKnownType(SIDR);
1763     UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
1764     TypeTable.writeKnownType(USLR);
1765   }
1766 
1767   addToUDTs(Ty, ClassTI);
1768 
1769   return ClassTI;
1770 }
1771 
1772 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1773   ClassOptions CO =
1774       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1775   std::string FullName = getFullyQualifiedName(Ty);
1776   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1777   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR);
1778   if (!Ty->isForwardDecl())
1779     DeferredCompleteTypes.push_back(Ty);
1780   return FwdDeclTI;
1781 }
1782 
1783 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1784   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1785   TypeIndex FieldTI;
1786   unsigned FieldCount;
1787   bool ContainsNestedClass;
1788   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1789       lowerRecordFieldList(Ty);
1790 
1791   if (ContainsNestedClass)
1792     CO |= ClassOptions::ContainsNestedClass;
1793 
1794   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1795   std::string FullName = getFullyQualifiedName(Ty);
1796 
1797   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
1798                  Ty->getIdentifier());
1799   TypeIndex UnionTI = TypeTable.writeKnownType(UR);
1800 
1801   StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1802   TypeIndex SIRI = TypeTable.writeKnownType(SIR);
1803   UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
1804   TypeTable.writeKnownType(USLR);
1805 
1806   addToUDTs(Ty, UnionTI);
1807 
1808   return UnionTI;
1809 }
1810 
1811 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1812 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1813   // Manually count members. MSVC appears to count everything that generates a
1814   // field list record. Each individual overload in a method overload group
1815   // contributes to this count, even though the overload group is a single field
1816   // list record.
1817   unsigned MemberCount = 0;
1818   ClassInfo Info = collectClassInfo(Ty);
1819   FieldListRecordBuilder FLBR(TypeTable);
1820   FLBR.begin();
1821 
1822   // Create base classes.
1823   for (const DIDerivedType *I : Info.Inheritance) {
1824     if (I->getFlags() & DINode::FlagVirtual) {
1825       // Virtual base.
1826       // FIXME: Emit VBPtrOffset when the frontend provides it.
1827       unsigned VBPtrOffset = 0;
1828       // FIXME: Despite the accessor name, the offset is really in bytes.
1829       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1830       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
1831                             ? TypeRecordKind::IndirectVirtualBaseClass
1832                             : TypeRecordKind::VirtualBaseClass;
1833       VirtualBaseClassRecord VBCR(
1834           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
1835           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1836           VBTableIndex);
1837 
1838       FLBR.writeMemberType(VBCR);
1839     } else {
1840       assert(I->getOffsetInBits() % 8 == 0 &&
1841              "bases must be on byte boundaries");
1842       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
1843                           getTypeIndex(I->getBaseType()),
1844                           I->getOffsetInBits() / 8);
1845       FLBR.writeMemberType(BCR);
1846     }
1847   }
1848 
1849   // Create members.
1850   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1851     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1852     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1853     StringRef MemberName = Member->getName();
1854     MemberAccess Access =
1855         translateAccessFlags(Ty->getTag(), Member->getFlags());
1856 
1857     if (Member->isStaticMember()) {
1858       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
1859       FLBR.writeMemberType(SDMR);
1860       MemberCount++;
1861       continue;
1862     }
1863 
1864     // Virtual function pointer member.
1865     if ((Member->getFlags() & DINode::FlagArtificial) &&
1866         Member->getName().startswith("_vptr$")) {
1867       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
1868       FLBR.writeMemberType(VFPR);
1869       MemberCount++;
1870       continue;
1871     }
1872 
1873     // Data member.
1874     uint64_t MemberOffsetInBits =
1875         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1876     if (Member->isBitField()) {
1877       uint64_t StartBitOffset = MemberOffsetInBits;
1878       if (const auto *CI =
1879               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1880         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1881       }
1882       StartBitOffset -= MemberOffsetInBits;
1883       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
1884                          StartBitOffset);
1885       MemberBaseType = TypeTable.writeKnownType(BFR);
1886     }
1887     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1888     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
1889                          MemberName);
1890     FLBR.writeMemberType(DMR);
1891     MemberCount++;
1892   }
1893 
1894   // Create methods
1895   for (auto &MethodItr : Info.Methods) {
1896     StringRef Name = MethodItr.first->getString();
1897 
1898     std::vector<OneMethodRecord> Methods;
1899     for (const DISubprogram *SP : MethodItr.second) {
1900       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1901       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1902 
1903       unsigned VFTableOffset = -1;
1904       if (Introduced)
1905         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1906 
1907       Methods.push_back(OneMethodRecord(
1908           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
1909           translateMethodKindFlags(SP, Introduced),
1910           translateMethodOptionFlags(SP), VFTableOffset, Name));
1911       MemberCount++;
1912     }
1913     assert(!Methods.empty() && "Empty methods map entry");
1914     if (Methods.size() == 1)
1915       FLBR.writeMemberType(Methods[0]);
1916     else {
1917       MethodOverloadListRecord MOLR(Methods);
1918       TypeIndex MethodList = TypeTable.writeKnownType(MOLR);
1919       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
1920       FLBR.writeMemberType(OMR);
1921     }
1922   }
1923 
1924   // Create nested classes.
1925   for (const DIType *Nested : Info.NestedTypes) {
1926     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1927     FLBR.writeMemberType(R);
1928     MemberCount++;
1929   }
1930 
1931   TypeIndex FieldTI = FLBR.end(true);
1932   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1933                          !Info.NestedTypes.empty());
1934 }
1935 
1936 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1937   if (!VBPType.getIndex()) {
1938     // Make a 'const int *' type.
1939     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1940     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1941 
1942     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1943                                                   : PointerKind::Near32;
1944     PointerMode PM = PointerMode::Pointer;
1945     PointerOptions PO = PointerOptions::None;
1946     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1947 
1948     VBPType = TypeTable.writeKnownType(PR);
1949   }
1950 
1951   return VBPType;
1952 }
1953 
1954 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1955   const DIType *Ty = TypeRef.resolve();
1956   const DIType *ClassTy = ClassTyRef.resolve();
1957 
1958   // The null DIType is the void type. Don't try to hash it.
1959   if (!Ty)
1960     return TypeIndex::Void();
1961 
1962   // Check if we've already translated this type. Don't try to do a
1963   // get-or-create style insertion that caches the hash lookup across the
1964   // lowerType call. It will update the TypeIndices map.
1965   auto I = TypeIndices.find({Ty, ClassTy});
1966   if (I != TypeIndices.end())
1967     return I->second;
1968 
1969   TypeLoweringScope S(*this);
1970   TypeIndex TI = lowerType(Ty, ClassTy);
1971   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1972 }
1973 
1974 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1975   const DIType *Ty = TypeRef.resolve();
1976 
1977   // The null DIType is the void type. Don't try to hash it.
1978   if (!Ty)
1979     return TypeIndex::Void();
1980 
1981   // If this is a non-record type, the complete type index is the same as the
1982   // normal type index. Just call getTypeIndex.
1983   switch (Ty->getTag()) {
1984   case dwarf::DW_TAG_class_type:
1985   case dwarf::DW_TAG_structure_type:
1986   case dwarf::DW_TAG_union_type:
1987     break;
1988   default:
1989     return getTypeIndex(Ty);
1990   }
1991 
1992   // Check if we've already translated the complete record type.  Lowering a
1993   // complete type should never trigger lowering another complete type, so we
1994   // can reuse the hash table lookup result.
1995   const auto *CTy = cast<DICompositeType>(Ty);
1996   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1997   if (!InsertResult.second)
1998     return InsertResult.first->second;
1999 
2000   TypeLoweringScope S(*this);
2001 
2002   // Make sure the forward declaration is emitted first. It's unclear if this
2003   // is necessary, but MSVC does it, and we should follow suit until we can show
2004   // otherwise.
2005   TypeIndex FwdDeclTI = getTypeIndex(CTy);
2006 
2007   // Just use the forward decl if we don't have complete type info. This might
2008   // happen if the frontend is using modules and expects the complete definition
2009   // to be emitted elsewhere.
2010   if (CTy->isForwardDecl())
2011     return FwdDeclTI;
2012 
2013   TypeIndex TI;
2014   switch (CTy->getTag()) {
2015   case dwarf::DW_TAG_class_type:
2016   case dwarf::DW_TAG_structure_type:
2017     TI = lowerCompleteTypeClass(CTy);
2018     break;
2019   case dwarf::DW_TAG_union_type:
2020     TI = lowerCompleteTypeUnion(CTy);
2021     break;
2022   default:
2023     llvm_unreachable("not a record");
2024   }
2025 
2026   InsertResult.first->second = TI;
2027   return TI;
2028 }
2029 
2030 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2031 /// and do this until fixpoint, as each complete record type typically
2032 /// references
2033 /// many other record types.
2034 void CodeViewDebug::emitDeferredCompleteTypes() {
2035   SmallVector<const DICompositeType *, 4> TypesToEmit;
2036   while (!DeferredCompleteTypes.empty()) {
2037     std::swap(DeferredCompleteTypes, TypesToEmit);
2038     for (const DICompositeType *RecordTy : TypesToEmit)
2039       getCompleteTypeIndex(RecordTy);
2040     TypesToEmit.clear();
2041   }
2042 }
2043 
2044 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2045   // Get the sorted list of parameters and emit them first.
2046   SmallVector<const LocalVariable *, 6> Params;
2047   for (const LocalVariable &L : Locals)
2048     if (L.DIVar->isParameter())
2049       Params.push_back(&L);
2050   std::sort(Params.begin(), Params.end(),
2051             [](const LocalVariable *L, const LocalVariable *R) {
2052               return L->DIVar->getArg() < R->DIVar->getArg();
2053             });
2054   for (const LocalVariable *L : Params)
2055     emitLocalVariable(*L);
2056 
2057   // Next emit all non-parameters in the order that we found them.
2058   for (const LocalVariable &L : Locals)
2059     if (!L.DIVar->isParameter())
2060       emitLocalVariable(L);
2061 }
2062 
2063 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2064   // LocalSym record, see SymbolRecord.h for more info.
2065   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2066            *LocalEnd = MMI->getContext().createTempSymbol();
2067   OS.AddComment("Record length");
2068   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2069   OS.EmitLabel(LocalBegin);
2070 
2071   OS.AddComment("Record kind: S_LOCAL");
2072   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2073 
2074   LocalSymFlags Flags = LocalSymFlags::None;
2075   if (Var.DIVar->isParameter())
2076     Flags |= LocalSymFlags::IsParameter;
2077   if (Var.DefRanges.empty())
2078     Flags |= LocalSymFlags::IsOptimizedOut;
2079 
2080   OS.AddComment("TypeIndex");
2081   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
2082   OS.EmitIntValue(TI.getIndex(), 4);
2083   OS.AddComment("Flags");
2084   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2085   // Truncate the name so we won't overflow the record length field.
2086   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2087   OS.EmitLabel(LocalEnd);
2088 
2089   // Calculate the on disk prefix of the appropriate def range record. The
2090   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2091   // should be big enough to hold all forms without memory allocation.
2092   SmallString<20> BytePrefix;
2093   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2094     BytePrefix.clear();
2095     if (DefRange.InMemory) {
2096       uint16_t RegRelFlags = 0;
2097       if (DefRange.IsSubfield) {
2098         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2099                       (DefRange.StructOffset
2100                        << DefRangeRegisterRelSym::OffsetInParentShift);
2101       }
2102       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2103       Sym.Hdr.Register = DefRange.CVRegister;
2104       Sym.Hdr.Flags = RegRelFlags;
2105       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2106       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2107       BytePrefix +=
2108           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2109       BytePrefix +=
2110           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2111     } else {
2112       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2113       if (DefRange.IsSubfield) {
2114         // Unclear what matters here.
2115         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2116         Sym.Hdr.Register = DefRange.CVRegister;
2117         Sym.Hdr.MayHaveNoName = 0;
2118         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2119 
2120         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2121         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2122                                 sizeof(SymKind));
2123         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2124                                 sizeof(Sym.Hdr));
2125       } else {
2126         // Unclear what matters here.
2127         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2128         Sym.Hdr.Register = DefRange.CVRegister;
2129         Sym.Hdr.MayHaveNoName = 0;
2130         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2131         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2132                                 sizeof(SymKind));
2133         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2134                                 sizeof(Sym.Hdr));
2135       }
2136     }
2137     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2138   }
2139 }
2140 
2141 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2142   const Function *GV = MF->getFunction();
2143   assert(FnDebugInfo.count(GV));
2144   assert(CurFn == &FnDebugInfo[GV]);
2145 
2146   collectVariableInfo(GV->getSubprogram());
2147 
2148   // Don't emit anything if we don't have any line tables.
2149   if (!CurFn->HaveLineInfo) {
2150     FnDebugInfo.erase(GV);
2151     CurFn = nullptr;
2152     return;
2153   }
2154 
2155   CurFn->End = Asm->getFunctionEnd();
2156 
2157   CurFn = nullptr;
2158 }
2159 
2160 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2161   DebugHandlerBase::beginInstruction(MI);
2162 
2163   // Ignore DBG_VALUE locations and function prologue.
2164   if (!Asm || !CurFn || MI->isDebugValue() ||
2165       MI->getFlag(MachineInstr::FrameSetup))
2166     return;
2167 
2168   // If the first instruction of a new MBB has no location, find the first
2169   // instruction with a location and use that.
2170   DebugLoc DL = MI->getDebugLoc();
2171   if (!DL && MI->getParent() != PrevInstBB) {
2172     for (const auto &NextMI : *MI->getParent()) {
2173       if (NextMI.isDebugValue())
2174         continue;
2175       DL = NextMI.getDebugLoc();
2176       if (DL)
2177         break;
2178     }
2179   }
2180   PrevInstBB = MI->getParent();
2181 
2182   // If we still don't have a debug location, don't record a location.
2183   if (!DL)
2184     return;
2185 
2186   maybeRecordLocation(DL, Asm->MF);
2187 }
2188 
2189 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2190   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2191            *EndLabel = MMI->getContext().createTempSymbol();
2192   OS.EmitIntValue(unsigned(Kind), 4);
2193   OS.AddComment("Subsection size");
2194   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2195   OS.EmitLabel(BeginLabel);
2196   return EndLabel;
2197 }
2198 
2199 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2200   OS.EmitLabel(EndLabel);
2201   // Every subsection must be aligned to a 4-byte boundary.
2202   OS.EmitValueToAlignment(4);
2203 }
2204 
2205 void CodeViewDebug::emitDebugInfoForUDTs(
2206     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
2207   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
2208     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2209              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2210     OS.AddComment("Record length");
2211     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2212     OS.EmitLabel(UDTRecordBegin);
2213 
2214     OS.AddComment("Record kind: S_UDT");
2215     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2216 
2217     OS.AddComment("Type");
2218     OS.EmitIntValue(UDT.second.getIndex(), 4);
2219 
2220     emitNullTerminatedSymbolName(OS, UDT.first);
2221     OS.EmitLabel(UDTRecordEnd);
2222   }
2223 }
2224 
2225 void CodeViewDebug::emitDebugInfoForGlobals() {
2226   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2227       GlobalMap;
2228   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2229     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2230     GV.getDebugInfo(GVEs);
2231     for (const auto *GVE : GVEs)
2232       GlobalMap[GVE] = &GV;
2233   }
2234 
2235   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2236   for (const MDNode *Node : CUs->operands()) {
2237     const auto *CU = cast<DICompileUnit>(Node);
2238 
2239     // First, emit all globals that are not in a comdat in a single symbol
2240     // substream. MSVC doesn't like it if the substream is empty, so only open
2241     // it if we have at least one global to emit.
2242     switchToDebugSectionForSymbol(nullptr);
2243     MCSymbol *EndLabel = nullptr;
2244     for (const auto *GVE : CU->getGlobalVariables()) {
2245       if (const auto *GV = GlobalMap.lookup(GVE))
2246         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2247           if (!EndLabel) {
2248             OS.AddComment("Symbol subsection for globals");
2249             EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2250           }
2251           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2252           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2253         }
2254     }
2255     if (EndLabel)
2256       endCVSubsection(EndLabel);
2257 
2258     // Second, emit each global that is in a comdat into its own .debug$S
2259     // section along with its own symbol substream.
2260     for (const auto *GVE : CU->getGlobalVariables()) {
2261       if (const auto *GV = GlobalMap.lookup(GVE)) {
2262         if (GV->hasComdat()) {
2263           MCSymbol *GVSym = Asm->getSymbol(GV);
2264           OS.AddComment("Symbol subsection for " +
2265                         Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2266           switchToDebugSectionForSymbol(GVSym);
2267           EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2268           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2269           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2270           endCVSubsection(EndLabel);
2271         }
2272       }
2273     }
2274   }
2275 }
2276 
2277 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2278   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2279   for (const MDNode *Node : CUs->operands()) {
2280     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2281       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2282         getTypeIndex(RT);
2283         // FIXME: Add to global/local DTU list.
2284       }
2285     }
2286   }
2287 }
2288 
2289 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2290                                            const GlobalVariable *GV,
2291                                            MCSymbol *GVSym) {
2292   // DataSym record, see SymbolRecord.h for more info.
2293   // FIXME: Thread local data, etc
2294   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2295            *DataEnd = MMI->getContext().createTempSymbol();
2296   OS.AddComment("Record length");
2297   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2298   OS.EmitLabel(DataBegin);
2299   if (DIGV->isLocalToUnit()) {
2300     if (GV->isThreadLocal()) {
2301       OS.AddComment("Record kind: S_LTHREAD32");
2302       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2303     } else {
2304       OS.AddComment("Record kind: S_LDATA32");
2305       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2306     }
2307   } else {
2308     if (GV->isThreadLocal()) {
2309       OS.AddComment("Record kind: S_GTHREAD32");
2310       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2311     } else {
2312       OS.AddComment("Record kind: S_GDATA32");
2313       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2314     }
2315   }
2316   OS.AddComment("Type");
2317   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2318   OS.AddComment("DataOffset");
2319   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2320   OS.AddComment("Segment");
2321   OS.EmitCOFFSectionIndex(GVSym);
2322   OS.AddComment("Name");
2323   emitNullTerminatedSymbolName(OS, DIGV->getName());
2324   OS.EmitLabel(DataEnd);
2325 }
2326